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Preface

. . . beware of mathematicians, and all those who make empty prophecies.

St. Augustine, De Genesi ad Litteram libri duodecim.
Liber Secundus, 17, 37.

Prediction of individual sequences, the main theme of this book, has been studied in
various fields, such as statistical decision theory, information theory, game theory, machine
learning, and mathematical finance. Early appearances of the problem go back as far as
the 1950s, with the pioneering work of Blackwell, Hannan, and others. Even though the
focus of investigation varied across these fields, some of the main principles have been
discovered independently. Evolution of ideas remained parallel for quite some time. As
each community developed its own vocabulary, communication became difficult. By the
mid-1990s, however, it became clear that researchers of the different fields had a lot to
teach each other.

When we decided to write this book, in 2001, one of our main purposes was to investigate
these connections and help ideas circulate more fluently. In retrospect, we now realize that
the interplay among these many fields is far richer than we suspected. For this reason,
exploring this beautiful subject during the preparation of the book became a most exciting
experience – we really hope to succeed in transmitting this excitement to the reader. Today,
several hundreds of pages later, we still feel there remains a lot to discover. This book just
shows the first steps of some largely unexplored paths. We invite the reader to join us in
finding out where these paths lead and where they connect.

The book should by no means be treated as an encyclopedia of the subject. The selection
of the material reflects our personal taste. Large parts of the manuscript have been read
and constructively criticized by Gilles Stoltz, whose generous help we greatly appreci-
ate. Claudio Gentile and András György also helped us with many important and useful
comments. We are equally grateful to the members of a seminar group in Budapest who
periodically gathered in Laci Györfi’s office at the Technical University and unmercifully
questioned every line of the manuscript they had access to, and to György Ottucsák who
diligently communicated to us all these questions and remarks. The members of the group
are András Antos, Balázs Csanád Csáji, Laci Györfi, András György, Levente Kocsis,
György Ottucsák, Márti Pintér, Csaba Szepesvári, and Kati Varga. Of course, all remaining
errors are our responsibility.

We thank all our friends and colleagues who, often without realizing it, taught us many
ideas, tricks, and points of view that helped us understand the subtleties of the material.
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1

Introduction

1.1 Prediction

Prediction, as we understand it in this book, is concerned with guessing the short-term evo-
lution of certain phenomena. Examples of prediction problems are forecasting tomorrow’s
temperature at a given location or guessing which asset will achieve the best performance
over the next month. Despite their different nature, these tasks look similar at an abstract
level: one must predict the next element of an unknown sequence given some knowledge
about the past elements and possibly other available information. In this book we develop
a formal theory of this general prediction problem. To properly address the diversity of
potential applications without sacrificing mathematical rigor, the theory will be able to
accommodate different formalizations of the entities involved in a forecasting task, such as
the elements forming the sequence, the criterion used to measure the quality of a forecast,
the protocol specifying how the predictor receives feedback about the sequence, and any
possible side information provided to the predictor.

In the most basic version of the sequential prediction problem, the predictor – or fore-
caster – observes one after another the elements of a sequence y1, y2, . . . of symbols. At
each time t = 1, 2, . . . , before the t th symbol of the sequence is revealed, the forecaster
guesses its value yt on the basis of the previous t − 1 observations.

In the classical statistical theory of sequential prediction, the sequence of elements,
which we call outcomes, is assumed to be a realization of a stationary stochastic process.
Under this hypothesis, statistical properties of the process may be estimated on the basis
of the sequence of past observations, and effective prediction rules can be derived from
these estimates. In such a setup, the risk of a prediction rule may be defined as the expected
value of some loss function measuring the discrepancy between predicted value and true
outcome, and different rules are compared based on the behavior of their risk.

This book looks at prediction from a quite different angle. We abandon the basic assump-
tion that the outcomes are generated by an underlying stochastic process and view the
sequence y1, y2, . . . as the product of some unknown and unspecified mechanism (which
could be deterministic, stochastic, or even adversarially adaptive to our own behavior). To
contrast it with stochastic modeling, this approach has often been referred to as prediction
of individual sequences.

Without a probabilistic model, the notion of risk cannot be defined, and it is not imme-
diately obvious how the goals of prediction should be set up formally. Indeed, several
possibilities exist, many of which are discussed in this book. In our basic model, the per-
formance of the forecaster is measured by the loss accumulated during many rounds of
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2 Introduction

prediction, where loss is scored by some fixed loss function. Since we want to avoid any
assumption on the way the sequence to be predicted is generated, there is no obvious base-
line against which to measure the forecaster’s performance. To provide such a baseline,
we introduce a class of reference forecasters, also called experts. These experts make their
prediction available to the forecaster before the next outcome is revealed. The forecaster
can then make his own prediction depend on the experts’ “advice” in order to keep his
cumulative loss close to that of the best reference forecaster in the class.

The difference between the forecaster’s accumulated loss and that of an expert is called
regret, as it measures how much the forecaster regrets, in hindsight, of not having followed
the advice of this particular expert. Regret is a basic notion of this book, and a lot of
attention is payed to constructing forecasting strategies that guarantee a small regret with
respect to all experts in the class. As it turns out, the possibility of keeping the regrets small
depends largely on the size and structure of the class of experts, and on the loss function.
This model of prediction using expert advice is defined formally in Chapter 2 and serves
as a basis for a large part of the book.

The abstract notion of an “expert” can be interpreted in different ways, also depending on
the specific application that is being considered. In some cases it is possible to view an expert
as a black box of unknown computational power, possibly with access to private sources
of side information. In other applications, the class of experts is collectively regarded as a
statistical model, where each expert in the class represents an optimal forecaster for some
given “state of nature.” With respect to this last interpretation, the goal of minimizing regret
on arbitrary sequences may be thought of as a robustness requirement. Indeed, a small
regret guarantees that, even when the model does not describe perfectly the state of nature,
the forecaster does almost as well as the best element in the model fitted to the particular
sequence of outcomes. In Chapters 2 and 3 we explore the basic possibilities and limitations
of forecasters in this framework.

Models of prediction of individual sequences arose in disparate areas motivated by
problems as different as playing repeated games, compressing data, or gambling. Because
of this diversity, it is not easy to trace back the first appearance of such a study. But
it is now recognized that Blackwell, Hannan, Robbins, and the others who, as early as
in the 1950s, studied the so-called sequential compound decision problem were the pio-
neering contributors in the field. Indeed, many of the basic ideas appear in these early
works, including the use of randomization as a powerful tool of achieving a small regret
when it would otherwise be impossible. The model of randomized prediction is intro-
duced in Chapter 4. In Chapter 6 several variants of the basic problem of randomized
prediction are considered in which the information available to the forecaster is limited in
some way.

Another area in which prediction of individual sequences appeared naturally and found
numerous applications is information theory. The influential work of Cover, Davisson,
Lempel, Rissanen, Shtarkov, Ziv, and others gave the information-theoretic foundations
of sequential prediction, first motivated by applications for data compression and “uni-
versal” coding, and later extended to models of sequential gambling and investment. This
theory mostly concentrates on a particular loss function, the so-called logarithmic or self-
information loss, as it has a natural interpretation in the framework of sequential probability
assignment. In this version of the prediction problem, studied in Chapters 9 and 10, at each
time instance the forecaster determines a probability distribution over the set of possible
outcomes. The total likelihood assigned to the entire sequence of outcomes is then used to
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score the forecaster. Sequential probability assignment has been studied in different closely
related models in statistics, including bayesian frameworks and the problem of calibration
in various forms. Dawid’s “prequential” statistics is also close in spirit to some of the
problems discussed here.

In computer science, algorithms that receive their input sequentially are said to operate
in an online modality. Typical application areas of online algorithms include tasks that
involve sequences of decisions, like when one chooses how to serve each incoming request
in a stream. The similarity between decision problems and prediction problems, and the
fact that online algorithms are typically analyzed on arbitrary sequences of inputs, has
resulted in a fruitful exchange of ideas and techniques between the two fields. However,
some crucial features of sequential decision problems that are missing in the prediction
framework (like the presence of states to model the interaction between the decision maker
and the mechanism generating the stream of requests) has so far prevented the derivation
of a general theory allowing a unified analysis of both types of problems.

1.2 Learning

Prediction of individual sequences has also been a main topic of research in the theory
of machine learning, more concretely in the area of online learning. In fact, in the late
1980s–early 1990s the paradigm of prediction with expert advice was first introduced as a
model of online learning in the pioneering papers of De Santis, Markowski, and Wegman;
Littlestone and Warmuth; and Vovk, and it has been intensively investigated ever since. An
interesting extension of the model allows the forecaster to consider other information apart
from the past outcomes of the sequence to be predicted. By considering side information
taking values in a vector space, and experts that are linear functions of the side information
vector, one obtains classical models of online pattern recognition. For example, Rosenblatt’s
Perceptron algorithm, the Widrow-Hoff rule, and ridge regression can be naturally cast in
this framework. Chapters 11 and 12 are devoted to the study of such online learning
algorithms.

Researchers in machine learning and information theory have also been interested in the
computational aspects of prediction. This becomes a particularly important problem when
very large classes of reference forecasters are considered, and various tricks need to be
invented to make predictors feasible for practical applications. Chapter 5 gathers some of
these basic tricks illustrated on a few prototypical examples.

1.3 Games

The online prediction model studied in this book has an intimate connection with game
theory. First of all, the model is most naturally defined in terms of a repeated game
played between the forecaster and the “environment” generating the outcome sequence,
thus offering a convenient way of describing variants of the basic theme. However, the
connection is much deeper. For example, in Chapter 7 we show that classical minimax
theorems of game theory can be recovered as simple applications of some basic bounds for
the performance of sequential prediction algorithms. On the other hand, certain generalized
minimax theorems, most notably Blackwell’s approachability theorem can be used to define
forecasters with good performance on individual sequences.
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Perhaps surprisingly, the connection goes even deeper. It turns out that if all players in a
repeated normal form game play according to certain simple regret-minimizing prediction
strategies, then the induced dynamics leads to equilibrium in a certain sense. This interesting
line of research has been gaining terrain in game theory, based on the pioneering work of
Foster, Vohra, Hart, Mas-Colell, and others. In Chapter 7 we discuss the possibilities and
limitations of strategies based on regret minimizing forecasting algorithms that lead to
various notions of equilibria.

1.4 A Gentle Start

To introduce the reader to the spirit of the results contained in this book, we now describe
in detail a simple example of a forecasting procedure and then analyze its performance on
an arbitrary sequence of outcomes.

Consider the problem of predicting an unknown sequence y1, y2, . . . of bits yt ∈ {0, 1}.
At each time t the forecaster first makes his guess p̂t ∈ {0, 1} for yt . Then the true bit yt is
revealed and the forecaster finds out whether his prediction was correct. To compute p̂t the
forecaster listens to the advice of N experts. This advice takes the form of a binary vector
( f1,t , . . . , fN ,t ), where fi,t ∈ {0, 1} is the prediction that expert i makes for the next bit yt .
Our goal is to bound the number of time steps t in which p̂t �= yt , that is, to bound the
number of mistakes made by the forecaster.

To start with an even simpler case, assume we are told in advance that, on this particular
sequence of outcomes, there is some expert i that makes no mistakes. That is, we know
that fi,t = yt for some i and for all t , but we do not know for which i this holds. Using
this information, it is not hard to devise a forecasting strategy that makes at most �log2 N�
mistakes on the sequence. To see this, consider the forecaster that starts by assigning a
weight w j = 1 to each expert j = 1, . . . , N . At every time step t , the forecaster predicts
with p̂t = 1 if and only if the number of experts j with w j = 1 and such that f j,t = 1
is bigger than those with w j = 1 and such that f j,t = 0. After yt is revealed, if p̂t �= yt ,
then the forecaster performs the assignment wk ← 0 on the weight of all experts k such
that fk,t �= yt . In words, this forecaster keeps track of which experts make a mistake and
predicts according to the majority of the experts that have been always correct.

The analysis is immediate. Let Wm be the sum of the weights of all experts after the
forecaster has made m mistakes. Initially, m = 0 and W0 = N . When the forecaster makes
his mth mistake, at least half of the experts that have been always correct so far make their
first mistake. This implies that Wm ≤ Wm−1/2, since those experts that were incorrect for
the first time have their weight zeroed by the forecaster. Since the above inequality holds
for all m ≥ 1, we have Wm ≤ W0/2m . Recalling that expert i never makes a mistake, we
know that wi = 1, which implies that Wm ≥ 1. Using this together with W0 = N , we thus
find that 1 ≤ N/2m . Solving for m (which must be an integer) gives the claimed inequality
m ≤ �log2 N�.

We now move on to analyze the general case, in which the forecaster does not have any
preliminary information on the number of mistakes the experts will make on the sequence.
Our goal now is to relate the number of mistakes made by the forecaster to the number of
mistakes made by the best expert, irrespective of which sequence is being predicted.

Looking back at the previous forecasting strategy, it is clear that setting the weight of
an incorrect expert to zero makes sense only if we are sure that some expert will never
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make a mistake. Without this guarantee, a safer choice could be performing the assignment
wk ← β wk every time expert k makes a mistake, where 0 < β < 1 is a free parameter. In
other words, every time an expert is incorrect, instead of zeroing its weight we shrink it by a
constant factor. This is the only modification we make to the old forecaster, and this makes
its analysis almost as easy as the previous one. More precisely, the new forecaster compares
the total weight of the experts that recommend predicting 1 with those that recommend 0
and predicts according to the weighted majority. As before, at the time the forecaster makes
his mth mistake, the overall weight of the incorrect experts must be at least Wm−1/2. The
weight of these experts is then multiplied by β, and the weight of the other experts, which
is at most Wm−1/2, is left unchanged. Hence, we have Wm ≤ Wm−1/2+ β Wm−1/2. As
this holds for all m ≥ 1, we get Wm ≤ W0(1+ β)m/2m . Now let k be the expert that has
made the fewest mistakes when the forecaster made his mth mistake. Denote this minimal
number of mistakes by m∗. Then the current weight of this expert is wk = βm∗

, and thus we
have Wm ≥ βm∗

. This provides the inequality βm∗ ≤ W0(1+ β)m/2m . Using this, together
with W0 = N , we get the final bound

m ≤
⌊

log2 N + m∗ log2(1/β)

log2
2

1+β

⌋
.

For any fixed value of β, this inequality establishes a linear dependence between the
mistakes made by the forecaster, after any number of predictions, and the mistakes made
by the expert that is the best after that same number of predictions. Note that this bound
holds irrespective of the choice of the sequence of outcomes.

The fact that m and m∗ are linearly related means that, in some sense, the performance
of this forecaster gracefully degrades as a function of the “misfit” m∗ between the experts
and the outcome sequence. The bound also exhibits a mild dependence on the number of
experts: the log2 N term implies that, apart from computational considerations, doubling
the number of experts causes the bound to increase by a small additive term.

Notwithstanding its simplicity, this example contains some of the main themes developed
in the book, such as the idea of computing predictions using weights that are functions of
the experts’ past performance. In the subsequent chapters we develop this and many other
ideas in a rigorous and systematic manner with the intent of offering a comprehensive view
on the many facets of this fascinating subject.

1.5 A Note to the Reader

The book is addressed to researchers and students of computer science, mathematics,
engineering, and economics who are interested in various aspects of prediction and learning.
Even though we tried to make the text as self-contained as possible, the reader is assumed
to be comfortable with some basic notions of probability, analysis, and linear algebra. To
help the reader, we collect in the Appendix some technical tools used in the book. Some of
this material is quite standard but may not be well known to all potential readers.

