
7
Normal Means and Minimax Theory

In this chapter we will discuss the many Normal means problem which
unifies some nonparametric problems and will be the basis for the methods in
the next two chapters. The material in this chapter is more theoretical than
in the rest of the book. If you are not interested in the theoretical details, I
recommend reading sections 7.1, 7.2, and 7.3 and then skipping to the next
chapter, referring back as needed. If you want more details on this topic, I
recommend Johnstone (2003).

7.1 The Normal Means Model

Let Zn = (Z1, . . . , Zn) where

Zi = θi + σn ϵi, i = 1, . . . , n, (7.1)

ϵ1, . . ., ϵn are independent, Normal(0, 1) random variables,

θn = (θ1, . . . , θn) ∈ Rn

is a vector of unknown parameters and σn is assumed known. Typically σn =
σ/

√
n but we shall not assume this unless specifically noted. Sometimes we

write Zn and θn as Z and θ. The model may appear to be parametric but
the number of parameters is increasing at the same rate as the number of
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FIGURE 7.1. The Normal means model. Xij = θi + N(0, σ2) and
Zi = n−1 ∑n

j=1 Xij = θi + σnϵi where σn = σ/
√

n. Estimating the parame-
ters θ1, . . . , θn from the n column means Z1, . . . , Zn leads to the model (7.1) with
σn = σ/

√
n.

data points. This model carries with it all the complexities and subtleties of a
nonparametric problem. We will also consider an infinite-dimensional version
of the model:

Zi = θi + σn ϵi, i = 1, 2, . . . , (7.2)

where now the unknown parameter is θ = (θ1, θ2, . . .).
Throughout this chapter we take σ2

n as known. In practice, we would need to
estimate the variance using one of the methods discussed in Chapter 5. In this
case, the exact results that follow may no longer hold but, under appropriate
smoothness conditions, asymptotic versions of the results will hold.

7.3 Example. To provide some intuition for this model, suppose that we have
data Xij = θi + σδij where 1 ≤ i, j ≤ n and the δij are independent N(0,1)
random variables. This is simply a one-way analysis of variance model; see
Figure 7.1. Let Zi = n−1

∑n
j=1 Xij . Then the model (7.1) holds with σn =

σ/
√

n. We get the infinite version (7.2) by having infinitely many columns in
Figure 7.1 (but still n rows). !

Given an estimator θ̂n = (θ̂1, . . . , θ̂n) we will use the squared error loss

L(θ̂n, θn) =
n∑

i=1

(θ̂i − θi)2 = ||θ̂n − θn||2

with risk function

R(θ̂n, θn) = Eθ

(
L(θ̂n, θn)

)
=

n∑

i=1

Eθ(θ̂i − θi)2.

An obvious choice for an estimator of θn is θ̂n = Zn. This estimator has
impressive credentials: it is the maximum likelihood estimator, it is the min-
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imum variance unbiased estimator and it is the Bayes estimator under a flat
prior. Nonetheless, it is a poor estimator. Its risk is

R(Zn, θn) =
n∑

i=1

Eθ(Zi − θi)2 =
n∑

i=1

σ2
n = nσ2

n.

We shall see that there are estimators with substantially smaller risk.
Before we explain how we can improve on the mle, let’s first see how the

normal means problem relates to nonparametric regression and density esti-
mation. To do that, we need to review some theory about function spaces.

7.2 Function Spaces

Let L2(a, b) denote the set of functions f : [a, b] → R such that
∫ b

a f2(x) dx <

∞. Unless otherwise indicated, assume that a = 0 and b = 1. The inner
product between two functions f and g in L2(a, b) is

∫ b
a f(x)g(x)dx and the

norm of f is ||f || =
√∫ b

a f2(x) dx. A sequence of functions φ1, φ2, . . . is called

orthonormal if ||φj || = 1 for all j (normalized) and
∫ b

a φi(x)φj(x)dx = 0 for
i ̸= j (orthogonal). The sequence is complete if the only function that is
orthogonal to each φj is the zero function. A complete, orthonormal set of
functions forms a basis, meaning that if f ∈ L2(a, b) then f can be expanded
in the basis:

7.4 Theorem. If f ∈ L2(a, b) then1

f(x) =
∞∑

j=1

θjφj(x) (7.5)

where

θj =
∫ b

a
f(x)φj(x) dx. (7.6)

Furthermore, ∫ b

a
f2(x)dx =

∞∑

j=1

θ2
j (7.7)

which is known as Parseval’s identity.

1The equality sign in (7.5) means that
∫ b
a (f(x) − fN (x))2dx → 0 as N → ∞, where

fN =
∑N

j=1 θjφj(x).
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An example of an orthonormal basis for L2(0, 1) is the cosine basis

φ0(x) = 1, φj(x) =
√

2 cos(2πjx), j = 1, 2, . . . .

Another example is the Legendre basis defined on (−1, 1):

P0(x) = 1, P1(x) = x, P2(x) =
1
2
(3x2 − 1), P3(x) =

1
2
(5x3 − 3x), . . .

These polynomials are defined by the relation

Pn(x) =
1

2nn!
dn

dxn
(x2 − 1)n.

The Legendre polynomials are orthogonal but not orthonormal since
∫ 1

−1
P 2

n(x)dx =
2

2n + 1
.

However, we can define modified Legendre polynomials Qn(x) =
√

(2n + 1)/2
Pn(x) which then form an orthonormal basis for L2(−1, 1).

Next we introduce Sobolev spaces, which are sets of smooth functions. Let
Djf denote the jth weak derivative2 of f .

7.8 Definition. The Sobolev space of order m, is defined by

W (m) =
{
f ∈ L2(0, 1) : Dmf ∈ L2(0, 1)

}
.

The Sobolev space of order m and radius c, is defined by

W (m, c) =
{
f : f ∈ W (m), ||Dmf ||2 ≤ c2

}
.

The periodic Sobolev class is

W̃ (m, c) =
{
f ∈ W (m, c) : Djf(0) = Djf(1), j = 0, . . . , m − 1

}
.

An ellipsoid is a set of the form

Θ =

{
θ :

∞∑

j=1

a2
jθ

2
j ≤ c2

}
(7.9)

where aj is a sequence of numbers such that aj → ∞ as j → ∞.

2The weak derivative is defined in the appendix.
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7.10 Definition. If Θ is an ellipsoid and if a2
j ∼ (πj)2m as j → ∞, we call

Θ a Sobolev ellipsoid or a Sobolev body and we denote it by Θ(m, c).

Now we relate Sobolev spaces to Sobolev ellipsoids.

7.11 Theorem. Let {φj , j = 0, 1, . . .} be the Fourier basis:

φ1(x) = 1, φ2j(x) =
1√
2

cos(2jπx), φ2j+1(x) =
1√
2

sin(2jπx), j = 1, 2, . . .

Then,

W̃ (m, c) =

{
f : f =

∞∑

j=1

θjφj ,
∞∑

j=1

a2
jθ

2
j ≤ c2

}
(7.12)

where aj = (πj)m for j even and aj = (π(j − 1))m for j odd.

Thus, a Sobolev space corresponds to a Sobolev ellipsoid with aj ∼ (πj)2m.
It is also possible to relate the class W (m, c) to an ellipsoid although the
details are more complicated; see Nussbaum (1985).

In Sobolev spaces, smooth functions have small coefficients θj when j is
large, otherwise

∑
j θ2

j (πj)2m will blow up. Thus, to smooth a function, we
shrink the θjs closer to zero. Hence:

smoothing f corresponds to shrinking the θj ’s towards zero for

large j.

A generalization of Sobolev spaces are Besov spaces. These include Sobolev
spaces as a special case but they also include functions with less smoothness.
We defer discussion of Besov spaces until Chapter 9.

7.3 Connection to Regression and Density
Estimation

Consider the nonparametric regression model

Yi = f(i/n) + σϵi, i = 1, . . . , n (7.13)

where ϵi ∼ N(0, 1), σ is known and f ∈ L2(0, 1). Let φ1, φ2, . . . be an or-
thonormal basis and write f(x) =

∑∞
i=1 θjφj(x) where θj =

∫
f(x)φj(x)dx.

First, approximate f by the finite series f(x) ≈
∑n

i=1 θjφj(x). Now define

Zj =
1
n

n∑

i=1

Yi φj(i/n) (7.14)
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for j = 1, . . . , n. The random variable Zj has a Normal distribution since Zj

is a linear combination of Normals. The mean of Zj is

E(Zj) =
1
n

n∑

i=1

E(Yi)φj(i/n) =
1
n

n∑

i=1

f(i/n)φj(i/n)

≈
∫

f(x)φj(x) dx = θj .

The variance is

V(Zj) =
1
n2

n∑

i=1

V(Yi) φ2
j (i/n) =

σ2

n

1
n

n∑

i=1

φ2
j (i/n)

≈ σ2

n

∫
φ2

j (x)dx =
σ2

n
≡ σ2

n.

A similar calculation shows that Cov(Zj , Zk) ≈ 0. We conclude that the Zj

are approximately independent and

Zj ∼ N(θj , σ
2
n), σ2

n =
σ2

n
. (7.15)

We have thus converted the problem of estimating f into the problem of
estimating the means of n Normal random variables as in (7.1) with σ2

n =
σ2/n. Also, squared error loss for f corresponds to squared error loss for θ

since, by Parseval’s identity, if f̂n(x) =
∑∞

j=1 θ̂jφj(x),

||f̂n − f ||2 =
∫ (

f̂n(x) − f(x)
)2

dx =
∞∑

j=1

(θ̂j − θj)2 = ||θ̂ − θ||2 (7.16)

where ||θ|| =
√∑

j θ2
j .

