CHAPTIER 2

Decision-Theoretic Foundations

Today would run out according to the Pattern. But over and over he mulled
over the decisions he had made since he first enlered the Waste. Could he have
done something different, something that would have avoided this day, this
place? Next time, perhaps.

Robert Jordan, The Fires of Heaven, Book V of the Wheel of Time.

2.1 Evaluating estimators

Considering that the overall purpose of most inferential studies is to provide
the statistician (or a client) with a decision, it scems reasonable o ask for an
evalualion criterion of decision procedures that assesges the consequences
of each decision and depends on the paramcters of the model, i.e., the
true state of the world (or of Nature). These decisions can be of various
kinds, ranging from buying equities depending on their future returns 0,
to stopping an agricultural experiment on the productivity ¢ of a new
crop specics, to estimating the underground economy conéribution & to
the U.S. GNP, to deciding whether the number § of homeless people has
increased since the last census. They also include assessing whether a new
scientific theory is compatible with the cxperimental evidence at hand. If
no evaluation criterion is available, it is impossible to compare different
decision procedures and absurd solutions, such as proposing g = 3 for
any real cstimation problem or even more dramatically the answer one
waibs to impose, can only be eliminated by ad-hoc reasoning. To avoid such
reasoning implics a reinforced axiomatization of the statistical inferential
framework, called Decision Theory. This augmented theoretical structure
is necessary for Statistics to reach a coherence otherwise unattainable!.
Although almost everybody agrees on the need for such an evaluation
criterion, there is an important controversy running about the choice of this

! The Bayesian approach is, from our point of view, the ultimate step in this quest for
coherence.
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evaluation criterion, since the consequences on the decision are not innocu-
Ous. This difficulty even led some statisticians to totally reject Decision
Theory, on the basis that a practical determination of the decision-maker
evalualion criterion is utterly impossible in most cases.

This criterion is usually called loss and is defined as [ollows, where D
denotes the set of possible decisions. D is called the decision space and
most theoretical examples focus on the case D = ©, which represents the
standard estimation setling.

Definition 2.1.1 A loss function is any function L from ©xD in [0, +oo).

This loss function is supposed to evaluate the penalty (or error) L{f, d)
associated with the decision d when the parameter takes the value 0. In a
traditional setting of parameter cstimation, when D is © or A(©), the loss
function L{#, §) measures the error made in evaluating h(#) by 8. Section 2.2
introduces a sct of so-called rationalily axioms that ensures the existence
of such a function in a decision setting.

The actual determination of the loss function is often awkward in prac-
tice, in particular because the determination of the consequences of each
action for each value of § is usually impossible when D or © are large sets,
for instance when they have an infinite number of elements. Moreover, in
qualitative models, it may be delicate to quantify the consequences ol each
decision. We will see through paradoxes like the Saint Petersburg paradoz
that, even when the loss function seems obvious, for instance when crrors
can be expressed as monelary losses, the actual loss function can be quite
different [rom its intuitive and lincar approximation.

‘The complexity of determining the subjective loss function of the decision-
maker often prompts the statistician to use classical (or canonical) losses,
selected because of their simplicity and mathematical tractability. Such
losses are also necessary for a theoretical treatment of the derivation of
optimal procedures, when there is no practical motivation for the choice of
a particular loss function. The term classical is related o their long history,
dating back to Laplace (1773) for the absolute error loss (2.5.3) and Gauss
(1810) for the quadratic loss (2.5.1), when errors in terms of performance of
cstimators or consequences of decisions were confused with errors in terms
of the irreducible variability of random variables (variance). But this at-
tribute should not be taken as a value statement, since an extensive use of
these losses does not legitimize them any further. In [act, the recourse to
such antomatic (or generic} losscs, although often justified in practice—ib
is still better to take a decision in a finite time using an approximate crite-
rion rather that spending an infinite time to determine exactly the proper
loss function—has generated many of the criticisms addressed to Decision
Theory.

A fondamental basis of Bayesian Decision Theory is that stabistical in-
lerence should start with the rigorous determination of three factors:
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(1) the distribution family for the observations, f (z|6);
(2) the prior distribution for the parameters, 7 {6);
(3) the loss associated with the decisions, L(0, 6);

the prior and the loss, and even somelimes the sampling distribution,
being derived from partly subjective considerations. Classical decision-
theoreticians omit the second point. The frequentist criticisms of the Bay-
esian paradigm often fail to take into account the problem of the construc-
tion of the loss function, even though this may be at least as complicated as
the derivation of the prior distribution. In addition, to presuppose the exis-
tence of a foss function implies that some information about the problem at
hand is available. This information could therefore be used more efficiently
by building up a prior distribution. Actually, Lindley (1985) states that loss
and prior are difficult to separate and should be analyzed simulitaneously.
We will sec in Section 2.4 an example of the dualily existing between these
two factors. We also mention in Section 2.5.4 how classical losses could be
replaced by more intrinsic losses (similar to the noninformative priors intro-
duced in Chapter 3), when no information at all is available on the penalty
associated with erroneous decigions or even with the parameterization of
interest.

In some cases, it is possible to reduce the class of acceptable loss functions
by invariance considerations, for example when the model is invariant under
the action of a group of transformations. Such considerations apply as well
to the choice of the prior distribution, as we will see in Chapter 9. I is
also interesting to note that these invariance motivations arc often used in
other decision-theorctic approaches, where a drastic reduction of the class
of infcrential procedurcs is necessary to select a best solution.

Example 2.1.2 Consider the problem of estimating the mean ¢ of a nor-
mal vecior, z ~ N, (0, X), where ¥ is a known diagonal matrix with diag-
onal elements o2 (1 < i < n). In this case, D = O = IR?, and 4 stands for
an ovaluation of 8. If no additional information is available on the model,
it seems logical to choose the loss function so that it weights equally the
estimation of each component, i.e., to use a loss of the form

SHCED
=1 ai

where 1, takes its minimum at 0. Indeed, for such losses, the components
with larger variances do not strongly bias the selection of the resulting
estimator. In other words, the components with a larger variance are nol
overly weighted when the estimalion errors (8; — 8;} are normalized by
0;. The usnal choice of L is the quadratic loss L(t) = ¢, i.e., the global
estimation error is the sum of the squared componentwise errors. i
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2.2 Existence of a utility function

The notion of utility (defined as the opposite of loss) is used not only in
Statistics, but also in Economics and in other fields like Game 'Theory where
it is necessary to order consequences of actions or decisions. Consequences
(or rewards) are generic notions which summarize the set of outcomes re-
sulting from the decision-maker’s action. Tn the simplest cases, it may be
the monelary profit or loss resulling from the decision. In an estimation set-
ting, it may be a measure of distance between the evaluation and the true
value of the parameter, as in Example 2.1.2. The axiomaltic foundations of
utility are due to Von Neumann and Morgenstern (1947) and led to numer-
ous exbensions, in particular in Game Theory. This approach is considered
in a statistical framework by Wald ( 1950) and Ferguson (1967). Extensions
and additional comments can be found in DeGroot (1970, Chapter 7} and
recent references on ulility theory are Fishburn (1988) and Machina (1982,
1987). See also Chamberlain (2000} for a connection with economelrics.

The general framework behind utility theory considers R, space of re-
wards, which is assumed 1o be completely known, For instance, R = IR. We
also suppose that it is possible Lo order the rewards, i.e., that there exists
a total ordering, denoted =, on R such that, if r; and rg are in R,

(1) re X ry or ry <7y and
(2) ifr) <7y and ry < r3, then r; < rg,

These two properties secm to be minimal requirements in a, decision-making
sctting. In particular, transitivity (2) is absolutely necessary to allow a
comparison of decision procedures. Otherwise, we may end up with cycles
such as r1 S rp < r3 < r; and be at a loss about selecting the best reward
among the three. Section 2.6 presents a criterion which is intransitive (and
thus does not pertain to Decision ‘Theory). We denote by < and ~ the strict
order and equivalence relations derived from = respectively. Therefore, one
and only one of the three following relations is satisfied by any pair (ry, )
in R? :
T < Ta, T2 <7, Ty~ o,

To proceed further in the construction of the utility function, it is nec-
essary to extend the reward.space from R to P, the space of probability
distributions on R. This also allows the decision-maker to take into ac-
count partly randomized decisions; moreover, the extended reward space is
COHVCX.

Example 2.2.1 In most real-lifo settings, the rewards associated with
an action are not exactly known when the decision is taken or, equiva-
lently, some decisions involve a, gambling step. For instance, in finance, the
monetary revenue 7 € R = IR derived from stock market shares is not guar-
anteed when the sharcholder has to decide from which company she should
buy shares. In this case, D = {d1,...,d,}, where dy, Tepresents the action
“buy the share from company £.” At the time of the decision, the rewards

2.2 Fixistence of a utility function 55

associated with the different shares are random dividends, only known b)Elr
the end of the year.

The order relation = is also assumed to be available on P. For in'stance,
hen the rewards are monetary, the order relation on P can be denv:ad by
v:)mpa.ring the average vields associated with the distr;b.t%tions P. There-
; re, it is possible to compare two distributions of probability on R, I’} and
}(3) ’We thus assume that < satisfies the extensions of the two hypotheses
2 =
(1) and (2) to P:
{Al) P < Py or Py % Py; and
{Ag) if Py < Pyand Py 2 P, then P 2 B3,

The order relation on R then appears as a special cage of the order on P
by considering the Dirac masses &, (r € R). .

The existence of the order < on P relies on the assumption that thg_re
exists an optimal reward, therefore, thal there exists at 1(?3:"?13 a pf;rhal
ordering on the consequences, even when they are ra‘ndom. %hls is obviously
the case when there exists a function I/ on R associated with =, such that
P, < P; is cquivalent o

B ()] < B [U(),

as in the above monetary example. This function U is called {he ute’lz’t?j func-
tion. We now present an axiomatic system on = that ensures the existence
of the utility function. o
For simplicity’s sake, we only consider bere the set of bounded chstrib'u—
tions, Pg, corresponding to the distributions with bounded support, for
1 1

which there exist ry and rg such that
ri,me) ={r: r1 2r =2} and P{fr,m]) =1

For Py, P in Pg, we define the mizture P = alPy +{1 - )Py as the dlStl‘l(;
bution that generates a reward from P; with probability o ar.ld_a Tewars
from P with probability (1— ). Ior instance, ory + (1—a)ry is the dlst.r_;
bution that gives the reward r; with probab}ilty o and.the reward ro ,w‘,!t
probability {1 — a). Two additional assumptions (o.r axioms) are geceabamy
0 derive the existence of a utility function on K. Fl.rst, there must be con-
servation of the ordering under indifferent alternatives:

(Az) PP, o+ (1 —a}P 2aP;+ (1 —a)P for every P e P.

