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The Annals of Applied Probability 
1992, Vol. 2, No. 4, 1024-1033 

ON THE GITTINS INDEX FOR MULTIARMED BANDITS 

BY RiCHARD WEBER 

University of Cambridge 
This paper considers the multiarmed bandit problem and presents a 

new proof of the optimality of the Gittins index policy. The proof is 
intuitive and does not require an interchange argument. The insight it 
affords is used to give a streamlined summary of previous research and to 
prove a new result: The optimal value function is a submodular set 
function of the available projects. 

1. The multiarmed bandit problem. The multiarmed bandit problem 
is concerned with the question of how to dynamically allocate a single resource 
amongst several alternative projects. It models problems that arise in many 
contexts, for example, the scheduling of jobs on a single machine and the 
design of sequential clinical trials. 

Consider a gambler who is presented with the opportunity to play any of n 
one-armed bandit machines. He wishes to allocate his successive plays amongst 
these machines to maximize his expected total-discounted reward. He does this 
one play at a time, on the basis of prior information and observations to date. 
More formally, consider a family of n alternative bandit processes (FABP), 
defined as a discounted Markov decision process in which actions (a1, . . . , an) 
are available at decision epochs 0, 1 .... The states of the bandits are 
Xi(A)... , x n(t). Taking action aj corresponds to "playing bandit j." The 
result is that a random reward Rj(xj(t)) is obtained, the state of bandit j 
changes in a known Markov fashion and the states of all other bandits are 
unchanged. Assume rewards are nonnegative and uniformly bounded. Let j(t) 
denote the bandit that is played at epoch t when the evolution of the process is 
determined by policy vn. The aim is to find a policy having the greatest value of 
expected total-discounted reward, 

(1) VV,(x) = E,,. E ftRj(t)(xj(t)))x(O) = xjX 

where 0 < p < 1. 
It is well known that the solution to the problem can be characterised by 

functions Gj, having the property that playing bandit j is optimal at t if and 
only if 

Gj(xj(t)) = max Gi(xi(t)). 
1?i?n 
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GITTENS INDEX FOR MULTIARMED BANDITS 1025 

These functions are called Gittins indices. The remarkable thing is that Gj 
depends only on information concerning bandit j. This greatly reduces the 
dimensionality of the problem and its solution. For example, if we were 
scheduling jobs on a single machine we would simply compute an index for 
each job and schedule the job of greatest index. The following theorem was 
proved by Gittins and Jones (1974). 

THEOREM 1. The optimal policy is to play at each epoch a bandit of greatest 
Gittins index. 

Section 2 of this paper presents a simple proof of Theorem 1. It is intended 
to be intuitive and to require almost no notation. Some special cases and 
generalisations are discussed in Sections 3-8. In Section 4 we relate our proof 
to that of Gittins and Jones and also to a proof due to Whittle (1980). 

2. Optimality of Gittins index policy. Suppose bandit j is the only 
bandit and the gambler may either play it or not. As a device for the proof, we 
shall imagine that each time the gambler plays bandit j he pays a fixed charge. 
This charge, which we shall call the prevailing charge, is the same each time 
he plays bandit j. The gambler is to play the bandit for some number of 
epochs, observing the state as it evolves, and stop when it is unfavorable to 
continue playing (because the prevailing charge is too great). If the prevailing 
charge is sufficiently small, it will be profitable to play the bandit at least once 
more (in the sense of expected total-discounted profit). If the charge is too 
great then any further play of bandit j will be loss-making. As a function of 
the state of bandit j, say xj, we define the fair charge yj(xj) as the level of 
prevailing charge for which optimal play would be neither profitable nor 
loss-making. Thus, 

(2) yj(xj) = sup y: supE,4 3t(Rj(xj(t)) - y)lxj(O) = xj 2 

where the policy 7r determines a stopping time r 2 1. 
Now imagine that the prevailing charge for bandit j is reduced to the level 

of the fair charge whenever the gambler would otherwise stop playing, that is, 
whenever the value of the fair charge in the present state falls below the value 
of prevailing charge. Equation (2) expresses the fact that if the gambler starts 
to play when the prevailing charge is equal to the fair charge and adopts a 
policy of stopping at the first time it is not optimal to continue, then his 
expected total-discounted profit is zero. Given that the value of the prevailing 
charge is reduced at precisely the time he would otherwise have stopped, the 
gambler may continue to play the bandit as a fair game for further epochs. If 
the prevailing charge is always reduced in this manner, then the gambler need 
never stop; if he plays bandit j forever he experiences a fair game (in terms of 
expected total-discounted profit). 
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1026 R. WEBER 