It turns out that other nonparametric problems, such as density estimation,
can also be connected to the Normal means problem. In the case of density
estimation, it is the square root of the density that appears in the white noise
problem. In this sense, the many Normal means problem serves as a unifying
framework for many nonparametric models. See Nussbaum (1996a), Claeskens
and Hjort (2004) and the appendix for more details.

7.4 Stein’s Unbiased Risk Estimator (sure)

Let θ̂ be an estimate of θ. It will be useful to have an estimate of the risk of θ̂.
In previous chapters we used cross-validation to estimate risk. In the present
context there is a more elegant method for risk estimation due to Stein (1981)
known as Stein’s unbiased risk estimator or sure.
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7.17 Theorem (Stein). Let Z ∼ Nn(θ, V ), let θ̂ = θ̂(Z) be an estimate of θ

and let g(Z1, . . . , Zn) = θ̂ − Z. Note that g maps Rn to Rn. Define

R̂(z) = tr(V ) + 2tr (V D) +
∑

i

g2
i (z) (7.18)

where tr denotes the trace of a matrix, gi = θ̂i − Zi and the (i, j) component
of D is the partial derivative of the ith component of g(z1, . . . , zn) with respect
to zj. If g is weakly differentiable3 then

Eθ(R̂(Z)) = R(θ, θ̂).

If we apply Theorem 7.17 to the model (7.1) we get the following.

The sure Formula for the Normal Means Model

Let θ̂ be a weakly differentiable estimator of θ in model (7.1). An unbiased
estimate of the risk of θ̂ is

R̂(z) = nσ2
n + 2σ2

n

n∑

i=1

Di +
n∑

i=1

g2
i (7.19)

where g(Z1, . . . , Zn) = θ̂n − Zn and Di = ∂g(z1, . . . , zn)/∂zi.

proof of Theorem 7.17. We will prove the case where V = σ2I. If
X ∼ N(µ, σ2) then E(g(X)(X − µ)) = σ2Eg′(X). (This is known as Stein’s
Lemma and it can be proved using integration by parts. See Exercise 4.)
Hence, σ2EθDi = Eθgi(Zi − θ) and

Eθ(R̂(Z)) = nσ2 + 2σ2
n∑

i=1

EθDi +
n∑

i=1

Eθ(θ̂i − Zi)2

= nσ2 + 2
n∑

i=1

Eθ (gi(Zi − θi)) +
n∑

i=1

Eθ(θ̂i − Zi)2

=
n∑

i=1

Eθ(Zi − θi)2 + 2
n∑

i=1

Eθ

(
(θ̂i − Zi)(Zi − θi)

)

+
n∑

i=1

Eθ(θ̂i − Zi)2

=
n∑

i=1

Eθ(θ̂i − Zi + Zi − θi)2 =
n∑

i=1

Eθ(θ̂i − θi)2 = R(θ̂, θ). !

3Weak differentiability is defined in the appendix.
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7.20 Example. Let V = σ2I. Consider θ̂ = Z. Then g(z) = (0, . . . , 0) and
R̂(Z) = nσ2. In this case, R̂ is equal to the true risk. Now consider the linear
estimator θ̂ = bZ = (bZ1, . . . , bZn). Hence, g(Z) = bZ − Z = (b − 1)Z and
Di = b− 1. Therefore, R̂(Z) = (2b− 1)nσ2 + (1− b)2

∑n
i=1 Z2

i . Next consider
the soft threshold estimator defined by

θ̂i =

⎧
⎨

⎩

Zi + λ Zi < −λ
0 −λ ≤ Zi ≤ λ
Zi − λ Zi > λ

(7.21)

where λ > 0 is a constant. We can write this estimator more succinctly as

θ̂i = sign(Zi)(|Zi|− λ)+.

In Exercise 5 you will show that the sure formula gives

R̂(Z) =
n∑

i=1

(
σ2 − 2σ2I(|Zi| ≤ λ) + min(Z2

i , λ2)
)

. (7.22)

Finally, consider the hard threshold estimator defined by

θ̂i =
{

Zi |Zi| > λ
0 |Zi| ≤ λ

(7.23)

where λ > 0 is a constant. It is tempting to use sure but this is inappropriate
because this estimator is not weakly differentiable. !

7.24 Example (Model selection). For each S ⊂ {1, . . . , n} define

θ̂S = ZiI(i ∈ S). (7.25)

We can think of S as a submodel which says that Zi ∼ N(θi, σ2
n) for i ∈ S and

Zi ∼ N(0, σ2
n) for i /∈ S. Then θ̂S is the estimator of θ assuming the model S.

The true risk of θ̂S is

R(θ̂S , θ) = σ2
n|S| +

∑

i∈Sc

θ2
i

where |S| denotes the number of points in S. Replacing θ2
i in the risk with its

unbiased estimator Z2
i − σ2

n yields the risk estimator

R̂S = σ2
n|S| +

∑

i∈Sc

(Z2
i − σ2

n). (7.26)

It is easy to check that this corresponds to the sure formula. Now let S be
some class of sets where each S ∈ S is a subset of {1, . . . , n}. Choosing S ∈ S
to minimize R̂S is an example of model selection. The special case where

S =
{
∅, {1}, {1, 2}, . . . , {1, 2, . . . , n}

}
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is called nested subset selection. Taking S to be all subsets of {1, . . . , n}
corresponds to all possible subsets. For any fixed model S, we expect that
R̂S will be close to R(θ̂S , θ). However, this does not guarantee that R̂S is close
to R(θ̂S , θ) uniformly over S. See Exercise 10. !

7.5 Minimax Risk and Pinsker’s Theorem

If Θn is a subset of Rn, we define the minimax risk over Θn by

Rn ≡ R(Θn) ≡ inf
θ̂

sup
θ∈Θn

R(θ̂, θ) (7.27)

where the infimum is over all estimators. Two questions we will address are:
(i) what is the value of the minimax risk R(Θn)? and (ii) can we find an
estimator that achieves this risk?

The following theorem4 gives the exact, limiting form of the minimax risk
for the L2 ball

Θn(c) =

{
(θ1, . . . , θn) :

n∑

i=1

θ2
i ≤ c2

}
.

7.28 Theorem (Pinsker’s theorem). Assume the model (7.1) with σ2
n = σ2/n.

For any c > 0,

lim inf
n→∞

inf
θ̂

sup
θ∈Θn(c)

R(θ̂, θ) =
σ2c2

σ2 + c2
. (7.29)

The right-hand side of (7.29) gives an exact expression for the (asymptotic)
minimax risk. This expression is strictly smaller than σ2 which is the risk for
the maximum likelihood estimator. Later, we will introduce the James–Stein
estimator which asymptotically achieves this risk. The proof of the theorem,
which is in the appendix, is a bit technical and may be skipped without loss
of continuity. Here is the basic idea behind the proof.

First, we note that the estimator with coordinates θ̂j = c2Zj/(σ2 + c2) has
risk bounded above by σ2c2/(σ2 + c2). Hence,

Rn ≤ σ2c2

σ2 + c2
. (7.30)

If we could find a prior π on Θn(c) whose posterior mean θ̃ also has risk
σ2c2/(σ2 + c2) then we could argue that, for any estimator θ̂, we have

σ2c2

σ2 + c2
=

∫
R(θ, θ̃)dπ(θ) ≤

∫
R(θ, θ̂)dπ(θ) ≤ sup

θ∈Θn

R(θ, θ̂) = Rn. (7.31)

4This is a finite-dimensional version of Pinsker’s theorem. Theorem 7.32 is the usual version.
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Combining (7.30) and (7.31) would yield Rn = σ2c2/(σ2 + c2). The proof is
essentially an approximate version of this argument. One finds a prior over
all of Rn whose risk is arbitrarily close to σ2c2/(σ2 + c2) and one then shows
that the prior asymptotically concentrates on Θn(c).

Now let us see how minimax theory works for smooth functions.

7.32 Theorem (Pinsker’s theorem for Sobolev ellipsoids). Let

Zj = θj +
σ√
n

ϵj, j = 1, 2, . . . (7.33)

where ϵ1, ϵ2, . . . ∼ N(0, 1). Assume that θ ∈ Θ(m, c), a Sobolev ellipsoid (recall
Definition 7.10). Let Rn denote the minimax risk over Θ(m, c). Then,

lim
n→∞

n2m/(2m+1)Rn =
(σ

π

)2m/(2m+1)
c2/(2m+1)Pm (7.34)

where

Pm =
(

m

m + 1

)2m/(2m+1)

(2m + 1)1/(2m+1) (7.35)

is the Pinsker constant. Hence, the minimax rate is n−2m/(2m+1), that is,

0 < lim
n→∞

n2m/(2m+1)Rn < ∞.

Here is a more general version of the theorem.

7.36 Theorem (Pinsker’s theorem for ellipsoids). Let

Θ =

{
θ :

∞∑

j=1

ajθ
2
j ≤ c2

}
.

The set Θ is called an ellipsoid. Assume that aj → ∞ as j → ∞. Let

Rn = inf
θ̂

sup
θ∈Θ

R(θ̂, θ)

denote the minimax risk and let

RL
n = inf

θ̂∈L
sup
θ∈Θ

R(θ̂, θ)

denote the minimax linear risk where L is the set of linear estimators of the
form θ̂ = (w1Z1, w2Z2, . . .). Then:

(1) linear estimators are asymptotically minimax: Rn ∼ RL
n as n → ∞;

(2) the minimax linear risk satisfies

RL
n =

σ2

n

∑

i

(
1 − ai

µ

)

+
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where µ solves
σ2

n

∑

i

ai(µ − ai)+ = c2.