For example, if the share buyers of Example 2.2.1 can compare twg ckom-
panies with dividend distributions Py and P, ti_ley should be able to df:ep
a ranking of the two companies if there is a chzm(:e' (1 = a)' that both 211—
dends are replaced by state bounds with dividend distribution P. The order

relation must also be connected (or closed):

(A4) if Py % Py < P, there exist «« and 8 € (0,1} such that
aPy+(1—a)Ps < P, <8P+ (1 — 8)Ps.
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"T'he last agsumption then implies the following result.

Lemma 2.2.2 Ifry, ra, and v are rewards in R with r| < re and r; <
T X ra, there exists a unigque v (0 < v < 1) such that r ~ vry + (1~ v)r =
‘ a.

Lemma 2.2.2 is a‘hctua,]ly the key to the derivation of the utility function,
U, on R. If;deed,‘ given vy and g, two arbitrary rewards such that Te <71 ,
we can define U in the following way. For every r ¢ ‘R, consider v

(i} Ulr)=v ifro 2r <73 and r ~ vry + (1 — u)ra;

(i) U(r)= % ifr <rg and ry ~vry + (1—v)r; and
(ili) U(ry= | ilr1 37 and 71~ or + (1 — v)p,.

IE particular, U (ri) = Land U(ry) = 0. Morcover, this function {7 preserves
the order relation on R (see DeGroot (1970, p. 105) for a proof)

Lemma 2.2-3 _lf 1 2 {Ind 3 e L £ ¥ Z. R. that r-
¥ s 7 T are Lh';‘ eC Trewa d 3 3 2
| ( ) ] & in buC’h h t ~

U(rz) = aU(r) + (1 — a)U(rs).

A‘ctw?lly, the axioms (A3) and (A4} can be further reduced while Lemmes,
?:2.5 still holds. It is indeed sufficient that they are satisfied on R on}
lhe. extension of the definition of the utility function to Pr calls for 'Yl
additional assumption. Given P such that P(Jry, ra) =1, do%ne o

C}:(T) _ lf{]’) — U(T‘]_)
Ulra) ~ Ur)
and
8= afr) dP(r).
* [7‘1,7‘ }
Then the additional axiom )

(As) P s Bép, + (1 - B)dy,

implies that, if v is equivalent to a(r)rs +(1 - a(r))rs for every r € [r1, 72,

tt;]};s f}g;lézii;nﬁilhm;;f;t hold on avrsrage. In fact, notice that @ is derived from
5 B0~ UG
Ulra) = U(ry)

and this assumption provides a definition of I/ on Pp. As in Lemma 2.2.3
‘wh('zre Uis restricted to R, and as shown by the following result, axiom ( }
indicates that U provides a linearization {or a linear paramet:arizaﬁon) 5f
_th(.e order relation < on Pg. Although slightly tautological-—since it irllvof 0'
i its formulation the utility function we are trying to derive (A5} ind Ve(;
leads to the following extension of Lemma 2.2.3 to Pg. e

Theorem 2.2.4 Consider Py and Py in Py. Then,
P2
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if and only if
B U (r)] < B [U(r))-

Moreover, if U* is another utility function salisfying the above equivalence
relation, there exist a >0 and b such that

U*(r) = al{r) +b.
Proof. Consider r; and 7o such that
Py(fr1,ma]) = Palfra,ma]) = 1
(with 71 < r2). Since

B U@ -U(r), | Ulrs) — E™U(r)]
Ulra) —U(r) © ' U(ra) = Ulry)

P1 ~ !

and
E™ U ()] - Ulry) — (rz) — E[U(r)] .,
Ulre) — U(ry) U{ry) — U(r)
Py = Py is truly equivalent to
WP 0G)] - Ulr) _ BRG] - Ulr)
Ul —U(rn) —  Ulrg) =Ulr)
ie., BN U(r)] < B2[U(r)]. Moreover, for any other utility function U,
there exist @ and b such that U*(r) = al(ry) +b, U*(rz2) = ali(rz) + 5.

The extension of this relation to cvery r € R follows from Lemma 2.2.3.
(mm|

Py~

1

Notice that the above derivation does ol involve any restriction on the
function I7. Therefore, it does not need to be bounded, although this condi-
tion is often mentioned in textbooks. It can be argued that this generality is
artificial and formal, since subjective utility functions are always bounded.
For instance, when considering monctary rewards, there is a psychologi-
cal threshold, say $100,000,000, above which (most) individuals have an
almost constant utility function.

However, this upper bound varies from individual to individual, and even
more so from individuals to companies or slates. It is also important to in-
corporate unacceptable rewards, although the assumption (A4) prevents
rewards with utility equal to —co. (Lhis restriction implies that the death
of a patjent in a pharmaceutical study or a major accident in a nuclear plant
have a finite utility.) Moreover, most theorctical losses are not bounded. A
counterpart of this generality is that the above results have only been estab-
lished for Ps. Actually, they can be extended to Pg, the set of distributions
P in P such that IEP[U(r)] is finite, under the assumption that (A1)-{As)
and two additional hypotheses are satisfied for Pg (see Exercise 2.3).

Theorem 2.2.5 Consider P and Q, two distributions én Pg. Then, P =

Q if and only if
EF[U ()] < BRU ()]
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Of course, Theorem 2.2.5 fails to deal with infinite utility distributions. If
such distributions exist, they must be compared between themselves and a
separate ulility function constructed on this restricted class, since they are
in a sense the only distributions of interest. However, the loss functions con-
sidered in the sequel are bounded from below, usually by 0. Therefore, the
corresponding ntility functions, opposites of the loss functions, are always
bounded from above and infinite reward paradoxes can be avoided. (Rubin
(1984) and Fishburn {1987) provide reduced axiomalic systems ensuring
the existence of a utility function.) _

Many criticisms have been addressed on theoretical or psychological
grounds against the notion of retionality of decision-meokers and the associ-
ated axioms (A;)—{A4). First, it seems illusory to assume that individuals
can compare all rewards, thal is, that they can provide a total ordering
of P (or even of R) because their discriminating abilities are necessarily
limited, especially aboutl contiguous or exireme alternatives. The transi-
tivity assumption is also too strong, since examples in sports or politics
show that real-life orderings of preferences often lead to nontransitivily,
ag iHlustrated by Condorcet and Simpson paradoxes {see Casella and Wells
(1993) and Exercises 1.9 and 2.2). Morc fundamentally, the assumption
that the ordering can be extended from R to P has been strongly attacked
because it implies thal a social ordering can be derived from a set of in-
dividual orderings and this is nob possible in general (see Arrow (1951)
or Blyth (1993}). However, while recognizing this fact, Rubin (1987) notes
that this impossibility just implies that utility and prior are not separable,
not that an optimal {Bayesian) decision cannot be obtained, and he gives a
restricted set of axioms pertaining to this purpose. In general, the crificisms
above are obviously valuable, but cannot stand against the absolute need
of an axiomatic framework validating decision-making under uncertainty.
As already mentioned in Chapter 1, statistical modeling is end must be re-
ductive; although necessarily missing part of the complexity of the world,
the simplified representation it gives of this world allows statisticians and
others to reach decigions. Decision Theory thus describes an idealized sct-
ting, under an ultimate rationality real decision-makers fail to attain, but
aim at nonetheless?.

Irom a more practical point of view, the above derivation of the utility
function can be criticized as being unrealistic. Berger {1985a) provides a few
examples based on DeGroot (1970}, deriving the utility function from suc-
cessive partitions of the reward space (see also Raiffa and Schlaifer {1961)).
However, if R is large {e.g., noncountable), IV cannot be evaluated for each
reward r, even though the linearity exhibited by Lemma 2.2.3 allows for
approximations when R C IR. In a mullidimensional setting, linear ap-
proximations are no longer possible unless one uses a linear combination of

2 To borrow from Smith {1984), to criticize the idealized structures of Pecision Theory
because of human limitations is somehow akin to attacking integration because some
integrals can only be solved numerically.
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componentwise utilities, ie.,
n
U(T‘], T2y ,’.f'.n) = E a.,;Uq;(n)
i=1

{sce Raiffa (1968), Keeney and Raifa {1976) and Smith (1988) for a discus-
sion). In general, practical utility functions will thus only approximate the
true ufility functions.

Toven when the reward is purely monetary there is a necessity of rigorous
detormination of the utility function because U may be far from linear,
especially for large rewards. 'This means that a gain of $3000 with proba-
bility 1/2 may not be equivalent to earning $1500 with certainty. To solve
this paradox, Laplace (1795) introduced the notion of moral erpectation,
derived from the relative value of an increase of weallh, “ebsolute value di-
vided by the total wealth of the invelved person.” Laplace deduces that the
moral expectation “coincides with the mathematical expectation when the
wealth becomes infinile compared with the variations due to uncertainty,”
meaning the utility is indeed linear only around 0. Otherwise, risk aver-
sion attitudes slow down the ulility curve, which is typically concave for
large values of rewards and bounded above. (Persons with a convex utility
function are called risk lovers because they preler a random gain to the ex-
pectation of this gain. Notice that this attitude is guite understandable in
a neighborhood of 0.} To construct the money otility Function is ohviously
more cumbersome than to use a linear utility, but this dertvation gives a
more accurate representation of reality and can even prevent paradoxes
such as the following one.