PROOF OF THEOREM 1. Thus far we have considered only a single bandit. 
Now consider a gambler who at each epoch must play one of n alternative 
bandits. Suppose that initially the prevailing charge for each bandit is set 
equal to its fair charge and then the prevailing charges are reduced periodically 
in the manner described above. Then the gambler never pays more than the 
fair charge to play any bandit and he can ensure his expected total-discounted 
profit is nonnegative (e.g., by playing the same bandit at all times). However, it 
is also clear that his expected total-discounted profit cannot be positive, since it 
would have to be positive for at least one bandit taken alone and this is 
disallowed because the prevailing charges were set equal to the fair charges. 
Notice that if at any time the fair charge for bandit j has risen above its 
prevailing charge, then playing bandit j is strictly profitable and the effect of 
discounting will be to strictly lessen the gambler's potential expected total-dis- 
counted profit from bandit j if he does not immediately continue playing 
bandit j. Since whenever the prevailing charge was last reset, its value was 
chosen so that the gambler will only just break even if he plays bandit j 
optimally, any policy that fails to continue immediately to play bandit j in 
such a circumstance must incur an expected total-discounted loss. Conversely, 
a policy is optimal provided it never fails to immediately continue play of a 
bandit in such a circumstance. These ideas are summarised in two remarks. 

REMARK 1. Each bandit of itself presents the gambler with an opportunity 
for a fair game, but only if he plays it optimally. If he plays bandit j 
suboptimally, then his expected total-discounted reward from bandit j will be 
less than the expected total-discounted charge that he pays to bandit j. 

REMARK 2. The gambler plays optimally provided that whenever he starts 
playing a given bandit he continues to do so without interruption as long as 
that bandit's fair charge remains greater than its prevailing charge. 

The following key points are the heart of this proof. Notice that the 
sequence of prevailing charges for each bandit is a nonincreasing function of 
the number of plays the bandit has received. The function is random; its 
values only become known as the state of the bandit evolves. However, by 
definition, it is a sequence that is independent of the policy adopted. It is 
enough to know that for each bandit the sequence of prevailing charges is 
nonincreasing to see that if the gambler adopts the policy of always playing a 
bandit of greatest prevailing charge, then he incurs the charges in a nonin- 
creasing sequence. This interleaving of the charges into a single nonincreasing 
sequence is unique (in terms of charges, not the bandits). Thus the policy of 
playing the bandit of greatest prevailing charge (or equivalently, of greatest 
fair charge) maximizes the expected total-discounted charge paid by the gam- 
bler. Now by the first remark, this quantity is an upper bound for the expected 
total-discounted reward obtained by the gambler under any policy. By the 
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second remark, this bound is achieved by the proposed policy, since it ensures 
that the gambler continues to play a bandit without interruption for any series 
of epochs that its fair charge exceeds its prevailing charge. Thus we have a fair 
game in which the gambler's expected total-discounted profit is 0. Simply 
define the Gittins index of bandit j as its fair charge divided by (1 - 6), 

(3) Gj(xj) yj(xj)(l - /). 

The divisor (1 - /3) is introduced for consistency with other expositions. Since 
we have seen that it is optimal to always play a bandit with the greatest fair 
charge, this proves the theorem. c 

We consider a few connections, special cases and generalisations. 

3. A formula for the index. From (2) we have 

(4) y (x ) = sup EE[YT-1,tRj(xj(t))Ixj(0) = x;] 

E4Et=0813txj(O) = xi] 
Thus yj(xj) can be interpreted as the maximal value of the ratio of expected 
discounted reward to expected discounted time under policies that choose a 
stopping time r 2 1. 

For the original model in Section 1, with no prevailing charges, (2) and (3) 
imply that Gj(xj) can be interpreted as the value of a lump sum retirement 
payment such that the gambler would be indifferent between receipt of the 
lump sum or retirement and receipt of the lump sum after some optimal 
number of further plays. 