(3) The linear minimax estimator is θ̂i = wiZi where wi = [1 − (ai/µ)]+.
(4) The linear minimax estimator is Bayes5for the prior with independent

components such that θi ∼ N(0, τ2
i ), τ2

i = (σ2/n)(µ/ai − 1)+.

7.6 Linear Shrinkage and the James–Stein Estimator

Let us now return to model (7.1) and see how we can improve on the mle using
linear estimators. A linear estimator is an estimator of the form θ̂ = bZ =
(bZ1, . . . , bZn) where 0 ≤ b ≤ 1. Linear estimators are shrinkage estimators
since they shrink Z towards the origin. We denote the set of linear shrinkage
estimators by L = {bZ : b ∈ [0, 1]}.

The risk of a linear estimator is easy to compute. From the basic bias–
variance breakdown we have

R(bZ, θ) = (1 − b)2||θ||2n + nb2σ2
n (7.37)

where ||θ||2n =
∑n

i=1 θ2
i . The risk is minimized by taking

b∗ =
||θ||2n

nσ2
n + ||θ||2n

.

We call b∗Z the ideal linear estimator. The risk of this ideal linear estimator
is

R(b∗Z, θ) =
nσ2

n||θ||2n
nσ2

n + ||θ||2n
. (7.38)

Thus we have proved:

7.39 Theorem.

inf
θ̂∈L

R(θ̂, θ) =
nσ2

n||θ||2n
nσ2

n + ||θ||2n
. (7.40)

We can’t use the estimator b∗Z because b∗ depends on the unknown pa-
rameter θ. For this reason we call R(b∗Z, θ) the linear oracular risk since
the risk could only be obtained by an “oracle” that knows ||θ||2n. We shall now
show that the James–Stein estimator nearly achieves the risk of the ideal
oracle.

5The Bayes estimator minimizes Bayes risk
∫

R(θ, θ̂)dπ(θ) for a given prior π.
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The James–Stein estimator of θ is defined by

θ̂JS =
(

1 − (n − 2)σ2
n∑n

i=1 Z2
i

)
Z. (7.41)

We’ll see in Theorem 7.48 that this estimator is asymptotically optimal.

7.42 Theorem. The risk of the James–Stein estimator satisfies the following
bound:

R(θ̂JS , θ) ≤ 2σ2
n +

(n − 2)σ2
n||θ||2n

(n − 2)σ2
n + ||θ||2n

≤ 2σ2
n +

nσ2
n||θ||2n

nσ2
n + ||θ||2n

(7.43)

where ||θ||2n =
∑n

i=1 θ2
i .

Proof. Write θ̂JS = Z + g(Z) where g(z) = −(n − 2)σ2
nz/

∑
i z2

i . Hence

Di =
∂gi

∂zi
= −(n − 2)σ2

n

(
1∑
i z2

i

− 2z2
i

(
∑

i z2
i )2

)

and
n∑

i=1

Di = − (n − 2)2σ2
n∑n

i=1 z2
i

.

Plugging this into the sure formula (7.19) yields

R̂(Z) = nσ2
n − (n − 2)2σ4

n∑
i Z2

i

.

Hence, the risk is

R(θ̂JS , θ) = E(R̂(Z)) = nσ2
n − (n − 2)2σ4

nE
(

1∑
i Z2

i

)
. (7.44)

Now Z2
i = σ2

n((θi/σn) + ϵi)2 and so
∑n

i=1 Z2
i ∼ σ2

nW where W is noncentral
χ2 with n degrees of freedom and noncentrality parameter δ =

∑n
i=1(θ

2
i /σ2

n).
Using a well-known result about noncentral χ2 random variables, we can then
write W ∼ χ2

n+2K where K ∼ Poisson(δ/2). Recall that (for n > 2) E(1/χ2
n) =

1/(n− 2). So,

Eθ

[
1∑
i Z2

i

]
=

(
1
σ2

n

)
E

[
1

χ2
n+2K

]
=

(
1
σ2

n

)
E

(
E

[
1

χ2
n+2K

∣∣∣∣∣ K

])

=
(

1
σ2

n

)
E

[
1

n − 2 + 2K

]

≥
(

1
σ2

n

)
1

(n − 2) + σ−2
n

∑n
i=1 θ2

i

from Jensen′s inequality

=
1

(n − 2)σ2
n +

∑n
i=1 θ2

i

.
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Substituting into (7.44) we get the first inequality. The second inequality
follows from simple algebra. !

7.45 Remark. The modified James–Stein estimator is defined by

θ̂ =
(

1 − nσ2
n∑

i Z2
i

)

+

Z (7.46)

where (a)+ = max{a, 0}. The change from n − 2 to n leads to a simpler
expression and for large n this has negligible effect. Taking the positive part
of the shrinkage factor cannot increase the risk. In practice, the modified
James–Stein estimator is often preferred.

The next result shows that the James–Stein estimator nearly achieves the
risk of the linear oracle.

7.47 Theorem (James–Stein oracle inequality). Let L = {bZ : b ∈ R} denote
the class of linear estimators. For all θ ∈ Rn,

inf
θ̂∈L

R(θ̂, θ) ≤ R(θ̂JS , θ) ≤ 2σ2
n + inf

θ̂∈L
R(θ̂, θ).

Proof. This follows from (7.38) and Theorem 7.42. !

Here is another perspective on the James–Stein estimator. Let θ̂ = bZ.
Stein’s unbiased risk estimator is R̂(Z) = nσ2

n+2nσ2
n(b−1)+(b−1)2

∑n
i=1 Z2

i

which is minimized at
b̂ = 1 − nσ2

n∑n
i=1 Z2

i

yielding the estimator

θ̂ = b̂Z =
(

1 − nσ2
n∑n

i=1 Z2
i

)
Z

which is essentially the James–Stein estimator.
We can now show that the James–Stein estimator achieves the Pinsker

bound (7.29) and so is asymptotically minimax.

7.48 Theorem. Let σ2
n = σ2/n. The James–Stein estimator is asymptotically

minimax, that is,

lim
n→∞

sup
θ∈Θn(c)

R(θ̂JS , θ) =
σ2c2

σ2 + c2
.

Proof. Follows from Theorem 7.42 and 7.28. !
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7.49 Remark. The James–Stein estimator is adaptive in the sense that it
achieves the minimax bound over Θn(c) without knowledge of the
parameter c.

To summarize: the James–Stein estimator is essentially optimal over all
linear estimators. Moreover, it is asymptotically optimal over all estimators,
not just linear estimators. This also shows that the minimax risk and the linear
minimax risk are asymptotically equivalent. This turns out to (sometimes) be
a more general phenomenon, as we shall see.

7.7 Adaptive Estimation Over Sobolev Spaces

Theorem 7.32 gives an estimator that is minimax over Θ(m, c). However, the
estimator is unsatisfactory because it requires that we know c and m.

Efromovich and Pinsker (1984) proved the remarkable result that there
exists an estimator that is minimax over Θ(m, c) without requiring knowledge
of m or c. The estimator is said to be adaptively asymptotically minimax.
The idea is to divide the observations into blocks B1 = {Z1, . . . , Zn1}, B2 =
{Zn1+1, . . . , Zn2}, . . . and then apply a suitable estimation procedure within
blocks.

Here is particular block estimation scheme due to Cai et al. (2000). For any
real number a let [a] denote the integer part of a. Let b = 1 + 1/ logn and let
K0 be an integer such that [bK0 ] ≥ 3 and [bk] − [bk−1] ≥ 3 for k ≥ K0 + 1.
Let B0 = {Zi : 1 ≤ i ≤ [bK0 ]} and let Bk = {Zi : [bk−1] < i ≤ [bk]} for
k ≥ K0 + 1. Let θ̂ be the estimator obtained by applying the James–Stein
estimator within each block Bk. The estimator is taken to be 0 for i > [bK1 ]
where K1 = [logb(n)] − 1.

7.50 Theorem (Cai, Low and Zhao, 2000). Let θ̂ be the estimator above. Let
Θ(m, c) = {θ :

∑∞
i=1 a2

i θ
2
i ≤ c2} where a1 = 1 and a2i = a2i+1 = 1+(2iπ)2m.

Let Rn(m, c) denote the minimax risk over Θ(m, c). Then for all m > 0 and
c > 0,

lim
n→∞

supθ∈Θ(m,c) R(θ̂, θ)
Rn(m, c)

= 1.
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7.8 Confidence Sets

In this section we discuss the construction of confidence sets for θn. It will
now be convenient to write θ and Z instead of θn and Zn.

Recall that Bn ⊂ Rn is a 1 − α confidence set if

inf
θ∈Rn

Pθ(θ ∈ Bn) ≥ 1 − α. (7.51)

We have written the probability distribution Pθ with the subscript θ to em-
phasize that the distribution depends on θ. Here are some methods for con-
structing confidence sets.

Method I: The χ2 Confidence Set. The simplest confidence set for θ

is based on the fact that ||Z − θ||2/σ2
n has a χ2

n distribution. Let

Bn =
{
θ ∈ Rn : ||Z − θ||2 ≤ σ2

n χ2
n,α

}
(7.52)

where χ2
n,α is the upper α quantile of a χ2 random variable with n degrees of

freedom. It follows immediately that

Pθ(θ ∈ Bn) = 1 − α, for all θ ∈ Rn.