Example 2.2.6 (Saint Petersburg Paradox) Consider a game where 2
coin is thrown until o head appears. When this evenl occurs al the nth
throw, the player gain is 3%, leading {o an average gain of

o0 i
Z 3”271 = +0c0.
n=1

Fvery player should then be ready to pay an arbitrarily high entrance fee
to play this game, even though there is less than a 0.05 chance to go beyond
the fifth throw! This modeling does not lake into account that the fortune
of a player is necessarily bounded and that he or she can only play a limited
number of games. A solution to this paradox is to substitute for the linear
utility function a bounded utility function, such as

U@) = (60, r>—3),

.
d+r
and U (r) = —oo otherwise. This construction is quite similar to Laplace’s
moral expectation. An acceptable entrance fee e will then be such that the
expected uiility of the game is larger than the utility of doing nothing, i.c.,

[ (r —e)] = U(0) = 0.




60 Decision-Theoretic Foundations 2

Consider now a modification to the game such that the player can leave the
!g‘ame al any time n and take the gain 3" if a head has not vet appeared
The average gain at time n is then ‘

3?[4
4+ 30

which can provifie an optimal leaving time ng, depending on the utilit
?arameter d, Wth.h n iis turn somehow characterizes the risk aversion 0);
the player (see Smith ( 1988) for a more thorough description). For instance
§ may reprc;ent the fortunc of the player, since U(7) goes to —oo wher:
T goes 1o —d. The particular choice of &/ can obvionsly be eriticized, but
a nore accurabe representation of the utility function requires a det,aiied
analysis of the motivations of the player {se¢ also Exercise 2.9) il

2—7’L

3

S.eo also B(?r.narrd? and S]I'lit}l (1994) for a detailed analysis of the founda-
tions of Utility Theory, with in particular a description of decision trees

2.3 Utility and loss

Lojt s switch back to a purely statistical setbing. From a decision-theoreti
p'omf; of view, the statistical model now involves three spa(x‘as- X obsere "
Ezonlspace, O, parumeter space, and D, decision space (or a.ctz'c:n 5 a?g_
Statistical inference then consists of taking a decision d € D related f tz .
parameler § € © based on the observation z € X. = and 8 beiI; re(ljat 3
by the distribution f(z]0). In most cases, the deci:sion d will be %0 (;vali
:atf,e (or estimale) a function of 8, h{0}, as accurately as possible Decisim;
_1 heory assumes in addition that each action d can be evaluated I(i e J that
its accuracy can be quantified) and leads to a reward r, with utiIi‘t .,U (r)
(which exists under the assumption of rationality of the’ deci%ion—m)ar.kerg
From now on, this utility is written as U7(#, d) to stress that it only de ensd .
on these two factors. When other random factors r are involvedyin B’ .
take'U (9, d) = W3 4[UU{r)]. Therefore, U (0, d} can be seen as a measur,ewi
proximity between the proposed estimate d and the true valuc h(ﬂ} 0
Once the utility function has i ‘
derive the corresp):)nding loss ["un(]:ai,?ii consticted (or pproximated)

L(0,d) = —U(6,d).

In general, the loss function is supposed to be nonnegative, which implie
El‘lat U .(9, d) <0, and therefore that there is no decision With, infinite ut?ﬁt i
The 'e)ustence of a lower bound on L can be criticized as being too erin i
but it does avoid paradoxes such as those mentioned above. It can aisg(? ril)e:,
argued that, from a stalistical point of view, the loss function L indeed
represents the loss (or error) owing to a bad evaluation of the function [’10
of mteretst;, and therefore that even the best evaluation of this function "!J
when ¢ is known, can induce at best a null loss. Otherwise, there Woufd I(;e,

, We
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a lack of contintity of the loss function in d = 8 which could even preveni
the choice of a decision procedure.

Obviously, except for the most trivial settings, it is generally impossible
to uniformly minimize (in d) the loss function L{#,d} when ¢ is unknown.
In order to derive an cffective comparison criterion from the loss function,
the frequentist approach proposes {o consider instead the average loss (or
frequentist risk)

R(0,8)y = TE[L(9,0(z))]
_ fX 1.6, 5(x))f (<l0) dar,

where &{z) is the decision rule, ie., the allocation of a decision o each

outcome = ~ f(z|f) from the random cxperiment. The function 4, from X

in D, is usually called estimator (while the value 8(z} is called eslimate of

#). When there is no rigk of confusion, we also denote the set of estimators

by D,

The frequentist paradigm relies on this criterion {o compare estimators
and, if possible, to select the best estimator, the reasoning being that esti-
mators are evaluated on their long-run performance for all possible values
of the parameter 0. Notice, however, that there are several difficulties as-
sociated with this approach.

(1) The error (loss) is averaged over the different values of proportionally
to the density f(z|f). Therefore, it seems that the observation x is not
taken into account any further. The risk criterion evaluates procedures
on their long-run performance and not directly for the given observa-
tion, z. Such an evaluation may be satisfactory for the statistician, but
it is not so appesling for a client, who wants oplimal results for her
data. x, not that of another’s!

(2) The frequentist analysis of the decision problem implicitly assumes that
this problem will be met again and again, for the [requency evaluation
to make sense. Indeed, R(8,4) is approximately the average loss over
i.i.d. repetitions of the same experiment, according to the Law of Large
Numbers. However, on both philosophical and practical grounds, there
is a lot of confroversy over the very notion of repeatability of ezperi-
ments (sce Jeffrcys (1961)). For one thing, if new observations come to
the statistician, she should make use of them, and this couid modily
the way the experiment is conducted, as in, for instance, medical trials.

(3) For a procedure &, the risk R(6,8) is a function of the parameter 0.
Therefore, the frequentist approach does not induce a total ordering
“on the set of procedures. It is generally impossible to compare decision
procedures with this criterion, since two crossing risk functions prevent
comparison between the corresponding estimators. At best, one may
hope for a procedure dg that uniformly minimizes R{8,4), bul such
cases rarely occur unless the space of decision procedures is restricied.
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Best procedures can only b i i
; : v be obtained by restricti artifici
the set of authorized procedures. Y cing rather artificially

Example 2.3.1 Consider 27 and x5, two observations from
Pple =0 -1y = Pyp(z =0+ 1) = 0.5, 1 € R.

!J_‘he pal’amel or Of iIltel'PSb is 9 i = it i e o8
=¥ l £ D ( ) a i 1 i
6 ) 1 ( 3 ) nd 1t 15 eStlma 1d by i tlIﬂatO ]

. . L{#,6) =1 —T(d),
often called 0 ~ 1 loss, which penalizes error irati ; .

‘ ‘ zes errors of estimation, wh i
magnitude, by 1. Considering the particular estimator Thaterer their

50(971,&»‘"2) = E%"E,

its risk function is

R(0,60) = 1—Py(bo(z1,22) = 6)
1— Py(xy # zq) = 0.5.

X}lls compu'tatim.l shows. that the estimator &y is correct half of the time
tf;ltuall‘y, this estimator is always correct when z; # x5, and always wron .
otherwise. Now, the estimator d{(x,22) = %1 + 1 also has a risk l'unctiorg1

equal to 0.5, ag does da(zq,12) = 25 — 1 f
be ranked under the 0 —1 loszs). ’ - Pherelore, %o, &1 and &, Cammﬁ

On(f)iotil;&zonga;y, t};e 'Bayisian approach to Decision Theory integrates
ace © since ¢ 18 unknown, instead of inteprating o J

. : n the space
as x is known. It relies on the posterior expected lai: i ¢ spnee &

o(m dlz) = ET[I{0,d)x]
- /@ (0, dyr(8]) do,

;El;;‘i}nagfeiiges the error (i.c., thf: loss) according to the posterior distri-

e parameter 0, conditionally on the observed walue ©. Gi

x, the' average error resulting from decision d is actually (wd[ ) 1‘:‘}31“

posterior expected loss is thug a function of z but this depfnd:an e is not

troublesome, as opposed {o the [requentist dependence of tile i ;39 e

parameter because z, contrary to 6, is known. vk on the
Given a prior distribution =, it is alse possible to define the integrated

risk, which is the frequentist risk avera;
. , i ed o t , .
to their prior distribution ged over the values of § according

r(r,d) — IET[R(, )]
_ fe L L.(0, 8(z)) £(216) dz (6) db.

Onebpartic.ula.r interest of this second concept is that it associates a real
number with every estimator, not a function of 8. Ii therefore inducesz a
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total ordering on the set of estimators, i.c., allows for the direct comparison
of estimators. This implies that, while taking into account the prior infor-
mation through the prior distribution, the Bayesian approach is sufficiently
reductive (in a positive sense) to reach an effective decision. Moreover, the
ahove two notions are equivalent in that they lead to the same decision.

Theorem 2.3.2 An estimator minimizing the integrated risk v(m,d) con
be obtained by selecting, for every x € X, the value 6(x) which minimizes
the posterior expected loss, o(m, 8|z), since

(2.3.1) r{m,8) :/){Q(r,(S(m)}:ﬂ)m(m) dx.

Proof. BEquality (2.3.1) follows directly from Fubini’s Theorem since, as
L(9,6) = 0,

r(m,5) = f@ [X 10, 8()) £ (<]0) dz: (0) dO
_ fx f@ L(0, 6(2)) /(|6 (60) db da
_ fx /@ L.(0, 6(x))m(0}) dO m{z) dz .

[EIE

"This result leads to the following definition of a Bayes estimator.

Definition 2.3.3 A Bayes estimator associated with a prior distribution
x and o loss function 1. is any estimator &7 which mingmizes r{n,§). For
every T € X, il is given by 67 (z), argument of ming o{m, dlz). The value
r{m) = r(m,d7) is then called the Dayes rigk.

Theorem 2.3.2 thus provides a constructive tool for the determination of
the Bayes estimators. Notice that, from a strictly Bayesian point of view,
only the posterior expected loss o(m, 8lz) is important, as the Bayesian
paradigm is based on the conditional approach, lo average over all possi-
ble values of z, when we know the observed value of x, seems to be a waste
of information. Nonetheless, the equivalence exhibited in Theorem 2.3.2 i3
important because, on one hand, it shows thal the conditional approach
is not necessarily as dangerous as frequentists may depict it. This is so
because, while the Bayesian approach works conditional upon the actual
observation z, it also incorporates the probabilistic properties of the dis-
iribution of the observation, f(z|f}. On the other hand, this equivalence
provides a conmection between the classical results of Game Theory (see
Section 2.4) and the axiomatic Bayesian approach, based on the posterior
distribution. It also explains why Bayes estimators play an important role
in frequentist optimality criteria.