4. Connection to other proofs. The characterisation of the Gittins 
index as the solution to a stopping problem in (4) is not new; it was at the 
heart of Gittins and Jones' original proof. Their proof used an interchange 
argument, that in a more general setting has been well explained by Varaiya, 
Walrand and Buyukkoc (1985). The proof is based on considering a suboptimal 
policy, that at epoch 0 plays a bandit j that is of less than greatest index. Such 
a suboptimal policy can be improved by exchanging that play of bandit j with 
the first play, made at some later random time, of the bandit that actually has 
the greatest Gittins index at time 0. This leads to a fairly complicated 
reshuffling of the order in which the bandits are played, but the effect is 
tractable. A stopping problem is key to the analysis. The argument can be 
repeated for epochs 1, ... , t - 1, at which point the improved policy is identical 
to the Gittins index policy for the first t epochs. Because of discounting, the 
rewards obtained from epoch t onwards result in a vanishingly small amount 
of suboptimality as t is increased toward infinity. 

Whittle's proof is different, but also based on a stopping problem. He 
introduces the idea of a retirement option and imagines that the gambler may 
at any time decide to stop playing and collect a retirement reward M. He 
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1028 R. WEBER 

expresses the value function for this modified problem in terms of the value 
functions for n similarly modified single-armed bandit problems. 

To understand the connection between Whittle's formulation and the proof 
in this paper, we can imagine there is a separate retirement option for each 
bandit. However, the retirement payment is received as a pension of (1 - I3)Mj 
per period. Suppose that during each period the gambler may " unretire" with 
respect to exactly one bandit, but in doing so he forgoes for that period the 
pension associated with the bandit. Suppose the pension for bandit j is 
reduced to a "fair value" whenever the gambler would otherwise have decided 
that the value of the pension was sufficiently attractive to retire from bandit j 
permanently. As before, it is clear that the Gittins index policy maximizes the 
expected total-discounted pension that the gambler forgoes, since it interleaves 
nonincreasing sequences into a nonincreasing order, and this provides an 
upper bound on the expected total-discounted reward he obtains under any 
policy. But under the Gittins index policy the gambler plays optimally and 
forgoes pension payments that have the same expected total-discounted value 
as the reward he obtains. 

5. Suboptimality bounds. It can be interesting to compare the Gittins 
index policy with others that might be employed. Our formulation in terms of 
prevailing and fair charges makes it particularly easy to derive some bounds. 
Recall, by Remark 2 in the proof of Theorem 1, that the gambler's play is 
optimal provided that whenever he starts play on a bandit, he continues to do 
so without interruption as long as its fair charge is greater than its prevailing 
charge. This notion is summarised in the following definition. 

DEFINITION. A policy is said to be index consistent if once play of a given 
bandit commences, play of that bandit continues without interruption while its 
Gittins index remains greater than its initial value. 

Remark 1 in the proof of Theorem 1 showed that for any policy w, the 
expected total-discounted reward in (1) is bounded above by the expected total 
of the discounted charges that are incurred. The prevailing charge for bandit j 
at time t is the least fair charge so far, namely, min0 < < t{Yj(xj(s))}. So 

(5) Vrr(x) < E4r E pO mnt (Yj(t)(xj(t)(s))}x(0) = xj. 

Consider a fixed realisation of the sequence of states through which each 
bandit evolves. It is clear that if one follows a policy that differs from 
the Gittins policy, then the value of the greatest prevailing charge, 
maxi min0 < < tyi{xi(s)}, is at least as great as it would have been under the 
Gittins policy. Combining this observation with (5) gives the following bound, 
previously given by Glazebrook (1990). 
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THEOREM 2. Suppose 7r* is the optimal (Gittins) policy. The suboptimality 
of a policy wr has the bound 

V,,*(x ) - V,,((x) < (1 - 13)E, E t (max min Gi(xi(s)) 

(6) _Ri(t)(Xi(t)(t)))x(O)= 

Glazebrook (1982) has given another bound. Its bound is usually weaker 
than (6), but has the advantage of being expressed entirely in terms of Gittins 
indices. 

THEOREM 3. 

