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Local Asymptotic Normality

A sequence of statistical models is “locally asymptotically normal” if,
asymptotically, their likelihood ratio processes are similar to those for
a normal location parameter. Technically, this is if the likelihood ratio
processes admit a certain quadratic expansion. An important example
in which this arises is repeated sampling from a smooth parametric
model. Local asymptotic normality implies convergence of the models to
a Gaussian model after a rescaling of the parameter.

7.1 Introduction

Suppose we observe a sample X, ..., X, from a distribution P5 on some measurable space
(X, A) indexed by a parameter 6 that ranges over an open subset ® of R*. Then the full
observation is a single observation from the product P, of n copies of Py, and the statis-
tical model is completely described as the collection of probability measures { Py : 6 € O}
on the sample space (X", A"). In the context of the present chapter we shall speak of a
statistical experiment, rather than of a statistical model. In this chapter it is shown that
many statistical experiments can be approximated by Gaussian experiments after a suitable
reparametrization.

The reparametrization is centered around a fixed parameter 6, which should be regarded
as known. We define a local parameter h = /n(8 — 8), rewrite Pj as Pg’; TRy and thus
obtain an experiment with parameter 4. In this chapter we show that, for large », the
experiments

(P ek €BY) and (N(h, ;") :h € RY)

are similar in statistical properties, whenever the original experiments 8 + Py are “smooth”
in the parameter. The second experiment consists of observing a single observation from a
normal distribution with mean A& and known covariance matrix (equal to the inverse of the
Fisher information matrix). This is a simple experiment, which is easy to analyze, whence
the approximation yields much information about the asymptotic properties of the original
experiments. This information is extracted in several chapters to follow and concerns both
asymptotic optimality theory and the behavior of statistical procedures such as the maximum
likelihood estimator and the likelihood ratio test.
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We have taken the local parameter set equal to R¥, which is not correct if the parameter
set © is a true subset of R¥. If 6 is an inner point of the original parameter set, then the
vector § = 6y + h//n is a parameter in © for a given h, for every sufficiently large n,
and the local parameter set converges to the whole of R* as n — o0o. Then taking the local
parameter set equal to R¥ does not cause errors. To give a meaning to the results of this
chapter, the measure Py, /z may be defined arbitrarily if 6y + h//n ¢ ©.

7.2 Expanding the Likelihood

The convergence of the local experiments is defined and established later in this chapter.
First, we discuss the technical tool: a Taylor expansion of the logarithm of the likelihood.
Let pg be a density of P, with respect to some measure p. Assume for simplicity that
the parameter is one-dimensional and that the log likelihood £ (x) = log py(x) is twice-
differentiable with respect to 6, for every x, with derivatives £4(x) and £, (x). Then, for
every fixed x,

Po+h

log (x) = hlg(x) + ;h2£9(x) + 0. (h?).

The subscript x in the remainder term is a reminder of the fact that this term depends on x
as well as on A. It follows that

logﬂpt’;/fm— Z%(X)-F Zee(XHRemn

i=1

Here the score has mean zero, Pyly = 0, and — Pply = Pgé; = I, equals the Fisher infor-
mation for 6 (see, e.g., section 5.5). Hence the first term can be rewritten as kA, g, where
Appg =n 1230 £9(X;) is asymptotically normal with mean zero and variance Iy, by
the central limit theorem. Furthermore, the second term in the expansion is asymptotically
equivalent to — —hzlg, by the law of large numbers. The remainder term should behave as
o(1/n) times a sum of » terms and hopefully is asymptotically negligible. Consequently,
under suitable conditions we have, for every 4,

n
p n 1
log [ =22 (X0) = hinp = 5 1oh* + o7, (1).

i1 P

In the next section we see that this is similar in form to the likelihood ratio process of a Gaus-
sian experiment. Because this expansion concerns the likelihood process in a neighborhood
of 8, we speak of “local asymptotic normality” of the sequence of models {P, : 0 € ©}.

The preceding derivation can be made rigorous under moment or continuity conditions
on the second derivative of the log likelihood. Local asymptotic normality was originally
deduced in this manner. Surprisingly, it can also be established under a single condition that
only involves a first derivative: differentiability of the root density 6 +> +/Po in quadratic
mean. This entails the existence of a vector of measurable functions £y = (Eg N k)T
such that

1 . 2
f[vpe+h — /Po — EhTﬁe \/ﬁ} di = o(|In]%), h — 0. (7.1)
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If this condition is satisfied, then the model (Py : 6 € ©) is called differentiable in quadratic
mean at 6.

Usually, %hTég(x) «/ pg(x) is the derivative of the map & +— +/po n(x) at h = O for
(almost) every x. In this case

0
log pe(x).

o(x) = Y

\/— 889 Pol(x) =
Condition (7.1) does not require differentiability of the map 6 +— py (x) for any single x, but
rather differentiability in (quadratic) mean. Admittedly, the latter is typically established by
pointwise differentiability plus a convergence theorem for integrals. Because the condition
is exactly right for its purpose, we establish in the following theorem local asymptotic
normality under (7.1). A lemma following the theorem gives easily verifiable conditions in
terms of pointwise derivatives.