The result above is valid for proper and improper priors, as long as the
Bages risk v(n) is finite. Otherwise, the notion of a {decision-theoretic}
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Bayes estlimator is weakened: we then define a generalized Bayes estimat

as the H}mimizer, for every z, of the posterior expected loss. In termg o
.!requentlst o_ptimaﬁty, we will see that the division betwcen proper ;m(j
improper priors 1*; much less important than the division between r;a 1l

and generalized Bayes estimators, since the formers are admissible N%)i;'ar
that, for strictly convex losses, the Bayes ostimators are unigue. i s

- We conclude this section with an example of construction of a loss fun
tion in an expert calibration framework. References on this topic };mre De(SH
root and Fienberg (1983), Murphy and Winkler (1984), Bayarri and D(;GP
oot {1988) and Schervish (1989). Smith (1988) also shows how forecast .
evaluation can help improve the assessment of prior probabilitics. See aiser
Note 2.8.1 for an illustration in imaging,. . ’

Example 2.3.4 Meteorological forecasts are often given as probabilif;
statements such as “lhe probability of rain for tomorrow is G.4.7 Sucg
forecasts being quantified, it is of intercst to cvaluate weather foi";ca,ster
through a loss function (for their employers as well as users). ’ ”

For a given forccaster, let N be the number of differcnt porcentages

predicted at least once in a year and let p; {1 < i < N} be the correspondin
percentages. For instance, we may have N =5 and ¢

pL = 0, P2 = 0.45, P3 = 0.7, Pa = 0.9, and s = 0.95.

In this case, the parameters 0; are actually observed, e,

number of rainy days when p; is forecasted
‘ number of days when p; is forecasted
{morc exactly, this ratio is a good approximation of 8;}.

I a denotes the proportion of days where p; is forecasted, a possible loss
function for the forecasters is

N N
L@0,p) =D ailpi — 0)* + > gilog(as).

i=1 =1
ij a given set of 6;’s (1 < ¢ < N), the best forecaster is the perfectly
calibrated forecaster, i.c., the one who satisfics p; = 6; 1<i< ’N)
Moreover, among these perfect forecasters, the best one is the most weli
balanced, satisfying ¢; = 1/N (1 < i < N}, i.e., the more daring forecaster
as opposed to a lorecaster which would always give the same forecast Py ’
because of the entropy term, 3°. g; log(q;). However, the distance {ps - 0 1)02,
could be replaced by any other function taking its minimum at 3; :19-
(see Exercises 2.12 and 2.14). The weight ¢; in the first sum is also Jsed t:)

calibrate more properly forecasters, in order to prevent overpenalization of
rare forecasts.

6, =

This Ios§ has been constructed with a bias in favor of forecasters with
large N, since the entropy log(N) increases with N. However, a better
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erformance for a larger N requires that p; is (almost) equal to 0; and g;
is close to 1/N. i

9.4 Two optimalities: minimaxity and admissibility

This section deals with the two fundamental notions of frequentist Decigion
"Theory, introduced by Wald (1950) and Neyman and Pearson {1933a,b).
As mentioned above, and contrary to the Bayesian approach, the frequen-
tist paradigm is not reductive enough to lead to a single optimal estimator.
While we are mainly concerned in this book with the Bayesian aspects
of Decision Theory, it is still necessary to study these frequentist notions
in detail because they show thal Bayes estimators are olten optimal for
the frequentist concepts of optimality, therefore should still be considered
even when prior information is ignored. In other words, one can reject the
Bayesian paradigm and ignore the meaning of the prior distribution and
still obtain good estimators from a frequentist point of view when using
this prior distribution. Therefore, in this technical sense, frequentists should
also bake into account the Bayesian approach; since it provides a tool for
the derivation of optimal estimators (sce Brown (1971, 2000}, Strawder-
man (1974), Berger (1985a), or Berger and Robert (1990) for examples).
Moreover, these properties can be helpful in the selection of a prior dis-
tribution, when prior information is not precise enough {o lead to a single
prior distribution (see Chapter 3).

2.4.1 Randomized estimators

Simitar to the study of the utility function, where we extended the reward
space from R to P, we need to extend the decision space to the sel of
randomized estimators, taking values in D", space of the probability dis-
tributions on . To use a randomized estimator 8* means that the action
is generated according to the distribution with probability density §{z, .},
once the observation z has been collected. The loss of a randomized esti-
mator &* is then defined as the average loss

L(B,J*(m)):/DL(G,G.)rS*{m,a) da.

This extension is necessary to deal with minimaxity and admissibility. Ob-
viously, such estimators arc not to be used, if only because they contradict
the Likelihood Principle, giving several possible answers for the same value
of  {and thus of £(0|z)). Moreover, it seems quite paradoxical to add noise
to a phenomenon in order Lo take a decision under uncertainty!

Example 2.4.1 {Example 2.3.1 continued) Consider the randomized

estimator

w2y — | Marrany2(®) if 7 2,
& (1, 22){t) = { Mg, -1y () + Tiey oy (]/2  otherwise,
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where I, denotes the Dirac mass at v. Actually, if 71 = 22, the two valies
fy = x1 — 1 and #2 = 1 + 1 have the same likelihood. Compared with §,
which never estimates § correctly if 21 = 2, §” is exact with probability
1/2. However, when d* misses #, it is farther away from @ than &. The
choice of the estimator then depends on the loss function, i.e., the way the
distance between the estimator and 6 (or the error} is measured. I

Randomized estimators are nonetheless necessary from a (requentist point
of view, for instance, for the frequentist theory of tests, as they provide ac-
cess to confidence levels otherwise unattainable (see Chapter 5). The set
D* thus appears as a completion of D. However, this modification of the
decision space does not modify the Bayesian answers, as shown by the fol-
lowing result (where D also denotes the set of functions taking valaes in
.

Theorem 2.4.2 For every prior distribution = on ©, the Bayes risk on
the set of randomized estimators is the same as the Bayes risk on the set
of nonrandomized cstimators, i.e.,

Jléljf)r(’fr, &) = 5*1€Dgg¢ r{m, &) = r(x).

Proof. For every £ € X and every 6 € D*, we have
f / L0, 0)5" (&, a)dax(0)z)d0
eJPD
. f / L0, ) (0]z)d6 6 (z, a)da,
PJO
> ] inf { f L, a)vr(0|33}d0} 5*(, a)da
pa ]

a

- Q("’Ta 5%;_1,)
40

This result thus holds even when the Bayes risk r{x) is infinite. 'The proof
relies on the fach that a randomized procedure averages the risks of nonran-
domized estimators and thus cannot improve on them. However, the fact
that randomized procedures are nol relevant does not hold for the frequen-
tist risk unless some conditions, such as convexity, are imposed on the loss
function.

2.4.2 Minimazity

T'he minimax criterion we introduce now appears as an insurance against
the worst case because it aims at minimizing the expected loss in the least
favorable case. It also represents a frequentist effort to skip the Bayesian
paradigm while producing a (weak) total ordering on D*.

2.4 I'wo optimalities: minimaxity and admissibilily 67

Definition 2.4.3 The minimaz risk associated with a loss function L is
the value

R= inf sup R(9,0) = inf Sup IEg[L.(8, 6(2))],

and o minimaz estimator is any (possibly randomized) estimator dy such
that ~
sup R(0,d;) = R,
0

This notien is validated by Game Theory, where {wo adversaries (here,
“the statistician” and “Nature”) are competing. Once the statistician has
selected a procedure, Nature selects the state of nature (i.e., the param-
eter) that maximizes the loss of the statistician. (We will see below that
this choice is usually equivalent to the choice of a prior distribution .
Therefore, the Bayesian approach does not really fit in that conflicting
{ramework, since the prior distribution is also supposed to be known.} In
general, it seems unfortunate to resort to such an antagonistic perspective
in a statistical analysis. Indeed, to perceive Nature {or reality) as an enemy
involves a bias toward the worst cases and prevents the statistician from us-
ing the available information (for an analysis and a defense of minimaxity,
sce Brown (1993} and Strawderman (2000)}.

The notion of minimaxity provides a good illustration of the congervative
aspects of the frequentist paradigm. Since this approach refuses to make
any assumption on the parameter 8, it hag to consider the worst cases as
cqually likely, and thus needs to focus on the maximal risk. In fact, from a
Bayesian point of view, it is often equivalent Lo take a prior concentrated
on these worst cases (see Section 2.4.3). Tn most settings, this point of view
is thus too conservative bocause some values of the parameter are less likely
than others.

Example 2.4.4 The first oil-drilling platforms in the North Sea were de-
signed according to a minimax principle. In fact, they were supposed to
regist the conjugate action of the worst gale and the worst storm ever ob-
served, at the minimal record temperature. This strategy obviously gives
a comfortable margin of safety, but is quite costly. For more recent plat-
forms, engineers have taken into account the distribution of these weather
phenomena in order to reduce the production cost. i

Example 2.4.5 A waiting queue at a red light is usually correctly repre-
sented by a Poisson distribution. The number of cars arriving during the
observation time, N, is thus disiributed according to P(}), with the mean
parameter A to be estimated. Obviously, the values of A above a given limit
are quite unlikely. For instance, if Xy is the number of cars in the whole
city, the average number of cars wailing at a given traflic light will not
exceed Ag. However, it may happen that some estimalors are not minimax
because their risk are above R for the largest values of A. I
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Figure 2.4.1. Comparison of the risks of the estimators &, and 5,

raglho exampie- above does not direetly criticize the minimax principle but

er argues for the fact that some residual mformation is attached '
most problems and that it should be used, even marginally, 1 ac"e i .
}r}na‘:mcr, Example_ 2_.4.6 exhibits two estimalors, &; and 523’-511";}1&;‘“;11(‘?1"
Ra}slg, l;:oilstant léxlnﬁ:rlnax risk 1t and &, has a risk which ceu; be)as lociv a,;
, ut goes slightly above R for the largest values of th ;
Figure 2.4.2). Therefore, according to the minime ncinlo. 5, sho e
preferred to dz, although the values of 9 for ich PIIHCll_ﬁO: o ‘?hmﬂd e
most unlikely (see Txercise 2.28 for another :;};;T(f:nit e()i::;i;;)nliges P are the

Example 2.4.6 For reasons i i
i 246 explained in Note 2.8.2, we consider the fol-

2p

—1
dy{z) = (1—i’fﬂi'!fz )73 if |zl]? > 2p— 1,
0 otherwise,

to estimate 0 when z ~ N, (0, I,). Thi i
' ) »(0, 1,). This estimator, called th
James-Stein estimator, is evaluated under quadratic loss © posttivepart

(8, d) = ||6 — djf|>.

