
Foundations of machine learning

Statistical decision theory

Maximilian Kasy

Department of Economics, University of Oxford

Hilary term 2022



Outline

• Basic definitions

• Optimality criteria

• Relationships between optimality criteria

• Analogies to microeconomics

• Two justifications of the Bayesian approach

1 / 52



Takeaways for this part of class

1. A general framework to think about what makes a “good” estimator, test, etc.

2. How the foundations of statistics relate to those of microeconomic theory.

3. In what sense the set of Bayesian estimators contains most “reasonable”
estimators.
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Examples of decision problems

• Decide whether or not the hypothesis of no racial discrimination in job
interviews is true

• Provide a forecast of the unemployment rate next month

• Provide an estimate of the returns to schooling

• Pick a portfolio of assets to invest in

• Decide whether to reduce class sizes for poor students

• Recommend a level for the top income tax rate
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Components of a general statistical decision problem

• Observed data X

• A statistical decision a

• A state of the world θ

• A loss function L(a,θ) (the negative of utility)

• A statistical model f(X|θ)

• A decision function a = δ (X)
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How they relate

• underlying state of the world θ

⇒ distribution of the observation X.

• decision maker: observes X⇒ picks a decision a

• her goal: pick a decision that minimizes loss L(a,θ)
(θ unknown state of the world)

• X is useful⇔ reveals some information about θ

⇔ f(X|θ) does depend on θ .

• problem of statistical decision theory:
find decision functions δ which “make loss small.”
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Graphical illustration

state of the world
θ

observed data
X

decision
a

 loss
  L(a,θ)

decision function
a=δ(X)

statistical
model

X~f(x,θ)
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Examples

• investing in a portfolio of assets:
• X: past asset prices
• a: amount of each asset to hold
• θ : joint distribution of past and future asset prices
• L: minus expected utility of future income

• decide whether or not to reduce class size:
• X: data from project STAR experiment
• a: class size
• θ : distribution of student outcomes for different class sizes
• L: average of suitably scaled student outcomes, net of cost
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Practice problem
For each of the examples on slide 2, what are
• the data X,

• the possible actions a,

• the relevant states of the world θ , and

• reasonable choices of loss function L?
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Loss functions in estimation

• goal: find an a

• which is close to some function µ of θ .

• for instance: µ(θ) = E[X]

• loss is larger if the difference between our estimate and the true value is larger
Some possible loss functions:
1. squared error loss,

L(a,θ) = (a−µ(θ))2

2. absolute error loss,
L(a,θ) = |a−µ(θ)|
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Loss functions in testing

• goal: decide whether H0 : θ ∈Θ0 is true

• decision a ∈ {0,1} (accept / reject)
Possible loss function:

L(a,θ) =


1 if a = 1, θ ∈Θ0
c if a = 0, θ /∈Θ0
0 else.

truth
decision a θ ∈Θ0 θ /∈Θ0

0 0 c
1 1 0
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Risk function

R(δ ,θ) = Eθ [L(δ (X),θ)].

• expected loss of a decision function δ

• R is a function of the true state of the world θ .

• crucial intermediate object in evaluating a decision function

• small R⇔ good δ

• δ might be good for some θ , bad for other θ .

• Decision theory deals with this trade-off.
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Example: estimation of mean

• observe X ∼ N(µ,1)

• want to estimate µ

• L(a,θ) = (a−µ(θ))2

• δ (X) = α + β ·X

Practice problem (Estimation of means)
Find the risk function for this decision problem.
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Variance / Bias trade-off

Solution:

R(δ ,µ) = E[(δ (X)−µ)2]

= Var(δ (X)) + Bias(δ (X))2

= β
2 Var(X) + (α + βE[X]−E[X])2

= β
2 + (α + (β − 1)µ)2.

• equality 1 and 2: always true for squared error loss

• Choosing β (and α) involves a trade-off of bias and variance,

• this trade-off depends on µ .
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Optimality criteria

• Ranking provided by the risk function is multidimensional:

• a ranking of performance between decision functions for every θ

• To get a global comparison of their performance, have to aggregate this
ranking into a global ranking.