7.2 Theorem. Suppose that © is an open subset of R* and that the model (Py: 0 € ©)
is differentiable in quadratic mean at 6. Then Pyly = 0 and the Fisher information matrix
Iy = PngZT exists. Furthermore, for every converging sequence h, — h, asn — 00,

log Hpe+h Vi X,y = \/_Zthe(X)_ hT19h+0P9(1)
Po

i=1

Proof. Given a converging sequence /4, — h, we use the abbreviations p,, p, and g for

Po+h,)Jn» Po» and hT £y, respectively. By (7.1) the sequence /s ( /Py — \/P) converges in
quadratic mean (i.e., in L, (u)) to 2gf This implies that the sequence ./p, converges in
quadratic mean to ,/p. By the continuity of the inner product,

1
Po = [ evp2yFa = tim [ VAP VP (i + VD) du.

The right side equals /(1 —1) = Oforevery n, because both probability densities integrate
to 1. Thus Pg = 0.

The random variable W,; = 2[+/pa/p(X;) — 1] is with P-probability 1 well defined.
By (7.1)

n 1 n
Var<; Wai — Tn ;g(xi)> <E(V/nW; — 8(Xi))2

(7.3)
- 1
B W =20 [VEvBan-1) = - [~ VBl du— — ;¢
i=1

Here Pg?= [g*dP = hTIyh by the definitions of g and I,. If both the means and the
variances of a sequence of random variables converge to zero, then the sequence converges
to zero in probability. Therefore, combining the preceding pair of displayed equations, we
find

ani— ng Pg +op(1). (7.4)
i=1



7.2 Expanding the Likelihood 95

Next, we express the log likelihood ratio in ) ;_; W,; through a Taylor expansion of the
logarithm. If we write log(1 + x) = x — 3x? + x*R(2x), then R(x) — O as x — 0, and

n " n 1
log[ ] %(Xi) =2 Zlog(l + EW,,,)
i=1 i=1

= Xn:W,,i —%Xn:W,ﬁ —i—%iWnZiR(Wn,-). (7.5)
i=1 i=1 i=1

As a consequence of the right side of (7.3), it is possible to write nW,?i = g%(X;) + A,; for
random variables A,; such that E|A,;| — 0. The averages A, converge in mean and hence
in probability to zero. Combination with the law of large numbers yields

Z Wn% = (gZ)n + A_n -P> sz-
i=1
By the triangle inequality followed by Markov’s inequality,

nP(IWyi| > ev/2) < nP(g%(X;) > ne®) + nP(|Au| > ne?)
< e 2Pg?(g* > ne?} + ¢ 2E|An| — O.

The left side is an upper bound for P(maxls,-ﬁ,, Wil > s«/z). Thus the sequence maxi<j<p
|W,i| converges to zero in probability. By the property of the function R, the sequence
max15i§n|R(W,,i)| converges in probability to zero as well. The last term on the right
in (7.5) is bounded by max; <; < |R(W,,,-)| er":l Wn2i. Thus itis 0p(1) Op (1), and converges
in probability to zero. Combine to obtain that

n " n 1
tog [ 22X = Y- Wai — ; Pg* + 0r(1).
i=1 i=1

Together with (7.4) this yields the theorem. W

To establish the differentiability in quadratic mean of specific models requires a conver-
gence theorem for integrals. Usually one proceeds by showing differentiability of the map
6 — pg(x) for almost every x plus w-equi-integrability (e.g., domination). The following
lemma takes care of most examples.

7.6 Lemma. Forevery® inanopen subset of R* let pg be a u-probability density. Assume
that themap 0 + s9(x) = «/pg(x) is continuously differentiable for every x. If the elements
of the matrix Iy = f(pe/pg)(pg/pg) po du are well defined and continuous in 0, then the
map 0 — ./pe is differentiable in quadratic mean (7.1) with £y given by Do/ Po-

Proof. By the chain rule, the map 6 — py(x) = sg (x) is differentiable for every x with
gradient p, = 2s95y. Because sy is nonnegative, its gradient sy at a point at which sy = 0
must be zero. Conclude that we can write sy = %( Po/Po) /Do, Where the quotient p,/pg
may be defined arbitrarily if ps = 0. By assumption, the map 6 > Iy = 4 [ 557 dpu is
continuous.