Hence, (7.51) is satisfied. The expected radius of this ball is nσ2
n. We will see

that we can improve on this.

Improving the χ2 Ball by Pre-testing. Before discussing more com-
plicated methods, here is a simple idea—based on ideas in Lepski (1999)—
for improving the χ2 ball. The methods that follow are generalizations of this
method.

Note that the χ2 ball Bn has a fixed radius sn = σn
√

n. When applied to
function estimation, σn = O(1/

√
n) so that sn = O(1) and hence the radius of

the ball does not even converge to zero as n → ∞. The following construction
makes the radius smaller. The idea is to test the hypothesis that θ = θ0. If we
accept the null hypothesis, we use a smaller ball centered at θ0. Here are the
details.

First, test the hypothesis that θ = (0, . . . , 0) using
∑

i Z2
i as a test statistic.

Specifically, reject the null when

Tn =
∑

i

Z2
i > c2

n

and cn is defined by

P
(

χ2
n >

c2
n

σ2
n

)
=

α

2
.
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By construction, the test has type one error rate α/2. If Z denotes a N(0,1)
random variable then

α

2
= P

(
χ2

n >
c2
n

σ2
n

)
= P

⎛

⎝χ2
n − n√

2n
>

c2
n

σ2
n
− n

√
2n

⎞

⎠ ≈ P

⎛

⎝Z >

c2
n

σ2
n
− n

√
2n

⎞

⎠

implying that
c2
n ≈ σ2

n(n +
√

2nzα/2).

Now we compute the power of this test when ||θ|| > ∆n where

∆n =
√

2
√

2zα/2 n1/4σn.

Write Zi = θi + σnϵi where ϵi ∼ N(0, 1). Then,

Pθ(Tn > c2
n) = Pθ

(∑

i

Z2
i > c2

n

)
= Pθ

(∑

i

(θi + σnϵi)2 > c2
n

)

= Pθ

(
||θ||2 + 2σn

∑

i

θiϵi + σ2
n

∑

i

ϵ2i > c2
n

)
.

Now, ||θ||2+2σn
∑

i θiϵi+σ2
n

∑
i ϵ2i has mean ||θ||2+nσ2

n and variance 4σ2
n||θ||2+

2nσ4
n. Hence, with Z denoting a N(0,1) random variable,

Pθ(Tn > c2
n) ≈ P

(
||θ||2 + nσ2

n +
√

4σ2
n||θ||2 + 2nσ4

nZ > c2
n

)

≈ P
(
||θ||2nσ2

n +
√

4σ2
n||θ||2 + 2nσ4

nZ > σ2
n(n +

√
2nzα/2)

)

= P

⎛

⎝Z >

(√
2zα/2 − ||θ||2√

nσ2
n

)

2 + 4||θ||2
nσ2

n

⎞

⎠ ≥ P

⎛

⎝Z >

(√
2zα/2 − ||θ||2√

nσ2
n

)

2

⎞

⎠

≥ 1 − α

2

since ||θ|| > ∆n implies that
(√

2zα/2 − ||θ||2√
nσ2

n

)

2
≥ −zα/2.

In summary, the test has type-one error α/2 and type-two error no more than
α/2 for all ||θ|| > ∆n.

Next we define the confidence procedure as follows. Let φ = 0 if the test
accepts and φ = 1 if the test rejects. Define

Rn =

⎧
⎨

⎩

Bn if φ = 1{
θ : ||θ|| ≤ ∆n

}
if φ = 0.
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Thus, Rn is a random radius confidence ball. The radius is the same as the
χ2 ball when φ = 1 but when φ = 0, the radius is ∆n which is much smaller.
Let us now verify that the ball has the right coverage.

The noncoverage of this ball when θ = (0, . . . , 0) is

P0(θ /∈ R) = P0(θ /∈ R, φ = 0) + P0(θ /∈ R, φ = 1)

≤ 0 + P0(φ = 1) =
α

2
.

The noncoverage of this ball when θ ̸= (0, . . . , 0) and ||θ|| ≤ ∆n is

Pθ(θ /∈ R) = Pθ(θ /∈ R, φ = 0) + Pθ(θ /∈ R, φ = 1)

≤ 0 + Pθ(θ /∈ B) =
α

2
.

The noncoverage of this ball when θ ̸= (0, . . . , 0) and ||θ|| > ∆n is

Pθ(θ /∈ R) = Pθ(θ /∈ R, φ = 0) + Pθ(θ /∈ R, φ = 1)

≤ Pθ(φ = 0) + Pθ(θ /∈ B) ≤ α

2
+

α

2
= α.

In summary, by testing whether θ is close to (0, . . . , 0) and using a smaller
ball centered at (0, . . . , 0) when the test accepts, we get a ball with proper
coverage and whose radius is sometimes smaller than the χ2 ball. The message
is that:

a random radius confidence ball can have an expected radius that is

smaller than a fixed confidence ball at some points in the parameter

space.

The next section generalizes this idea.

Method II: The Baraud Confidence Set. Here we discuss the
method due to Baraud (2004) which builds on Lepski (1999), as discussed
above. We begin with a class S of linear subspaces of Rn. Let ΠS denote the
projector onto S. Thus, for any vector Z ∈ Rn, ΠSZ is the vector in S closest
to Z.

For each subspace S, we construct a ball BS of radius ρS centered at an
estimator in S, namely,

BS =
{
θ : ||θ − ΠSZ|| ≤ ρS

}
. (7.53)

For each S ∈ S, we test whether θ is close to S using ||Z − ΠSZ|| as a test
statistic. We then take the smallest confidence ball BS among all unrejected
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subspaces S. The key to making this work is this: the radius ρS is chosen so
that

max
θ

Pθ(S is not rejected and θ /∈ BS) ≤ αS (7.54)

where
∑

S∈S αS ≤ α. The resulting confidence ball has coverage at least 1−α

since

max
θ

Pθ(θ /∈ B) ≤
∑

S

max
θ

Pθ(S is not rejected and θ /∈ BS)

=
∑

S

αS ≤ α.

We will see that the n-dimensional maximization over θ ∈ Rn can be reduced
to a one-dimensional maximization since the probabilities only depend on θ

through the quantity z = ||θ − ΠSθ||.
The confidence set has coverage 1 − α even if θ is not close to one of the

subspaces in S. However, if it is close to one of the subspaces in S, then the
confidence ball will be smaller than the χ2 ball.

For example, suppose we expand a function f(x) =
∑

j θjφj(x) in a basis, as
in Section 7.3. Then, the θis correspond to the coefficients of f in this basis. If
the function is smooth, then we expect that θi will be small for large i. Hence,
θ might be well approximated by a vector of the form (θ1, . . . , θm, 0, . . . , 0).
This suggests that we could test whether θ is close to the subspace Sm of
the vectors of the form (θ1, . . . , θm, 0, . . . , 0), for m = 0, . . . , n. In this case we
would take the class of subspaces to be S = {S0, . . . , Sn}.

Before we proceed with the details, we need some notation. If Xj ∼ N(µj , 1),
j = 1, . . . , k are iid, then T =

∑k
j=1 X2

j has a noncentral χ2 distribution
with noncentrality parameter d =

∑
j µ2

j and k degrees of freedom and we
write T ∼ χ2

d,k. Let Gd,k denote the cdf of this random variable and let
qd,k(α) = G−1

d,k(1 − α) denote the upper α quantile. By convention, we define
qd,k(α) = −∞ for α ≥ 1.

Let S be a finite collection of linear subspaces of Rn. We assume that
Rn ∈ S. Let d(S) be the dimension of S ∈ S and let e(S) = n − d(S). Fix
α ∈ (0, 1) and γ ∈ (0, 1) where γ < 1 − α. Let

A =

{
S :

||Z − ΠSZ||2

σ2
n

≤ c(S)

}
(7.55)

where

c(S) = q0,e(S)(γ). (7.56)
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Think of ||Z−ΠSZ||2 as a test statistic for the hypothesis that θ ∈ S. Then A
is the set of nonrejected subspaces. Note that A always includes the subspace
S = Rn since, when S = Rn, ΠSZ = Z and ||Z − ΠSZ||2 = 0.

Let (αS : S ∈ S) be a set of numbers such that
∑

S∈S αS ≤ α. Now define
the ρS as follows:

ρ2
S = σ2

n ×

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

infz>0

{
Gz,n(q0,n(γ)) ≤ αS

}
if d(S) = 0

supz>0

{
z + q0,d(S)

(
αS

Gz,e(S)(c(S))

)}
if 0 < d(S) < n

ρ2
S = σ2

nq0,n(αS) if d(S) = n.
(7.57)

Define
Ŝ = argminS∈A ρS ,

θ̂ = ΠŜZ, and ρ̂ = ρŜ . Finally, define

Bn =
{
θ ∈ Rn : ||θ − θ̂||2 ≤ ρ̂2

}
. (7.58)

7.59 Theorem (Baraud 2004). The set Bn defined in (7.58) is a valid confi-
dence set:

inf
θ∈Rn

Pθ(θ ∈ Bn) ≥ 1 − α. (7.60)

Proof. Let BS = {θ : ||θ − ΠSZ||2 ≤ ρ2
S}. Then,

Pθ(θ /∈ Bn) ≤ Pθ(θ /∈ BS for some S ∈ A)

≤
∑

S

Pθ(||θ − ΠSZ|| > ρS , Ŝ ∈ A)

=
∑

S

Pθ

(
||θ − ΠSZ|| > ρS , ||Z − ΠSZ||2 ≤ c(S)σ2

n

)
.