In order to minimize interruptions in the flow of the text, we gathered bibliographical
references at the end of each chapter. In these references we intend to trace back the origin
of the results described in the text and point to some relevant literature. We apologize for any
possible omissions. Some of the material is published here for the first time. These results
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are not flagged. Each chapter is concluded with a list of exercises whose level of difficulty
varies between distant extremes. Some of the exercises can be solved by an easy adaptation
of the material described in the main text. These should help the reader in mastering the
material. Some others resume difficult research results. In some cases we offer guidance to
the solution, but there is no solution manual.

Figure 1.1 describes the dependence structure of the chapters of the book. This should
help the reader to focus on specific topics and teachers to organize the material of various
possible courses.
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Figure 1.1. The dependence structure of the chapters.



2

Prediction with Expert Advice

The model of prediction with expert advice, introduced in this chapter, provides the foun-
dations to the theory of prediction of individual sequences that we develop in the rest of
the book.

Prediction with expert advice is based on the following protocol for sequential deci-
sions: the decision maker is a forecaster whose goal is to predict an unknown sequence
y1, y2 . . . of elements of an outcome space Y . The forecaster’s predictions p̂1, p̂2 . . .

belong to a decision space D, which we assume to be a convex subset of a vec-
tor space. In some special cases we take D = Y , but in general D may be different
from Y .

The forecaster computes his predictions in a sequential fashion, and his predictive
performance is compared to that of a set of reference forecasters that we call experts.
More precisely, at each time t the forecaster has access to the set

{
fE,t : E ∈ E} of expert

predictions fE,t ∈ D, where E is a fixed set of indices for the experts. On the basis of the
experts’ predictions, the forecaster computes his own guess p̂t for the next outcome yt .
After p̂t is computed, the true outcome yt is revealed.

The predictions of forecaster and experts are scored using a nonnegative loss function
� : D × Y → R.

This prediction protocol can be naturally viewed as the following repeated game between
“forecaster,” who makes guesses p̂t , and “environment,” who chooses the expert advice{

fE,t : E ∈ E} and sets the true outcomes yt .

PREDICTION WITH EXPERT ADVICE

Parameters: decision space D, outcome space Y , loss function �, set E of expert
indices.

For each round t = 1, 2, . . .

(1) the environment chooses the next outcome yt and the expert advice{
fE,t ∈ D : E ∈ E}; the expert advice is revealed to the forecaster;

(2) the forecaster chooses the prediction p̂t ∈ D;
(3) the environment reveals the next outcome yt ∈ Y;
(4) the forecaster incurs loss �( p̂t , yt ) and each expert E incurs loss

�( fE,t , yt ).

7
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The forecaster’s goal is to keep as small as possible the cumulative regret (or sim-
ply regret) with respect to each expert. This quantity is defined, for expert E , by the
sum

RE,n =
n∑

t=1

(
�( p̂t , yt )− �( fE,t , yt )

) = L̂n − L E,n,

where we use L̂n =
∑n

t=1 �( p̂t , yt ) to denote the forecaster’s cumulative loss and L E,n =∑n
t=1 �( fE,t , yt ) to denote the cumulative loss of expert E . Hence, RE,n is the difference

between the forecaster’s total loss and that of expert E after n prediction rounds. We also
define the instantaneous regret with respect to expert E at time t by rE,t = �( p̂t , yt )−
�( fE,t , yt ), so that RE,n =

∑n
t=1 rE,t . One may think about rE,t as the regret the forecaster

feels of not having listened to the advice of expert E right after the t th outcome yt has been
revealed.

Throughout the rest of this chapter we assume that the number of experts is finite,
E = {1, 2, . . . , N }, and use the index i = 1, . . . , N to refer to an expert. The goal of
the forecaster is to predict so that the regret is as small as possible for all sequences of
outcomes. For example, the forecaster may want to have a vanishing per-round regret, that is,
to achieve

max
i=1,...,N

Ri,n = o(n) or, equivalently,
1

n

(
L̂n − min

i=1,...,N
Li,n

)
n→∞−→ 0,

where the convergence is uniform over the choice of the outcome sequence and the choice
of the expert advice. In the next section we show that this ambitious goal may be achieved
by a simple forecaster under mild conditions.

The rest of the chapter is structured as follows. In Section 2.1 we introduce the important
class of weighted average forecasters, describe the subclass of potential-based forecasters,
and analyze two important special cases: the polynomially weighted average forecaster
and the exponentially weighted average forecaster. This latter forecaster is quite cen-
tral in our theory, and the following four sections are all concerned with various issues
related to it: Section 2.2 shows certain optimality properties, Section 2.3 addresses the
problem of tuning dynamically the parameter of the potential, Section 2.4 investigates
the problem of obtaining improved regret bounds when the loss of the best expert is
small, and Section 2.5 investigates the special case of differentiable loss functions. Starting
with Section 2.6, we discover the advantages of rescaling the loss function. This sim-
ple trick allows us to derive new and even sharper performance bounds. In Section 2.7
we introduce and analyze a weighted average forecaster for rescaled losses that, unlike
the previous ones, is not based on the notion of potential. In Section 2.8 we return to
the exponentially weighted average forecaster and derive improved regret bounds based on
rescaling the loss function. Sections 2.9 and 2.10 address some general issues in the prob-
lem of prediction with expert advice, including the definition of minimax values. Finally,
in Section 2.11 we discuss a variant of the notion of regret where discount factors are
introduced.
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2.1 Weighted Average Prediction

A natural forecasting strategy in this framework is based on computing a weighted average
of experts’ predictions. That is, the forecaster predicts at time t according to

p̂t =
∑N

i=1 wi,t−1 fi,t∑N
j=1 w j,t−1

,

where w1,t−1, . . . , w N ,t−1 ≥ 0 are the weights assigned to the experts at time t . Note that
p̂t ∈ D, since it is a convex combination of the expert advice f1,t , . . . , fN ,t ∈ D and D
is convex by our assumptions. As our goal is to minimize the regret, it is reasonable to
choose the weights according to the regret up to time t − 1. If Ri,t−1 is large, then we
assign a large weight wi,t−1 to expert i , and vice versa. As Ri,t−1 = L̂ t−1 − Li,t−1, this
results in weighting more those experts i whose cumulative loss Li,t−1 is small. Hence, we
view the weight as an arbitrary increasing function of the expert’s regret. For reasons that
will become apparent shortly, we find it convenient to write this function as the derivative
of a nonnegative, convex, and increasing function φ : R → R. We write φ′ to denote this
derivative. The forecaster uses φ′ to determine the weight wi,t−1 = φ′(Ri,t−1) assigned to
the i th expert. Therefore, the prediction p̂t at time t of the weighted average forecaster is
defined by

p̂t =
∑N

i=1 φ′(Ri,t−1) fi,t∑N
j=1 φ′(R j,t−1)

(weighted average forecaster).

Note that this is a legitimate forecaster as p̂t is computed on the basis of the experts’ advice
at time t and the cumulative regrets up to time t − 1.

We start the analysis of weighted average forecasters by a simple technical observation.

Lemma 2.1. If the loss function � is convex in its first argument, then

sup
yt∈Y

N∑
i=1

ri,tφ
′(Ri,t−1) ≤ 0.

Proof. Using Jensen’s inequality, for all y ∈ Y ,

�( p̂t , y) = �

(∑N
i=1 φ′(Ri,t−1) fi,t∑N

j=1 φ′(R j,t−1)
, y

)
≤
∑N

i=1 φ′(Ri,t−1)�( fi,t , y)∑N
j=1 φ′(R j,t−1)

.

Rearranging, we obtain the statement.

The simple observation of the lemma above allows us to interpret the weighted average
forecaster in an interesting way. To do this, introduce the instantaneous regret vector

rt = (r1,t , . . . , rN ,t ) ∈ R
N
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and the corresponding regret vector Rn =
∑n

t=1 rt . It is convenient to introduce also a
potential function � : R

N → R of the form

�(u) = ψ

(
N∑

i=1

φ(ui )

)
(potential function),

where φ : R → R is any nonnegative, increasing, and twice differentiable function, and ψ :
R → R is any nonnegative, strictly increasing, concave, and twice differentiable auxiliary
function.

Using the notion of potential function, we can give the following equivalent definition
of the weighted average forecaster

p̂t =
∑N

i=1 ∇�(Rt−1)i fi,t∑N
j=1 ∇�(Rt−1) j

where ∇�(Rt−1)i = ∂�(Rt−1)/∂ Ri,t−1. We say that a forecaster defined as above is based
on the potential �. Even though the definition of the weighted average forecaster is inde-
pendent of the choice of ψ (the derivatives ψ ′ cancel in the definition of p̂t above), the
proof of the main result of this chapter, Theorem 2.1, reveals that ψ plays an important role
in the analysis. We remark that convexity of φ is not needed to prove Theorem 2.1, and this
is the reason why convexity is not mentioned in the above definition of potential function.
On the other hand, all forecasters in this book that are based on potential functions and
have a vanishing per-round regret are constructed using a convex φ (see also Exercise 2.2).

The statement of Lemma 2.1 is equivalent to

sup
yt∈Y

rt · ∇�(Rt−1) ≤ 0 (Blackwell condition).

The notation u · v stands for the the inner product of two vectors defined by u · v =
u1v1 + · · · + uN vN . We call the above inequality Blackwell condition because of its sim-
ilarity to a key property used in the proof of the celebrated Blackwell’s approachability
theorem. The theorem, and its connection to the above inequality, are explored in Sec-
tions 7.7 and 7.8. Figure 2.1 shows an example of a prediction satisfying the Blackwell
condition.

The Blackwell condition shows that the function � plays a role vaguely similar to the
potential in a dynamical system: the weighted average forecaster, by forcing the regret
vector to point away from the gradient of � irrespective to the outcome yt , tends to keep
the point Rt close to the minimum of �. This property, in fact, suggests a simple analysis
because the increments of the potential function � may now be easily bounded by Taylor’s
theorem. The role of the function ψ is simply to obtain better bounds with this argument.

The next theorem applies to any forecaster satisfying the Blackwell condition (and thus
not only to weighted average forecasters). However, it will imply several interesting bounds
for different versions of the weighted average forecaster.

Theorem 2.1. Assume that a forecaster satisfies the Blackwell condition for a potential

�(u) = ψ
(∑N

i=1 φ(ui )
)

. Then, for all n = 1, 2, . . .,

�(Rn) ≤ �(0)+ 1

2

n∑
t=1

C(rt ),
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Rt−1

Rt

∇�(Rt−1)

0

0 1

1

Figure 2.1. An illustration of the Blackwell condition with N = 2. The dashed line shows the
points in regret space with potential equal to 1. The prediction at time t changed the potential from
�(Rt−1) = 1 to �(Rt ) = �(Rt−1 + rt ). Though �(Rt ) > �(Rt−1), the inner product between rt and
the gradient ∇�(Rt−1) is negative, and thus the Blackwell condition holds.

where

C(rt ) = sup
u∈RN

ψ ′
(

N∑
i=1

φ(ui )

)
N∑

i=1

φ′′(ui )r
2
i,t .

Proof. We estimate �(Rt ) in terms of �(Rt−1) using Taylor’s theorem. Thus, we obtain

�(Rt ) = �(Rt−1 + rt )

= �(Rt−1)+ ∇�(Rt−1) · rt + 1

2

N∑
i=1

N∑
j=1

∂2�

∂ui∂u j

∣∣∣∣
ξ

ri,t r j,t

(where ξ is some vector in R
N )

≤ �(Rt−1)+ 1

2

N∑
i=1

N∑
j=1

∂2�

∂ui∂u j

∣∣∣∣
ξ

ri,t r j,t

where the inequality follows by the Blackwell condition. Now straightforward calculation
shows that

N∑
i=1

N∑
j=1

∂2�

∂ui∂u j

∣∣∣∣
ξ

ri,t r j,t

= ψ ′′
(

N∑
i=1

φ(ξi )

)
N∑

i=1

N∑
j=1

φ′(ξi )φ
′(ξ j )ri,t r j,t

+ ψ ′
(

N∑
i=1

φ(ξi )

)
N∑

i=1

φ′′(ξi )r
2
i,t
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= ψ ′′
(

N∑
i=1

φ(ξi )

)(
N∑

i=1

φ′(ξi )ri,t

)2

+ ψ ′
(

N∑
i=1

φ(ξi )

)
N∑

i=1

φ′′(ξi )r
2
i,t

≤ ψ ′
(

N∑
i=1

φ(ξi )

)
N∑

i=1

φ′′(ξi )r
2
i,t (since ψ is concave)

≤ C(rt )

where at the last step we used the definition of C(rt ). Thus, we have obtained
�(Rt )−�(Rt−1) ≤ C(rt )/2. The proof is finished by summing this inequality for
t = 1, . . . , n.

Theorem 2.1 can be used as follows. By monotonicity of ψ and φ,

ψ

(
φ

(
max

i=1,...,N
Ri,n

))
= ψ

(
max

i=1,...,N
φ(Ri,n)

)
≤ ψ

(
N∑

i=1

φ(Ri,n)

)
= �(Rn).

Note that ψ is invertible by the definition of the potential function. If φ is invertible as well,
then we get

max
i=1,...,N

Ri,n ≤ φ−1
(
ψ−1

(
�(Rn)

))
,

where �(Rn) is replaced with the bound provided by Theorem 2.1. In the first of the two
examples that follow, however, φ is not invertible, and thus maxi=1,...,N Ri,n is directly
majorized using a function of the bound provided by Theorem 2.1.

Polynomially Weighted Average Forecaster
Consider the polynomially weighted average forecaster based on the potential

�p(u) =
(

N∑
i=1

(ui )
p
+

)2/p

= ‖u+‖2
p (polynomial potential),

where p ≥ 2. Here u+ denotes the vector of positive parts of the components of u. The
weigths assigned to the experts are then given by

wi,t−1 = ∇�p(Rt−1)i = 2(Ri,t−1)p−1
+

‖(Rt−1)+‖p−2
p

and the forecaster’s predictions are just the weighted average of the experts predictions

p̂t =

N∑
i=1

(
t−1∑
s=1

(
�( p̂s, ys)− �( fi,s, ys)

))p−1

+
fi,t

N∑
j=1

(
t−1∑
s=1

(
�( p̂s, ys)− �( f j,s, ys)

))p−1

+

.

Corollary 2.1. Assume that the loss function � is convex in its first argument and that it takes
values in [0, 1]. Then, for any sequence y1, y2, . . . ∈ Y of outcomes and for any n ≥ 1, the
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regret of the polynomially weighted average forecaster satisfies

L̂n − min
i=1,...,N

Li,n ≤
√

n(p − 1)N 2/p.

This shows that, for all p ≥ 2, the per-round regret converges to zero at a rate O(1/
√

n)
uniformly over the outcome sequence and the expert advice. The choice p = 2 yields a
particularly simple algorithm. On the other hand, the choice p = 2 ln N (for N > 2), which
approximately minimizes the upper bound, leads to

L̂n − min
i=1,...,N

Li,n ≤
√

ne(2 ln N − 1)

yielding a significantly better dependence on the number of experts N .

Proof of Corollary 2.1. Apply Theorem 2.1 using the polynomial potential. Then φ(x) =
x p
+ and ψ(x) = x2/p, x ≥ 0. Moreover

ψ ′(x) = 2

px (p−2)/p
and φ′′(x) = p(p − 1)x p−2

+ .