E‘ll‘gu_re 2.4.? gich a con}parison of the respective risks of dp and 8y (z) = x
beam%n%lm ]ikel.lhood estlmaFor, for p = 10. This figure shows that d, c&nnlog
; T}inzri}ax,R sgme the maximum rigk of da 18 above the (conqtan!;) risk of
- o o > {cons

ﬂ}lat ; ilS, ; (8, d2) : .Eg[“'ﬁ - 52{?0)”2] = p. (We show i Section 2.4.3
‘ )1 s acr ually minimax in this case.) But the estimator ds is deﬁnitei

1bupemo_r on the most interesting part of the parameter space, the additi a.?l,
oss being in perspective quite negligible, ? o i
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Table 2.4.1. [tility function U{64,a;).

aq (1]
o —4 — 10
2 & 30

The opposition between minimax and Bayesian analyses is illustrated by
the following example, which borrows from Game Theory (since there is no
observation or statistical modet).

Example 2.4.7 Two persons, A and B, suspected of being accomplices
in a robbery, have been apprehended and placed in separate cells. Both
suspects are questioned and enticed to confess the burglary. Although they
eannot be convicted unless one of them talks, the incentive is that the
first person to cooperabe will get a reduced sentence. Table 2.4.7 provides
the rewards as perceived by A (in years of freedom), where ay (vesp. 1)
represents the fact that A (resp. B) talks. The two suspects have an optimal
gain if they both remain silent. However, from A’s peint of view, the optimal
strategy is to be the first one to talk, i.e., a;, since maxg R{ay,8) =4 and
maxy R(az,0) = 10. Therefore, both burglars will end up in jaill

On the contrary, if 7 is the (subjective) probability assigned by A to the
evenl “B talks,” ie., to 61, the Baycs risk of a, is

r(m,01) = E7[-U(0,01)] = 47 — 8(1 —m) = 127 — 8
and, for as,
7(r, ap) = BT [—U (0, az)] = 107 — 30(1 — =) = 40w — 30.

It is straightforward to check that, for m < 11/14, r(m, a2) is smaller than
7(w, a1). Therefore, unless A is convinced that B will talk, it is better for

A to keep silent. |

2.4.8 Existence of minimaz rules and mazimin strategy

An important difficulty related with minimaxity is that a minimax estima-
tor does not necessarily exist. Ferguson (1967) and Berger (1985a, Chapter
5) give sufficient conditions. In particular, therc exists a minimax stralegy
when 0 is finite and the loss function is confimious. More generally, Brown
(1976) (see also Le Cam (1986) and Strasser (1985)) considers the decision
space D as embedded in another spacc so that the set of risk functions on
D is compact in bhis larger space. From this perspective and under addi-
tional assumptions, it is then possible to derive minimax estimators when
the loss is continuous. However, these extensions involve topelogical tech-
niques too advanced to be congidered in this book. Therclore, we only give
the following result (see Blackweli and Girshick (1954) for a proof).
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Theorem 2.4.8 If D C RF is a convez compact set and if L{8,d) is

continuons and conver as a funclion of d for every ) € O, there exisls g
?

nonrendomized minimaz estimator.

The rcs(;rlc.tion to nonrandomized estimators when the loss is convex
follows from Jensen's inequality, since

L(6,0%) = T [1(0, 8)] > L(0, 1% (8)).

thS l‘(}bult B a S[)CClal case Of g)he jaaa_BlaCkTUffll i OTCT IJ
_[
\ ( )) he (411 (See ehmaun

f}xztlsrjz_ple ?fél:;l (Example 2.4.1 continued) The randomized estima
or 0% 18 uniformly dominated for every convex loss b mized
estimator I° 0% (1, 25, ie., by the nonrandomized

- i i
o m) = {3l ten) | R
2@ — )+ §(z1 +1) = 2;  otherwise,

which i? a:ctua]ly identical to the estimator 8y considered originally. Netice
that this is not true for the 0 — 1 loss where §* dominates §. I

'The following result points out the connection between the Bayesian

approach and the minimax principle. {Th i ight [
o) ple. (The proof is straightforward and

Lemma 2.4.10 'The .
risk, i.e., he Bayes risks arc always smaller than the minimaz

R= s&p r(w) = sup gg%) r(m,8) < R= 6i€ng* sup R(6,5).
4

'l;he ﬁrst.vaiue is called mawximin risk and a distribution 7* such that
?’(TT } = R is called a least favorable distribution, when such distributions
C}'«ust.. In general, the upper bound r(7*) is rather aftained by an improper
dlstributio'n, which can be expressed as a limit of proper prior diStI‘ibII)ItiEn‘i
T, .but this Phenomenon does not necessarily deter from the derivation okf
minimax estimators {sce Lemma 2.4.15). When they exist, least favorable
d}SLI‘?.bUtIODS arc those with the largest Bayes tisk, thus th(; less interesii
d;st.rlbutions in terms of loss performances if they are not suégeqted b’ tﬁg
available prior information. The above result ig quite logical, Z.lll'l the ;rensg

t D atio y Y e e 1 a! O error, eve e
'ha rior 1 lh)IIIi 11 Ccan 0]1[ Hlp OV 1: esiim

3 1 In
o 3 11}

A particularly interesting case corresponds to the following definition

Definition 2.4.11 The estimation problem is swid to have o value when

=R, ie., when

i -
sup inf r{m, d) 61€ng* sgp R(0,8).
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When the problem has s value, some minimax estimators arc the Bayes
estimators for the least favorable distributions. However, they may be ran-
domized, as illustrated by the following example. Therefore, the minimax
principle does not always lead to acceptable estimators.

Example 2.4,12 Consider® a Bernoulli observation, 2 ~ Be(f) with 6 €
{0.1,0.5}. Four nonrandomized estimators are available,

&(z) = 0.1, ba(z) = 0.5,
53(;1;) = 01—+ 0.50;-1, 64('1:) = 0.5I=0 + 0.10;=1.

We assume in addition that the penslty for a wrong answer is 2 when
8 = 0.1 and 1 when & = 0.5. The risk vectors (R(0.1,4), R(0.5,4)) of the
four estimators are then, respectively, (0, 1), (2,0), (0.2,0.5), and (1.8,0.5).
Tt is straightforward to see that the risk vector of any randomized estimator
is a convex combination of these four vectors or, equivalently, that the risk
set, R, is the convex hull of the above four vectors, as represented by Figure
2.4.3.

In this case, the minimax estimator is obtained at the interscction of the
diagonal of IR? with the lower boundary of R. As shown by Figure 2.4.3,
this estimator 6* is randomized and takes the value dg{x} with probability
o = 0.87 and 83(z) with probability 1 — . The weight « is actually derived
from the equation

0.2¢c + 2{1 — o) = 0.5¢x.
This estimator 6* is also a (randomized) Bayes estimalor with respect to
the prior
the prior probability m = 0.22 corresponds to the slope between (0.2,0.5)

and (2,0}, i.e.,
- 0.5

1-m 2-02
Notice that every randomized estimator that is a combination of 4, and
of d5 is a Bayes estimator for this distribution, bul that 6* only is also a

minimax estimator. I

Similar to minimax estimators, a least favorable distribulion does not
necessarily exist since its existence depends on a separaling hyperplane the-
orem that does not always apply (sce Pierce (1973), Brown (1976}, Berger
(1985a), and Chapter 8). In addition, Strawderman (1973) shows that, in
the special case when & ~ Np(8, I}, there is no minimax proper Bayes
estimator if p < 4. From a more practical point of view, Lemma 2.4.10
provides sufficient conditions of minimaxity.

Temma 2.4.13 If; is a Bayes estimator with respect to g and if B8, &)
< r{my) for every 0 in the support of my, dp is minimaz and mo is the least
favorable distribution.

3 The computaticns in this example are quite simple. See Chapter 8 for details.
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Figure 2.4.2. Risk set for the estimation of the Bernoulli parameter.

Example 2.4.14 (Berger (1985a)) Consider z ~ B(n, ) when @ is to be
estimated under the gquadratic loss,

L(9,8) = (6 — ).
Bayes estimators are then given by posterior expectations (see Section 2.5)
and, when 8 ~ Be (@ ﬂ), the posterior mean is

2.7 -2
- 2
5*(a) = LEV2
n+ /1
Moreover, this estimator has constant risk, R(0,6*} = 1/4(1++/n)?. There-
fore, integrating out 8, r(7) = R(8,4*) and 6 is minimax according to
Lemma 2.4.13. Notice the difference with the maximum likelthood esiima-
tor, dg(2) == x/n, for the small values of n, and the unrealistic concentration
of the prior around 0.5 for larger values of n. I

Since minimax cstimators usually correspond to generalized Bayes esti-
mators, it is often necessary to use a limiting argument to establish mini-
maxity, rather than computing directly the Bayes risk as in Lemma 2.4.13.

Lemma 2.4.15 [f there ezists a sequence (7n) of proper prior distribu-
tions such thal the gqneml’ized Bayes estimator & satisfies

R(8,8y) < Jim (7)) < 400
Jor every 0 € ©, then &y is minitnaz.