Since
∑

S αS ≤ α, it suffices to show that a(S) ≤ αS for all S ∈ S, where

a(S) ≡ Pθ

(
||θ − ΠSZ|| > ρS , ||Z − ΠSZ||2 ≤ σ2

n c(S)
)

. (7.61)

When d(S) = 0, ΠSZ = (0, . . . , 0). If ||θ|| ≤ ρS then a(0) = 0 which is less
than αS . If ||θ|| > ρS , then

a(S) = Pθ

(
n∑

i=1

Z2
i ≤ σ2

nq0,n(γ)

)

= G||θ||2/σ2
n,n(q0,n(γ)) ≤ Gρ2

0/σ2
n,n(q0,n(γ))

≤ αS
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since Gd,n(u) is decreasing in z for all u and from the definition of ρ2
0.

Now consider the case where 0 < d(S) < n. Let

A =
||θ − ΠSZ||2

σ2
n

= z +
m∑

j=1

ϵ2j , B =
||θ̂ − Z||2

σ2
n

where z = ||θ − ΠSθ||2/σ2
n. Then A and B are independent, A ∼ z + χ2

0,d(S),
and B ∼ χ2

z,e(S). Hence,

a(S) = Pθ

(
A >

ρ2
m

σ2
n

, B < c(S)

)

= Pθ

(
z + χ2

d(S) >
ρ2

S

σ2
n

, χ2
z,e(S) < c(S)

)
(7.62)

=

(
1 − G0,d(S)

(
ρ2

S

σ2
n
− z

))
× Gz,e(S)

(
c(S)

)
. (7.63)

From the definition of ρ2
S ,

ρ2
S

σ2
n
− z ≥ q0,d(S)

(
αS

Gz,e(S)(c(S))
∧ 1

)

and hence,

1 − G0,d(S)

(
ρ2

S

σ2
n

− z

)
≤ 1 − G0,d(S)

(
q0,d(S)

(
αS

Gz,e(S)(c(S))

))

=
αS

Gz,e(S)(c(S))
. (7.64)

It then follows (7.63) and (7.64) that a(S) ≤ αS .
For the case d(S) = n, ΠSZ = Z, and ||θ − ΠSZ||2 = σ2

n

∑n
i=1 ϵ2i

d= σ2
nχ2

n

and so
a(S) = Pθ

(
σ2

nχ2
n > q0,n(αS)σ2

n

)
= αS

by the definition of q0,n. !

When σn is unknown we estimate the variance using one of the methods dis-
cussed in Chapter 5 and generally the coverage is only asymptotically correct.
To see the effect of having uncertainty about σn, consider the idealized case
where σn is known to lie with certainty in the interval I = [

√
1 − ηnτn, τn].

(In practice, we would construct a confidence interval for σ and adjust the
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level α of the confidence ball appropriately.) In this case, the radii ρS are now
defined by:

ρ2
S =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

infz>0

{
supσn∈I Gz/σ2

n,n(q0,n(γ)τ2
n/σ2

n) ≤ αS

}
if d(S) = 0

supz>0,σn∈I

{
zσ2

n + σ2
nq0,d(S)(hS(z, σn))

}
if 0 < d(S) < n

q0,n(αS)τ2
n if d(S) = n

(7.65)
where

hS(z, σ) =
αS

Gz,e(S)

(
Gz,e(S)(q0,e(S)(γ)τ2

n/σ2)
) (7.66)

and A is now defined by

A =
{
S ∈ S : ||Z − ΠSZ||2 ≤ q0,e(S)(γ)τ2

n

}
. (7.67)

Beran–Dümbgen–Stein Pivotal method. Now we discuss a different
approach due to Stein (1981) and developed further by Li (1989), Beran and
Dümbgen (1998), and Genovese and Wasserman (2005). The method is sim-
pler than the Baraud–Lepski approach but it uses asymptotic approximations.
This method is considered in more detail in the next chapter but here is the
basic idea.

Consider nested subsets S = {S0, S1, . . . , Sn} where

Sj =
{
θ = (θ1, . . . , θj , 0, . . . , 0) : (θ1, . . . , θj) ∈ Rj

}
.

Let θ̂m = (Z1, . . . , Zm, 0, . . . , 0) denote the estimator under model Sm. The
loss function is

Lm = ||θ̂m − θ||2.

Define the pivot
Vm =

√
n(Lm − R̂m) (7.68)

where R̂m = mσ2
n +

∑n
j=m+1(Z

2
j − σ2

n) is sure. Let m̂ minimize R̂m over m.
Beran and Dümbgen (1998) show that Vm̂/τ̂ ! N(0, 1) where

τ2
m = V(Vm) = 2nσ2

n

(
nσ2

n + 2
n∑

j=m+1

θ2
j

)

and

τ̂2 = 2nσ2
n

(
nσ2

n + 2
n∑

j=m̂+1

(Z2
j − σ2

n)

)
.
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Let
r2
n = R̂m +

τ̂zα√
n

and define
Bn =

{
θ ∈ Rn : ||θm − θ̂||2 ≤ r2

n

}
.

Then,

Pθ(θ ∈ Bn) = Pθ(||θ − θ̂||2 ≤ r2
n) = Pθ(Lm ≤ r2

n)

= Pθ

(
Lm ≤ R̂m +

τ̂zα√
n

)
= Pθ

(
Vm̂

τ̂
≤ zα

)

→ 1 − α.

A practical problem with this method is that r2
n can be negative. This is due

to the presence of the term
∑n

j=m+1(Z
2
j − σ2

n) in R̂ and τ . We deal with this
by replacing such terms with max{

∑n
j=m+1(Z

2
j − σ2

n), 0}. This can lead to
over-coverage but at least leads to well-defined radii.

7.69 Example. Consider nested subsets S = {S0, S1, . . . , Sn} where S0 =
{(0, . . . , 0)} and

Sj =
{
θ = (θ1, . . . , θj , 0, . . . , 0) : (θ1, . . . , θj) ∈ Rj

}
.

We take α = 0.05, n = 100, σn = 1/
√

n, and αS = α/(n + 1) for all S so
that

∑
αS = α as required. Figure 7.2 shows ρS versus the dimension of S

for γ = 0.05, 0.15, 0.50, 0.90. The dotted line is the radius of the χ2 ball. One
can show that

ρ0

ρn
= O

(
n−1/4

)
(7.70)

which shows that shrinking towards lower-dimensional models leads to smaller
confidence sets. There is an interesting tradeoff. Setting γ large makes ρ0

small leading to a potentially smaller confidence ball. However, making γ

large increases the set A which diminishes the chances of choosing a small
ρ. We simulated under the model θ = (10, 10, 10, 10, 10, 0, . . . , 0). See Table
7.1 for a summary. In this example, the pivotal method seems to perform the
best. !

7.9 Optimality of Confidence Sets

How small can we make the confidence set while still maintaining correct
coverage? In this section we will see that if Bn is a confidence ball with radius
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1 50 100

0.
5

1.
0 γ = 0.05

γ = 0.90

FIGURE 7.2. Constants ρS from Example 7.69. The horizontal axis is the dimension
of the submodel. The four curves show ρS for γ = 0.05, 0.15, 0.50, 0.90. The highest
curve corresponds to γ = 0.05 and the curves get lower as γ increases. The dotted
line is the radius of the χ2 ball.

Method Coverage Radius
χ2 0.950 1.115
Baraud (γ = 0.90) 1.000 0.973

(γ = 0.50) 1.000 0.904
(γ = 0.15) 1.000 0.779
(γ = 0.05) 0.996 0.605

Pivotal 0.998 0.582

TABLE 7.1. Simulation results from Example 7.69 based on 1000 simulations.
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sn then Eθ(sn) ≥ C1σnn1/4 for every θ and Eθ(sn) ≥ C2σnn1/2 for some
θ. Here, C1 and C2 are positive constants. The χ2 ball has radius σnn1/2 for
all θ. This suggests that the χ2 ball can be improved upon, and indeed, the
Baraud confidence ball can achieve the faster σnn1/4 rate at some points in
the parameter space. We will provide some of the details in this section. But
first, let us compare this with point estimation.

From Theorem 7.32, the optimal rate of convergence of a point estimator
over a Sobolev space of order m is n−2m/(2m+1). According to Theorem 7.50,
we can construct estimators that achieve this rate, without prior knowledge
of m. This raises the following questions: Can we construct confidence balls
that adaptively achieve this optimal rate? The short answer is no. Robins and
van der Vaart (2005), Juditsky and Lambert-Lacroix (2003), and Cai and Low
(2005) show that some degree of adaptivity is possible for confidence sets but
the amount of adaptivity is quite restricted. Without any smoothness assump-
tions, we see from our comments above that the fastest rate of convergence
one can attain is σnn1/4 which is of order O(n−1/4) when σn = σ/

√
n.

Turning to the details, we begin with the following Theorem due to Li
(1989).

7.71 Theorem (Li 1989). Let Bn = {θn ∈ Rn : ||θ̂n − θn|| ≤ sn} where θ̂n is
any estimator of θn and sn = sn(Zn) is the radius of the ball. Suppose that

lim inf
n→∞

inf
θn∈Rn

Pθn(θn ∈ Bn) ≥ 1 − α. (7.72)

Then for any sequence θn and any cn → 0,

lim sup
n→∞

Pθn(sn ≤ cnσnn1/4) ≤ α. (7.73)

Finite sample results are available from Baraud (2004) and Cai and Low
(2005). For example, we have the following result, whose proof is in the ap-
pendix.

