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Outline

Supervised machine learning as a first stage estimator in econometrics.

Two problems that arise using a plugin approach.

Two solutions - orthogonalized scores and sample splitting.

How to derive orthogonalized scores.

Examples.

Asymptotics.
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Takeaways for this part of class

e Supervised learning can be useful as a first-stage
in econometric estimation problems.

e But simple plug-in estimators are often poorly behaved.

e Well-behaved estimators can be constructed using
1. Orthogonal scores, and

2. Sample splitting and averaging.

e Examples:
1. Partial linear regression.

2. Average treatment effect und unconfoundedness.

3. Local average treatment effect under conditional instrument exogeneity.
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Setup

® Many settings in econometrics:
® The object of interest is low-dimensional (or real-valued),

¢ but high-dimensional parameters are of intermediate relevance.

® General two stage structure:

1. The high-dimensional gg is given by the solution
to some supervised learning problem.

2. The low-dimensional parameter of interest 8y then solves
E[¢(W.60,90)] = 0.

e Can we estimate gg using supervised machine learning, and plug it in?
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Plugin estimation

e Most obvious estimator of 6g:
1. First estimate g using some supervised ML method.

2. Then plug in the estimate and solve for 8 in
En |:¢(Wla évg):| =0.

e This causes two problems, however:
1. Bias of § might distort 6.

2. The statistical dependence of § and W; might distort 6.
e Both of these issues might cause large biases.

e | et us consider some examples, before solving these problems.

4/20



Example 1: Partially linear regression

e Model:
Y=D-6y+9go(X)+U, E[UIX,D] = 0.

e Plugin estimator:
1. Estimate gg, using some supervised ML method.

2. Then solve Ep[¢p(W;, 60,9)] = 0, where Ej, is the sample average across
observations W;, and

e Thus »
6=E, [D,ﬂ -En[D;- (Yi—9(Xi))]
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Example 2: Average treatment effect

e Model:
Y =go(D,X)+U E[UIX,D] =0
60 = E[90(1»X) —go(O,X)]

e Under unconfoundedness, 6y is the average treatment effect.

e Plugin estimator:
1. Estimate gg, using some supervised ML method.

2. Then solve Ep[¢p(W;, 69,9)] = 0, where

¢(Wa 9,g) Ig(1,X) *Q(O,X) - 6.
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Example 3: Local average treatment effect
e Model:

Y=g)(ZX)+U, D=gd(Z,X)+V, E[U,V)X,2]=0,
o = E[gp(1,X) — 95(0,X)]
E[g5(1,X) —g5(0,X)]

e Under conditional instrument exogeneity, exclusion restriction, 6 is the local
average treatment effect.

¢ Plugin estimator:
1. Estimate gg, using some supervised ML method.

2. Then solve Ep[¢(W;, 60.39)] = 0, where

0(W.6.9) = ¢'(1.X) g (0.X) — (¢°(1.X) ~ ¢°(0.X) ) - 6.
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Approximating 6
e Telescope sum; Taylor approximation;
approximating sample averages by expectations:

0= En |:¢(WI7 é7g)i| = En |:¢(Wl7é7§) - (])(Wiv éag()):|

+Ep [¢(Wi7é790)_¢(wi760790)} +En [¢(Wi,60,90)]
~ E[ag(])(Wn 907g0) : (g _QO)]
+E[9e9(Wi, 60,90)] - (6 — 60) + En [9(Wi, 60,90)]

e Solving for 6 — 6g;

(6 —60) ~E[69(Wi,60,90)] - [En [0 (Wi, 80,90)] +
+E[9g0(W;, 60,90) - (G — go)]]
e We can further decompose the last term, which is the cause of bias:
E[89¢(Wi7 907g0) : (Q _g0)]
=E [dg¢ (Wi, 600,90)] - (E[G] — go) + E [dg¢ (Wi, 60, 90) - ( — E[G])]
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Practice problem

Write out this decomposition for average treatment effect estimation and the plugin
estimator.

1. Recall what is ¢ and g here.
2. Whatis dg¢, what is dg¢?

3. What do we get for the red and magenta terms?
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Problem 1: Bias in the first stage

As we discussed previously, ML estimators use regularization, and therefore
are biased: E[g] # go.