(7) V4r*(x) - V4(x) < E, p8t(maxGi(xi(t)) - Gj(t)(x1(t)t)) x(O) = xj 

PROOF. Let w be an arbitrary policy and define 7n*(t) and r(t) as policies 
that are identical to 7r for times less than t. Thereafter, 7r*(t) is identical to 
the Gittins policy; nr(t) plays j(t) at time t, continues playing j(t) until its fair 
charge drops below yj(t)(xj(t)) and is identical to the Gittins index policy 
thereafter. Since 7r(t) and 7r*(t) are the same for times less than t, they incur 
the same prevailing charges until t and will have reached the same state at t. 
A little thought reveals that for each time s > t, the prevailing charge incurred 
under w*(t) minus the charge incurred under Tn(t) is never more than the 
value of this difference at time t, namely, maxi yi(xi(t)) - yj(t)(xj(t)(t)). This is 
because the first time that all prevailing charges are less than yj(t)(xj(t)(t)) is 
the same under r*(t) and 7(t) and at that time they will have reached the 
same state. The only charges that might possibly be taken in different orders 
prior to this time are those with values in the interval 
[yj(t)(xj(t)(t)), maxi yi(xi(t))]. From time t onward, both policies are index 
consistent, so the expected total-discounted charge equals the expected total- 
discounted reward. Thus averaging over realisations, 

(8) V4*(t)(x) - Vr(t)(x) <? ftE maxiy(i((t))-yj(t)(Xj((t)t)) x() = x 

Note that since IT(t) and w*(t + 1) are identical through time t and 7r*(t + 1) 
is optimal thereafter, V1(t)(x) < V1r*(t+1)(x). Also, r*(0) is the Gittins policy. 
Using these facts and summing (8) from t = 0 to infinity gives (7). 0I 

There is a further interesting inequality that can be derived using the ideas 
in Section 2. Suppose S denotes the set of all bandits, (1, ... , n}. Then for any 
I c S, let P(I) denote the restriction of the problem to bandits in I and now 
let V(I) denote the maximal expected total-discounted reward [suppressing the 
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1030 R. WEBER 

dependence on x(0), which we assume to be fixed]. The following theorem says 
that V is a submodular set function. 

THEOREM 4. For any I, J c S, 

(9) V(I n J) + V(I U J) < V(I) + V(J). 

PROOF. Consider a fixed realisation of the states through which bandit j 
evolves. Let Yjk denote the prevailing charge of bandit j on this realisation 
after it has been played k times, yjo ? yjl . Suppose UM(I) is the sum of 
undiscounted charges paid while playing P(I) optimally during the first t 
plays. It is computed by interleaving into nonincreasing order the sequences 
{Yjk}k= 1 j e I, and then summing the first t elements of the resulting 
sequence. It is not hard to see that for all t> 0, 

(10) Ut(I n J) + Ut(I u J) < Ut(I) + Ut(J). 
The theorem follows by multiplying (10) by 13t, summing on t from 0 to 
infinity and taking an expected value over realisations. [] 

If all bandits are statistically the same and initially in the same state, then a 
consequence of (9) is that V(S) is a concave increasing function of n. (Simply 
take I = {1, . . ., n - 1} and J = {2,..., n}.) A special case of (9) has been 
proved by Tsitsiklis (1986). He supposes that there is one bandit, say bandit 1, 
that always pays (1 - ,)M per play; so choosing to play bandit 1 corresponds 
to taking a retirement option. By considering I = (1, i} and J = S \ {i}, we 
have the bound V(S) < V({i, 1) + V(S \ {i}) - M. 

6. The finite horizon scenario. In general, the Gittins index policy does 
not maximize the expected total-discounted reward obtained by a finite time t, 
nor does any other index policy (except in the trivial case t = 1, when a 
one-step look-ahead policy is optimal). However, an important exception is the 
deteriorating case, in which with probability 1 the fair charge is nonincreasing. 
In this case the prevailing charge is at all times equal to the fair charge, so we 
have yj(xj) = E[Ri(xj)], and the Gittins policy is the one-step look-ahead 
policy. The deteriorating case requires that R/(x/(t)) be nonincreasing with 
probability 1. 

For the deteriorating case it is clear that the proof still holds if the objective 
function is to minimize the expected total-cost up to time t. Moreover, if 
rewards are monotone likelihood ratio ordered and nonincreasing in that 
ordering, then the Gittins index policy stochastically maximizes for all t the 
total reward obtained by time t. An example is where Ri is 0 or 1 with 
probabilities 1 - rj and rj, and rj is nonincreasing with probability 1 following 
each play of bandit j. 

7. The nonpreemptive scenario. In previous sections we have assumed 
that the gambler plays preemptively: In other words, at each epoch he has a 
free choice amongst bandits. One can impose a constraint on preemption, by 
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saying that once the gambler starts to play a particular bandit he must do so 
until its state reaches a given set in which preemption is allowed. Essentially, 
the same arguments apply, but the calculation of the appropriate prevailing 
charge takes into account the fact that having once embarked upon play of 
bandit j, the gambler may only discontinue play when its state reaches a 
certain set. The formula for the index takes the same form as (2), but the 
stopping time X is restricted to times at which the bandit's state enters that 
set. 