7.74 Theorem (Cai and Low 2004). Assume the model (7.1). Fix 0 < α <

1/2. Let Bn = {θ : ||θ̂ − θ|| ≤ sn} be such that

inf
θ∈Rn

Pθ(θ ∈ Bn) ≥ 1 − α.

Then, for every 0 < ϵ < (1/2)− α,

inf
θ∈Rn

Eθ(sn) ≥ σn(1 − 2α − 2ϵ)n1/4(log(1 + ϵ2))1/4. (7.75)
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In particular, if σn = σ/
√

n, then

inf
θ∈Rn

Eθ(sn) ≥ C

n1/4
(7.76)

where C = σ(1 − 2α − 2ϵ)(log(1 + ϵ2))1/4.

The lower bound in the above theorem cannot be attained everywhere, as
the next result shows.

7.77 Theorem (Cai and Low 2004). Assume the model (7.1). Fix 0 < α <

1/2. Let Bn = {θ : ||θ̂ − θ|| ≤ sn} be such that

inf
θ∈Rn

Pθ(θ ∈ Bn) ≥ 1 − α.

Then, for every 0 < ϵ < (1/2) − α,

sup
θ∈Rn

Eθ(sn) ≥ ϵ σnzα+2ϵ
√

n

√
ϵ

1 − α − ϵ
. (7.78)

In particular, if σn = σ/
√

n, then

sup
θ∈Rn

Eθ(sn) ≥ C (7.79)

where C = ϵzα+2ϵ

√
ϵ/(1 − α − ϵ).

Despite these pessimistic sounding results, there is some potential for adap-
tation since the infimum in Theorem 7.74 is smaller than the supremum in
Theorem 7.77. For example, the χ2 ball has radius O(σn

√
n) but the lower

bound in the above theorem is O(σnn1/4) suggesting that we can do better
than the χ2 ball. This was the motivation for the Baraud and pivotal confi-
dence sets. The Baraud confidence set does have a certain type of adaptivity:
if θ ∈ S then ρ̂ ≤ ρS with high probability. This follows easily from the way
that the ball is defined. Let us formalize this as a lemma.

7.80 Lemma. Define S, α, γ and (ρS : S ∈ S) as in Theorem 7.59. For each
S ∈ S,

inf
θ∈S

Pθ(ρ̂ ≤ ρS) ≥ 1 − γ. (7.81)

Baraud also gives the following results which show that his construction
is essentially optimal. The first result gives a lower bound on any adaptive
confidence ball. The result after that shows that the radius ρS of his confidence
set essentially achieves this lower bound.



170 7. Normal Means and Minimax Theory

7.82 Theorem (Baraud 2004). Suppose that θ̂ = θ̂(Z) and r = r(Z) are such
that B = {θ : ||θ − θ̂||2 ≤ r2} is a 1 − α confidence ball. Also suppose that
2α + γ < 1 − e−1/36 and that d(S) ≤ n/2. If

inf
θ∈S

Pθ(r ≤ rS) ≥ 1 − γ (7.83)

then, for some C = C(α, γ) > 0,

r2
S ≥ Cσ2

n max
{

d(S),
√

n
}
. (7.84)

Taking S to consist of a single point yields the same result as Theorem 7.74
and taking S = Rn yields the same result as Theorem 7.77.

7.85 Theorem (Baraud 2004). Define S, α, γ and (ρS : S ∈ S) as in Theo-
rem 7.59. Assume that d(S) ≤ n/2 for every S ∈ S except for S = Rn. There
exists a universal constant C > 0 such that

ρ2
S ≤ C σ2

n max
{
d(S),

√
n log(1/αS), log(1/αS)

}
. (7.86)

When σn is only known to lie in an interval I = [
√

1 − ηnτn, τn], Baraud
shows that the lower bound (7.84) becomes

r2
S ≥ Cτ2

n max
{

ηnn/2, d(S)(1 − ηn),
√

n − d(S)(1 − ηn)
}

(7.87)

which shows that information about σ is crucial. Indeed, the best we realisti-
cally could hope for is to know σ2 up to order ηn = O(n−1/2) in which case
the lower bound is of order max{

√
n, d(S)}.

7.10 Random Radius Bands?

We have seen that random radius confidence balls can be adaptive in the
sense that they can be smaller than fixed radius confidence balls at some
points in the parameter space. Is the same true for confidence bands? The
answer is no, as follows from results in Low (1997). Actually, Low considers
estimating a density f at a single point x but essentially the same results
apply to regression and to confidence bands. He shows that any random radius
confidence interval for f(x) must have expected width at least as large as a
fixed width confidence interval. Thus, there is a qualitative difference between
constructing a confidence ball versus a confidence band.

Similar comments apply for other norms. The Lp norm is defined by

||θ||p =
{

(
∑

i |θi|p)1/p p < ∞
maxi |θi| p = ∞.
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Confidence bands can be thought of as L∞ confidence balls. It can be shown
that confidence balls in the Lp norm with 2 < p < ∞ fall in between the two
extremes of L2 and L∞ in the sense that they have some adaptivity, but not
as much as in the L2 norm. Similar comments apply to hypothesis testing; see
Ingster and Suslina (2003).

7.11 Penalization, Oracles and Sparsity

Consider again the many Normal means problem

Zi ∼ θi + σnϵi, i = 1, . . . , n.

If we choose θ̂ to minimize the sums of squares
∑n

i=1(Zi− θ̂i)2, we get the mle

θ̂ = Z = (Z1, . . . , Zn). If instead we minimize a penalized sums of squares, we
get different estimators.

7.88 Theorem. Let J : Rn → [0,∞), λ ≥ 0 and define the penalized sums
of squares

M =
n∑

i=1

(Zi − θi)2 + λJ(θ).

Let θ̂ minimize M . If λ = 0 then θ̂ = Z. If J(θ) =
∑n

i=1 θ2
i then θ̂i = Zi/(1+λ)

which is a linear shrinkage estimator. If J(θ) =
∑n

i=1 |θi| then θ̂ is the soft-
thresholding estimator (7.21). If J(θ) = #{θi : θi ̸= 0} then θ̂ is the hard-
thresholding estimator (7.23).

Thus we see that linear shrinkage, soft thresholding and hard thresholding
are all special cases of one general approach. The case of the L1 penalty∑n

i=1 |θi| is especially interesting. According to Theorem 7.88, the estimator
that minimizes

n∑

i=1

(Zi − θ̂i)2 + λ
n∑

i=1

|θi| (7.89)

is the soft-threshold estimator θ̂λ = (θ̂λ,1, . . . , θ̂λ,n) where

θ̂i,λ = sign(Zi)(|Zi|− λ)+.

The criterion (7.89) arises in variable selection for linear regression under the
name lasso (Tibshirani (1996)) and in signal processing under the name basis
pursuit (Chen et al. (1998)). We will see in Chapter 9 that soft thresholding
also plays an important role in wavelet methods.
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To get more insight on soft thresholding, we consider a result from Donoho
and Johnstone (1994). Consider estimating θi and suppose we use either Zi

or 0 as an estimator. Such an estimator might be appropriate if we think the
vector θ is sparse in the sense that it has many zeroes. The risk of Zi is σ2

n

and the risk of 0 is θ2
i . Imagine an oracle that knows when Zi has better risk

and when 0 has better risk. The risk of the oracles estimator is min{σ2
n, θ2

i }.
The risk for estimating the whole vector θ is

Roracle =
n∑

i=1

min
{
σ2

n, θ2
i

}
.

Donoho and Johnstone (1994) showed that soft thresholding gives an estima-
tor that comes close to the oracle.

7.90 Theorem (Donoho and Johnstone 1994). Let λ = σn
√

2 log n. Then, for
every θ ∈ Rn,

Eθ||θ̂λ − θ||2 ≤ (2 log n + 1)(σ2
n + Roracle).

Moreover, no estimator can get substantially closer to the oracle in the sense
that, as n → ∞,

inf
θ̂

sup
θ∈Rn

Eθ||θ̂ − θ||2

σ2
n + Roracle

∼ 2 logn. (7.91)

Consider now a sparse vector θ that is 0 except for k large components,
where k << n. Then, Roracle = kσ2

n. In function estimation problems, we will
see in the next chapter that σ2

n = O(1/n) and hence Roracle = O(k/n) which
is small in sparse cases (k small).

7.12 Bibliographic Remarks

The idea of reducing nonparametric models to Normal means models (or the
white noise model in the appendix) dates back at least to Ibragimov and
Has’minskii (1977), Efromovich and Pinsker (1982), and others. See Brown
and Low (1996), Nussbaum (1996a) for examples of recent results in this
area. A thorough treatment of Normal decision theory and its relation to
nonparametric problems is contained in Johnstone (2003). There is also a
substantial literature on hypothesis testing in this framework. Many of the
results are due to Ingster and are summarized in Ingster and Suslina (2003).
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7.13 Appendix

The White Noise Model. Regression is also connected with the white noise
model. Here is a brief description. Recall that a standard Brownian motion
W (t), 0 ≤ t ≤ 1 is a random function such that W (0) = 0, W (s+ t)−W (s) ∼
N(0, t) and, W (v) − W (u) is independent of W (t) − W (s) for 0 ≤ u ≤ v ≤
s ≤ t. You can think of W as a continuous version of a random walk. Let
Zi = f(i/n) + σϵi with ϵi ∼ N(0, 1). For 0 ≤ t ≤ 1, define

Zn(t) =
1
n

[nt]∑

i=1

Zi =
1
n

[nt]∑

i=1

f(i/n) +
σ√
n

1√
n

[nt]∑

i=1

Zi.