Because the map 6 +— sy (x) is continuously differentiable, the difference sy, (x) —s9 (x)
can be written as the integral fol hT 59 un(x) du of its derivative. By Jensen’s (or Cauchy-
Schwarz’s) inequality, the square of this integral is bounded by theintegral | 01 (hTSp-4un(x))?
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du of the square. Conclude that

2 1 1
— 1
/ (S"L”t—“) dp < / / (T oan)” dudpe = / B Ty v, o
0 0

where the last equality follows by Fubini’s theorem and the definition of Iy. For o, — &
the right side converges to %thgh = f (hT$9)* du by the continuity of the map 6 > I,.
By the differentiability of the map 6 > sy(x) the integrand in

2
So+th, — S0 .
[l

converges pointwise to zero. The result of the preceding paragraph combined with Propo-
sition 2.29 shows that the integral converges to zero. W

7.7 Example (Exponential families). The preceding lemma applies to most exponential
family models

po(x) = d(0)h(x)e?®"'®

An exponential family model is smooth in its natural parameter (away from the boundary of
the natural parameter space). Thus the maps 8 +— +/py(x) are continuously differentiable
if the maps 6 +— Q(0) are continuously differentiable and map the parameter set ® into the
interior of the natural parameter space. The score function and information matrix equal

Lo(x) = Qp(t(x) —Egt(X)),  Is = Q4cove t(X)(QT.

Thus the asymptotic expansion of the local log likelihood is valid for most exponential
families. O

7.8 Example (Location models). The preceding lemma also includes all location models
{ f(x—06):0¢ IR} for a positive, continuously differentiable density f with finite Fisher

information for location
N2
If = f({—;) (x) f(x)dx

The score function £, (x) can be taken equal to —(f ’/f)(x — 0). The Fisher information is
equal to I for every 6 and hence certainly continuous in 6.

By arefinement of the lemma, differentiability in quadratic mean can also be established
for slightly irregular shapes, such as the Laplace density f(x) = %e""'. For the Laplace
density the map 6 +— log f(x — 6) fails to be differentiable at the single point 6 = x.
At other points the derivative exists and equals sign(x — ). It can be shown that the
Laplace location model is differentiable in quadratic mean with score function fy(x) =
sign(x — ). This may be proved by writing the difference /f(x — h) — /f(x) as the
integral fol h sign(x —uh) /F(x — uh) du of its derivative, which is possible even though
the derivative does not exist everywhere. Next the proof of the preceding lemma applies. O

79 Counterexample (Uniform distribution). The family of uniform distributions on
[0, 6] is nowhere differentiable in quadratic mean. The reason is that the support of the
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uniform distribution depends too much on the parameter. Differentiability in quadratic
mean (7.1) does not require that all densities py have the same support. However, restric-
tion of the integral (7.1) to the set {py = 0} yields

Pyin(pg =0) = / Posndu = o(h?).
po=0
Thus, under (7.1) the total mass Py n(pg = 0) of Pyyy that is orthogonal to Py must
“disappear” as h — 0 at a rate faster than 2.
This is not true for the uniform distribution, because, for 4 > 0,

Lio,g+n(x) dx =

Poin(py =0) = /

06 0+ h O+h

The orthogonal part does converge to zero, but only at the rate O(h). O

7.3 Convergence to a Normal Experiment

The true meaning of local asymptotic normality is convergence of the local statistical
experiments to a normal experiment. In Chapter 9 the notion of convergence of statistical
experiments is introduced in general. In this section we bypass this general theory and
establish a direct relationship between the local experiments and a normal limit experiment.

The limit experiment is the experiment that consists of observing a single observation X
with the N(h, I, 1)-distribution. The log likelihood ratio process of this experiment equals

-1

log M(X) =hTlhX — lthgh.

dN(0, ;") 2

The right side is very similar in form to the right side of the expansion of the log likelihood
ratio logd P/, [ /d Py given in Theorem 7.2. In view of the similarity, the possibility of
a normal approximation is not a complete surprise. The approximation in this section is
“local” in nature: We fix 6 and think of
(P;M/ﬁ:h € Rk)
as a statistical model with parameter A, for “known” 6. We show that this can be approxi-
mated by the statistical model (N(h, I; ") : h € R¥).

A motivation for studying a local approximation is that, usually, asymptotically, the
“true” parameter can be known with unlimited precision. The true statistical difficulty is
therefore determined by the nature of the measures Py for 8 in a small neighbourhood of
the true value. In the present situation “small” turns out to be “of size O(1/y/n).”

A relationship between the models that can be statistically interpreted will be described
through the possible (limit) distributions of statistics. For each n,let T, = T,,(Xy, ..., X,)
be a statistic in the experiment (P, , N h € R¥) with values in a fixed Euclidean space.
Suppose that the sequence of statistics 7, converges in distribution under every possible
(local) parameter:

T, & Loy, every h.



98 Local Asymptotic Normality

Here ~> means convergence in distribution under the parameter 6 + h//n, and Ly,
may be any probability distribution. According to the following theorem, the distributions
{Lo.j:h € R¥} are necessarily the distributions of a statistic 7 in the normal experiment
(N (h, Iy Yehe ]Rk). Thus, every weakly converging sequence of statistics is “matched”
by a statistic in the limit experiment. (In the present set-up the vector 6 is considered known
and the vector £ is the statistical parameter. Consequently, by “statistics” 7,, and T are
understood measurable maps that do not depend on 4 but may depend on 6.)