• preference relationship on space of risk functions
⇒ preference relationship on space of decision functions
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Illustrations for intuition
• Suppose θ can only take two values,

• ⇒ risk functions are points in a 2D-graph,

• each axis corresponds to R(δ ,θ) for θ = θ0,θ1.

R(.,θ1)

R(.,θ0)

15 / 52



Three approaches to get a global ranking

1. partial ordering:
a decision function is better relative to another
if it is better for every θ

2. complete ordering, weighted average:
a decision function is better relative to another
if a weighted average of risk across θ is lower
weights ∼ prior distribution

3. complete ordering, worst case:
a decision function is better relative to another
if it is better under its worst-case scenario.
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Approach 1: Admissibility

Dominance:
δ is said to dominate another function δ ′ if

R(δ ,θ)≤ R(δ
′,θ)

for all θ , and
R(δ ,θ) < R(δ

′,θ)

for at least one θ .

Admissibility:
decisions functions which are not dominated are called admissible,
all other decision functions are inadmissible.
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R(.,θ1)

R(.,θ0)

feasible

admissible
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• admissibility ∼ “Pareto frontier”

• Dominance only generates a partial ordering of decision functions.

• in general: many different admissible decision functions.
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Practice problem
• you observe Xi ∼iid N(µ,1), i = 1, . . . ,n for n> 1

• your goal is to estimate µ , with squared error loss

• consider the estimators
1. δ (X) = X1

2. δ (X) = 1
n ∑iXi

• can you show that one of them is inadmissible?
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Approach 2: Bayes optimality

• natural approach for economists:

• trade off risk across different θ

• by assigning weights π(θ) to each θ

Integrated risk:
R(δ ,π) =

∫
R(δ ,θ)π(θ)dθ .
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Bayes decision function:
minimizes integrated risk,

δ
∗ = argmin

δ

R(δ ,π).

• Integrated risk ∼ linear indifference planes in space of risk functions

• prior ∼ normal vector for indifference planes
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R(.,θ1)

R(.,θ0)

π(θ)R(δ*,.)
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Decision weights as prior probabilities

• suppose 0<
∫

π(θ)dθ < ∞

• then wlog
∫

π(θ)dθ = 1 (normalize)

• if additionally π ≥ 0

• then π is called a prior distribution
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Posterior

• suppose π is a prior distribution

• posterior distribution:
π(θ |X) =

f(X|θ)π(θ)

m(X)

• normalizing constant = prior likelihood of X

m(X) =
∫

f(X|θ)π(θ)dθ
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Practice problem
• you observe X ∼ N(θ ,1)

• consider the prior
θ ∼ N(0,τ2)

• calculate
1. m(X)

2. π(θ |X)
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Posterior expected loss

R(δ ,π|X) :=
∫

L(δ (X),θ)π(θ |X)dθ

Proposition
Any Bayes decision function δ ∗

can be obtained by minimizing R(δ ,π|X)
through choice of δ (X) for every X.

Practice problem
Show that this is true.
Hint: show first that

R(δ ,π) =
∫

R(δ (X),π|X)m(X)dX.
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Bayes estimator with quadratic loss

• assume quadratic loss, L(a,θ) = (a−µ(θ))2

• posterior expected loss:

R(δ ,π|X) = Eθ |X [L(δ (X),θ)|X]

= Eθ |X

[
(δ (X)−µ(θ))2|X

]
= Var(µ(θ)|X) + (δ (X)−E[µ(θ)|X])2

• Bayes estimator minimizes posterior expected loss⇒

δ
∗(X) = E[µ(θ)|X].
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Practice problem
• you observe X ∼ N(θ ,1)

• your goal is to estimate θ , with squared error loss

• consider the prior
θ ∼ N(0,τ2)

• for any δ , calculate
1. R(δ (X),π|X)

2. R(δ ,π)

3. the Bayes optimal estimator δ ∗
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Practice problem
• you observe Xi iid., Xi ∈ {1,2, . . . ,k},

P(Xi = j) = θj

• consider the so called Dirichlet prior, for αj > 0:

π(θ) = const. ·
k

∏
j=1

θ
αj−1
j

• calculate π(θ |X)

• look up the Dirichlet distribution on Wikipedia

• calculate E[θ |X]

30 / 52



Approach 3: Minimaxity

• Don’t want to pick a prior?