The term 1
n

∑[nt]
i=1 f(i/n) converges to

∫ t
0 f(s)ds as n → ∞. The term n−1/2

∑[nt]
i=1 Zi converges to a standard Brownian motion. (For any fixed t, this is

just an application of the central limit theorem.) Thus, asymptotically we can
write

Z(t) =
∫ t

0
f(s)ds +

σ√
n

W (t).

This is called the standard white noise model, often written in differential
form as

dZ(t) = f(t)dt +
σ√
n

dW (t) (7.92)

where dW (t) is the white noise process.6

Let φ1, φ2, . . . be an orthonormal basis for L2(0, 1) and write f(x) =∑∞
i=1 θiφi(x) where θi =

∫
f(x)φi(x)dx. Multiply (7.92) by φj and inte-

grate. This yields Zi = θi + (σ/
√

n)ϵi where Zi =
∫

φi(t)dZ(t) and ϵi =∫
φi(t)dW (t) ∼ N(0, 1). We are back to the Normal means problem. A more

complicated argument can be used to relate density estimation to the white
noise model as in Nussbaum (1996a).

Weak Differentiability. Let f be integrable on every bounded interval. Then
f is weakly differentiable if there exists a function f ′ that is integrable on
every bounded interval, such that

∫ y

x
f ′(s)ds = f(y) − f(x)

whenever x ≤ y. We call f ′ the weak derivative of f . An equivalent condition
is that for every φ that is compactly supported and infinitely differentiable,

∫
f(s)φ′(s)ds = −

∫
f ′(s)φ(s)ds.

6Intuitively, think of dW (t) as a vector of Normals on a very fine grid.
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See Härdle et al. (1998), page 72.

Proof of Pinsker’s Theorem (Theorem 7.28). (Following Nussbaum (1996b).)
We will need to use Bayes estimators, which we now review. Let πn be a prior
for θn. The integrated risk is defined to be B(θ̂, πn) =

∫
R(θ̂n, θn)dπn(θn) =

EπnEθL(θ̂, θ). The Bayes estimator θ̂πn minimizes the Bayes risk:

B(πn) = inf
θ̂

B(θ̂n, πn). (7.93)

An explicit formula for the Bayes estimator is

θ̂πn(y) = argminaE
(
L(a, θ)

∣∣ Zn
)
.

In the case of squared error loss L(a, θ) = ||a − θ||2n, the Bayes estimator is
θ̂πn(y) = E(θ|Zn).

Let Θn = Θn(c). Let
Rn = inf

θ̂
sup

θ∈Θn

R(θ̂, θ)

denote the minimax risk. We will find an upper bound and a lower bound on
the risk.

Upper Bound. Let θ̂j = c2Zj/(σ2 + c2). The bias of this estimator is

Eθ(θ̂j) − θj = − σ2θj

σ2 + c2

and the variance is

Vθ(θ̂j) =
(

c2

c2 + σ2

)2

σ2
n =

(
c2

c2 + σ2

)2
σ2

n

and hence the risk is

Eθ||θ̂ − θ||2 =
n∑

j=1

[(
σ2θj

σ2 + c2

)2

+
(

c2

c2 + σ2

)2 (
σ2

n

)]

=
(

σ2

σ2 + c2

)2 n∑

j=1

θ2
j + σ2

(
σ2

σ2 + c2

)2

≤ c2

(
σ2

σ2 + c2

)2

+ σ2

(
σ2

σ2 + c2

)2

=
σ2c2

σ2 + c2
.

Hence,

Rn ≤ c2σ2

c2 + σ2
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for all n.

Lower Bound. Fix 0 < δ < 1. Let πn be a Normal prior for which
θ1, . . . , θn are iid N(0, c2δ2/n). Let B(πn) denote the Bayes risk. Recall that
B(πn) minimizes the integrated risk B(θ̂, πn) over all estimators. The mini-
mum is obtained by taking θ̂ to be the posterior mean which has coordinates
θ̂j = c2δ2Zj/(c2δ2 + σ2) with risk

R(θ, θ̂) =
n∑

i=1

⎡

⎣θ2
i

(
σ2

n
c2δ2

n + σ2
n

)2

+ σ2

(
c2δ2

n
c2δ2

n + σ2
n

)2
⎤

⎦ .

The Bayes risk is

B(πn) =
∫

R(θ, θ̂)dπn(θ) =
σ2δ2c2

σ2 + δ2c2
.

So, for any estimator θ̂,

B(πn) ≤ B(θ̂, πn)

=
∫

Θn

R(θ, θ̂)dπn +
∫

Θc
n

R(θ, θ̂)dπn

≤ sup
θ∈Θn

R(θ, θ̂) +
∫

Θc
n

R(θ, θ̂)dπn

≤ sup
θ∈Θn

R(θ, θ̂) + sup
θ̂

∫

Θc
n

R(θ, θ̂)dπn.

Taking the infimum over all estimators that take values in Θn yields

B(πn) ≤ Rn + sup
θ̂

∫

Θc
n

R(θ, θ̂)dπn.

Hence,

Rn ≥ B(πn) − sup
θ̂

∫

Θc
n

R(θ, θ̂)dπn

=
σ2δ2c2

δ2c2 + σ2
− sup

θ̂

∫

Θc
n

R(θ, θ̂)dπn.

Now, using the fact that ||a + b||2 ≤ 2(||a||2 + ||b||2), and the Cauchy–
Schwartz inequality,

sup
θ̂

∫

Θc
n

R(θ, θ̂)dπn ≤ 2
∫

Θc
n

||θ||2dπn + 2 sup
θ̂

∫

Θc
n

Eθ||θ̂||2dπn

≤ 2
√

πn(Θc
n)

√√√√√Eπn

⎛

⎝
∑

j

θ2
j

⎞

⎠
2

+ 2c2πn(Θc
n).
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Thus,

Rn ≥ σ2δ2c2

σ2 + δ2c2
− 2

√
πn(Θc

n)

√√√√√Eπn

⎛

⎝
∑

j

θ2
j

⎞

⎠
2

− 2c2πn(Θc
n). (7.94)

We now bound the last two terms in (7.94).
We shall make use of the following large deviation inequality: if Z1, . . . , Zn ∼

N(0, 1) and 0 < t < 1, then

P

⎛

⎝

∣∣∣∣∣∣
1
n

∑

j

(Z2
j − 1)

∣∣∣∣∣∣
> t

⎞

⎠ ≤ 2e−nt2/8.

Let Zj =
√

nθj/(cδ) and let t = (1 − δ2)/δ2. Then,

πn(Θc
n) = P

⎛

⎝
n∑

j=1

θ2
j > c2

⎞

⎠ = P

⎛

⎝ 1
n

n∑

j=1

(Z2
j − 1) > t

⎞

⎠

≤ P

⎛

⎝

∣∣∣∣∣∣
1
n

∑

j

(Z2
j − 1)

∣∣∣∣∣∣
> t

⎞

⎠ ≤ 2e−nt2/8.

Next, we note that

Eπn

⎛

⎝
∑

j

θ2
j

⎞

⎠
2

=
n∑

i=1

Eπn(θ4
i ) +

n∑

i=1

n∑

j ̸=i

Eπn(θ2
i )Eπn(θ2

j )

=
c4δ4E(Z4

1 )
n

+
(

n

2

)
c4δ4

n2
= O(1).

Therefore, from (7.94),

Rn ≥ σ2δ2c2

σ2 + δ2c2
− 2

√
2e−nt2/16O(1) − 2c2e−nt2/8.

Hence,

lim inf
n→∞

Rn ≥ σ2δ2c2

σ2 + δ2c2
.

The conclusion follows by letting δ ↑ 1. !

Proof of Theorem 7.74. Let

a =
σn

n1/4
(log(1 + ϵ2))1/4
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and define

Ω =
{

θ = (θ1, . . . , θn) : |θi| = a, i = 1, . . . , n
}
.

Note that Ω contains 2n elements. Let fθ denote the density of a multivariate
Normal with mean θ and covariance σ2

nI where I is the identity matrix. Define
the mixture

q(y) =
1
2n

∑

θ∈Ω

fθ(y).

Let f0 denote the density of a multivariate Normal with mean (0, . . . , 0) and
covariance σ2

nI. Then,

∫
|f0(x) − g(x)|dx =

∫ |f0(x) − g(x)|√
f0(x)

√
f0(x)dx

≤

√∫
(f0(x) − g(x))2

f0(x)
dx

=

√∫
g2(x)
f0(x)

dx − 1.

Now,

∫
q2(x)
f0(x)

dx =
∫ (

q(x)
f0(x)

)2

f0(x)dx = E0

(
q(x)
f0(x)

)2

=
(

1
2n

)2 ∑

θ,ν∈Ω

E0

(
fθ(x)fν(x)

f2
0 (x)

)

=
(

1
2n

)2 ∑

θ,ν∈Ω

exp
{
− 1

2σ2
n

(||θ||2 + ||ν||2)
}

E0

(
exp

{
ϵT (θ + ν)/σ2

n

})

=
(

1
2n

)2 ∑

θ,ν∈Ω

exp
{
− 1

2σ2
n

(||θ||2 + ||ν||2)
}

exp

{
n∑

i=1

(θi + νi)2/(2σ2
n)

}

=
(

1
2n

)2 ∑

θ,ν∈Ω

exp
{
⟨θ, ν⟩
σ2

n

}
.