The climactic case is one in which the optimal policy is naturally nonpre- 
emptive. It refers to the circumstances in which with probability 1 the fair 
charge is nondecreasing, up to some random time that the bandit enters an 
absorbing state 0, in which the fair charge is 0. Whittle calls state 0 the lapsed 
state of a project. It is a state in which no further rewards can be obtained. 
Then X is interpreted as the time at which the bandit first enters the lapsed 
state. The optimal policy is to choose the bandit of greatest index and play it 
until it lapses. The bandits are played nonpreemptively until all have reached 
their lapsed state. An example is the scheduling jobs of stochastic processing 
times on a single machine. Suppose job j has an increasing hazard rate and 
makes only the one payment Rj only upon completion (i.e., entry to the lapsed 
state). The index is then 

RjE[ BXJ] 

1 - E[/3Bx+1] 

In this case it is meaningful to think of an undiscounted problem in which a 
holding cost Ri is made for each epoch that job j is not yet complete. Then 
(1 - p)Gj -RjE[XjI as f8 -* 1, and it can be shown that the policy based on 
these indices minimizes the expected holding cost incurred until all jobs are 
complete. 

8. Branching bandits. It is possible to extend the results to a model in 
which additional bandits become available at times after the start. Let bandits 
be of L types. Suppose that once having begun to play a bandit of type j the 
gambler is commited to Tj plays of that bandit, during which rewards are 
obtained and at the end of which Njl,..., NjL bandits of types 1,..., L, are 
obtained. Thus bandits arise as a branching process. Here Ti and the Njk are 
random variables, not necessarily independent, but they are independent from 
bandit to bandit and identically distributed for bandits of the same types. 

Again, we imagine that j is the only bandit present initially and define the 
fair charge, ye, as the greatest cost per play that the gambler would be willing 
to pay to play bandit j for the random number of plays Tj, then make further 
numbers of plays of some or all of the bandits that branch from it or its 
descendants. We define the prevailing charge of any bandit that is not present 
initially as the minimum of its own fair charge and the prevailing charge that 
applied to its parent at the time of branching. Under this definition, the 
sequence of prevailing charges for a given bandit and its descendants is again 
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nonincreasing and independent of the policy employed. The sequences of 
charges are uniquely interleaved into a single nonincreasing sequence if the 
gambler always plays the bandit of greatest index. Thus playing the bandit of 
greatest index maximizes the expected total discounted sum of charges. Be- 
cause they are fair charges, their expected total discounted sum is an upper 
bound for the expected total discounted reward that the gambler can obtain. 
He achieves this upper bound if he plays optimally, which means playing 
optimally within each branch of the process. 

Thus we have seen that there is a Gittins index that can be computed for 
each type of bandit and it can be interpreted as the bandit's fair charge when it 
is the only bandit available at the start. Of course the value of this index will 
depend on the statistics of the other types of bandit that can arise amongst its 
descendants. But in fact, the dependency is only on bandits of greater Gittins 
index, since to play optimally within a branch that begins with a bandit of type 
j means not playing any descendant having a lesser index value and playing 
those that arise and are of greater index value according to the priority of 
Gittins indices. 

The idea of a branching bandit process is based on the work of Weiss (1988). 
The process that arises through branching of each of the initial bandits has 
also been called a superprocess. We have seen that one ought to choose 
between superprocesses according to their Gittins indices and play optimally 
within each. In particular, this model can be used to analyse the optimal 
nonpreemptive scheduling of a M/GI/l queue. See Weiss (1988) and Whittle 
(1983) for more details. 

9. Conclusion. We have provided a short and intuitive proof of the 
optimality of the Gittins index policy and summarised in a unified manner 
some of its more immediate properties and generalisations. The subject is a 
rich one and has been explored by others elsewhere. The reader is recom- 
mended to Gittins (1989) for an authoritative treatment and exposition of 
various areas of application. I am grateful to Gideon Weiss for reading a first 
draft of this paper and suggesting the interpretation of Whittle's formulation 
in terms of a pension and to Kevin Glazebrook for drawing my attention to the 
paper of Tsitsiklis. 
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