By Hölder’s inequality,

N∑
i=1

φ′′(ui )r
2
i,t = p(p − 1)

N∑
i=1

(ui )
p−2
+ r2

i,t

≤ p(p − 1)

(
N∑

i=1

(
(ui )

p−2
+
)p/(p−2)

)(p−2)/p ( N∑
i=1

|ri,t |p
)2/p

.

Thus,

ψ ′
(

N∑
i=1

φ(ui )

)
N∑

i=1

φ′′(ui )r
2
i,t ≤ 2(p − 1)

(
N∑

i=1

|ri,t |p
)2/p

and the conditions of Theorem 2.1 are satisfied with C(rt ) ≤ 2(p − 1) ‖rt‖2
p. Since �p(0) =

0, Theorem 2.1, together with the boundedness of the loss function, implies that(
N∑

i=1

(
Ri,n
)p

+

)2/p

= �p(Rn) ≤ (p − 1)
n∑

t=1

‖rt‖2
p ≤ n(p − 1)N 2/p.

Finally, since

L̂n − min
i=1,...,N

Li,n = max
i=1,...,N

Ri,n ≤
(

N∑
i=1

(
Ri,n
)p

+

)1/p

the result follows.

Remark 2.1. We have defined the polynomial potential as �p(u) = ‖u+‖2
p, which corre-

sponds to taking ψ(x) = x2/p. Recall that ψ does not have any influence on the prediction, it
only has a role in the analysis. The particular form analyzed here is chosen by convenience,
but there are other possibilities leading to similar results. For example, one may argue that
it is more natural to take ψ(x) = x1/p, which leads to the potential function �(u) = ‖u+‖p.
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Figure 2.2. Plots of the polynomial potential function �p(u) for N = 2 experts with exponents
p = 2 and p = 10.

We leave it as an exercise to work out a bound similar to that of Corollary 2.1 based on this
choice.

Exponentially Weighted Average Forecaster
Our second main example is the exponentially weighted average forecaster based on the
potential

�η(u) = 1

η
ln

(
N∑

i=1

eηui

)
(exponential potential),

where η is a positive parameter. In this case, the weigths assigned to the experts are of the
form

wi,t−1 = ∇�η(Rt−1)i = eηRi,t−1∑N
j=1 eηR j,t−1

,

and the weighted average forecaster simplifies to

p̂t =
∑N

i=1 exp
(
η
(
L̂ t−1 − Li,t−1

))
fi,t∑N

j=1 exp
(
η
(
L̂ t−1 − L j,t−1

)) =
∑N

i=1 e−ηLi,t−1 fi,t∑N
j=1 e−ηL j,t−1

.

The beauty of the exponentially weighted average forecaster is that it only depends on the
past performance of the experts, whereas the predictions made using other general potentials
depend on the past predictions p̂s , s < t , as well. Furthermore, the weights that the forecaster
assigns to the experts are computable in a simple incremental way: let w1,t−1, . . . , w N ,t−1

be the weights used at round t to compute the prediction p̂t =
∑N

i=1 wi,t−1 fi,t . Then, as
one can easily verify,

wi,t = wi,t−1e−η�( fi,t ,yt )∑N
j=1 w j,t−1e−η�( f j,t−1,yt )

.

A simple application of Theorem 2.1 reveals the following performance bound for the
exponentially weighted average forecaster.
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Figure 2.3. Plots of the exponential potential function �η(u) for N = 2 experts with η = 0.5 and
η = 2.

Corollary 2.2. Assume that the loss function � is convex in its first argument and that it
takes values in [0, 1]. For any n and η > 0, and for all y1, . . . , yn ∈ Y , the regret of the
exponentially weighted average forecaster satisfies

L̂n − min
i=1,...,N

Li,n ≤ ln N

η
+ nη

2
.

Optimizing the upper bound suggests the choice η = √2 ln N/n. In this case the upper
bound becomes

√
2n ln N , which is slightly better than the best bound we obtained using

φ(x) = x p
+ with p = 2 ln N . In the next section we improve the bound of Corollary 2.2 by

a direct analysis. The disadvantage of the exponential weighting is that optimal tuning of
the parameter η requires knowledge of the horizon n in advance. In the next two sections
we describe versions of the exponentially weighted average forecaster that do not suffer
from this drawback.

Proof of Corollary 2.2. Apply Theorem 2.1 using the exponential potential. Then φ(x) =
eηx , ψ(x) = (1/η) ln x , and

ψ ′
(

N∑
i=1

φ(ui )

)
N∑

i=1

φ′′(ui )r
2
i,t ≤ η max

i=1,...,N
r2

i,t ≤ η.

Using �η(0) = (ln N )/η, Theorem 2.1 implies that

max
i=1,...,N

Ri,n ≤ �η(Rn) ≤ ln N

η
+ nη

2

as desired.

2.2 An Optimal Bound

The purpose of this section is to show that, even for general convex loss functions, the
bound of Corollary 2.2 may be improved for the exponentially weighted average forecaster.
The following result improves Corollary 2.2 by a constant factor. In Section 3.7 we see that
the bound obtained here cannot be improved further.
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Theorem 2.2. Assume that the loss function � is convex in its first argument and that it
takes values in [0, 1]. For any n and η > 0, and for all y1, . . . , yn ∈ Y , the regret of the
exponentially weighted average forecaster satisfies

L̂n − min
i=1,...,N

Li,n ≤ ln N

η
+ nη

8
.

In particular, with η = √8 ln N/n, the upper bound becomes
√

(n/2) ln N.

The proof is similar, in spirit, to that of Corollary 2.2, but now, instead of bounding the
evolution of (1/η) ln

(∑
i eηRi,t

)
, we bound the related quantities (1/η) ln(Wt/Wt−1), where

Wt =
N∑

i=1

wi,t =
N∑

i=1

e−ηLi,t

for t ≥ 1, and W0 = N . In the proof we use the following classical inequality due to
Hoeffding [161].

Lemma 2.2. Let X be a random variable with a ≤ X ≤ b. Then for any s ∈ R,

ln E
[
es X
] ≤ s E X + s2(b − a)2

8
.

The proof is in Section A.1 of the Appendix.

Proof of Theorem 2.2. First observe that

ln
Wn

W0
= ln

(
N∑

i=1

e−ηLi,n

)
− ln N

≥ ln

(
max

i=1,...,N
e−ηLi,n

)
− ln N

= −η min
i=1,...,N

Li,n − ln N . (2.1)

On the other hand, for each t = 1, . . . , n,

ln
Wt

Wt−1
= ln

∑N
i=1 e−η�( fi,t ,yt )e−ηLi,t−1∑N

j=1 e−ηL j,t−1

= ln

∑N
i=1 wi,t−1e−η�( fi,t ,yt )∑N

j=1 w j,t−1

.

Now using Lemma 2.2, we observe that the quantity above may be upper bounded by

−η

∑N
i=1 wi,t−1�( fi,t , yt )∑N

j=1 w j,t−1

+ η2

8
≤ −η�

(∑N
i=1 wi,t−1 fi,t∑N

j=1 w j,t−1

, yt

)
+ η2

8

= −η�( p̂t , yt )+ η2

8
,
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where we used the convexity of the loss function in its first argument and the definition of
the exponentially weighted average forecaster. Summing over t = 1, . . . , n, we get

ln
Wn

W0
≤ −ηL̂n + η2

8
n.

Combining this with the lower bound (2.1) and solving for L̂n , we find that

L̂n ≤ min
i=1,...,N

Li,n + ln N

η
+ η

8
n

as desired.

2.3 Bounds That Hold Uniformly over Time

As we pointed out in the previous section, the exponentially weighted average forecaster
has the disadvantage that the regret bound of Corollary 2.2 does not hold uniformly over
sequences of any length, but only for sequences of a given length n, where n is the value
used to choose the parameter η. To fix this problem one can use the so-called “doubling
trick.” The idea is to partition time into periods of exponentially increasing lengths. In each
period, the weighted average forecaster is used with a parameter η chosen optimally for
the length of the interval. When the period ends, the weighted average forecaster is reset
and then is started again in the next period with a new value for η. If the doubling trick is
used with the exponentially weighted average forecaster, then it achieves, for any sequence
y1, y2, . . . ∈ Y of outcomes and for any n ≥ 1,

L̂n − min
i=1,...,N

Li,n ≤
√

2√
2− 1

√
n

2
ln N

(see Exercise 2.8). This bound is worse than that of Theorem 2.2 by a factor of
√

2/(
√

2− 1),
which is about 3.41.

Considering that the doubling trick resets the weights of the underlying forecaster
after each period, one may wonder whether a better bound could be obtained by a more
direct argument. In fact, we can avoid the doubling trick altogether by using the weighted
average forecaster with a time-varying potential. That is, we let the parameter η of the
exponential potential depend on the round number t . As the best nonuniform bounds for
the exponential potential are obtained by choosing η = √8(ln N )/n, a natural choice for
a time-varying exponential potential is thus ηt =

√
8(ln N )/t . By adapting the approach

used to prove Theorem 2.2, we obtain for this choice of ηt a regret bound whose main term
is 2
√

(n/2) ln N and is therefore better than the doubling trick bound. More precisely, we
prove the following result.

Theorem 2.3. Assume that the loss function � is convex in its first argument and takes
values in [0, 1]. For all n ≥ 1 and for all y1, . . . , yn ∈ Y , the regret of the exponentially
weighted average forecaster with time-varying parameter ηt =

√
8(ln N )/t satisfies

L̂n − min
i=1,...,N

Li,n ≤ 2

√
n

2
ln N +

√
ln N

8
.
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The exponentially weighted average forecaster with time-varying potential predicts with
p̂t =

∑N
i=1 fi,t wi,t−1/Wt−1, where Wt−1 =

∑N
j=1 w j,t−1 and wi,t−1 = e−ηt Li,t−1 . The poten-

tial parameter is chosen as ηt =
√

a(ln N )/t , where a > 0 is determined by the analy-
sis. We use w ′

i,t−1 = e−ηt−1 Li,t−1 to denote the weight wi,t−1, where the parameter ηt is
replaced by ηt−1. Finally, we use kt to denote the expert whose loss after the first t
rounds is the lowest (ties are broken by choosing the expert with smallest index). That is,
Lkt ,t = mini≤N Li,t . In the proof of the theorem, we also make use of the following technical
lemma.

Lemma 2.3. For all N ≥ 2, for all β ≥ α ≥ 0, and for all d1, . . . , dN ≥ 0 such that∑N
i=1 e−αdi ≥ 1,

ln

∑N
i=1 e−αdi∑N
j=1 e−βd j

≤ β − α

α
ln N .

Proof. We begin by writing

ln

∑N
i=1 e−αdi∑N
j=1 e−βd j

= ln

∑N
i=1 e−αdi∑N

j=1 e(α−β)d j e−αd j
= − ln E

[
e(α−β)D

] ≤ (β − α)E D

by Jensen’s inequality, where D is a random variable taking value di with probability
e−αdi /

∑N
j=1 e−αd j for each i = 1, . . . , N . Because D takes at most N distinct values, its

entropy H (D) is at most ln N (see Section A.2 in the Appendix). Therefore,

ln N ≥ H (D)

=
N∑

i=1

e−αdi

(
αdi + ln

N∑
k=1

e−αdk

)
1∑N

j=1 e−αd j

= αE D + ln
N∑

k=1

e−αdk

≥ αE D,

where the last inequality holds because
∑N

i=1 e−αdi ≥ 1. Hence E D ≤ (ln N )/α. As β > α

by hypothesis, we can substitute the upper bound on E D in the first derivation above and
conclude the proof.

We are now ready to prove the main theorem.

Proof of Theorem 2.3. As in the proof of Theorem 2.2, we study the evolution of
ln(Wt/Wt−1). However, here we need to couple this with ln(wkt−1,t−1/wkt ,t ), including
in both terms the time-varying parameter ηt . Keeping track of the currently best expert, kt

is used to lower bound the weight ln(wkt ,t/Wt ). In fact, the weight of the overall best expert
(after n rounds) could get arbitrarily small during the prediction process. We thus write the
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following:

1

ηt
ln

wkt−1,t−1

Wt−1
− 1

ηt+1
ln

wkt ,t

Wt

=
(

1

ηt+1
− 1

ηt

)
ln

Wt

wkt ,t︸ ︷︷ ︸
(A)

+ 1

ηt
ln

w ′
kt ,t

/W ′
t

wkt ,t/Wt︸ ︷︷ ︸
(B)

+ 1

ηt
ln

wkt−1,t−1/Wt−1

w ′
kt ,t

/W ′
t︸ ︷︷ ︸

(C)

.

We now bound separately the three terms on the right-hand side. The term (A) is easily
bounded by noting that ηt+1 < ηt and using the fact that kt is the index of the expert with
the smallest loss after the first t rounds. Therefore, wkt ,t/Wt must be at least 1/N . Thus we
have

(A) =
(

1

ηt+1
− 1

ηt

)
ln

Wt

wkt ,t
≤
(

1

ηt+1
− 1

ηt

)
ln N .

We proceed to bounding the term (B) as follows:

(B) = 1

ηt
ln

w ′
kt ,t

/W ′
t

wkt ,t/Wt
= 1

ηt
ln

∑N
i=1 e−ηt+1(Li,t−Lkt ,t )∑N
j=1 e−ηt (L j,t−Lkt ,t )

≤ ηt − ηt+1

ηtηt+1
ln N =

(
1

ηt+1
− 1

ηt

)
ln N ,

where the inequality is proven by applying Lemma 2.3 with di = Li,t − Lkt+1,t . Note that
di ≥ 0 because kt is the index of the expert with the smallest loss after the first t rounds
and

∑N
i=1 e−ηt+1di ≥ 1 as for i = kt+1 we have di = 0. The term (C) is first split as follows:

(C) = 1

ηt
ln

wkt−1,t−1/Wt−1

w ′
kt ,t

/W ′
t

= 1

ηt
ln

wkt−1,t−1

w ′
kt ,t

+ 1

ηt
ln

W ′
t

Wt−1
.

We treat separately each one of the two subterms on the right-hand side. For the first one,
we have

1

ηt
ln

wkt−1,t−1

w ′
kt ,t

= 1

ηt
ln

e−ηt Lkt−1,t−1

e−ηt Lkt ,t
= Lkt ,t − Lkt−1,t−1.

For the second subterm, we proceed similarly to the proof of Theorem 2.2 by applying
Hoeffding’s bound (Lemma 2.2) to the random variable Z that takes the value �( fi,t , yt )
with probability wi,t−1/Wt−1 for each i = 1, . . . , N :

1

ηt
ln

W ′
t

Wt−1
= 1

ηt
ln

N∑
i=1

wi,t−1

Wt−1
e−ηt �( fi,t ,yt )

≤ −
N∑

i=1

wi,t−1

Wt−1
�( fi,t , yt )+ ηt

8

≤ −�( p̂t , yt )+ ηt

8
,

where in the last step we used the convexity of the loss �. Finally, we substitute back in the
main equation the bounds on the first two terms (A) and (B), and the bounds on the two
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subterms of the term (C). Solving for �( p̂t , yt ), we obtain

�( p̂t , yt ) ≤
(
Lkt ,t − Lkt−1,t−1

)+ √a ln N

8

1√
t

+ 1

ηt+1
ln

wkt ,t

Wt
− 1

ηt
ln

wkt−1,t−1

Wt−1

+ 2

(
1

ηt+1
− 1

ηt

)
ln N .

