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Outline

Precedents of differential privacy in the design of sensitive surveys.

The definition of differential privacy:
It should make (almost) no observable difference
whether an individual is in the data or not.

Properties:
® |mmunity to post-processing.

e Composition and the “privacy budget.”

Simple constructions of differentially private mechanisms:
Add random noise to queries.
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Takeaways for this part of class

Naive notions of privacy (‘removing identifying information” or “aggregation”)
are not immune to the availability of auxiliary information.

“Differential privacy” provides a coherent and robust definition.

Random noise is necessary for privacy.

Responding to additional queries spends a “privacy budget.”
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Naive notions of privacy

e Removing “identifying information” does not preserve privacy:
® A small number of “non-sensitive”’ variables

(e.g., what movies you recently watched, what you had for breakfast the last few
days, ...)

e typically identifies you uniquely!

e Aggregation does not preserve privacy:

® A study reports, for a sample of patients with a certain disease, the share of
patients with a certain genetic variant (SNP), for a large number of genes.

e |t turns out that from such aggregates, we can identify whether any given
individual was in the sample (and thus has the disease).
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An example and historical precedent

e Suppose you are running a sensitive survey.
E.g., you might want to learn what share of students consume illegal drugs.

e How can you do so such that
1. norespondent runs a legal risk by responding truthfully, and

2. you still learn the aggregate share 6 accurately?

¢ Possible solution: Instruct each respondent to do the following.
1. Flip a coin.
If the coin comes up heads, respond truthfully.

2. If the coin comes up tails, flip again.
If the second flip is heads, respond truthfully, else lie.
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Example continued

Properties of this scheme:
1. Every participant has plausible deniability.

2. The share p responding “yes” equals
p=30+1(1-0)=1+16,

from which we can easily recover the true share 6.
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Definitions

Construction of differentially private mechanisms
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Definitions

e Throughout, we focus on discrete data, represented by vectors x € NX.
X is the count of individuals of type i € X in the data.

e Randomized Algorithms (Def 2.2):
Random mappings M from N¥ to some discrete range B.
M(x) € A(B) is the probability distribution over B.

e Distance between databases (Def 2.3) x and y:
X =yl = Lica IXi = yil
In particular, if y adds or drops one individual relative to x, then ||x —y|; = 1.
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Definitions continued

e Differential privacy (Def 2.4):
A randomized algorithm M is e-differentially private if
Forall § € B, and for all x,y with ||x —y|1 =1,

P(M(x) € 8)

W < exp(€).

e Privacy loss from observing &:

og <P(M(x) - 5)) |
PM(y)=¢)
This is bounded by & for e-differentially private M.

Practice problem

Discuss: Does differential privacy capture the socially relevant notion of privacy?
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Some properties

e Post-processing (Prop 2.1):
If M is e-differentially private
then the same holds true for f o M for any function f.

e Composition (Theo 3.74):
If M is g-differentially private for j = 1,2, and the M; are statistically
independent,
then (M4, My) is (& + &)- differentially private.

This compositional property is often described in terms of a “privacy budget”
that we can spend.

Practice problem

Prove these properties.
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What differential privacy does and does not deliver

e |t makes (almost) no difference to an individual
whether they are represented in the data or not.

¢ This holds no matter who gets to see the queries,
what other information they possess,
or what actions they might take based on the queries.

e This does not mean that no harm can result to an individual from the data —
just that their individual participation makes no difference.

e Example:
® A study based on medical records, released in a differentially private manner,
documents the relation between smoking and cancer.

* As a consequence, the insurance premiums for a smoker go up.

e But: This would have happened whether the individual's records
were part of the study or not.
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Construction of differentially private mechanisms



Randomization is necessary for differential privacy

Consider a deterministic mechanism M.

Unless M is trivial, there are values x,y of the data such that M(x) # M(y).

e \We can reach y from x by adding or removing entries to the data one at a time.

At one of these steps from u to v, we must have M(u) # M(v), while
Ju—vir="1.

If some adversary has auxiliary information that the data are either u or v,
they can identify which it is from query M,
and thus identify whether a particular individual is in the data or not.
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The Laplace mechanism

® The Laplace distribution Lap(b) has density

e The £4 sensitivity of a function f from N* to R¥ is defined as

Af = 1) = F¥)ls

max
xy:lx=ylh=1
e For such a function f, consider the randomized algorithm
M(x,f,e) =f(x)+(Y1,.--,Yx),

where the Y are i.i.d. Lap(Af/e).
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Practice problem

Prove that this algorithm satisfies e-differential privacy.
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Examples

e Counts:
Let f(x) be the number of individuals in the data satisifying some property.
Then Af =1,and f(x) +Y with Y ~ Lap(1/¢) is e-differentially private.

e Composition of counts:
We can report k such queries, each with Y ~ Lap(k/¢€),
to get an e-differentially private algorithm for their composition.

e Histograms:
Let f(x) be the vector of counts of individuals falling into each of a number of
categories.
Then Af =Tagain, and f(x) + (Y1,..., Yx) with Y; ~ Lap(1/€)
is again e-differentially private.

Note that we need much less noise
relative to the case where the counts for each category are independent.
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The exponential mechanism
e Suppose the query is to inform a decision a.
e The decision-maker’'s expected utility given the full data x is u(x, a).
° et

Au=max max |u(x,a)—u(y,a)l.
a xy:lx=y=1

The exponential mechanism reports a with probability
exp (552 )

Evoo(50))

This mechanism
1. Satisfies e-differential privacy.

2. Delivers high expected utility.
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