• Can instead always assume the worst.

• worst = θ which maximizes risk

worst-case risk:
R(δ ) = sup

θ

R(δ ,θ).

minimax decision function:

δ
∗ = argmin

δ

R(δ ) = argmin
δ

sup
θ

R(δ ,θ).

(does not always exist!)
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R(.,θ1)

R(.,θ0)

R(δ*,.)
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Some relationships between these optimality criteria
Proposition (Minimax decision functions)
If δ ∗ is admissible with constant risk,
then it is a minimax decision function.
Proof:
• picture!

• Suppose that δ ′ had smaller worst-case risk than δ ∗

• Then
R(δ

′,θ ′)≤ sup
θ

R(δ
′,θ) < sup

θ

R(δ
∗,θ) = R(δ

∗,θ ′),

• used constant risk in the last equality

• This contradicts admissibility.
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• despite this result,
minimax decision functions are very hard to find

• Example:
• if X ∼ N(µ, I), dim(X)≥ 3, then
• X has constant risk (mean squared error) as estimator for µ

• but: X is not an admissible estimator for µ

therefore not minimax
• We will discuss dominating estimator in the next part of class.
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Proposition (Bayes decisions are admissible)
Suppose:
• δ ∗ is the Bayes decision function

• π(θ) > 0 for all θ , R(δ ∗,π) < ∞

• R(δ ∗,θ) is continuous in θ

Then δ ∗ is admissible.
(We will prove the reverse of this statement in the next section.)
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Sketch of proof:
• picture!

• Suppose δ ∗ is not admissible

• ⇒ dominated by some δ ′

i.e. R(δ ′,θ)≤ R(δ ∗,θ) for all θ with strict inequality for some θ

• Therefore

R(δ
′,π) =

∫
R(δ

′,θ)π(θ)dθ <
∫

R(δ
∗,θ)π(θ)dθ = R(δ

∗,π)

• This contradicts δ ∗ being a Bayes decision function.
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Proposition (Bayes risk and minimax risk)
The Bayes risk
R(π) := infδ R(δ ,π)
is never larger than the minimax risk
R := infδ supθ R(δ ,θ).

Proof:

R(π) = inf
δ

R(δ ,π)

≤ sup
π

inf
δ

R(δ ,π)

≤ inf
δ

sup
π

R(δ ,π)

≤ inf
δ

sup
θ

R(δ ,θ) = R.

If there exists a prior π∗ such that R(π) = R, it is called the least favorable
distribution.
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Analogies to microeconomics

1) Welfare economics

statistical decision theory social welfare analysis
different parameter values θ different people i
risk R(.,θ) individuals’ utility ui(.)
dominance Pareto dominance
admissibility Pareto efficiency
Bayes risk social welfare function
prior welfare weights (distributional preferences)
minimaxity Rawlsian inequality aversion
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2) choice under uncertainty / choice in strategic interactions

statistical decision theory strategic interactions
dominance of decision functions dominance of strategies
Bayes risk expected utility
Bayes optimality expected utility maximization
minimaxity (extreme) ambiguity aversion
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Two justifications of the Bayesian approach
justification 1 – the complete class theorem

• last section: every Bayes decision function is admissible
(under some conditions)

• the reverse also holds true (under some conditions):
every admissible decision function is Bayes,
or the limit of Bayes decision functions

• can interpret this as:
all reasonable estimators are Bayes estimators

• will state a simple version of this result
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Preliminaries