This principle of matching estimators is a method to give the convergence of models
a statistical interpretation. Most measures of quality of a statistic can be expressed in the
distribution of the statistic under different parameters. For instance, if a certain hypothesis
is rejected for values of a statistic 7, exceeding a number c, then the power function
h — Py(T, > c) is relevant; alternatively, if 7, is an estimator of 4, then the mean square
error & — B,(T, — h)?, or a similar quantity, determines the quality of 7,. Both quality
measures depend on the laws of the statistics only. The following theorem asserts that as a
function of 4 the law of a statistic 7,, can be well approximated by the law of some statistic
T. Then the quality of the approximating T is the same as the “asymptotic quality” of the
sequence 7,. Investigation of the possible T should reveal the asymptotic performance of
possible sequences T,. Concrete applications of this principle to testing and estimation are
given in later chapters.

A minor technical complication is that it is necessary to allow randomized statistics in
the limit experiment. A randomized statistic T based on the observation X is defined as a
measurable map T = T (X, U) that depends on X but may also depend on an independent
variable U with a uniform distribution on [0, 1]. Thus, the statistician working in the limit
experiment is allowed to base an estimate or test on both the observation and the outcome of
an extra experiment that can be run without knowledge of the parameter. In most situations
such randomization is not useful, but the following theorem would not be true without
it.f

7.10 Theorem. Assume that the experiment (Py:0 € ©) is differentiable in quadratic
mean (7.1) at the point 6 with nonsingular Fisher information matrix Iy. Let T, be statistics
in the experiments (PB" g h € RY such that the sequence T, converges in distribution

under every h. Then there exists a randomized statistic T in the experiment (N (h, Iy Yehe
Rk) such that T, & T for every h.

Proof. For later reference, it is useful to use the abbreviations

1 ,
Pun =P I =1, An=ﬁzee<x,~).

By assumption, the marginals of the sequence (7,, A,) converge in distribution under
h = 0; hence they are uniformly tight by Prohorov’s theorem. Because marginal tightness
implies joint tightness, Prohorov’s theorem can be applied in the other direction to see the
existence of a subsequence of {»n} along which

(T, An) > (S, A),

T It is not important that U is uniformly distributed. Any randomization mechanism that is sufficiently rich will
do.
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jointly, for some random vector (S, A). The vector A is necessarily a marginal weak limit
of the sequence A, and hence it is N (0, J)-distributed. Combination with Theorem 7.2

yields
dp, 1
Tplog —" ) 2 (S, hTA — —hT Jh ).
dPuo 2

In particular, the sequence logd P, ,/d P, o converges to the normal N(— %hT Jh, hT Jh)-
distribution. By Example 6.5, the sequences P, and P, are contiguous. The limit law
Lj, of T, under & can therefore be expressed in the joint law on the right, by the general
form of Le Cam’s third lemma: For each Borel set B

Ln(B) = E15(S)e" 2=zh"7h,

Weneed to find a statistic T in the normal experiment having this law under 4 (for every h),
using only the knowledge that A is N (0, J)-distributed.

By the lemma below there exists a randomized statistic T such that, with U uniformly
distributed and independent of A,f

(T(A,U), A) ~ (S, D).

Because the random vectors on the left and right sides have the same second marginal
distribution, this is the same as saying that T (§, U) is distributed according to the conditional
distribution of S given A = §, for almost every §. As shown in the next lemma, this can be
achieved by using the quantile transformation.

Let X be an observation in the limit experiment (N (h, J ') : h € R¥). Then J X is under
h = Onormally N (0, J)-distributed and hence it is equal in distribution to A. Furthermore,
by Fubini’s theorem,

[ det J
Ph(T(JX, U) € B) = /P(T(‘]x’ U) e B) oSG IG—h) (26 ' .
b3

= Eolp(T(JX, U)) eI X2h"h,

This equals L, (B), because, by construction, the vector (T(J X, U),JX ) has the same
distribution under 2 = 0 as (S, A). The randomized statistic T (J X, U) has law Lj under
h and hence satisfies the requirements. B

711 Lemma. Given a random vector (S, A) with values in R% x R and an independent
uniformly [0, 1] random variable U (defined on the same probability space), there exists a
jointly measurable map T on R* x [0, 1] such that (T(A,U), A) and (S, A) are equal in
distribution.

Proof. For simplicity of notation we only give a construction for d = 2. It is possible
to produce two independent uniform [0, 1] variables U; and U, from one given [0, 1]
variable U. (For instance, construct U; and U, from the even and odd numbered digits in
the decimal expansion of U.) Therefore it suffices to find a statistic T = T (A, Uy, Uj)
such that (7', A) and (S, A) are equal in law. Because the second marginals are equal, it

! The symbol ~ means “equal-in-law.”
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suffices to construct 7" such that T'(8, U, U,) is equal in distribution to S given A = §, for
every § € R*. Let O (u;118) and Qz(uz | 8, s1) be the quantile functions of the conditional
distributions

pSila=s

and Psz | A=8,5; =s1

respectively. These are measurable functions in their two and three arguments, respectively.
Furthermore, Q;(U;|8) has law P$14=% and 0,(U,|8, s1) has law P$14=551=1 for every
6 and s;. Set

76,01, Un) = (Q1(U118), 02(Ua18, 01(U119))).