We apply the above inequality to each t = 1, . . . , n and sum up using
∑n

t=1 �( p̂t , yt ) = L̂n ,∑n
t=1

(
Lkt ,t − Lkt−1,t−1

) = mini=1,...,N Li,n ,
∑n

t=1 1/
√

t ≤ 2
√

n, and

n∑
t=1

(
1

ηt+1
ln

wkt ,t

Wt
− 1

ηt
ln

wkt−1,t−1

Wt−1

)
≤ − 1

η1
ln

wk0,0

W0
=
√

ln N

a

n∑
t=1

(
1

ηt+1
− 1

ηt

)
=
√

n + 1

a(ln N )
−
√

1

a(ln N )
.

Thus, we can write the bound

L̂n ≤ min
i=1,...,N

Li,n +
√

an ln N

4
+ 2

√
(n + 1) ln N

a
−
√

ln N

a
.

Finally, by overapproximating and choosing a = 8 to trade off the two main terms, we get

L̂n ≤ min
i=1,...,N

Li,n + 2

√
n

2
ln N +

√
ln N

8

as desired.

2.4 An Improvement for Small Losses

The regret bound for the exponentially weighted average forecaster shown in Theorem 2.2
may be improved significantly whenever it is known beforehand that the cumulative loss
of the best expert will be small. In some cases, as we will see, this improvement may even
be achieved without any prior knowledge.

To understand why one can hope for better bounds for the regret when the cumulative
loss of the best expert is small, recall the simple example described in the introduction when
Y = D = {0, 1} and �( p̂, y) = |̂p − y| ∈ {0, 1} (this example violates our assumption that
D is a convex set but helps understand the basic phenomenon). If the forecaster knows in
advance that one of the N experts will suffer zero loss, that is, mini=1,...,N Li,n = 0, then
he may predict using the following simple “majority vote.” At time t = 1 predict p̂1 = 0 if
and only if at least half of the N experts predict 0. After the first bit y1 is revealed, discard
all experts with fi,1 �= y1. At time t = 2 predict p̂2 = 0 if and only if at least half of the N
remaining experts predict 0, discard all incorrectly predicting experts after y2 is revealed,
and so on. Hence, each time the forecaster makes a mistake, at least half of the surviving
experts are discarded (because the forecaster always votes according to the majority of the
remaining experts). If only one expert remains, the forecaster does not make any further
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mistake. Thus, the total number of mistakes of the forecaster (which, in this case, coincides
with his regret) is at most �log2 N�.

In this section we show that regret bounds of the form O(ln N ) are possible for all
bounded and convex losses on convex decision spaces whenever the forecaster is given the
information that the best expert will suffer no loss. Note that such bounds are significantly
better than

√
(n/2) ln N , which holds independently of the loss of the best expert.

For simplicity, we write L∗n = mini=1,...,N Li,n . We now show that whenever L∗n is known
beforehand, the parameter η of the exponentially weighted average forecaster can be chosen
so that his regret is bounded by

√
2L∗n ln N + ln N , which equals to ln N when L∗n = 0 and

is of order
√

n ln N when L∗n is of order n. Our main tool is the following refinement of
Theorem 2.2.

Theorem 2.4. Assume that the loss function � is convex in its first argument and that it
takes values in [0, 1]. Then for any η > 0 the regret of the exponentially weighted average
forecaster satisfies

L̂n ≤ η L∗n + ln N

1− e−η
.

It is easy to see that, in some cases, an uninformed choice of η can still lead to a good regret
bound.

Corollary 2.3. Assume that the exponentially weighted average forecaster is used with
η = 1. Then, under the conditions of Theorem 2.4,

L̂n ≤ e

e − 1

(
L∗n + ln N

)
.

This bound is much better than the general bound of Theorem 2.2 if L∗n �
√

n, but it may
be much worse otherwise.

We now derive a new bound by tuning η in Theorem 2.4 in terms of the total loss L∗n of
the best expert.

Corollary 2.4. Assume the exponentially weighted average forecaster is used with η =
ln
(
1+√(2 ln N )/L∗n

)
, where L∗n > 0 is supposed to be known in advance. Then, under the

conditions of Theorem 2.4,

L̂n − L∗n ≤
√

2L∗n ln N + ln N .

Proof. Using Theorem 2.4, we just need to show that, for our choice of η,

ln N + ηL∗n
1− e−η

≤ L∗n + ln N +√2L∗n ln N . (2.2)

We start from the elementary inequality (eη − e−η)/2 = sinh(η) ≥ η, which holds for all
η ≥ 0. Replacing the η in the numerator of the left-hand side of (2.2) with this upper bound,
we find that (2.2) is implied by

ln N

1− e−η
+ 1+ e−η

2e−η
L∗n ≤ L∗n + ln N +√2L∗n ln N .

The proof is concluded by noting that the above inequality holds with equality for our
choice of η.
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Of course, the quantity L∗n is only available after the nth round of prediction. The lack
of this information may be compensated by letting η change according to the loss of the
currently best expert, similarly to the way shown in Section 2.3 (see Exercise 2.10). The
regret bound that is obtainable via this approach is of the form 2

√
2L∗n ln N + c ln N , where

c > 1 is a constant. Note that, similarly to Theorem 2.3, the use of a time-varying parameter
ηt leads to a bound whose leading term is twice the one obtained when η is fixed and chosen
optimally on the basis of either the horizon n (as in Theorem 2.2) or the loss L∗n of the best
expert (as in Corollary 2.4).

Proof of Theorem 2.4. The proof is a simple modification of that of Theorem 2.2. The only
difference is that Hoeffding’s inequality is now replaced by Lemma A.3 (see the Appendix).
Recall from the proof of Theorem 2.2 that

−ηL∗n − ln N ≤ ln
Wn

W0
=

n∑
t=1

ln
Wt

Wt−1
=

n∑
t=1

ln

∑N
i=1 wi,t−1e−η�( fi,t ,yt )∑N

j=1 w j,t−1

.

We apply Lemma A.3 to the random variable Xt that takes value �( fi,t , yt ) with probability
wi,t−1/Wt−1 for each i = 1, . . . , N . Note that by convexity of the loss function and Jensen’s
inequality, E Xt ≥ �( p̂t , yt ) and therefore, by Lemma A.3,

ln

∑N
i=1 wi,t−1e−η�( fi,t ,yt )∑N

j=1 w j,t−1

= ln E
[
e−ηXt

] ≤ (e−η − 1
)
E Xt ≤

(
e−η − 1

)
�( p̂t , yt ).

Thus,

−ηL∗n − ln N ≤
n∑

t=1

ln

∑N
i=1 wi,t−1e−η�( fi,t ,yt )∑N

j=1 w j,t−1

≤ (e−η − 1
)

L̂n.

Solving for L̂n yields the result.

2.5 Forecasters Using the Gradient of the Loss

Consider again the exponentially weighted average forecaster whose predictions are defined
by

p̂t =
∑N

i=1 wi,t−1 fi,t∑N
j=1 w j,t−1

,

where the weight wi,t−1 for expert i at round t is defined by wi,t−1 = e−ηLi,t−1 . In this section
we introduce and analyze a different exponentially weighted average forecaster in which
the cumulative loss Li,t−1 appearing at the exponent of wi,t−1 is replaced by the gradient
of the loss summed up to time t − 1. This new class of forecasters will be generalized in
Chapter 11, where we also provide extensive analysis and motivation.

Recall that the decision space D is a convex subset of a linear space. Throughout this
section, we also assume that D is finite dimensional, though this assumption can be relaxed
easily. If � is differentiable, we use ∇�( p̂, y) to denote its gradient with respect to the first
argument p̂ ∈ D.
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Define the gradient-based exponentially weighted average forecaster by

p̂t =
∑N

i=1 exp
(
−η
∑t−1

s=1 ∇�( p̂s, ys) · fi,s

)
fi,t∑N

j=1 exp
(
−η
∑t−1

s=1 ∇�( p̂s, ys) · f j,s

) .

To understand the intuition behind this predictor, note that the weight assigned to expert i is
small if the sum of the inner products ∇�( p̂s, ys) · fi,s has been large in the past. This inner
product is large if expert i’s advice fi,s points in the direction of the largest increase of the
loss function. Such a large value means that having assigned a little bit larger weight to this
expert would have increased the loss suffered at time s. According to the philosophy of the
gradient-based exponentially weighted average forecaster, the weight of such an expert has
to be decreased.

The predictions of this forecaster are, of course, generally different from those of the
standard exponentially weighted average forecaster. However, note that in the special case of
binary prediction with absolute loss (i.e., if D = [0, 1], Y = {0, 1} and �(x, y) = |x − y|),
a setup that we study in detail in Chapter 8, the predictions of the two forecasters are
identical (see the exercises).

We now show that, under suitable conditions on the norm of the gradient of the loss, the
regret of the new forecaster can be bounded by the same quantity that was used to bound
the regret of the standard exponentially weighted average forecaster in Corollary 2.2.

Corollary 2.5. Assume that the decision spaceD is a convex subset of the euclidean unit ball
{q ∈ R

d : ‖q‖ ≤ 1}, the loss function � is convex in its first argument and that its gradient
∇� exists and satisfies ‖∇�‖ ≤ 1. For any n and η > 0, and for all y1, . . . , yn ∈ Y , the
regret of the gradient-based exponentially weighted average forecaster satisfies

L̂n − min
i=1,...,N

Li,n ≤ ln N

η
+ nη

2
.

Proof. The weight vector wt−1 = (w1,t−1, . . . , w N ,t−1) used by this forecaster has com-
ponents

wi,t−1 = exp

(
−η

t−1∑
s=1

∇�( p̂s, ys) · fi,s

)
.

Observe that these weights correspond to the exponentially weighted average forecaster
based on the loss function �′, defined at time t by

�′(q, yt ) = q · ∇�( p̂t , yt ), q ∈ D.

By assumption, �′ takes values in [−1, 1]. Applying Theorem 2.2 after rescaling �′ in [0, 1]
(see Section 2.6), we get

max
i=1,...,N

n∑
i=1

( p̂t − fi,t ) · ∇�( p̂t , yt ) =
n∑

t=1

�′( p̂t , yt )− min
i=1,...,N

n∑
t=1

�′( fi,t , yt )

≤ ln N

η
+ nη

2
.
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The proof is completed by expanding �( fi,t , yt ) around �( p̂t , yt ) as follows:

�( p̂t , yt )− �( fi,t , yt ) ≤ ( p̂t − fi,t ) · ∇�( p̂t , yt ),

which implies that

L̂n − min
i=1,...,N

Li,n ≤
n∑

t=1

�′( p̂t , yt )− min
i=1,...,N

n∑
t=1

�′( fi,t , yt ).

2.6 Scaled Losses and Signed Games

Up to this point we have always assumed that the range of the loss function � is the
unit interval [0, 1]. We now investigate how scalings and translations of this range affect
forecasting strategies and their performance.

Consider first the case of a loss function � ∈ [0, M]. If M is known, we can run the
weighted average forecaster on the scaled losses �/M and apply without any modification
the analysis developed for the [0, 1] case. For instance, in the case of the exponentially
weighted average forecaster, Corollary 2.4, applied to these scaled losses, yields the regret
bound

L̂n − L∗n ≤
√

2L∗n M ln N + M ln N .

The additive term M ln N is necessary. Indeed, if � is such that for all p ∈ D there exist
p′ ∈ D and y ∈ Y such that �(p, y) = M and �(p′, y) = 0, then the expert advice can be
chosen so that any forecaster incurs a cumulative loss of at least M log N on some outcome
sequence with L∗n = 0.

Consider now the translated range [−M, 0]. If we interpret negative losses as gains, we
may introduce the regret G∗

n − Ĝn measuring the difference between the cumulative gain
G∗

n = −L∗n = maxi=1,...,N (−Li,n) of the best expert and the cumulative gain Ĝn = −L̂n of
the forecaster. As before, if M is known we can run the weighted average forecaster on
the scaled gains (−�)/M and apply the analysis developed for [0, 1]-valued loss functions.
Adapting Corollary 2.4 we get a bound of the form

G∗
n − Ĝn ≤

√
2G∗

n M ln N + M ln N .

Note that the regret now scales with the largest cumulative gain G∗
n .

We now turn to the general case in which the forecasters are scored using a generic
payoff function h : D × Y → R, concave in its first argument. The goal of the forecaster is
to maximize his cumulative payoff. The corresponding regret is defined by

max
i=1,...,N

n∑
t=1

h( fi,t , yt )−
n∑

t=1

h( p̂t , yt ) = H∗
n − Ĥn.

If the payoff function h has range [0, M], then it is a gain function and the forecaster plays
a gain game. Similarly, if h has range in [−M, 0], then it is the negative of a loss function
and the forecaster plays a loss game. Finally, if the range of h includes a neighborhood of
0, then the game played by the forecaster is a signed game.

Translated to this terminology, the arguments proposed at the beginning of this sec-
tion say that in any unsigned game (i.e., any loss game [−M, 0] or gain game [0, M]),
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rescaling of the payoffs yields a regret bound of order
√|H∗

n |M ln N whenever M
is known. In the case of signed games, however, scaling is not sufficient. Indeed, if
h ∈ [−M, M], then the reduction to the [0, 1] case is obtained by the linear transformation
h �→ (h + M)/(2M). Applying this to the analysis leading to Corollary 2.4, we get the regret
bound

H∗
n − Ĥn ≤

√
4(H∗

n + Mn)(M ln N )+ 2M ln N = O
(

M
√

n ln N
)

.

This shows that, for signed games, reducing to the [0, 1] case might not be the best thing
to do. Ideally, we would like to replace the factor n in the leading term with something like
|h( fi,1, y1)| + · · · + |h( fi,n, yn)| for an arbitrary expert i . In the next sections we show that,
in certain cases, we can do even better than that.

2.7 The Multilinear Forecaster

Potential functions offer a convenient tool to derive weighted average forecasters. However,
good forecasters for signed games can also be designed without using potentials, as shown
in this section.

Fix a signed game with payoff function h : D × Y → R, and consider the weighted
average forecaster that predicts, at time t ,

p̂t =
∑N

i=1 wi,t−1 fi,t

Wt−1
,

where Wt−1 =
∑N

j=1 w j,t−1. The weights wi,t−1 of this forecaster are recursively defined
as follows

wi,t =
{

1 if t = 0
wi,t−1

(
1+ ηh( fi,t , yt )

)
otherwise,

where η > 0 is a parameter of the forecaster. Because wi,t is a multilinear form of the
payoffs, we call this the multilinear forecaster.

Note that the weights w1,t , . . . , w N ,t cannot be expressed as functions of the regret
Rt of components Hi,n − Ĥn . On the other hand, since (1+ ηh) ≈ eηh , the regret of the
multilinear forecaster can be bounded via a technique similar to the one used in the proof of
Theorem 2.2 for the exponentially weighted average forecaster. We just need the following
simple lemma (proof is left as exercise).

Lemma 2.4. For all z ≥ −1/2, ln(1+ z) ≥ z − z2.

The next result shows that the regret of the multilinear forecaster is naturally expressed in
terms of the squared sum of the payoffs of an arbitrary expert.

Theorem 2.5. Assume that the payoff function h is concave in its first argument and satisfies
h ∈ [−M,∞). For any n and 0 < η < 1/(2M), and for all y1, . . . , yn ∈ Y , the regret of
the multilinear forecaster satisfies

Hi,n − Ĥn ≤ ln N

η
+ η

n∑
t=1

h( fi,t , yt )
2 for each i = 1, . . . , N.
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Proof. For any i = 1, . . . , N , note that h( fi,t , yt ) ≥ −M and η ≤ 1/(2M) imply that
ηh( fi,t , yt ) ≥ −1/2. Hence, we can apply Lemma 2.4 to ηh( fi,t , yt ) and get

ln
Wn

W0
= − ln N + ln

n∏
t=1

(
1+ ηh( fi,t , yt )

)
= − ln N +

n∑
t=1

ln
(
1+ ηh( fi,t , yt )

)
≥ − ln N +

n∑
t=1

(
ηh( fi,t , yt )− η2h( fi,t , yt )

2
)

= − ln N + ηHi,n − η2
n∑

t=1

h( fi,t , yt )
2.