Example 2.4.16 When & ~ N{#8,1}, the maximum likelihood estimator
do{z) = z is a generalized Bayes estimator associated with the Lebesgue
measure on IR and the quadratic loss. Since R{6o, #) = Wg(z —8)? = 1, this
risk is the limit of the Bayes risks r(7,) when m, is equal to N{0,n), as
r{m,} = - Therefore, the maximum likelihood estimator &g is minimax.
Note that this argument can be extended directly to the case @ ~ Ny (6, I)
to establish that dy is minimax for every p.
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When the space € is compact, minimax Bayes rules (or estimators) can
be exactly described, owing to the separated zeros principle in complex
calcultus: if R(#,d™) is not constant and is analytic, the set of #'s where
R(6,6™) is maximal is separated and, in the case of a compact set O, is
necessarily finite,

Theorem 2.4.17 Consider a statistical problem thal simultaneously has
o value, @ least favorable distribution mo, end o minimaz estimator §™.
Then, if © C IR is compact and if R{(0,0™) is an analytic function of 0,
then either mp has a finite support or R(8,4™) is constant.

Example 2.4.18 Consider z ~ N{#,1), with |[(] < m, namely, 0 €
[--m,m]. Then, according to Theorem 2.4.17, least favorable distributions
have necessarily a finite support, {40;, 1 < i < w}, with cardinal 2w and
supporting points #; depending on m. In fact, the only estimator with con-
stant risk is do(x) = =z, which Is not minimax in this case. In general, the
exact determination of n and of the points 6; can only be done numerically.
For instance, when m < 1.06, the prior distribution with weights 1/2 at
4+ is the unigque least favorable distribution. Then, for 1.06 <m < 2, the
support of  contains —m, 0, and m. See Casella and Strawderman {1981)
and Bickel (1981) for details, and Johnstone and MacGibbon (1992} for a
similar {reatment of the Poisson model. I

‘The above examples show why, while being closely related to the Bayesian
paradigm, the minimax principle is not necessarily appealing from a Bay-
esian point of view. Indeed, apart from the fact that minimax estimators are
sometimes randomized, as in ixample 2.4.12, Examples 2.4.14 and 2.4.18
show that the least favorable prior is often unrealistic becaise it induces
a strong prior bias towards a lew points of the sample space. For Tixam-
ple 2.4.18, Gatsonis et al. (1987) have shown that uniform priors arc good
substitutes to the point mass priors, although they are not minimax.

Extengions of Theorem 2.4.17 to the noncompact case arc given in Kemp-
thorne (1988). In multidimensional settings, when the problem is invariant
under rotation, the least favorable distributions are uniform on a sequence
of embedded spheres (see Robert et al. (1990)). The practical problem of
determining the points of the support is considered in Kempthorne (1987)
and Fichenauer and Lehn {1989).

In settings where the problem has a value, it is often difficult to derive the
least favorable distribution and alternative methods are then necessary to
produce a minimax estimator. Chapter 9 shows how the exhibition of some
invariance structurcs of the model may lead to identify the best equivariant
estimator and a minimax estimator (Hunt—Stein Thegrem}. Unfortunately,
{he conditions under which this theorem applies are difficult to check and
often do not hold.

Lastly, when a minimax estimator has been derived, its optimality is still
to be assessed: there may exist several minimax éstimators and some may
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perform uniformly better than others. It is then necessary to indroduce

a second (and more local) criterion to compare minimax estimatorg

estimators that perform well globally. ‘ s Le,,

2.4.4 Admissibility

This second frequentist criterion induces a partial ordering on D*

: h -
paring the frequentist risks of the estimators, R(9, 8). Y om

Deﬁnition 2.4.19 An estimator & is inadmissible if there exists an es
timator &, which deminates &y, that is, such that, for every 0, )
R(0,80) > R(0, 8;)
and, for at least one value 0y of the parameter,

R(ﬁ[)ga(}) > R(Qo, 51).
Otherwise, §y is said to be admissible.

This criterion is particularly interesting for its reductive action. Indeed
at least in theory, it seems logical to advocate that inadmissible estimatorsz
':%hould not be considered at all since they can be uniformly improved., For
instance, the Rao—Blackwell Theorem then implics that, for convex Iolsées
randomized estimators are inadmissible. However, admissibility alone i=;
not enough to validate the usc of an estimator. For instance constanlt
estimators 6(z) = §p are usually admissible becanse they producej the exact
value at # = ;. From a frequentist point of view, it is then important to
look for estimators satisfying both optimalities, that is, minimaxity and
admissibility. In this regard, two results can be mcntionéd.

P_roposiltion 2.4.20 If there exists o unique minimax estimator, this es-
timator 15 admissible. ’

Proof. If §* is the only minimax estimator, for any cstimator § £ §*

s%p R(8,6) > sup R(0,5%).
o

Therefore, § cannot dominate §*. on

Nf)t%ce that the converse to this result is false, since there can exist several
minimax admissible estimators. For instance, in the Np(0,I,) case thJere
exist proper Bayes minimax estimators when p > 5 (Strav:rdzzrman ’{}973)
an(_i Fourdrinier and Strawderman (1999)). When the loss function T, is
strictly convex (in d), it also allows for the following charactorization. L

Px:oposition 2.4.21 Iféo is admissible with constant risk, &, is the unique
manimaz estimator.

Proof. For any 6, € ©, sup,y R(0,80) = R(0y, do). Therefore, if there cxists

;51 suc.h that R < sup, R(, J;) < R(#, &), do cannot be admissible. Simi-
arly, if R = supy R(#,01) = R(%,dp) and if 0 is such that R(61,8,) < R,
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4, dominates dy. Therefore, when dp is admissible, the only possible case is
that therc cxists 8; such that R(0,d1) = R(#, ) for every & € ©. And this
is also impossible when §q is admissible {see Exercise 2.36). ]

Again, notice that the converse of this result is false. There may be mini-
max cstimators with constans risk that are inadmissible: actually, they are
certainly inadmissible if there are other minimax estimators. For instance,
this is the case for do(z)} = 2 when @ ~ AR(0,I,) and p > 3 (see Note
2.8.2). There also are cascs when there is no minimax admissible estimator
(this requires that there is no minimal complete class, see Chapter ).

"The previous section showed that minimaxity can sometimes be consid-
ered [rom a Bayesian perspective as the choice by Nature of & maximin
strategy (least favorable distribution), 7, therefore that some minimax es-
timators are Bayes. Admissibility is even more strongly related to the Bayes
paradigm in the sense that, in most statistical problems, the Baycs estima-
tors are “spanning” the class of admissible estimators, ie., the latter can
be expressed as Bayes estimators or generalized Bayes estimators or lim-
its of Bayes estimators. Chapter 8 deals in more detail with the relations
between Baycs estimators and admissibility. We only give here two major
results,

Proposition 2.4.22 [f a prior distribution  is strictly posilive on O, with
finite Bayes risk and the risk function, R(9,8), is o continuous function of
0 for every 8, the Bayes estimator 0 is admissible.

Proof. Supposc 6 is inadmissible and consider &" which uniformly dom-
inates 6™. Then, for every 0, R{8,8") < R(0,6%) and, in an open sel C of
8, R(0,d") < R(0,5™). Integrating ont this inequality, we derive that

e, 8) < 1(m,67) = /@ (0, 5%)n(0) do,

which is impossible. m]]

Proposition 2.4.23 If the Bayes estimator associated with a prior 7 is
unique, # is admissible.

‘T'he proof of this result is similar to the proof of Proposition 2.4.20. Even
if the Bayes estimator is not unigue, it is still possible to exhibit at least
one admissible Baycs estimator. When the loss function is strictly convex,
the Bayes estimator is necessarily unique and thus admissible, according
to the above proposition.

Example 2.4.24 (Example 2.4.14 continued) The estimator 6" is a
(proper) Bayes estimator, therefore admissible, and it has constant risk.
Therefore, it is the unique minimax estimator under squared error loss. i

Notice that Proposition 2.4.22 contains the assumption that the Bayes
risk ig finite. Otherwige, every estimator is, in a way, a Bayes estimator (see
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Exercise 2.43). On the other hand, some adimissibility results can be estajh.

lished for improper priors. ‘T'his is why we prefer to call generalized DBayes '

estimators the estimalors associated with an infinite Bayes risk, rather
those corresponding to an improper prior. This choice implies tha{ the
Bayes estimators of different quantities associated with the same prior dis.
tribution can be simultaneously regular Bayes estimators and generalized
Bayes estimators, depending on what they estimate. 'I'his also guarantees
that regular Bayes estimators will always be admissible, as shown by the
following result.

Proposition 2.4.25 [If a Bayes estimator, 8%, associated with a {proper
or improper) prior © and a sirictly conver loss Junction, is such that the
Bayes risk,

r(n) = f R(8,67)r(0) do,
®
is finile, 8" is admissible.
Example 2.4.26 Consider x ~ N {0, 1} and the null hypothesis Hy : 8 <
0 is tested against the alternative hypothesis Hy : 8 > 0. This testing prob-

lem is an estirnation problem if we consider the estimation of the indicator
function Ig, (#). Under the quadratic loss

(Wi, (0) ~ 6())?,
we can propose the following cstimator

Pz) = BX>3) (X~ A(0,1)
= 1_®($)7

called the p-value, which is considered as a good frequentist answer to the
testing problem (see Kiefer (1977) and Casella and Berger (1987)). Using
Example 1.5.1, it is easy to show that p is a generalized Baycs estimator
under Lebesgue measure and quadratic loss, since #(0]z) is the N (z,1)
distribution and

ple) = ET [y, (f)lz] = P*(6 < 0lz)
PUO —x < —z|z) =1 — ®(x).
Morcover, the Bayes risk of p is finite (Exercise 2.34). Therefore, the p-

value, when taken as an estimator of I, is admissible. (See Section 5.4
for an cxtended analysis of the properties of the p-value.) I

Example 2.4.27 Tn the setting of the previous example, if # is the param-
eter of interest, dg(x) = = is a generalized Bayes estimator under quadratic
loss, but

+oo
r{m,8p) = R(0,80) do

—O0

+o0
= f 1 df = +co.

—~00

2.5 Usual loss functions T

Therefore, Proposition 2.4.23 is useless in this case to assess the admis-
gibitity of dy. While dp is actually admissible, its admissibility must be
established through a sequence of proper priors, as shown in Chapter 8. ||

Example 2.4.28 Consider x ~ NR(#, I;). If the parameter of interest
is ||6i|* and the prior distribution is the T.chesgue measure on P, since
E[1611%]z] = Eljjyl|?), with ¥ ~ Np(z, L), the Bayes estimator under
quadratic loss is
" (x) = flzlf* +p.