• set of risk functions that correspond to some δ is the risk set,

R := {r(.) = R(.,δ ) for some δ}

• will assume convexity of R
– no big restriction, since we can always randomly “mix” decision functions

• a class of decision functions δ is a complete class if it contains every
admissible decision function δ ∗
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Theorem (Complete class theorem)
Suppose
• the set Θ of possible values for θ is compact

• the risk set R is convex

• all decision functions have continuous risk
Then the Bayes decision functions constitute a complete class:
For every admissible decision function δ ∗, there exists a prior distribution π such
that δ ∗ is a Bayes decision function for π .
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R(.,θ1)

R(.,θ0)

π(θ)R(δ,.)
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Intuition for the complete class theorem
• any choice of decision procedure has to trade off risk across θ

• slope of feasible risk set
= relative “marginal cost” of decreasing risk at different θ

• pick a risk function on the admissible frontier

• can rationalize it with a prior
= “marginal benefit” of decreasing risk at different θ

• for example, minimax decision rule:
rationalizable by least favorable prior
slope of feasible set at constant risk admissible point

• analogy to social welfare: any policy choice or allocation corresponds to
distributional preferences / welfare weights
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Proof of complete class theorem:
• application of the separating hyperplane theorem,

to the space of functions of θ , with the inner product

〈f,g〉=
∫

f(θ)g(θ)dθ .

• for intuition: focus on binary θ , θ ∈ {0,1},
and 〈f,g〉= ∑θ f(θ)g(θ)

• Let δ ∗ be admissible. Then R(.,δ ∗) belongs to the lower boundary of R.

• convexity of R , separating hyperplane theorem
separating R from (infeasible) risk functions dominating δ ∗
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• ⇒ there exists a function π̃ (with finite integral) such that for all δ

〈R(.,δ ∗), π̃〉 ≤ 〈R(.,δ ), π̃〉.

• by construction π̃ ≥ 0

• thus π := π̃/
∫

π̃ defines a prior distribution.

• δ ∗ minimizes
〈R(.,δ ∗),π〉= R(δ

∗,π)

among the set of feasible decision functions

• and is therefore the optimal Bayesian decision function for the prior π .
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justification 2 – subjective probability theory

• going back to Savage (1954) and Anscombe and Aumann (1963).

• discussed in chapter 6 of
Mas-Colell, A., Whinston, M., and Green, J. (1995), Microeconomic theory,
Oxford University Press

• and maybe in Econ 2010 / Econ 2059.
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• Suppose a decision maker ranks risk functions R(.,δ ) by a preference
relationship �

• properties �might have:
1. completeness: any pair of risk functions can be ranked

2. monotonicity: if the risk function R is (weakly) lower than R′ for all θ , than R is
(weakly) preferred

3. independence:

R1 � R2⇔ αR1 + (1−α)R3 � αR2 + (1−α)R3

for all R1,R2,R3 and α ∈ [0,1]

• Important: this independence has nothing to do with statistical independence
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Theorem
If � is complete, monotonic, and satisfies independence, then there exists a prior π

such that
R(.,δ 1)� R(.,δ2)⇔ R(π,δ 1)≤ R(π,δ2).

Intuition of proof:
• Independence and completeness imply linear, parallel indifference sets

• monotonicity makes sure prior is non-negative
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Sketch of proof:
Using independence repeatedly, we can show that for all R1,R2,R3 ∈ RX , and all
α > 0,
1. R1 � R2 iff αR1 � αR2,

2. R1 � R2 iff R1 +R3 � R2 +R3,

3. {R : R� R1}= {R : R� 0}+R1,

4. {R : R� 0} is a convex cone.

5. {R : R� 0} is a half space.
The last claim requires completeness. It immediately implies the existence of π .
Monotonicity implies that π is not negative.
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Remark

• personally, I’m more convinced by the complete class theorem
than by normative subjective utility theory

• admissibility seems a very sensible requirement

• whereas “independence” of the preference relationship seems more up for
debate
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