On the other hand,

ln
Wn

W0
=

n∑
t=1

ln
Wt

Wt−1

=
n∑

t=1

ln

(
N∑

i=1

p̂i,t
(
1+ ηh( fi,t , yt )

))

≤ η

n∑
t=1

N∑
i=1

p̂i,t h( fi,t , yt ) (since ln(1+ x) ≤ x for x > −1)

≤ ηĤn (since h(·, y) is concave).

Combining the upper and lower bounds of ln(Wn/W0), and dividing by η > 0, we get the
claimed bound.

Let Q∗
n = h( fk,1, y1)2 + · · · + h( fk,n, yn)2 where k is such that Hk,n = H∗

n =
maxi=1,...,N Hi,n . If η is chosen using Q∗

n , then Theorem 2.5 directly implies the following.

Corollary 2.6. Assume the multilinear forecaster is run with

η = min

{
1

2M
,

√
ln N

Q∗
n

}
,

where Q∗
n > 0 is supposed to be known in advance. Then, under the conditions of Theo-

rem 2.5,

H∗
n − Ĥ ≤ 2

√
Q∗

n ln N + 4M ln N .

To appreciate this result, consider a loss game with h ∈ [−M, 0] and let L∗n = −maxi Hi,n .
As Q∗

n ≤ M L∗n , the performance guarantee of the multilinear forecaster is at most a factor
of
√

2 larger than that of the exponentially weighted average forecaster, whose regret in
this case has the leading term

√
2L∗n M ln N (see Section 2.4). However, in some cases Q∗

n

may be significantly smaller than M L∗n , so that the bound of Corollary 2.6 presents a real
improvement. In Section 2.8, we show that a more careful analysis of the exponentially
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weighted average forecaster yields similar (though noncomparable) second-order regret
bounds.

It is still an open problem to obtain regret bounds of order
√

Q∗
n ln N without exploiting

some prior knowledge on the sequence y1, . . . , yn (see Exercise 2.14). In fact, the analysis
of adaptive tuning techniques, such as the doubling trick or the time-varying η, rely on
the monotonicity of the quantity whose evolution determines the tuning strategy. On the
other hand, the sequence Q∗

1, Q∗
2, . . . is not necessarily monotone as Q∗

t and Q∗
t+1 cannot

generally be related when the experts achieving the largest cumulative payoffs at rounds t
and t + 1 are different.

2.8 The Exponential Forecaster for Signed Games

A slight modification of our previous analysis is sufficient to show that the exponentially
weighted average forecaster also is able to achieve a small regret in signed games. Like
the multilinear forecaster of Section 2.7, this new bound is expressed in terms of sums of
quadratic terms that are related to the variance of the experts’ losses with respect to the
distribution induced by the forecaster’s weights. Furthermore, the use of a time-varying
potential allows us to dispense with the need of any preliminary knowledge of the best
cumulative payoff H∗

n .
We start by redefining, for the setup where payoff functions are used, the exponentially

weighted average forecaster with time-varying potential introduced in Section 2.3. Given a
payoff function h, this forecaster predicts with p̂t =

∑N
i=1 fi,t wi,t−1/Wt−1, where Wt−1 =∑N

j=1 w j,t−1, wi,t−1 = eηt Hi,t−1 , Hi,t−1 = h( fi,1, y1)+ · · · + h( fi,t−1, yt−1), and we assume
that the sequence η1, η2, . . . of parameters is positive. Note that the value of η1 is immaterial
because Hi,0 = 0 for all i .

Let X1, X2, . . . be random variables such that Xt = h( fi,t , yt ) with probability
wi,t−1/Wt−1 for all i and t . The next result, whose proof is left as an exercise, bounds
the regret of the exponential forecaster for any nonincreasing sequence of potential param-
eters in terms of the process X1, . . . , Xn . Note that this lemma does not assume any
boundedness condition on the payoff function.

Lemma 2.5. Let h be a payoff function concave in its first argument. The exponentially
weighted average forecaster, run with any nonincreasing sequence η1, η2, . . . of parameters
satisfies, for any n ≥ 1 and for any sequence y1, . . . , yn of outcomes,

H∗
n − Ĥn ≤

(
2

ηn+1
− 1

η1

)
ln N +

n∑
t=1

1

ηt
ln E

[
eηt (Xt−EXt )

]
.

Let

Vt =
t∑

s=1

var(Xs) =
t∑

s=1

E

[(
Xs − E Xs

)2]
.

Our next result shows that, with an appropriate choice of the sequence ηt , the regret of
the exponential forecaster at time n is at most of order

√
Vn ln N . Note, however, that the

bound is not in closed form as Vn depends on the forecaster’s weights wi,t for all i and t .
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Theorem 2.6. Let h be a [−M, M]-valued payoff function concave in its first argument.
Suppose the exponentially weighted average forecaster is run with

ηt = min

⎧⎨⎩ 1

2M
,

√
2
(√

2− 1
)

e − 2

√
ln N

Vt−1

⎫⎬⎭ , t = 2, 3, . . . .

Then, for any n ≥ 1 and for any sequence y1, . . . , yn of outcomes,

H∗
n − Ĥn ≤ 4

√
Vn ln N + 4M ln N + (e − 2)M.

Proof. For brevity, write

C =
√

2
(√

2− 1
)

e − 2
.

We start by applying Lemma 2.5 (with, say, η1 = η2)

H∗
n − Ĥn ≤

(
2

ηn+1
− 1

η1

)
ln N +

n∑
t=1

1

ηt
ln E

[
eηt (Xt−EXt )

]
≤ 2 max

{
2M ln N ,

1

C

√
Vn ln N

}
+

n∑
t=1

1

ηt
ln E

[
eηt (Xt−EXt )

]
.

Since ηt ≤ 1/(2M), ηt (Xt − E Xt ) ≤ 1 and we may apply the inequality ex ≤ 1+ x +
(e − 2)x2 for all x ≤ 1. We thus find that

H∗
n − Ĥn ≤ 2 max

{
2M ln N ,

1

C

√
Vn ln N

}
+ (e − 2)

n∑
t=1

ηt var(Xt ).

Now denote by T the first time step t when Vt > M2. Using ηt ≤ 1/(2M) for all t and
VT ≤ 2M2, we get

n∑
t=1

ηt var(Xt ) ≤ M +
n∑

t=T+1

ηt var(Xt ).

We bound the sum using ηt ≤ C
√

(ln N )/Vt−1 for t ≥ 2 (note that, for t > T , Vt−1 ≥ VT >

M2 > 0). This yields

n∑
t=T+1

ηt var(Xt ) ≤ C
√

ln N
n∑

t=T+1

Vt − Vt−1√
Vt−1

.

Let vt = var(Xt ) = Vt − Vt−1. Since Vt ≤ Vt−1 + M2 and Vt−1 ≥ M2, we have

vt√
Vt−1

=
√

Vt +
√

Vt−1√
Vt−1

(√
Vt −

√
Vt−1

)
≤ (√2+ 1

) (√
Vt −

√
Vt−1

)
.

Therefore,

n∑
t=T+1

ηt var(Xt ) ≤ C
√

ln N√
2− 1

(√
Vn −

√
VT

)
≤ C√

2− 1

√
Vn ln N .
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Substituting our choice of C and performing trivial overapproximations concludes the
proof.

Remark 2.2. The analyses proposed by Theorem 2.5, Corollary 2.6, and Theorem 2.6
show that the multilinear forecaster and the exponentially weighted average forecaster
work, with no need of translating payoffs, in both unsigned and signed games. In addition,
the regret bounds shown in these results are potentially much better than the invariant bound
M
√

n ln N obtained via the explicit payoff transformation h �→ (h + M)/(2M) from signed
to unsigned games (see Section 2.6). However, none of these bounds applies to the case
when no preliminary information is available on the sequence of observed payoffs.

The main term of the bound stated in Theorem 2.6 contains Vn . This quantity is smaller
than all quantities of the form

n∑
t=1

N∑
i=1

wi,t−1

Wt−1

(
h( fi,t , yt )− µt

)2
where µ1, µ2, . . . is any sequence of real numbers that may be chosen in hindsight, as it
is not required for the definition of the forecaster. This gives us a whole family of upper
bounds, and we may choose for the analysis the most convenient sequence of µt .

To provide a concrete example, denote the effective range of the payoffs at time
t by Rt = maxi=1,...,N h( fi,t , yt )−min j=1,...,N h( f j,t , yt ) and consider the choice µt =
min j=1,...,N h( f j,t , yt )+ Rt/2.

Corollary 2.7. Under the same assumptions as in Theorem 2.6,

H∗
n − Ĥn ≤ 2

√√√√(ln N )
n∑

t=1

R2
t + 4M ln N + (e − 2)M.

In a loss game, where h has the range [−M, 0], Corollary 2.7 states that the regret is
bounded by a quantity dominated by the term 2M

√
n ln N . A comparison with the bound

of Theorem 2.3 shows that we have only lost a factor
√

2 to obtain a much more general
result.

2.9 Simulatable Experts

So far, we have viewed experts as unspecified entities generating, at each round t , an
advice to which the forecaster has access. A different setup is when the experts them-
selves are accessible to the forecaster, who can make arbitrary experiments to reveal their
future behavior. In this scenario we may define an expert E using a sequence of func-
tions fE,t : Y t−1 → D, t = 1, 2, . . . such that, at every time instant t , the expert predicts
according to fE,t (yt−1). We also assume that the forecaster has access to these func-
tions and therefore can, at any moment, hypothesize future outcomes and compute all
experts’ future predictions for that specific sequence of outcomes. Thus, the forecaster
can “simulate” the experts’ future reactions, and we call such experts simulatable. For
example, a simulatable expert for a prediction problem where D = Y is the expert E such



30 Prediction with Expert Advice

that fE,t (yt−1) = (y1 + · · · + yt−1)/(t − 1). Note that we have assumed that at time t the
prediction of a simulatable expert only depends on the sequence yt−1 of past observed out-
comes. This is not true for the more general type of experts, whose advice might depend on
arbitrary sources of information also hidden from the forecaster. More importantly, while
the prediction of a general expert, at time t , may depend on the past moves p̂1, . . . , p̂t−1 of
the forecaster ( just recall the protocol of the game of prediction with expert advice), the val-
ues a simulatable expert outputs only depend on the past sequence of outcomes. Because
here we are not concerned with computational issues, we allow fE,t to be an arbitrary
function of yt−1 and assume that the forecaster may always compute such a function.

A special type of simulatable expert is a static expert. An expert E is static when its
predictions fE,t only depend on the round index t and not on yt−1. In other words, the
functions fE,t are all constant valued. Thus, a static expert E is completely described
by the sequence fE,1, fE,2, . . . of its predictions at each round t . This sequence is fixed
irrespective of the actual observed outcomes. For this reason we use f = ( f1, f2, . . .) to
denote an arbitrary static expert. Abusing notation, we use f also to denote simulatable
experts.

Simulatable and static experts provide the forecaster with additional power. It is then
interesting to consider whether this additional power could be exploited to reduce the
forecaster’s regret. This is investigated in depth for specific loss functions in Chapters 8
and 9.

2.10 Minimax Regret

In the model of prediction with expert advice, the best regret bound obtained so far, which
holds for all [0, 1]-valued convex losses, is

√
(n/2) ln N . This is achieved (for any fixed

n ≥ 1) by the exponentially weighted average forecaster. Is this the best possible uniform
bound? Which type of forecaster achieves the best regret bound for each specific loss? To
address these questions in a rigorous way we introduce the notion of minimax regret. Fix
a loss function � and consider N general experts. Define the minimax regret at horizon
n by

V (N )
n = sup

( f1,1,..., fN ,1)∈DN

inf
p̂1∈D

sup
y1∈Y

sup
( f1,2,..., fN ,2)∈DN

inf
p̂2∈D

sup
y2∈Y

· · · sup
( f1,n ,..., fN ,n )∈DN

inf
p̂n∈D

sup
yn∈Y

(
n∑

t=1

�( p̂t , yt )− min
i=1,...,N

n∑
t=1

�( fi,t , yt )

)
.

An equivalent, but simpler, definition of minimax regret can be given using static experts.
Define a strategy for the forecaster as a prescription for computing, at each round t , the pre-
diction p̂t given the past t − 1 outcomes y1, . . . , yt−1 and the expert advice ( f1,s, . . . , fN ,s)
for s = 1, . . . , t . Formally, a forecasting strategy P is a sequence p̂1, p̂2, . . . of
functions

p̂t : Y t−1 × (DN
)t → D.

Now fix any class F of N static experts and let L̂n(P,F , yn) be the cumulative loss on the
sequence yn of the forecasting strategy P using the advice of the experts in F . Then the
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minimax regret V (N )
n can be equivalently defined as

V (N )
n = inf

P
sup

{F : |F |=N }
sup

yn∈Yn
max

i=1,...,N

(
L̂n(P,F , yn)−

n∑
t=1

�( fi,t , yt )

)
,

where the infimum is over all forecasting strategies P and the first supremum is over all
possible classes of N static experts (see Exercise 2.18).

The minimax regret measures the best possible performance guarantee one can have
for a forecasting algorithm that holds for all possible classes of N experts and all outcome
sequences of length n. An upper bound on V (N )

n establishes the existence of a forecasting
strategy achieving a regret not larger than the upper bound, regardless of what the class of
experts and the outcome sequence are. On the other hand, a lower bound on V (N )

n shows
that for any forecasting strategy there exists a class of N experts and an outcome sequence
such that the regret of the forecaster is at least as large as the lower bound.

In this chapter and in the next, we derive minimax regret upper bounds for several losses,
including V (N )

n ≤ ln N for the logarithmic loss �(x, y) = −I{y=1} ln x − I{y=0} ln(1− x),
where x ∈ [0, 1] and y ∈ {0, 1}, and V (N )

n ≤ √(n/2) ln N for all [0, 1]-valued convex losses,
both achieved by the exponentially weighted average forecaster. In Chapters 3, 8, and 9 we
complement these results by proving, among other related results, that V (N )

n = ln N for the
logarithmic loss provided that n ≥ log2 N and that the minimax regret for the absolute loss
�(x, y) = |x − y| is asymptotically

√
(n/2) ln N , matching the upper bound we derived for

convex losses. This entails that the exponentially weighted average forecaster is minimax
optimal, in an asymptotic sense, for both the logarithmic and absolute losses.

The notion of minimax regret defined above is based on the performance of any forecaster
in the case of the worst possible class of experts. However, often one is interested in the best
possible performance a forecaster can achieve compared with the best expert in a fixed class.
This leads to the definition of minimax regret for a fixed class of (simulatable) experts as
follows. Fix some loss function � and let F be a (not necessarily finite) class of simulatable
experts. A forecasting strategy P based on F is now just a sequence p̂1, p̂2, . . . of functions
p̂t : Y t−1 → D. (Note that p̂t implicitly depends on F , which is fixed. Therefore, as the
experts in F are simulatable, p̂t need not depend explicitly on the expert advice.) The
minimax regret with respect to F at horizon n is then defined by

Vn(F) = inf
P

sup
yn∈Yn

(
n∑

t=1

�
(

p̂t (yt−1), yt
)− inf

f ∈F

n∑
t=1

�
(

ft (yt−1), yt
))

.