This generalized Bayes estimator is not admissible because it is dominated
by do(z) = ||#||* — p {Exercise 2.35). Since the classical risk is R(f,46™) =
var(lz|i?) -+ 4p?, the Bayes risk is infinite. This phenomenon shows that
the Lebesgue measure is not necessarily the best noninformative choice
for a prior measure when the parameter of intercst is a subvector of the
parameter (sce Chapter 3). i

2.5 Usual loss functions

When the setting of an experiment is such that the utility function cannot
be determined {lack of time, limited information, etc.), a customary alter-
native is to resort Lo classical losses, which are mathematically tractable
and well documented. Of course, {his approach is an approximation of the
underlying statistical model and should only be adopted when the utility
function is missing, We conclude this section with a note on more intrinsic
loss functions, although these arc rarely used in practice. {See also Note
2.8.1 for a description of logses nsed in imaging.)

2.5.1 The quadratic loss

Proposed by Legendre (1805) and Gauss (1810}, this loss is undoubtedly the
most common evaluation criterion. Founding its validity on the ambiguity
of the notion of error in statistical settings (i.e., measurement error versus
random variation}, it also gave rise to many criticisms, commonly dealing
with the fact that the squared error loss

(2.5.1}) L(0,d) = (0 — d)*

penalizes large deviations too heavily.

However, convex loss fanctions like (2.5.1) have the incomparable ad-
vambage of avoiding the paradox of risk lovers and to exclude randomized
cstimators. Another usual justification for the quadratic loss is that it pro-
vides a Taylor expansion approximation to more complex symmetric losses
(see Exercise 4.14 for a counterexample). In his 1810 paper, Gauss already
acknowledged the arbitrariness of the quadratic loss and was defending it
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on grounds of simplicity. Although the criticisrus over a systematic uge of
the quadratic loss are quite valid, this loss is nonethelegs cxbensively ugeé
because it gives intuitively sound Bayesian solutions, i.e., those one would
naturally suggest as estimators for a non-decigion-theoretic inference based
on the posterior distribution. In fact, the Bayes estimators associated with
the quadralic loss are the posterior means, However, note that the quadrati

loss is not the only loss enjoying this property. Losses leading t(; ost atic
means as the Bayes estimators are called proper losses and charactzrizsgl?;

Lindley (1985), Schervish (1989), van der Meule
3 )5 n (1992), ;
Pemantle (1994). (See also Exercige 2.15.) (1992), and Hhvang and

I.thopfasition 2.5._ 1 The Bayes cstimator 67 associated with the prior dis-
tribution © and with the quadratic loss (2.5.1}, is the posterior expectafion

5 (7) = I~ {gla] — do 8 (l0)n(0) a9
Jo Falf)r(8)di

Proof. Siace
E*{(0 — 6)*|2] = B [0%[] — 200576 2] 4 42
the posterior [oss actually attains its minimum at Mz} =W"[0 | z]. Dn
"I'he following corollaries are straightforward to derive.

COI‘ llal‘ y 2.5 2 h 0y, t ¥ S0CIa (i '”
O . i € B JGS estﬁ‘”a (0 CS A350CT t d )
7 3;‘ ; }1 t 2){ g Id'rfﬂtic .I'D ] [= w'&th Gnd HRh HZB

(2.5.2) L(0,8) = w(®)(0 - 5)2,
where w8} is q nonnegative funclion, is
572y _ ET @]

@)l

Corollary 2.5.3 When © < IR, the B j
‘ . 2 bayes estimator §7 frd i
m and with the quadratic loss, ’ o asseciated with

L0,8) = (0~ 8)'Q(0 )

15 the posterior mean, & (’L‘) = IE"[8lx], for eve itive- -
- - 7 ]
1 il Q 7 [ I ] f vVETY positive deﬁmte symmet

C-oro}_!ary 2.5.2 exhibils a (weak) duality between loss and prior distri-
butlon., m the sense that if ig equivalent to estimate ¢ under (2.5.2) x:vitil
the_ prior m, or under (2.5.1) with the prior () oc 7('(0)(;.}(’9} I.\/I;)reove-r
while admissibility is independent of the weight factor, the Ba: oS esti o
'tgr s.trongly depends on the Fanction w. For instance, (5'”‘may ;10‘rS ::cl d‘;
if w increases too fast to +oo. On the other hand, Co}oHary g 5.3 'sholb,
thatst}{e Bayes estimators are robust with respect to the quad;a‘tic fol:::

zald 5
(6)211. é jun(mak] (1975} has also proved that admissibility does not depend

2.5 Usual loss functions 79
The guadrakic loss is particnlarly interesting in the settin_g Qf boux%ded
arameter spaces when the choice of a more subjective loss is m'lposanble.
})n fact, this loss is quite tractable and the approximation error is usually
negligible. Indeterminacy about the loss function (and thus its reple?ce—
ment by a guadralic approximation) often occurs in accuracy evaluation,
including for instance loss estimation (sec Rukhin (1988a,b}, L.u and Berger
{1989a,b), Hwang, Casella et al. (1992}, Robert and Casella (1993, 1694),
and Fourdrinier and Wells (1994}).
Example 2.5.4 (Example 2.4.9 continued) We are looking for an

evaluation of the performances of the estimator

TN T2 e n o,
5(371_., .’Eg) = .
x141  otherwise,

by of=, 79} under the guadratic criterion
2
[Mo(5(w1,22)) — el z2)]"
where Tg(v) is 1 if v = 6, 0 otherwise; the function a somehow evaluates

the probability that & takes the true value 0. (This is a spef:ia,i case of loss
estimation, when the loss function is 1 — Ls{¢}.) Two estimators can be

proposed:
(i) colzr,a) = 0.75, which is the expectation of To{6(z1,x2)); and
.. i if &1 # xa,
() eafas,ma) = {0.50 if £y = .
T'he risks of the two evaluators are then
2
R(O, Q!O) = ]Eg (]Ig((S(.L‘l,ﬂfg)) - 075)
0.75 — (0.75)* = 0.1875;

and
R(§,m) = Bo (T (3(z1,22)) — (21, 22))°

— (0.5)2% =0.125 .

I'herefore, e is a better estimator of the performances of § than agp. As

mentioned in Berger and Wolpert (1988}, this domination result 1'% quite
logical and it suggests ihaf a conditional evaluation of estimalors s mor!elz

appropriate.

2.5.2 The absolute error loss
An alternalive sohition o the guadratic loss in dimension one is to use the

absoclute error loss,

{2.5.3) L(g,d) =| 8 —d],
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2

already considered by Laplace ili
plre y Laplace (1773) or, more generally, a multilinear Tune-

(2.5.4) L, 1 (60, ) — {’“2(9 —dy #0>d,
a0 ) ki{d — 0) otherwise.
Su:?h funct.i()}]s increase more slowly than the quadratic loss. Therefor
\thIh; remaining convex, they do nol overpenalize large but unlikely er‘rore,
Huber (‘1964) a:Iso proposed a mixture of the absolute error loss and ths.
quadratic loss, in order to keep a quadratic penalization around 0 °
b
- 2 1
L(g’d):{(d—()) ifld~8|<k,
2k|d—0|— k* otherwise.

Although a corfvex" loss, the mixed loss slows down the progression of the
quadratm Ioss' {or la‘rge. errors and has a robustifying effect. Unfortunatel
there usually is no explicit derivation of Bayes estimators under this loss g,

?roposition 2.5.5. 'A Bayes estimator associated with the prior distriby-
tion m and the multilinear loss (2.5.4) is a (ka/ (ki + k2)) fractile of #(6lz)
Proof. 'The following classical equality

d 00
E Ly, 1, (8, d)z] — h/m(d—Mﬂm@d0+@/ﬂ (0~ dyr(0}z) de
d

Eiae ¢}

d —+o0
= Iglf P70 < y|lz) dy + kg/ P70 > ylx) dy,
oo d

is obtained by an integration by parts. Taking the derivative in d, we get
ie.,
ko
k1t ks u]n}
. In part?cular, i.f k1 = kg, le, In ihe case of the absolute error loss, the
ayes estimator is the posterior median, which is the cstimator obtained
by Laplace (see Fxample 1.2.4}. Notice that, when 7 has a nonconnected

support, Proposition 2.5.5 provides exampl i i
. 2 ples of multiple Bayes ¢
tor some values of z (see Excrcise 2.40). plo e estimators

P™(0 < dlz) =

2.5.83 The 0 — 1 loss

"Thig lo_ss is mainly used in the classical approach to hypothesis testing, as
formalized by Neyman and Pearson (see Section 5.3). More generally, fihis

4 Ag.a.m, if we insist so much on convezity, it is bocanse it ensures that randomized
estx_m-ators are suboptimal from a frequentist point of view. Therefore, a statist'a 1
dc(f1519n~theoretic approach that would agree as much as possible with 1;;10 Like ljhmz
Principle necessarily calls for convex losses. This requirement obviousl iminte
hounded losses, ouly ffminates

2.5 {jsual loss funciions 31

is a typical example of a nonguantitative loss. In fact, for this loss, the
penalty associated with an estimate 4 is 0 if the answer is correct and 1
otherwise.

fxample 2.5.6 Consider the test of Hy : 0 € 8 versus Hy : 0 ¢ Sq.
Then P = {0, 1}, where 1 stands for acceptance of Iy and 0 for rejeclion
(in other words, the function of § to be estimated is I, (#)). For the 0 —1
Joss, 1.e., :

_ 1-d ifeeby
(2‘5'5) L(0,d} = {d, " otherwise,

the assoclated risk is
R(8,6) = IEelL{0,6(2))]
[ Py(3(a)=0) i€,
= ] Py(d{z) = 1) otherwise,
which are exactly the lype—one and lype—two errors underlying the Neyman—
Pearson theory. |

"This loss is not very interesting because of its nonquantitative aspect,
and we will consider in Chapter 5 some alternative theories for testing hy-
potheses. 'The associated Bayes estimators also reflect the primitive agpect
of such a loss (see also Lxercise 2.41).

Proposition 2.5.7 The Bayes estimator associaled with w and with lhe
loss (2.5.5) is
- 1 if P(0 € ©plz) > P(0 ¢ Glx),
8" (x) = _ .
0 otherwise,

i.e., 87 (z) is equal to 1 4f and only if P(0 € ©qlz) > 1/2.