Then the first coordinate Q;(U;|8) of T(8, Uy, U,) possesses the distribution PS114=%,
Given that this first coordinate equals s;, the second coordinate is distributed as O, (U, |38, s1),
which has law P$214=8.5=5 by construction. Thus T satisfies the requirements. M

7.4 Maximum Likelihood

Maximum likelihood estimators in smooth parametric models were shown to be asymp-
totically normal in Chapter 5. The convergence of the local experiments to a normal limit
experiment gives an insightful explanation of this fact.

By the representation theorem, Theorem 7.10, every sequence of statistics in the local ex-
periments (P, W h € R*) is matched in the limit by a statistic in the normal experiment.
Although this does not follow from this theorem, a sequence of maximum likelihood esti-
mators is typically matched by the maximum likelihood estimator in the limit experiment.
Now the maximum likelihood estimator for 4 in the experiment (N (h, 19—1) th e Rk) is the
observation X itself (the mean of a sample of size one), and this is normally distributed.
Thus, we should expect that the maximum likelihood estimators 4, for the local param-
eter A in the experiments (P, W h € R¥) converge in distributiAon to X. In terms of
the original parameter 6, the local maximum likelihood estimator 4, is the standardized
maximum likelihood estimator A, = ﬁ(@n — 6). Furthermore, the local parameter & = 0
corresponds to the value 8 of the original parameter. Thus, we should expect that under
6 the sequence ﬁ(én — 0) converges in distribution to X under 2 = O, that is, to the
N(0, I, ")-distribution.

As a heuristic explanation of the asymptotic normality of maximum likelihood estimators
the preceding argument is much more insightful than the proof based on linearization of the
score equation. It also explains why, or in what sense, the maximum likelihood estimator
is asymptotically optimal: in the same sense as the maximum likelihood estimator of a
Gaussian location parameter is optimal.

This heuristic argument cannot be justified under just local asymptotic normality, which is
too weak a connection betweenthe sequence oflocal experiments and the normal limit exper-
iment for this purpose. Clearly, the argument is valid under the conditions of Theorem 5.39,
because the latter theorem guarantees the asymptotic normality of the maximum likelihood
estimator. This theorem adds a Lipschitz condition on the maps 6 +—> log py(x), and the
“global” condition that 8, is consistent to differentiability in quadratic mean. In the fol-
lowing theorem, we give a direct argument, and also allow that 6 is not an inner point of
the parameter set, so that the local parameter spaces may not converge to the full space R¥.
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Then the maximum likelihood estimator in the limit experiment is a “projection” of X and
the limit distribution of /n (6, — 6) may change accordingly.

Let ® be an arbitrary subset of R* and define H, as the local parameter space H, =
J/n(® — ). Then h, i the maximizer over H, of the random function (or “process”)

dP6n+h/ﬁ

dPy

If the experiment (Py: 6 € ©) is differentiable in quadratic mean, then this sequence of
processes converges (marginally) in distribution to the process

dN(h, I;")
dN(0, I; )

h — log

1 T 1 T
(X) = —2(X =) Ip(X —h) + X" X.

If the sequence of sets H, converges in a suitable sense to a set H, then we should expect,
under regularity conditions, that the sequence /,, converges to the maximizer / of the latter
process over H. This maximizer is the projection of the vector X onto the set H relative
to the metric d(x, y) = (x — )T Iy(x — y) (where a “projection” means a closest point); if
H = R, this projection reduces to X itself.

An appropriate notion of convergence of sets is the following. Write H, — H if H
is the set of all limits lim 4, of converging sequences h, with 4, € H, for every n and,
moreover, the limit 4 = lim; A, of every converging sequence h,, with s, € H,, for every
i is contained in H.|

712 Theorem. Suppose that the experiment (Py:0 € ©) is differentiable in quadratic
mean at 8y with nonsingular Fisher information matrix lg,. Furthermore, suppose that for
every 01 and 6, in a neighborhood of 6y and a measurable function £ with PgOE2 < 09,

|log pe, (x) — log pe, (x)| < £(x) 161 — 6,].

If the sequence of maximum likelihood estimators 0, is consistent and the sets H, =
J/n(® — 6y) converge to a nonempty, convex set H, then the sequence 1910/ 2 /n(@, — 60)
converges under 6y in distribution to the projection of a standard normal vector onto the
set 1910/ ’H.