This notion of regret is studied for specific losses in Chapters 8 and 9.
Given a class F of simulatable experts, one may also define the closely related quantity

Un(F) = sup
Q

inf
P

∫
Yn

(
n∑

t=1

�
(

p̂t (yt−1), yt
)− inf

f ∈F

n∑
t=1

�
(

ft (yt−1), yt
))

dQ(yn),

where the supremum is taken over all probability measures over the set Yn of sequences of
outcomes of length n. Un(F) is called the maximin regret with respect to F . Of course, to
define probability measures over Yn , the set Y of outcomes should satisfy certain regularity
properties. For simplicity, assume that Y is a compact subset of R

d . This assumption is
satisfied for most examples that appear in this book and can be significantly weakened if
necessary. A general minimax theorem, proved in Chapter 7, implies that if the decision
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space D is convex and the loss function � is convex and continuous in its first argument,
then

Vn(F) = Un(F).

This equality follows simply by the fact that the function

F(P, Q) =
∫
Yn

(
n∑

t=1

�
(

p̂t (yt−1), yt
)− inf

f ∈F

n∑
t=1

�
(

ft (yt−1), yt
))

dQ(yn)

is convex in its first argument and concave (actually linear) in the second. Here we
define a convex combination λP (1) + (1− λ)P (2) of two forecasting strategies P (1) =
( p̂(1)

1 , p̂(1)
2 , . . .) and P (2) = ( p̂(2)

1 , p̂(2)
2 , . . .) by a forecaster that predicts, at time t , according

to

λ p̂(1)
t (yt−1)+ (1− λ) p̂(2)

t (yt−1).

We leave the details of checking the conditions of Theorem 7.1 to the reader (see Exer-
cise 2.19).

2.11 Discounted Regret

In several applications it is reasonable to assume that losses in the past are less significant
than recently suffered losses. Thus, one may consider discounted regrets of the form

ρi,n =
n∑

t=1

βn−t ri,t ,

where the discount factors βt are typically decreasing with t and ri,t = �( p̂t , yt )− �( fi,t , yt )
is the instantaneous regret with respect to expert i at round t . In particular, we assume that
β0 ≥ β1 ≥ β2 ≥ · · · is a nonincreasing sequence and, without loss of generality, we let
β0 = 1. Thus, at time t = n, the actual regret ri,t has full weight while regrets suffered in
the past have smaller weight; the more distant the past, the less its weight.

In this setup the goal of the forecaster is to ensure that, regardless of the sequence of
outcomes, the average discounted cumulative regret

max
i=1,...,N

∑n
t=1 βn−t ri,t∑n

t=1 βn−t

is as small as possible. More precisely, one would like to bound the average discounted
regret by a function of n that converges to zero as n →∞. The purpose of this section is to
explore for what sequences of discount factors it is possible to achieve this goal. The case
when βt = 1 for all t corresponds to the case studied in the rest of this chapter. Other natural
choices include the exponential discount sequence βt = a−t for some a > 1 or sequences
of the form βt = (t + 1)−a with a > 0.

First we observe that if the discount sequence decreases too quickly, then, except for
trivial cases, there is no hope to prove any meaningful bound.

Theorem 2.7. Assume that there is a positive constant c such that for each n there
exist outcomes y1, y2 ∈ Y and two experts i �= i ′ such that i = argmin j �( f j,n, y1),
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i ′ = argmin j �( f j,n, y2), and miny=y1,y2 |�( fi,n, y) − �( fi ′,n, y)| ≥ c. If
∑∞

t=0 βt <∞,
then there exists a constant C such that, for any forecasting strategy, there is a sequence of
outcomes such that

max
i=1,...,N

∑n
t=1 βn−t ri,t∑n

t=1 βn−t
≥ C

for all n.

Proof. The lower bound follows simply by observing that the weight of the regrets at the
last time step t = n is too large: it is comparable with the total weight of the whole past.
Formally,

max
i=1,...,N

n∑
t=1

βn−t ri,t ≥ max
i=1,...,N

β0ri,n = �( p̂n, yn)− min
i=1,...,N

�( fi,n, yn).

Thus,

sup
yn∈Yn

max
i=1,...,N

∑n
t=1 βn−t ri,t∑n

t=1 βn−t

≥ supy∈Y
(
�( p̂n, y)−mini=1,...,N �( fi,n, y)

)∑∞
t=0 βt

≥ C

2
∑∞

t=0 βt
.

Next we contrast the result by showing that whenever the discount factors decrease suffi-
ciently slowly such that

∑∞
t=0 βt = ∞, it is possible to make the average discounted regret

vanish for large n. This follows from an easy application of Theorem 2.1. We may define
weighted average strategies on the basis of the discounted regrets simply by replacing ri,t

by r̃i,t = βn−t ri,t in the definition of the weighted average forecaster. Of course, to use such
a predictor, one needs to know the time horizon n in advance. We obtain the following.

Theorem 2.8. Consider a discounted polynomially weighted average forecaster defined,
for t = 1, . . . , n, by

p̂t =
∑N

i=1 φ′
(∑t−1

s=1 r̃i,s
)

fi,s∑N
j=1 φ′

(∑t−1
s=1 r̃ j,s

) =
∑N

i=1 φ′
(∑t−1

s=1 βn−sri,s
)

fi,s∑N
j=1 φ′

(∑t−1
s=1 βn−sr j,s

) ,

where φ′(x) = (p − 1)x p, with p = 2 ln N. Then the average discounted regret satisfies

max
i=1,...,N

∑n
t=1 βn−t ri,t∑n

t=1 βn−t
≤
√

2e ln N

√∑n
t=1 β2

n−t∑n
t=1 βn−t

.

(A similar bound may be proven for the discounted exponentially weighted average fore-
caster as well.) In particular, if

∑∞
t=0 βt = ∞, then

max
i=1,...,N

∑n
t=1 βn−t ri,t∑n

t=1 βn−t
= o(1).
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Proof. Clearly the forecaster satisfies the Blackwell condition, and for each t , |̃ri,t | ≤ βn−t .
Then Theorem 2.1 implies, just as in the proof of Corollary 2.1,

max
i=1,...,N

ρi,n ≤
√

2e ln N

√√√√ n∑
t=1

β2
n−t

and the first statement follows. To prove the second, just note that

√
2e ln N

√∑n
t=1 β2

n−t∑n
t=1 βn−t

=
√

2e ln N

√∑n
t=1 β2

t−1∑n
t=1 βt−1

≤
√

2e ln N

√∑n
t=1 βt−1∑n

t=1 βt−1

=
√

2e ln N√∑n
t=1 βt−1

= o(1).

It is instructive to consider the special case when βt = (t + 1)−a for some 0 < a ≤ 1.
(Recall from Theorem 2.7 that for a > 1, no meaningful bound can be derived.) If a = 1,
Theorem 2.8 implies that

max
i=1,...,N

∑n
t=1 βn−t ri,t∑n

t=1 βn−t
≤ C

log n

for a constant C > 0. This slow rate of convergence to zero is not surprising in view of
Theorem 2.7, because the series

∑
t 1/(t + 1) is “barely nonsummable.” In fact, this bound

cannot be improved substantially (see Exercise 2.20). However, for a < 1 the convergence
is faster. In fact, an easy calculation shows that the upper bound of the theorem implies
that

max
i=1,...,N

∑n
t=1 βn−t ri,t∑n

t=1 βn−t
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

O (1/ log n) if a = 1

O
(
na−1

)
if 1/2 < a < 1

O
(√

(log n)/n
)

if a = 1/2

O
(
1/
√

n
)

if a < 1/2.

Not surprisingly, the slower the discount factor decreases, the faster the average discounted
cumulative regret converges to zero. However, it is interesting to observe the “phase tran-
sition” occurring at a = 1/2: for all a < 1/2, the average regret decreases at a rate n−1/2,
a behavior quantitatively similar to the case when no discounting is taken into account.

2.12 Bibliographic Remarks

Our model of sequential prediction with expert advice finds its roots in the theory of
repeated games. Zero-sum repeated games with fixed loss matrix are a classical topic
of game theory. In these games, the regret after n plays is defined as the excess loss of
the row player with respect to the smallest loss that could be incurred had he known in
advance the empirical distribution of the column player actions during the n plays. In his
pioneering work, Hannan [141] devises a randomized playing strategy whose per-round
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expected regret grows at rate N
√

3nm/2, where N is the number of rows, m is the number
of columns in the loss matrix, and n is the number of plays. As shown in Chapter 7, our
polynomially and exponentially weighted average forecasters can be used to play zero-
sum repeated games achieving the regret

√
(n/2) ln N . We obtain the same dependence on

the number n of plays Compared with Hannan’s regret, but we significantly improve the
dependence on the dimensions, N and m, of the loss matrix. A different randomized player
with a vanishing per-round regret can be also derived from the celebrated Blackwell’s
approachability theorem [28], generalizing von Neumann’s minimax theorem to vector-
valued payoffs. This result, which we re-derive in Chapter 7, is based on a mixed strategy
equivalent to our polynomially weighted average forecaster with p = 2. Exact asymptotical
constants for the minimax regret (for a special case) were first shown by Cover [68]. In our
terminology, Cover investigates the problem of predicting a sequence of binary outcomes
with two static experts, one always predicting 0 and the other always predicting 1. He shows
that the minimax regret for the absolute loss in this special case is (1+ o(1))

√
n/(2π ).

The problem of sequential prediction, deprived of any probabilistic assumption, is
deeply connected with the information-theoretic problem of compressing an individual
data sequence. A pioneering research in this field was carried out by Ziv [317, 318] and
Lempel and Ziv [197,317,319], who solved the problem of compressing an individual data
sequence almost as well as the best finite-state automaton. As shown by Feder, Merhav, and
Gutman [95], the Lempel–Ziv compressor can be used as a randomized forecaster (for the
absolute loss) with a vanishing per-round regret against the class of all finite-state experts, a
surprising result considering the rich structure of this class. In addition, Feder, Merhav, and
Gutman devise, for the same expert class, a forecaster with a convergence rate better than
the rate provable for the Lempel–Ziv forecaster (see also Merhav and Feder [213] for fur-
ther results along these lines). In Section 9 we continue the investigation of the relationship
between prediction and compression showing simple conditions under which prediction
with logarithmic loss is minimax equivalent to adaptive data compression. Connections
between prediction with expert advice and information content of an individual sequence
have been explored by Vovk and Watkins [303], who introduced the notion of predictive
complexity of a data sequence, a quantity that, for the logarithmic loss, is related to the
Kolmogorov complexity of the sequence. We refer to the book of Li and Vitányi [198] for
an excellent introduction to the algorithmic theory of randomness.

Approximately at the same time when Hannan and Blackwell were laying down the
foundations of the game-theoretic approach to prediction, Solomonoff had the idea of
formalizing the phenomenon of inductive inference in humans as a sequential prediction
process. This research eventually led him to the introduction of a universal prior probabil-
ity [273–275], to be used as a prior in bayesian inference. An important “side product” of
Solomonoff’s universal prior is the notion of algorithmic randomess, which he introduced
independently of Kolmogorov. Though we acknowledge the key role played by Solomonoff
in the field of sequential prediction theory, especially in connection with Kolmogorov com-
plexity, in this book we look at the problem of forecasting from a different angle. Having
said this, we certainly think that exploring the connections between algorithmic randomness
and game theory, through the unifying notion of prediction, is a surely exciting research
plan.

The field of inductive inference investigates the problem of sequential prediction when
experts are functions taken from a large class, possibly including all recursive languages or
all partial recursive functions, and the task is that of eventually identifying an expert that
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is consistent (or nearly consistent) with an infinite sequence of observations. This learning
paradigm, introduced in 1967 by Gold [130], is still actively studied. Unlike the theory
described in this book, whose roots are game theoretic, the main ideas and analytical tools
used in inductive inference come from recursion theory (see Odifreddi [227]).

In computer science, an area related to prediction with experts is competitive analysis of
online algorithms (see the monograph of Borodin and El-Yaniv [36] for a survey). A good
example of a paper exploring the use of forecasting algorithms in competitive analysis is
the work by Blum and Burch [32].

The paradigm of prediction with expert advice was introduced by Littlestone and
Warmuth [203] and Vovk [297], and further developed by Cesa-Bianchi, Freund, Haus-
sler, Helmbold, Schapire, and Warmuth [48] and Vovk [298], although some of its main
ingredients already appear in the papers of De Santis, Markowski, and Wegman [260],
Littlestone [200], and Foster [103]. The use of potential functions in sequential prediction
is due to Hart and Mas-Colell [146], who used Blackwell’s condition in a game-theoretic
context, and to Grove, Littlestone, and Schuurmans [133], who used exactly the same
condition for the analysis of certain variants of the Perceptron algorithm (see Chapter 11).
Our Theorem 2.1 is inspired by, and partially builds on, Hart and Mas-Colell’s analysis of
-strategies for playing repeated games [146] and on the analysis of the quasi-additive algo-
rithm of Grove, Littlestone, and Schuurmans [133]. The unified framework for sequential
prediction based on potential functions that we describe here was introduced by Cesa-
Bianchi and Lugosi [54]. Forecasting based on the exponential potential has been used in
game theory as a variant of smooth fictitious play (see, e.g., the book of Fudenberg and
Levine [119]). In learning theory, exponentially weighted average forecasters were intro-
duced and analyzed by Littlestone and Warmuth [203] (the weighted majority algorithm)
and by Vovk [297] (the aggregating algorithm). The trick of setting the parameter p of
the polynomial potential to 2 ln N is due to Gentile [123]. The analysis in Section 2.2 is
based on Cesa-Bianchi’s work [46]. The idea of doubling trick of Section 2.3 appears in
the articles of Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth [48] and
Vovk [298], whereas the analysis of Theorem 2.3 is adapted from Auer, Cesa-Bianchi,
and Gentile [13]. The data-dependent bounds of Section 2.4 are based on two sources:
Theorem 2.4 is from the work of Littlestone and Warmuth [203] and Corollary 2.4 is due
to Freund and Schapire [112]. A more sophisticated analysis of the exponentially weighted
average forecaster with time-varying ηt is due to Yaroshinski, El-Yaniv, and Seiden [315].
They show a regret bound of the order (1+ o(1))

√
2L∗n ln N , where o(1) → 0 for L∗n →∞.

Hutter and Poland [165] prove a result similar to Exercise 2.10 using follow-the-perturbed-
leader, a randomized forecaster that we analyze in Chapter 4.

The multilinear forecaster and the results of Section 2.8 are due to Cesa-Bianchi, Man-
sour, and Stoltz [57]. A weaker version of Corollary 2.7 was proven by Allenberg-Neeman
and Neeman [7].

The gradient-based forecaster of Section 2.5 was introduced by Kivinen and War-
muth [181]. The proof of Corollary 2.5 is due to Cesa-Bianchi [46]. The notion of simu-
latable experts and worst-case regret for the experts’ framework was first investigated by
Cesa-Bianchi et al. [48]. Results for more general loss functions are contained in Chung’s
paper [60]. Fudenberg and Levine [121] consider discounted regrets is a somewhat different
model than the one discussed here.

The model of prediction with expert advice is connected to bayesian decision theory. For
instance, when the absolute loss is used, the normalized weights of the weighted average
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forecaster based on the exponential potential closely approximate the posterior distribution
of a simple stochastic generative model for the data sequence (see Exercise 2.7). From this
viewpoint, our regret analysis shows an example where the Bayes decisions are robust in
a strong sense, because their performance can be bounded not only in expectation with
respect to the random draw of the sequence but also for each individual sequence.