The latter is equal to the mean of exp(⟨θ, ν⟩/σ2
n) when drawing two vectors θ

and ν at random from Ω. And this, in turn, is equal to

E exp
{

a2
∑n

i=1 Ei

σ2
n

}
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where E1, . . . , En are independent and P(Ei = 1) = P(Ei = −1) = 1/2.
Moreover,

E exp
{

a2
∑n

i=1 Ei

σ2
n

}
=

n∏

i=1

E exp
{

a2Ei

σ2
n

}

=
(

E exp
{

a2E1

σ2
n

})n

=
(

cosh
(

a2

σ2
n

))n

where cosh(y) = (ey + e−y)/2. Thus,
∫

q2(x)
f0(x)

dx =
(

cosh
(

a2

σ2
n

))n

≤ ea4n/σ4
n

where we have used the fact that cosh(y) ≤ ey2
. Thus,

∫
|f0(x) − q(x)|dx ≤

√
ea4n/σ4

n − 1 = ϵ.

So, if Q denotes the probability measure with density q, we have, for any
event A,

Q(A) =
∫

A
q(x)dx =

∫

A
f0(x)dx +

∫

A
(q(x) − f0(x))dx

≥ P0(A) −
∫

A
|q(x) − f0(x)|dx ≥ P0(A) − ϵ. (7.95)

Define two events, A = {(0, . . . , 0) ∈ Bn} and B = {Ω
⋂
Bn ̸= ∅}. Every

θ ∈ Ω has norm

||θ|| =
√

na2 = σnn1/4(log(1 + ϵ2))1/4 ≡ cn.

Hence, A
⋂

B ⊂ {sn ≥ cn}. Since Pθ(θ ∈ Bn) ≥ 1−α for all θ, it follows that
Pθ(B) ≥ 1 − α for all θ ∈ Ω. Hence, Q(B) ≥ 1 − α. From (7.95),

P0(sn ≥ cn) ≥ P0(A
⋂

B) ≥ Q(A
⋂

B) − ϵ

= Q(A) + Q(B) − Q(A
⋃

B) − ϵ

≥ Q(A) + Q(B) − 1 − ϵ

≥ Q(A) + (1 − α) − 1 − ϵ

≥ P0(A) + (1 − α) − 1 − 2ϵ

≥ (1 − α) + (1 − α) − 1 − 2ϵ

= 1 − 2α − 2ϵ.
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So, E0(sn) ≥ (1− 2α− 2ϵ)cn. It is easy to see that the same argument can be
used for any θ ∈ Rn and hence Eθ(sn) ≥ (1 − 2α − 2ϵ)cn for every θ ∈ Rn. !

Proof of Theorem 7.77. Let a = σnzα+2ϵ where 0 < ϵ < (1/2)(1/2− α) and
define

Ω =
{

θ = (θ1, . . . , θn) : |θi| = a, i = 1, . . . , n
}
.

Define the loss function L = L(θ̂, θ) =
∑n

i=1 I(|θ̂i −θi| ≥ a). Let π be the uni-
form prior on Ω. The posterior mass function over Ω is p(θ|y) =

∏n
i=1 p(θi|yi)

where

p(θi|yi) =
e2ayi/σ2

n

1 + e2ayi/σ2
n
I(θi = a) +

1
1 + e2ayi/σ2

n
I(θi = −a).

The posterior risk is

E(L(θ̂, θ)|y) =
n∑

i=1

P(|θ̂i − θi| ≥ a|yi)

which is minimized by taking θ̂i = a if yi ≥ 0 and θ̂i = −a if yi < 0. The risk
of this estimator is

n∑

i=1

(
P(Yi < 0|θi = a)I(θi = a) + P(Yi > 0|θi = −a)I(θi = −a)

)

= nΦ(−a/σn) = n(α + 2ϵ).

Since this risk is constant, it is the minimax risk. Therefore,

inf
θ̂

sup
θ∈Rn

n∑

i=1

Pθ(|θ̂i − θi| ≥ a) ≥ inf
θ̂

sup
θ∈Ω

n∑

i=1

Pθ(|θ̂i − θi| ≥ a)

= n(α + 2ϵ).

Let γ = ϵ/(1 − α − ϵ). Given any estimator θ̂,

γnPθ(L < γn) + nPθ(L ≥ γn) ≥ L

and so

sup
θ

(
γnPθ(L < γn) + nPθ(L ≥ γn)

)
≥ sup

θ
Eθ(L) ≥ n(α + 2ϵ).

This inequality, together with the fact that Pθ(L < γn) + Pθ(L ≥ γn) = 1
implies that

sup
θ

Pθ(L ≥ γn) ≥ α + ϵ.
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Thus,
sup

θ
Pθ(||θ̂ − θ||2 ≥ γna2) ≥ sup

θ
Pθ(L ≥ γn) ≥ α + ϵ.

Therefore,

sup
θ

Pθ(s2
n ≥ γna2) ≥ sup

θ
Pθ(s2

n ≥ ||θ̂ − θ||2 ≥ γna2)

= sup
θ

Pθ(s2
n ≥ ||θ̂ − θ||2) + sup

θ
Pθ(||θ̂ − θ||2 ≥ γna2) − 1

≥ α + ϵ + 1 − α − 1 = ϵ.

Thus, supθ Eθ(sn) ≥ ϵa
√

γn. !

7.14 Exercises

1. Let θi = 1/i2 for i = 1, . . . , n. Take n = 1000. Let Zi ∼ N(θi, 1) for
i = 1, . . . , n. Compute the risk of the mle. Compute the risk of the
estimator θ̃ = (bZ1, bZ2, . . . , bZn). Plot this risk as a function of b. Find
the optimal value b∗. Now conduct a simulation. For each run of the
simulation, find the (modified) James–Stein estimator b̂Z where

b̂ =
[
1 − n∑

i Z2
i

]+

.

You will get one b̂ for each simulation. Compare the simulated values of
b̂ to b∗. Also, compare the risk of the mle and the James–Stein estimator
(the latter obtained by simulation) to the Pinsker bound.

2. For the Normal means problem, consider the following curved soft thresh-
old estimator:

θ̂i =

⎧
⎨

⎩

−(Zi + λ)2 Zi < −λ
0 −λ ≤ Zi ≤ λ
(Zi − λ)2 Zi > λ

where λ > 0 is some fixed constant.

(a) Find the risk of this estimator. Hint: R = E(sure).

(b) Consider problem (1). Use your estimator from (2a) with λ chosen
from the data using sure. Compare the risk to the risk of the James–
Stein estimator. Now repeat the comparison for

θ = (
10 times︷ ︸︸ ︷

10, . . . , 10,
990 times︷ ︸︸ ︷
0, . . . , 0).
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3. Let J = Jn be such that Jn → ∞ and n → ∞. Let

σ̂2 =
n

J

n∑

i=n−J+1

Z2
i

where Zi ∼ N(θi, σ2/n). Show that if θ = (θ1, θ2, . . .) belongs to a
Sobolev body of order m > 1/2 then σ̂2 is a uniformly consistent esti-
mator of σ2 in the Normal means model.

4. Prove Stein’s lemma: if X ∼ N(µ, σ2) then E(g(X)(X−µ)) = σ2Eg′(X).

5. Verify equation 7.22.

6. Show that the hard threshold estimator defined in (7.23) is not weakly
differentiable.

7. Compute the risk functions for the soft threshold estimator (7.21) and
the hard threshold estimator (7.23).

8. Generate Zi ∼ N(θi, 1), i = 1, . . . , 100, where θi = 1/i. Compute a 95
percent confidence ball using: (i) the χ2 confidence ball, (ii) the Baraud
method, (iii) the pivotal method. Repeat 1000 times and compare the
radii of the balls.

9. Let ||a−b||∞ = supj |aj −bj|. Construct a confidence set Bn of the form
Bn = {θ ∈ Rn : ||θ −Zn||∞ ≤ cn} such that Pθ(θ ∈ Bn) ≥ 1−α for all
θ ∈ Rn under model (7.1) with σn = σ/

√
n. Find the expected diameter

of your confidence set.

10. Consider Example 7.24. Define

δ = max
S∈S

sup
θ∈Rn

|R̂S − R(θ̂S , θ)|.

Try to bound δ in the following three cases: (i) S consists of a single
model S; (ii) nested model selection; (iii) all subsets selection.

11. Consider Example 7.24. Another method for choosing a model is to use
penalized likelihood. In particular, some well-known penalization model
selection methods are AIC (Akaike’s Information Criterion), Akaike
(1973), Mallows’ Cp, Mallows (1973), and BIC (Bayesian Information
Criterion), Schwarz (1978). In the Normal means model, minimizing
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sure, AIC and Cp are equivalent. But BIC leads to a different model
selection procedure. Specifically,

BICB = ℓB − |B|
2

log n

where ℓB is the log-likelihood of the submodel B evaluated at its max-
imum likelihood estimator. Find an explicit expression for BICB. Sup-
pose we choose B by maximizing BICB over B. Investigate the properties
of this model selection procedure and compare it to selecting a model by
minimizing sure. In particular, compare the risk of the resulting esti-
mators. Also, assuming there is a “true” submodel (that is, θi ̸= 0 if and
only if i ∈ B), compare the probability of selecting the true submodel
under each procedure. In general, estimating θ accurately and finding
the true submodel are not the same. See Wasserman (2000).

12. By approximating the noncentral χ2 with a Normal, find a large sample
approximation to for ρ0 and ρn in Example 7.69. Then prove equation
(7.70).