*Proof. LetG, = /n(P, — Py) be the empirical process. In the proof of Theorem 5.39
it is shown that the map 6 +— log py is differentiable at 6y in L,(Fs,) with derivative
290 and that the map 6 — Py, log pp permits a Taylor expansion of order 2 at 6y, with
“second-derivative matrix” —Iy. Therefore, the conditions of Lemma 19.31 are satisfied
for mg = log pg, whence, for every M,

n - 1
sup |n, log DAY pTG e 4 ZhT I n| S 0.
bl <M Déy 2

By Corollary 5.53 the estimators 8, are \/n-consistent under 6.
The preceding display is also valid for every sequence M, that diverges to oo sufficiently
slowly. Fix such a sequence. By the \/an-consistency of 8,, the local maximum likelihood

t See Chapter 16 for examples.
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estimators /, are bounded in probability and hence belong to the balls of radius M, with
probability tending to 1. Furthermore, the sequence of intersections H, N ball (0, M,)
converges to H, as the original sets H,. Thus, we may assume that the fz,, are the maximum
likelihood estimators relative to local parameter sets H, that are contained in the balls of
radius M,,. Fix an arbitrary closed set F. If h, € F, then the log likelihood is maximal on
F. Hence P(fz” € F) is bounded above by

P( sup P, log Péyth/vn > sup P, log —-—pgﬁh/‘/ﬁ)
heFNH, Do heH, P

) 1 . 1
= P( sup hT(G,,Zg[J — EhTIGOh > sup hTGnﬁgﬂ - Ehrlgoh + OP(l))
heFNH, heH,

=P(|15,*Gaa, — 1, (F N Hy)| < |

Iy *Gube, = 1, Ha|| + 02(1D),

by completing the square. By Lemma 7.13 (ii) and (iii) ahead, we can replace H, by H on
both sides, at the cost of adding a further op (1)-term and increasing the probability. Next,
by the continuous mapping theorem and the continuity of the map z — |z — A| for every
set A, the probability is asymptotically bounded above by, with Z a standard normal vector,

P(I1z - 1 Fnm| = |z -1, H]).

The projection I1Z of the vector Z on the set 1910/ ’H is unique, because the latter set is
convex by assumption and automatically closed. If the distance of Z to 1910/ 2FNH)is
smaller than its distance to the set 1910/ ®H, then T1Z must be in 1910/ (FNH). Consequently,

the probability in the last display is bounded by P(I1Z € Iel(,/ *F). The theorem follows from
the portmanteau lemma. W

7.13 Lemma. If the sequence of subsets H, of R* converges to a nonempty set H and
the sequence of random vectors X, converges in distribution to a random vector X, then
(i) 1Xn — Hull ~ |1 X — H|.
(ii) |Xn —H,NF| > || Xy —HNF| 4+ o0p(l), forevery closed set F.
(iii) | Xn —H, NG| < || Xn — HN G| 4 0p(1), for every open set G.

Proof. (i). Because the map x — |x — H|| is (Lipschitz) continuous for any set H,
we have that | X,, — H|~||X — H| by the continuous-mapping theorem. If we also show
that | X, — H,| — | X, — H] £ 0, then the proof is complete after an application of
Slutsky’s lemma. By the uniform tightness of the sequence X,, it suffices to show that
|lx — H,| — ||lx — H| uniformly for x ranging over compact sets, or equivalently that
lx, — Hy|| — |lx — H|| for every converging sequence x, — X.

For every fixed vector x,, there exists a vector 4, € H,, with || x,— Hy|| > ||x, —hal—1/n.
Unless ||x, — H,| is unbounded, we can choose the sequence 4, bounded. Then every
subsequence of &, has a further subsequence along which it converges, to a limit 2 in H.
Conclude that, in any case,

liminf ||x, — H,| > liminf [[x, — h,|l > [|x — &l = |[x — H]|.
Conversely, for every ¢ > 0 there exists » € H and a sequence h, — h with h, € H, and

lx — Hl = llx = hll —& =lim |xp, — hxll — & = limsup [[x, — Hyll — &.
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Combination of the last two displays yields the desired convergence of the sequence
lxy — Hy | to llx — HIl.

(i1). The assertion is equivalent to the statement P(||Xn -H,NF|—|X,—HNF| >
—8) — 1 forevery ¢ > 0. In view of the uniform tightness of the sequence X, this follows
if liminf ||x, — H, N F|| > ||lx — H N F|| for every converging sequence x, — x. We can
prove this by the method of the first half of the proof of (i), replacing H, by H, N F.

(ii1). Analogously to the situation under (ii), it suffices to prove that lim sup ||x, — H, N
G| < llx — H N G| for every converging sequence x, — x. This follows as the second
half of the proof of (i). m

*#7.5 Limit Distributions under Alternatives

Local asymptotic normality is a convenient tool in the study of the behavior of statistics
under “‘contiguous alternatives.” Under local asymptotic normality,

n

log Wovnyi o, N(—lhTIQh, hT19h>.

dpPy 2
Therefore, in view of Example 6.5 the sequences of distributions P, Vi and P are
mutually contiguous. This is of great use in many proofs. With the help of Le Cam’s
third lemma it also allows to obtain limit distributions of statistics under the parameters
6 + h/ \/n, once the limit behavior under 6 is known. Such limit distributions are of interest,
for instance, in studying the asymptotic efficiency of estimators or tests.