2.13 Exercises

2.1 Assume that you have to predict a sequence Y1, Y2, . . . ∈ {0, 1} of i.i.d. random variables with
unknown distribution, your decision space is [0, 1], and the loss function is �( p̂, y) = |̂p − y|.
How would you proceed? Try to estimate the cumulative loss of your forecaster and compare
it to the cumulative loss of the best of the two experts, one of which always predicts 1 and
the other always predicts 0. Which are the most “difficult” distributions? How does your
(expected) regret compare to that of the weighted average algorithm (which does not “know”
that the outcome sequence is i.i.d.)?

2.2 Consider a weighted average forecaster based on a potential function

�(u) = ψ

(
N∑

i=1

φ(ui )

)
.

Assume further that the quantity C(rt ) appearing in the statement of Theorem 2.1 is bounded
by a constant for all values of rt and that the function ψ(φ(u)) is strictly convex. Show that
there exists a nonnegative sequence εn → 0 such that the cumulative regret of the forecaster
satisfies, for every n and for every outcome sequence yn ,

1

n

(
max

i=1,...,N
Ri,n

)
≤ εn .

2.3 Analyze the polynomially weighted average forecaster using Theorem 2.1 but using the poten-
tial function �(u) = ‖u+‖p instead of the choice �p(u) = ‖u+‖2

p used in the proof of Corol-
lary 2.1. Derive a bound of the same form as in Corollary 2.1, perhaps with different constants.

2.4 Let Y = {0, 1}, D = [0, 1], and �( p̂, y) = |̂p − y|. Prove that the cumulative loss L̂ of the
exponentially weighted average forecaster is always at least as large as the cumulative loss
mini≤N Li of the best expert. Show that for other loss functions, such as the square loss
( p̂ − y)2, this is not necessarily so. Hint: Try to reverse the proof of Theorem 2.2.

2.5 (Nonuniform initial weights) By definition, the weighted average forecaster uses uniform
initial weights wi,0 = 1 for all i = 1, . . . , N . However, there is nothing special about this
choice, and the analysis of the regret for this forecaster can be carried out using any set of
nonnegative numbers for the initial weights.

Consider the exponentially weighted average forecaster run with arbitrary initial weights
w1,0, . . . , w N ,0 > 0, defined, for all t = 1, 2, . . ., by

p̂t =
∑N

i=1 wi,t−1 fi,t∑N
j=1 w j,t−1

, wi,t = wi,t−1e−η�( fi,t,yt ).

Under the same conditions as in the statement of Theorem 2.2, show that for every n and for
every outcome sequence yn ,

L̂n ≤ min
i=1,...,N

(
Li,n + 1

η
ln

1

wi,0

)
+ ln W0

η
+ η

8
n,

where W0 = w1,0 + · · · + w N ,0.
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2.6 (Many good experts) Sequences of outcomes on which many experts suffer a small loss are
intuitively easier to predict. Adapt the proof of Theorem 2.2 to show that the exponentially
weighted forecaster satistifies the following property: for every n, for every outcome sequence
yn , and for all L > 0,

L̂n ≤ L + 1

η
ln

N

NL
+ η

8
n,

where NL is the cardinality of the set
{
1 ≤ i ≤ N : Li,n ≤ L

}
.

2.7 (Random generation of the outcome sequence) Consider the exponentially weighted average
forecaster and define the following probabilistic model for the generation of the sequence
yn ∈ {0, 1}n , where we now view each bit yt as the realization of a Bernoulli random variable
Yt . An expert I is drawn at random from the set of N experts. For each t = 1, . . . , n, first
Xt ∈ {0, 1} is drawn so that Xt = 1 with probability f I,t . Then Yt is set to Xt with probability β

and is set to 1− Xt with probability 1− β, where β = 1/(1+ e−η). Show that the forecaster
weights wi,t/(w1,t + · · · + w N ,t ) and are equal to the posterior probability P[I = i | Y1 =
y1, . . . , Yt−1 = yt−1] that expert i is drawn given that the sequence y1, . . . , yt−1 has been
observed.

2.8 (The doubling trick) Consider the following forecasting strategy (“doubling trick”): time is
divided in periods (2m, . . . , 2m+1 − 1), where m = 0, 1, 2, . . . . In period (2m, . . . , 2m+1 − 1)
the strategy uses the exponentially weighted average forecaster initialized at time 2m with
parameter ηm =

√
8(ln N )/2m . Thus, the weighted average forecaster is reset at each time

instance that is an integer power of 2 and is restarted with a new value of η. Using Theorem 2.2
prove that, for any sequence y1, y2, . . . ∈ Y of outcomes and for any n ≥ 1, the regret of this
forecaster is at most

L̂n − min
i=1,...,N

Li,n ≤
√

2√
2− 1

√
n

2
ln N .

2.9 (The doubling trick, continued) In Exercise 2.8, quite arbitrarily, we divided time into periods
of length 2m , m = 1, 2, . . . . Investigate what happens if instead the period lengths are of the
form �am� for some other value of a > 0. Which choice of a minimizes, asymptotically, the
constant in the bound? How much can you gain compared with the bound given in the text?

2.10 Combine Theorem 2.4 with the doubling trick of Exercise 2.8 to construct a forecaster that,
without any previous knowledge of L∗, achieves, for all n,

L̂n − L∗n ≤ 2
√

2L∗n ln N + c ln N

whenever the loss function is bounded and convex in its first argument, and where c is a
positive constant.

2.11 (Another time-varying potential) Consider the adaptive exponentially weighted average
forecaster that, at time t , uses

ηt = c

√
ln N

mini=1,...,N Li,t−1
,

where c is a positive constant. Show that whenever � is a [0, 1]-valued loss function convex in
its first argument, then there exists a choice of c such that

L̂n − L∗n ≤ 2
√

2L∗n ln N + κ ln N ,

where κ > 0 is an appropriate constant (Auer, Cesa-Bianchi, and Gentile [13]). Hint: Follow
the outline of the proof of Theorem 2.3. This exercise is not easy.

2.12 Consider the prediction problem withY = D = [0, 1] with the absolute loss �( p̂, y) = |̂p − y|.
Show that in this case the gradient-based exponentially weighted average forecaster coincides
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with the exponentially weighted average forecaster. (Note that the derivative of the loss does
not exist for p̂ = y and the definition of the gradient-based exponentially weighted average
forecaster needs to be adjusted appropriately.)

2.13 Prove Lemma 2.4.

2.14 Use the doubling trick to prove a variant of Corollary 2.6 in which no knowledge about
the outcome sequence is assumed to be preliminarily available (however, as in the corollary,
we still assume that the payoff function h has range [−M, M] and is concave in its first
argument). Express the regret bound in terms of the smallest monotone upper bound on the
sequence Q∗

1, Q∗
2, . . . (see Cesa-Bianchi, Mansour, and Stoltz [57]).

2.15 Prove a variant of Theorem 2.6 in which no knowledge about the range [−M, M] of the payoff
function is assumed to be preliminarily available (see Cesa-Bianchi, Mansour, and Stoltz [57]).
Hint: Replace the term 1/(2M) in the definition of ηt with 2−(1+kt ), where k is the smallest
nonnegative integer such that maxs=1,...,t−1 maxi=1,...,N |h( fi,s, ys)| ≤ 2k .

2.16 Prove a regret bound for the multilinear forecaster using the update wi,t = wi,t−1(1+ ηri,t ),
where ri,t = h( fi,t , yt )− h( p̂t , yt ) is the instantaneous regret. What can you say about the
evolution of the total weight Wt = w1,t + · · · + w N ,t of the experts?

2.17 Prove Lemma 2.5. Hint: Adapt the proof of Theorem 2.3.

2.18 Show that the two expressions of the minimax regret V (N )
n in Section 2.10 are equivalent.

2.19 Consider a class F of simulatable experts. Assume that the set Y of outcomes is a compact
subset of R

d , the decision space D is convex, and the loss function � is convex and continuous
in its first argument. Show that Vn(F) = Un(F). Hint: Check the conditions of Theorem 7.1.

2.20 Consider the discount factors βt = 1/(t + 1) and assume that there is a positive constant c
such that for each n there exist outcomes y1, y2 ∈ Y and two experts i �= i ′ such that i =
argmin j �( f j,n, y1), i ′ = argmin j �( f j,n, y2), and miny=y1,y2 |�( fi,n, y)− �( fi ′,n, y)| ≥ c. Show
that there exists a constant C such that for any forecasting strategy, there is a sequence of
outcomes such that

max
i=1,...,N

∑n
t=1 βn−t ri,t∑n

t=1 βn−t
≥ C

log n

for all n.
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Tight Bounds for Specific Losses

3.1 Introduction

In Chapter 2 we established the existence of forecasters that, under general circumstances,
achieve a worst-case regret of the order of

√
n ln N with respect to any finite class of N

experts. The only condition we required was that the decision space D be a convex set
and the loss function � be bounded and convex in its first argument. In many cases, under
specific assumptions on the loss function and/or the class of experts, significantly tighter
performance bounds may be achieved. The purpose of this chapter is to review various
situations in which such improvements can be made. We also explore the limits of such
possible improvements by exhibiting lower bounds for the worst-case regret.

In Section 3.2 we show that in some cases a myopic strategy that simply chooses
the best expert on the basis of past performance achieves a rapidly vanishing worst-
case regret under certain smoothness assumptions on the loss function and the class
of experts.

Our main technical tool, Theorem 2.1, has been used to bound the potential �(Rn)
of the weighted average forecaster in terms of the initial potential �(0) plus a sum of
terms bounding the error committed in taking linear approximations of each �(Rt ) for
t = 1, . . . , n. In certain cases, however, we can bound �(Rn) directly by �(0), without
the need of taking any linear approximation. To do this we can exploit simple geometrical
properties exhibited by the potential when combined with specific loss functions. In this
chapter we develop several techniques of this kind and use them to derive tighter regret
bounds for various loss functions.

In Section 3.3 we consider a basic property of a loss function, exp-concavity, which
ensures a bound of (ln N )/η for the exponentially weighted average forecaster, where
η must be smaller than a critical value depending on the specific exp-concave loss. In
Section 3.4 we take a more extreme approach by considering a forecaster that chooses
predictions minimizing the worst-case increase of the potential. This “greedy” forecaster is
shown to perform not worse than the weighted average forecaster. In Section 3.5 we focus
on the exponential potential and refine the analysis of the previous sections by introducing
the aggregating forecasters, a family that includes the greedy forecaster. These forecasters,
which apply to exp-concave losses, are designed to achieve a regret of the form c ln N ,
where c is the best possible constant for each loss for which such bounds are possible. In
the course of the analysis we characterize the important subclass of mixable losses. These
losses are, in some sense, the easiest to work with. Finally, in Section 3.7 we prove a lower
bound of the form �(log N ) for generic losses and a lower bound for the absolute loss

40
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that matches (constants included) the upper bound achieved by the exponentially weighted
average forecaster.

3.2 Follow the Best Expert

In this section we study possibly the simplest forecasting strategy. This strategy chooses, at
time t , an expert that minimizes the cumulative loss over the past t − 1 time instances. In
other words, the forecaster always follows the expert that has had the smallest cumulative
loss up to that time. Perhaps surprisingly, this simple predictor has a good performance
under general conditions on the loss function and the experts.

Formally, consider a class E of experts and define the forecaster that predicts the same
as the expert that minimizes the cumulative loss in the past, that is,

p̂t = fE,t if E = argmin
E ′∈E

t−1∑
s=1

�( fE ′,s, ys).

p̂1 is defined as an arbitrary element of D. Throughout this section we assume that the
minimum is always achieved. In case of multiple minimizers, E can be chosen arbitrarily.

Our goal is, as before, to compare the performance of p̂ with that of the best expert in
the class; that is, to derive bounds for the regret

L̂n − inf
E∈E

L E,n =
n∑

t=1

�( p̂, yt )− inf
E∈E

n∑
t=1

�( fE,t , yt ).

Consider the hypothetical forecaster defined by

p∗t = fE,t if E = argmin
E ′∈E

t∑
s=1

�( fE ′,s, ys).

Note that p∗t is defined like p̂t , with the only difference that p∗t also takes the losses suffered
at time t into account. Clearly, p∗t is not a “legal” forecaster, because it is allowed to peek
into the future; it is defined as a tool for our analysis. The following simple lemma states
that p∗t “performs” at least as well as the best expert.

Lemma 3.1. For any sequence y1, . . . , yn of outcomes,

n∑
t=1

�(p∗t , yt ) ≤
n∑

t=1

�(p∗n, yt ) = min
E∈E

L E,n.

Proof. The proof goes by induction. The statement is obvious for n = 1. Assume now
that

n−1∑
t=1

�(p∗t , yt ) ≤
n−1∑
t=1

�(p∗n−1, yt ).
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Since by definition
∑n−1

t=1 �(p∗n−1, yt ) ≤
∑n−1

t=1 �(p∗n, yt ), the inductive assumption implies

n−1∑
t=1

�(p∗t , yt ) ≤
n−1∑
t=1

�(p∗n, yt ).

Add �(p∗n, yn) to both sides to obtain the result.

This simple property implies that the regret of the forecaster p̂ may be upper bounded
as

L̂n − inf
E∈E

L E,n ≤
n∑

t=1

(
�( p̂t , yt )− �(p∗t , yt )

)
.

By recalling the definitions of p̂t and p∗t , it is reasonable to expect that in some situations
p̂t and p∗t are close to each other. For example, if one can guarantee that for every t ,

sup
y∈Y

(
�( p̂t , y)− �(p∗t , y)

) ≤ εt

for a sequence of real numbers εt > 0, then the inequality shows that

L̂n − inf
E∈E

L E,n ≤
n∑

t=1

εt . (3.1)

In what follows, we establish some general conditions under which εt ∼ 1/t , which implies
that the regret grows as slowly as O(ln n).

In all these examples we consider “constant” experts; that is, we assume that for each
E ∈ E and y ∈ Y , the loss of expert E is independent of time. In other words, for any fixed
y, �( fE,1, y) = · · · = �( fE,n, y). To simplify notation, we write �(E, y) for the common
value, where now each expert is characterized by an element E ∈ D.

Square Loss
As a first example consider the square loss in a general vector space. Assume that D = Y
is the unit ball {p : ‖p‖ ≤ 1} in a Hilbert space H, and consider the loss function

�(p, y) = ‖p − y‖2, p, y ∈ H.

Let the expert class E contain all constant experts indexed by E ∈ D. In this case it is easy
to determine explicitly the forecaster p̂. Indeed, because for any p ∈ D,

1

t − 1

t−1∑
s=1

‖p − ys‖2 = 1

t − 1

t−1∑
s=1

∥∥∥∥∥ 1

t − 1

t−1∑
r=1

yr − ys

∥∥∥∥∥
2

+
∥∥∥∥∥ 1

t − 1

t−1∑
r=1

yr − p

∥∥∥∥∥
2

(easily checked by expanding the squares), we have

p̂t = 1

t − 1

t−1∑
s=1

ys .