2.5.4 Intrinsic losses

It may occur that some scttings are 50 noninformative that not only the
loss function is nnknown, but there is not even a natural parameterization.
Such cases happen when the distribution f (z]®) itself is of interest, for
instance, in prediction settings.

However, as we mentioned in the previous section, the choice of the pa-
rameterization is important because, contrary to the maximum likelihood
estimation approach, if g is a one-to-one transformation of 4, the Bayes
estimator of g(0) is usually different from the transformation by g of the
Bayes cstimator of  under the same loss (see Exercise 2.36). This lack of in-
variance, although often troubling to beginners, is not usually a concern for
decision-makers because it shows how the Bayesian paradigm can adapt to
the estimation problem at hand and the selected loss function, while max-
imum likelihood estimation is totally loss-blind. But the few cases where
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loss [unction and natural parameterization are completely unavailable may

call for this kind of ultimate invariance. (See Wallace and Boulton (1975)

for another approach.)

In such noninformative settings, it seems nafural to use losses that com-
pare directly the distributions f(|6) and f(-|4) associated with the true
parameter § and the estimate 4. Such loss functions,

L(0,8) = d{f (10}, F(-|8)),
are indeed parameterization-free. T'wo usual distribution distances are
{1) the entropy distance
(2.5.6) Le(6, ) = iy {10g (f (1] ﬂ
f(ld) /]’

which i also called the Kullback-Leibler divergence and which is not
a distance in the mathematical sensc because of its asymmetry; and

(2) the Hellinger distance

(25.7) Lax(9, ) = 5y ( ! (“3'5)_1)

2

f(z)0)

Example 2.5.8 Consider z ~ A (8, 1). Then we have

i
it

Le(0,8) = 3Wol-(@— 6+ (2 5] = 16— 07,
Lu(6,6) = 1—exp{~(6— 0)%/8).

Considering the normal case when w(0|z) is a N{u(z), 0%} distribution, it
is straightforward to show that the Bayes estimator is 6% (z) = p(z) in both
cases.

The Hellinger loss is undoubtedly more intrinsic than the entropy loss,
if only because it always exists (nolc that {2.5.7) is bounded above by
1). Unfortunately, while leading to explicit expressions of Ly (8, 4§) for the
usual distribution familics, it docs not allow for an explicit derivation of the
Bayes estimators, except in the special case treated above. On the contrary,
in exponentiol families, the entropy loss provides explicit estimators which
are the posterior expectations for the estimalion of the natural paremeter
(see Chapter 3). Moreover, although quite different, from the Hellinger loss,
the entropy loss provides similar answers for the usual distribution families
(see Robert {1996b}). There are also various theoretical reasons to defend
the use of the Kullback-Leibler distance, ranging from information theory
(Exercise 2.48) to the relevance of logarithmic scoring rule and the location-
scale invariance of the distance, as detailed in Bernardo and Smith (1994).

2.6 Criticisms and aliernatives 83

2.6 Criticisms and alternatives

Some criticisms sbout the frequentist notions of minimaxity and admis-
gibility have been mentioned in the previous sections. These concepts are
actually of secondary interest from a purely Bayesian point of view, since,
on one hand, admissibility is automatically satisfied by most Bayes esti-
mators. On the other hand, minimaxity is sornehow incompatible with the
Bayesian paradigm, since, under a prior distribution, each value of the pa-
rameter cannot be equally weighted. However, minimaxity may be relevant
from a robustness point of view, that is, when the prior inlormation is not
precise enongh to determine the prior distribution.

It may happen that the decision-maker cannot define a loss function
exactly. For instance, when the decision-maker is a committee comprising
several experts, it is often the case that they differ about the relevant
loss function {and sometimes even about the prior distribution). Starting
with Arrow {(1951), the literature on these extensions of classical Decision
"Theory is quite extensive (sec Genest and Zidek (1986), Rubin (1987), and
Van Eeden and Zidek (1993) for details and references).

When the loss function bas not been complelely determined, it might be
assumed to belong to a parametrized class of loss functions, the decision
maker selecting the most accurate parameter. Apart [rom L, losses, two
other possible classes are

L1(0,6) = log(all0 — 8P +1),  La(6,8) = 1 —oxp{—ello — 8[[*}.

An alternative approach more in tune with the Bayesian paradigm is to
consider that, since the loss is partly unknown, this uncertainty can he
represcnted by using a random loss L(6, 8). The evaluation of estimators is
then done by integrating out with respect to this additional variable: If I
is the distribution of the Joss, the objective function to minimize (in §) is

(2.6.1) f@ | /Q 1.6, 6, 0)dF () dr(0]),

where F possibly depends on @ or even on z. This case is actually the only
interesting extension because, otherwise, to minimize (2.6.1) is equivalent
{o using the average loss

0(0,5) — / L6, 8,w) dF'(w).

Another approach to the lack of precision on the loss function consists
of considering simultaneously a set of losses and look for estimators per-
forming well for all these losses. Obviously, this multidimensional criterion
only induces a portial ordering on cstimabors,

Example 2.6.1 Consider © ~ N,(0,I,). The parameter & is estimated
under quadratic loss. If the loss matrix @ is not exactly delermined, a
robust aliernative is to include the losses associated with the matrices @
such that Q7 < @ < @, (where A < B means that the matrix B — A is
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nonnegative definite). Notice that, according to Corollary 2.5.3, the Bayeg
cstimator is the same for all ()'s. ' i :

Example 2.6.2 In the sctting of the above cxample, Brown (1975) shows
that a shrinkage estimator of the form (1 — h(z))z dominates &; {£) =z for
a class of quadratic losses, i.c., a class of matrices ¢} if and only if

(26.2) (Q) ~ rmer(@) > 0

for every maftrix in the class (where Ay., denotes the largest eigenvalue).
Notice that this condition exclndes the case P < 2, where dp i actually
admissible. The constant tr(Q) —2Amax () also appears in the majorization
constant of |z|[*A({|2[*) (see Theorem 2.8.1). Therefore, {2.6.2) is hoth 5
necessary and sufficient condition for the Stein offect to occur. I

The ultimate criterion in loss robustness is called universal domination
and was introduced in Hwang (1985). T4 actually takes into account the set
of all lagses £(]|6 — 6]]q), for a given norm ||z||g = z*Qz and all nonde-
creasing functions £. An estimator §; will be said to untversally dominate
another estimator d; if, for every #,

Eo[£(1]é1(2) - 6llq)} < Eqle(]162(x) — 8]]0).
A second criterion is called stochastic domination: &1 stochastically domi-
nates dy if, for every ¢ > 0,
Fo(ll6n(z) — Ollg < <) = Py(||62() — 8| < o).

Although this criterion seems more intrinsic and less related to Decision
Theory than universal domination, Hwang (1985) has shown that the two
criteria arc actually equivalent.

Theorem 2.6.3 An estimator §; universally dominotes an estimalor &,
tf and only if 61 stochastically dominates &s .

Proof. The estimator §; stochastically dominates &5 if, for every e > 0,
Fo(llor(z) —Ollg < 0) 2 Po({loa(e) — 0] < o).

This can be rewritten as

By (Mo toof{l101(2) — 0l10)] < B [Ty oor(|1d2(z) — 0llq)] -

Since £(1) = T 4oof(t) is a nondecreasing (unction of £, wniversal domina-
tion implies stochastic domination. The converse follows from the fact that
the first moments of two stochastically ordered random variables are also
ordered. 0p

Moreover, these two criteria arc not empty since Hwang (1985) has es-
tablished the following domination resuit: If z ~ To(pe, 02), Student’s t-
distribution with a degrecs of freedom, some shrinkage estimators uni-
versally dominate §o(z) = z. If the dimension is not too small (usually,
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— 4 is sufficient), Brown and Hwang (1989) virtually showef?l th‘at, i.f
i ~ Np(#, %), the estimator do{2) is admissible for umiversal domination if
and only if @ = . For other choices of the matrix Q am‘i P 1.argf: eﬁ'ough,
5 is stochastically dominated. Therefore, even thoughh this criterion is less
diseriminating than usual losses, it allows for comparison, a.nd even for a
Giein efect, since classical estimators are not necessarily optimal.

The study of mnltiple losses is not very developed from a Bayesian poin
of view, since Bayes estimators usually vary with a change in the loss func-
tion. HMowever, in a very special case, Rukhin (1978) has shown that the

Bayes estimators werc independent of the loss fu'nct?ﬁm.z. Under some regu-
larity assumptions, this case corresponds {o the equation

log f(xz|0) +log=(0} = Ay (z)e*? + Ap{z)e™ + As(z),
where 7 is the prior distribution. Therefore, for this exponential family (see
Section 3.3.3},

263 160 = AT expld (@) 1 Aal)e ),

the Bayes cstimators are universal, because they do not depend on the iqss.
The next chapter covers in delail the case of exponential farilies, which
are classes of distributions on IR* with densities

J(@|0) = c(0)h(x) explR(6) - ()],
where R{8),T(z) ¢ IR?. However, notice that (2.6.3) is a rather special
exponential family.

2.7 Exercises

Section 2.2
2.1 Show that, i the utility function U is convex, every P € Pe satisfies

) = fR rdP() % P

Conclude that a concave loss is not realistic.

2.9 Consider four dice wish respective numbers on their faces (4,4,4,4,0,0),
(3,3,3,3,3,3), (6,6,2,2,2,2), (1,1,1,5,5, 5). Two players -m]l one d'ie ea.ch
and compare their outcome. Show that the relation die [i] beals die [7] is
intransitive, i.e., that for every choice of the first player the second player con
choose a die so that the probability of winning is greater than 0.5. Relate this
example to the Pitman closeness setiing of Note 2.8.3. .

2.3 Show that P C Pe, i.t., thai bounded reward distributions have a finite
expected utility.

2.4 Show Lemmas 2.2.2 and 2.2.3. .

2.5 *(DeGroot (1970)} In order to show the extension of Theorem 2.2.4 from
Py t0 Pe, consider a sequence sy, decreasing {for <) in R such that, for every