The general scheme is as follows. Many sequences of statistics 7, allow an approxima-

tion by an average of the type

1 n
(T, — pig) = T ; Yo (X;) + o, (1).

According to Theorem 7.2, the sequence of log likelihood ratios can be approximated by an
average as well: It is asymptotically equivalent to an affine transformation of n=1/2 3" £ (X;).
The sequence of joint averages n=12 " (p(X;), £4(X;)) is asymptotically multivariate
normal under 6 by the central limit theorem (provided 1y has mean zero and finite second
moment). With the help of Slutsky’s lemma we obtain the joint limit distribution of T,, and
the log likelihood ratios under 6:

dP; Poyoyl  PoyghTdy
STy — pig), log — AR f»N( " ) g .
dp —2h" loh )"\ PyyThTéy KT Iph

Finally we can apply Le Cam’s third Example 6.7 to obtain the limit distribution of
J/n(T, — ) under 6 + h/ /n. Concrete examples of this scheme are discussed in later
chapters.

*7.6 Local Asymptotic Normality

The preceding sections of this chapter are restricted to the case of independent, identically
distributed observations. However, the general ideas have a much wider applicability. A
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wide variety of models satisfy a general form of local asymptotic normality and for that
reason allow a unified treatment. These include models with independent, not identically
distributed observations, but also models with dependent observations, such as used in time
series analysis or certain random fields. Because local asymptotic normality underlies a
large part of asymptotic optimality theory and also explains the asymptotic normality of
certain estimators, such as maximum likelihood estimators, it is worthwhile to formulate a
general concept.

Suppose the observation at “time” n is distributed according to a probability measure
P, o, for a parameter 6 ranging over an open subset ® of IR

7.14 Definition. The sequence of statistical models (P, p:0 € ®) is locally asymptoti-
cally normal (LAN) at 0 if there exist matrices r, and fp and random vectors A, g such that

Ap g ~» N(0, Ip) and for every converging sequence h, — h

dPn,G-H,._]

1
] t— hTA, e — ~hT Iph 1.
og Py s no = 5h" o +op,,(1)

7.15 Example. If the experiment (P : 8 € ©) is differentiable in quadratic mean, then the
sequence of models (Py : 6 € ©) is locally asymptotically normal with norming matrices

rm=4+/nl. O

An inspection of the proof of Theorem 7.10 readily reveals that this depends on the local
asymptotic normality property only. Thus, the local experiments
(Pn,G—l—r,,']h th e ]Rk)
of a locally asymptotically normal sequence converge to the experiment (N (h, ]9_1) th e
R"), in the sense of this theorem. All results for the case of i.i.d. observations that are based
on this approximation extend to general locally asymptotically normal models. To illustrate

the wide range of applications we include, without proof, three examples, two of which
involve dependent observations.

7.16 Example (Autoregressive processes). An autoregressive process {X; :t € Z} of or-
der 1 satisfies the relationship X, = 6 X;_; + Z; for a sequence of independent, identically
distributed variables ..., Z_;, Zy, Z1, ... with mean zero and finite variance. There ex-
ists a stationary solution ..., X_1, Xo, X1, . .. to the autoregressive equation if and only if
|6] # 1. To identify the parameter it is usually assumed that |#| < 1. If the density of the
noise variables Z; has finite Fisher information for location, then the sequence of models
corresponding to observing X1, ..., X, with parameter set (—1, 1) is locally asymptotically
normal at 6 with norming matrices r, = /nl.

The observations in this model form a stationary Markov chain. The result extends to
general ergodic Markov chains with smooth transition densities (see [130]). O

7.17 Example (Gaussian time series). This example requires some knowledge of time-
series models. Suppose that at time »n the observations are a stretch X, ..., X,, from a
stationary, Gaussian time series {X, :¢ € Z} with mean zero. The covariance matrix of n
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consecutive variables is given by the (Toeplitz) matrix

T.(fo) = ( / " it fon) dx) .
-7 s,t=1 n

,,,,,

The function fy is the spectral density of the series. It is convenient to let the parameter
enter the model through the spectral density, rather than directly through the density of the
observations.

Let P, 4 be the distribution (on R") of the vector (X1, ..., X,), a normal distribution
with mean zero and covariance matrix 7, (fg). The periodogram of the observations is the
function

2

1
L(A) = —
) 2mn

n

E X el't)x
t

=1

Suppose that fj is bounded away from zero and infinity, and that there exists a vector-valued
function £y : R — R? such that, as & — 0,

/[fM — fo — h"4g fo)* dr = o(||]%).