Suppose however that we had a score function which satisfies “Neyman
orthogonality:”

E[ag¢(Wi7 90790)] =0.

Then
E[dg¢(W;,60,90)] - (E[G] —go) = 0.

= Bias of § does not matter to first order.
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Problem 2: Statistical dependence of first stage and data

In general, W; and § are not statistically independent,
and g has non-negligible variance.

Therefore E [dg¢ (Wi, 80,90) - (G — E[§])] # O.

Suppose however we used sample splitting:
1. Estimate g on one part of the data.

2. Average ¢(W;,8,§) over the remaining data.

Then this term automatically vanishes!
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Debiased Machine Learning
Combining these two ideas: (Definition 3.2 in the paper.)
1. Start with an estimation problem of the form E[¢(W, 69,90)] = 0.

2. Derive an orthogonal Neyman score v, which satisfies

E[‘I/(Wa 903”0)] = Oa
E[dqw(W;,00,m0)] =0

We will discuss next how to do this.

3. Split the sample into K subsamples .
Estimate fj, based on I{. Denote E, , the sample average over Iy.

4. Estimate 6 by solving
k
Y. Enk [w(W,8,7)] =o0.
k=T
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How to derive orthogonal scores

e Suppose that
(607ﬁ0) = argen;gax E[L(W’ eaﬁ)]

® 3 takes the role of g here.

We focus on the parametric case for ease of exposition.

e Two approaches to deriving an orthogonal score:
1. Construction from moment functions.

2. Concentrating out.
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Construction from moment functions

e Suppose that
(60,B0) = arggr;ax E[L(W,8,B)],

and thus

E[deL(W, 60, B0)] =0, EfdpL(W, 6o, Bo)] = 0.

e Define
V/(Wv 9>77) = aGL(Wa Gaﬁ) —u- aﬁL(W¢ eaﬁ)a
where n = (u, B), and yg solves
dBE[deL(W, 60, Bo)] — Lo - dgE[dL(W, 6o, Bo)] = 0.
e Then
E[W(Wa 907”0)] = Oa
E[aﬂ W(Wia 907”0)] =0
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Construction by concentrating out
e Suppose again that

(60, Bo) = argmax E[L(W, 6, B)].
0.5

e Define
B(6) = argmax E[L(W,6,B)],
w(W,6,1) = de (L(W,6,5(6)))
= dgL(W,6,B)+deB(6)-IpL(W,6,B),
where n = (3,09 B(6)).
e Then, again

E[y(W,60,m0)] =0
E 05 w(Wi,60,1m0)] = 0.

15/20



Example 1: Partially linear regression

Recall the mode

Y =D-6+go(X)+U, E[U|X,D] = 0.

Define
mo(X) = E[D|X].

Then
y(W.0.n)=(Y—-D-6+g(X)) (D—m(X))

satisfies the orthogonality condition.

In the first stage, we need to estimate go(X) and m(X).
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Example 2: Average treatment effect
e Recall the mode
Y =go(D.X)+U E[U|X,D] =0
90 = E[g0(1,X) _90(07)()]

e Define
mo(X) = E[D|X].

® Then

y(W,6,1)=(9(1.X) - 9(0.X)) + (2% — L)

1X)  (1-D)g(0.X
- (% - ) o

satisfies the orthogonality condition.

e This is the famous “doubly robust” estimation approach.
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Asymptotics for debiased ML estimators

Theorem 3.3.

e Assume a number of regularity conditions.

e Consider a Debiased Machine Learning estimator.

® Then
V(6 —6) ~* N(0,6?),
® where
62 = J7 - Var(w(W, 8p,1m0)) - J ",
for

J = doE[y(W, 60, mo0)].
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Intuition of proof

e Recall our earlier expansion

(6 —60) ~ E[dew(Wi,680,m0)] "~ [En [W(Wi, 80,m0)] +
+E [0y w(W;,60,10) - (1 — M0)]]-

¢ Using the Debiased Machine Learning approach, we have killed the blue term.

e The other terms give asymptotic normality and the variance by standard
arguments.
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