Then the sequence of experiments (P, g : 6 € ©) is locally asymptotically normal at 6 with

\/ﬁ/ ég 1 s T
=vn. A=Y, -y an, Iy=— | 6,6 an.
rm=~/n 6= ( 6 )fe 6 47r/ oLg

The proof is elementary, but involved, because it has to deal with the quadratic forms in
the n-variate normal density, which involve vectors whose dimension converges to infinity
(see [30]). O

7.18 Example (Almost regular densities). Consider estimating a location parameter 6
based on a sample of size n from the density f(x — ). If f is smooth, then this model is
differentiable in quadratic mean and hence locally asymptotically normal by Example 7.8.
If f possesses points of discontinuity, or other strong irregularities, then a locally asymptot-
ically normal approximation is impossible.! Examples of densities that are on the boundary
between these “extremes” are the triangular density f(x) = (1 — |x|)+ and the gamma
density f(x) = xe *1{x > 0}. These yield models that are locally asymptotically normal,
but with normingrate /n log n rather than \/n. The existence of singularities in the density
makes the estimation of the parameter 6 easier, and hence a faster rescaling rate is necessary.
(For the triangular density, the true singularities are the points —1 and 1, the singularity at
0 is statistically unimportant, as in the case of the Laplace density.)

For a more general result, consider densities f that are absolutely continuous except pos-
sibly in small neighborhoods Uy, .. ., Uy of finitely many fixed points cy, . .., cx. Suppose
that f'//f is square-integrable on the complement of U; U}, that f(c;) = O for every j,
and that, for fixed constants ay, ..., a; and by, ..., by, each of the functions

xk->f(x)—(ajl{x<cj}+bj1{x>cj})|x—cj|, x € U,

T See Chapter 9 for some examples.
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is twice continuously differentiable. If > (a; + b;) > 0, then the model is locally asymp-
totically normal at & = 0 with, for V, equal to the interval (n~'/2(logn)~"/*, (logn)~")
around zero,!

r,,:\/nlogn, IOZZ(Clj+bJ‘),
J

1 L E X~ e V) 1
App = ——— ) J - r_ | = Ddx ).
o TOMZZ( oS /V”xf(x+cj) x)

i=1 j=1

The sequence A, o may be thought of as “asymptotically sufficient” for the local parameter A.
Its definition of A, o shows that, asymptotically, all the “information” about the parameter is
contained in the observations falling into the neighborhoods V,, + ¢;. Thus, asymptotically,
the problem is determined by the points of irregularity.

The remarkable rescaling rate /nlogn can be explained by computing the Hellinger
distance between the densities f(x — 6) and f(x) (see section 14.5). O

Notes

Local asymptotic normality was introduced by Le Cam [92], apparently motivated by the
study and construction of asymptotically similar tests. In this paper Le Cam defines two
sequences of models (P, :0 € ®) and (Q,4:0 € O) to be differentially equivalent if

SUp || Pugrn) v — Ono+hyymll = 0,
heK

forevery bounded set K and every 6. He next shows that a sequence of statistics 7, in a given
asymptotically differentiable sequence of experiments (roughly LAN) thatis asymptotically
equivalent to the centering sequence A, g is asymptotically sufficient, in the sense that the
original experiments and the experiments consisting of observing the T, are differentially
equivalent. After some interpretation this gives roughly the same message as Theorem 7.10.
The latter is a concrete example of an abstract result in [95], with a different (direct) proof.

PROBLEMS

1. Show that the Poisson distribution with mean 6 satisfies the conditions of Lemma 7.6. Find the
information.

2. Find the Fisher information for location for the normal, logistic, and Laplace distributions.
3. Find the Fisher information for location for the Cauchy distributions.

4. Let f be a density that is symmetric about zero. Show that the Fisher information matrix (if it
exists) of the location scale family f((x — ) /a) /o is diagonal.

5. Find an explicit expression for the op, (1)-term in Theorem 7.2 in the case that py is the density
of the N (0, 1)-distribution.

6. Show that the Laplace location family is differentiable in quadratic mean.

t See, for example, [80, pp. 133-139] for a proof, and also a discussion of other almost regular situations. For
instance, singularities of the form f(x) ~ f(c;) + |x — cj\l/Q at points c; with f(c;) > 0.
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Find the form of the score function for a location-scale family f ((x -/ O’) /o with parameter
6 = (1, o) and apply Lemma 7.6 to find a sufficient condition for differentiability in quadratic
mean.

Investigate for which parameters k the location family f(x — 6) for f the gamma(k, 1) density
is differentiable in quadratic mean.

Let P, g be the distribution of the vector (X1, ..., X,) if {X;:¢ € Z} is a stationary Gaussian
time series satisfying X; = 6X;_1 + Z; for a given number |6| < 1 and independent standard
normal variables Z;. Show that the model is locally asymptotically normal.

Investigate whether the log normal family of distributions with density

1
oN2m(x — )

is differentiable in quadratic mean with respect to 6 = (&, u, o).

1 2
e 7 (log(x—&)—u) l{x - g}