Similarly,

p∗t =
1

t

t∑
s=1

ys .
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Then, for any y ∈ D,

�( p̂t , y)− �(p∗t , y) = ‖ p̂t − y‖2 − ‖p∗t − y‖2

= ( p̂t − p∗t
) · ( p̂t + p∗t − 2y

)
≤ 4

∥∥ p̂t − p∗t
∥∥

by boundedness of the set D. The norm of the difference can be easily bounded by writing

p̂t − p∗t =
1

t − 1

t−1∑
s=1

ys − 1

t

t∑
s=1

ys =
(

1

t − 1
− 1

t

) t−1∑
s=1

ys − yt

t

so that, clearly, regardless of the sequence of outcomes, ‖ p̂t − p∗t ‖ ≤ 2/t . We obtain

�( p̂t , y)− �(p∗t , y) ≤ 8

t
,

and therefore, by (3.1), we have

L̂n − inf
E∈E

L E,n ≤
n∑

t=1

8

t
≤ 8 (1+ ln n) ,

where we used
∑n

t=1 1/t ≤ 1+ ∫ n
1 dx/x = 1+ ln n. Observe that this performance bound

is significantly smaller than the general bounds of the order of
√

n obtained in Chapter 2.
Also, remarkably, the “size” of the class of experts is not reflected in the upper bound.
The class of experts in the example considered is not only infinite but can be a ball in an
infinite-dimensional vector space!

Convex Losses, Constant Experts
In the rest of this section we generalize the example of square loss described earlier by
deriving general sufficient conditions for convex loss functions when the class of experts
contains constant experts. For the simplicity of exposition we limit the discussion to the
finite-dimensional case, but it is easy to generalize the results.

Let D be a bounded convex subset of R
d , and assume that an expert E is assigned to

each element of D so that the loss of expert E at time t is �(E, yt ). Using our convention
of denoting vectors by bold letters, we write p̂t = ( p̂1,t , . . . , p̂d,t ) for the follow-the-best-
expert forecaster, and similarly p∗t = (p∗1,t , . . . , p∗d,t ) for the corresponding hypothetical
forecaster. We make the following assumptions on the loss function:

1. � is convex in its first argument and takes its values in [0, 1];
2. for each fixed y ∈ Y , �(·, y) is Lipschitz in its first argument, with constant B;
3. for each fixed y ∈ Y , �(·, y) is twice differentiable. Moreover, there exists a constant

C > 0 such that for each fixed y ∈ Y , the Hessian matrix(
∂2�(p, y)

∂pi∂p j

)
d×d

is positive definite with eigenvalues bounded from below by C ;
4. for any y1, . . . , yt , the minimizer p∗t is such that∇�t (p∗t ) = 0, where, for each p ∈ D,

�t (p) = 1

t

t∑
s=1

�(p, ys).
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Theorem 3.1. Under the assumptions described above, the per-round regret of the follow-
the-best-expert forecaster satisfies

1

n

(
L̂n − inf

E∈E
L E,n

)
≤ 4B2 (1+ ln n)

Cn
.

Proof. First, by a Taylor series expansion of �t around its minimum value p∗t , we have

�t (̂pt )−�t (p∗t ) = 1

2

d∑
i=1

d∑
j=1

∂2�(p, y)

∂pi∂p j

∣∣∣∣
p

( p̂i,t − p∗i,t )( p̂ j,t − p∗j,t )

(for some p ∈ D)

≥ C

2

∥∥̂pt − p∗t
∥∥2

,

where we used the fact that ∇�t (p∗t ) = 0 and the assumption on the Hessian of the loss
function. On the other hand,

�t (̂pt )−�t (p∗t )

= (�t−1(̂pt )−�t (p∗t )
)+ (�t (̂pt )−�t−1(̂pt )

)
≤ (�t−1(p∗t )−�t (p∗t )

)+ (�t (̂pt )−�t−1(̂pt )
)

(by the definition of p̂t )

= 1

t(t − 1)

t−1∑
s=1

(
�(p∗t , ys)− �(̂pt , ys)

)+ 1

t

(
�(̂pt , yt )− �(p∗t , yt )

)
≤ 2B

t

∥∥̂pt − p∗t
∥∥ ,

where at the last step we used the Lipschitz property of �(·, y). Comparing the upper and
lower bounds derived for �t (̂pt )−�t (p∗t ), we see that for every t = 1, 2, . . . ,∥∥̂pt − p∗t

∥∥ ≤ 4B

Ct
.

Therefore,

L̂n − inf
E∈E

L E,n ≤
n∑

t=1

(
�(̂pt , y)− �(p∗t , y)

) ≤ n∑
t=1

B
∥∥̂pt − p∗t

∥∥ ≤ 4B2

C

n∑
t=1

1

t

as desired.

Theorem 3.1 establishes general conditions for the loss function under which the regret
grows at the slow rate of ln n. Just as in the case of the square loss, the size of the
class of experts does not appear explicitly in the upper bound. In particular, the upper
bound is independent of the dimension. The third condition basically requires that the
loss function have an approximately quadratic behavior around the minimum. The last
condition is satisfied for many smooth strictly convex loss functions. For example, if
Y = D and �(p, y) = ‖p− y‖α for some α ∈ (1, 2], then all assumptions are easily seen
to be satisfied. Other general conditions under which the follow-the-best-expert forecaster
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achieves logarithmic regret have been thoroughly studied. Pointers to the literature are
given at the end of the chapter.

3.3 Exp-concave Loss Functions

Now we return to the scenario of Section 2.1. Thus, we consider a finite class of N experts.
In this section we introduce a class of loss functions that enjoys some useful properties when
used in conjunction with the exponential potential �η(u) = 1

η
ln
(∑N

i=1 eηui
)
. A loss func-

tion � is exp-concave for a certain η > 0 if the function F(z) = e−η�(z,y) is concave for all
y ∈ Y . Exp-concavity is a stronger property than convexity of � in the first argument (see the
exercises). The larger the value of η, the more stringent the assumption of exp-concavity is.
The following result shows a key property of exp-concave functions. Recall that the expo-
nentially weighted average forecaster is defined by p̂t =

∑N
i=1 wi,t−1 fi,t

/∑N
j=1 w j,t−1,

where wi,t−1 = e−ηLi,t−1 .

Theorem 3.2. If the loss function � is exp-concave for η > 0, then the regret of the expo-
nentially weighted average forecaster (used with the same value of η) satisfies, for all
y1, . . . , yn ∈ Y , �η(Rn) ≤ �η(0).

Proof. It suffices to show that the value of the potential function can never increase; that
is, �η(Rt ) ≤ �η(Rt−1) or, equivalently,

N∑
i=1

e−ηLi,t−1 eηri,t ≤
N∑

i=1

e−ηLi,t−1 .

This may be rewritten as

exp
(−η�( p̂t , yt )

) ≥ ∑N
i=1 wi,t−1 exp

(−η�( fi,t , yt )
)∑N

j=1 w j,t−1

. (3.2)

But this follows from the definition of p̂, the concavity of F(z), and Jensen’s in-
equality.

The fact that a forecaster is able to guarantee �η(Rn) ≤ �η(0) immediately implies that
his regret is bounded by a constant independently of the sequence length n.

Proposition 3.1. If, for some loss function � and for some η > 0, a forecaster satisfies
�η(Rn) ≤ �η(0) for all y1, . . . , yn ∈ Y , then the regret of the forecaster is bounded by

L̂n − min
i=1,...,N

Li,n ≤ ln N

η
.

Proof. Using �η(Rn) ≤ �η(0) we immediately get

L̂n − min
i=1,...,N

Li,n = max
i=1,...,N

Ri,n ≤ 1

η
ln

N∑
j=1

eηR j,n = �η(Rn) ≤ �η(0) = ln N

η
.
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Figure 3.1. The relative entropy loss and the square loss plotted for D = Y = [0, 1].

Clearly, the larger the η, the better is the bound guaranteed by Proposition 3.1. For each
loss function � there is a maximal value of η for which � is exp-concave (if such an η exists
at all). To optimize performance, the exponentially weighted average forecaster should be
run using this largest value of η.

For the exponentially weighted average forecaster, combining Theorem 3.2 with Propo-
sition 3.1 we get the regret bounded by (ln N )/η for all exp-concave losses (where η may
depend on the loss), a quantity which is independent of the length n of the sequence of out-
comes. Note that, apart from the assumption of exp-concavity, we do not assume anything
else about the loss function. In particular, we do not explicitly assume that the loss function
is bounded. The examples that follow show that some simple and important loss functions
are exp-concave (see the exercises for further examples).

Relative Entropy Loss
Let D = Y = [0, 1], and consider, the relative entropy loss �( p̂, y) = y ln(y/ p̂)+ (1−
y) ln

(
(1− y)/(1− p̂)

)
. With an easy calculation one can check that for η = 1 the function

F(z) is concave for all values of y. Note that this is an unbounded loss function. A
special case of this loss function, for Y = {0, 1} and D = [0, 1], is the logarithmic loss
�(z, y) = −I{y=1} ln z − I{y=0} ln(1− z). The logarithmic loss function plays a central role
in several applications, and we devote a separate chapter to it (Chapter 9).

Square Loss
This loss function is defined by �(z, y) = (z − y)2, where D = Y = [0, 1]. Straightforward
calculation shows that F(z) is concave if and only if, for all z, (z − y)2 ≤ 1/(2η). This is
clearly guaranteed if η ≤ 1/2.

Absolute Loss
Let D = Y = [0, 1], and consider the absolute loss �(z, y) = |z − y|. It is easy to see that
F(z) is not concave for any value of η. In fact, as is shown in Section 3.7, for this loss
function there is no forecaster whose cumulative excess loss can be bounded independently
of n.

Exp-concave losses also make it easy to prove regret bounds that hold for countably
many experts. The only modification we need is that the exponential potential �η(R) =
1
η

ln
(∑N

i=1 eηRi
)

be changed to �η(R) = 1
η

ln
(∑∞

i=1 qi eηRi
)
, where {qi : i = 1, 2 . . .} is
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any probability distribution over the set of positive integers. This ensures convergence of
the series. Equivalently, qi represents the initial weight of expert i (as in Exercise 2.5).

Corollary 3.1. Assume that (�, η) satisfy the assumption of Theorem 3.2. For any countable
class of experts and for any probability distribution {qi : i = 1, 2 . . .} over the set of
positive integers, the exponentially weighted average forecaster defined above satisfies, for
all n ≥ 1 and for all y1, . . . , yn ∈ Y ,

L̂n ≤ inf
i≥1

(
Li,n + 1

η
ln

1

qi

)
.

Proof. The proof is almost identical to that of Theorem 3.2; we merely need to redefine
wi,t−1 in that proof as qi e−ηLi,t−1 . This allows us to conclude that �η(Rn) ≤ �η(0). Hence,
for all i ≥ 1,

qi e
ηRi,n ≤

∞∑
j=1

q j e
ηR j,n = eη�η(Rn ) ≤ eη�η(0) = 1.

Solving for Ri,n yields the desired bound.

Thus, the cumulative loss of the forecaster exceeds the loss of each expert by at most
a constant, but the constant depends on the expert. If we write the exponentially weighted
forecaster for countably many experts in the form

p̂t =
∑∞

i=1 fi,t exp
(
−η
(

Li,t−1 + 1
η

ln 1
qi

))
∑∞

j=1 exp
(
−η
(

L j,t−1 + 1
η

ln 1
q j

)) ,

then we see that the quantity 1
η

ln(1/qi ) may be regarded as a “penalty” we add to the
cumulative loss of expert i at each time t . Corollary 3.1 is a so-called “oracle inequality,”
which states that the mixture forecaster achieves a cumulative loss matching the best
penalized cumulative loss of the experts (see also Section 3.5).

A Mixture Forecaster for Exp-concave Losses
We close this section by showing how the exponentially weighted average predictor can be
extended naturally to handle certain uncountable classes of experts. The class we consider is
given by the convex hull of a finite number of “base” experts. Thus, the goal of the forecaster
is to predict as well as the best convex combination of the base experts. The formal model
is described as follows: consider N (base) experts whose predictions, at time t , are given by
fi,t ∈ D, i = 1, . . . , N , t = 1, . . . , n. We denote by ft the vector ( f1,t , . . . , fN ,t ) of expert
advice at time t . The decision space D is assumed to be a convex set, and we assume that the
loss function � is exp-concave for a certain value η > 0. Define the regret of a forecaster,
with respect to the convex hull of the N base experts, by

L̂n − inf
q∈�

Lq,n =
n∑

t=1

�( p̂t , yt )− inf
q∈�

n∑
t=1

�(q · ft , yt ),

where L̂n is the cumulative loss of the forecaster, � denotes the simplex of N -vectors
q = (q1, . . . , qN ), with qi ≥ 0,

∑N
i=1 qi = 1, and q · ft denotes the element of D given by
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the convex combination
∑N

i=1 qi fi,t . Finally, Lq,n denotes the cumulative loss of the expert
associated with q.

Next we analyze the regret (in the sense defined earlier) of the exponentially weighted
average forecaster defined by the “mixture”

p̂ =
∫
�

wq,t−1q · f dq∫
�

wq,t−1dq
,

where for each q ∈ �, wq,t−1 = exp
(−η

∑t−1
s=1 �(q · fs, ys)

)
. Just as before, the value of η

used in the definition of the weights is such that the loss function is exp-concave. Thus, the
forecaster calculates a weighted average over the whole simplex �, exponentially weighted
by the past performance corresponding to each vector q of convex coefficients. At this
point we are not concerned with computational issues, but in Section 9 we will see that the
forecaster can be computed easily in certain special cases. The next theorem shows that the
regret is bounded by a quantity of the order of N ln(n/N ). This is not always optimal; just
consider the case of the square loss and constant experts studied in Section 3.2 for which we
derived a bound independent of N . However, the bound shown here is much more general
and can be seen to be tight in some cases; for example, for the logarithmic loss studied
in Chapter 9. To keep the argument simple, we assume that the loss function is bounded,
though this condition can be relaxed in some cases.

Theorem 3.3. Assume that the loss function � is exp-concave for η and it takes values in
[0, 1]. Then the exponentially weighted mixture forecaster defined above satisfies

L̂n − inf
q∈�

Lq,n ≤ N

η
ln

eηn

N
.

Proof. Defining, for all q, the regret

Rq,n = L̂n − Lq,n

we may write Rn for the function q �→ Rq,n . Introducing the potential

�η(Rn) =
∫

�

eηRq,n dq

we see, by mimicking the proof of Theorem 3.2, that �η(Rn) ≤ �η(0) = 1/(N !). It remains
to relate the excess cumulative loss to the value �η(Rn) of the potential function.

Denote by q∗ the vector in � for which

Lq∗,n = inf
q∈�

Lq,n.

Since the loss function is convex in its first argument (see Exercise 3.4), for any q′ ∈ � and
λ ∈ (0, 1),

L (1−λ)q∗+λq′,n ≤ (1− λ)Lq∗,n + λLq′,n ≤ (1− λ)Lq∗,n + λn,
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where we used the boundedness of the loss function. Therefore, for any fixed λ ∈ (0, 1),

�η(Rn) =
∫

�

eηRq,n dq

= eηL̂n

∫
�

e−ηLq,n dq

≥ eηL̂n

∫
{q : q=(1−λ)q∗+λq′,q′∈�}

e−ηLq,n dq

≥ eηL̂n

∫
{q : q=(1−λ)q∗+λq′,q′∈�}

e−η((1−λ)Lq∗ ,n+λn)dq

(by the above inequality)

= eηL̂n e−η((1−λ)Lq∗ ,n+λn)
∫
{q : q=(1−λ)q∗+λq′,q′∈�}

dq.

The integral on the right-hand side is the volume of the simplex, scaled by λ and centered at
q∗. Clearly, this equals λN times the volume of �, that is, λN /(N !). Using �η(Rn) ≤ 1/(N !),
and rearranging the obtained inequality, we get

L̂n − inf
q∈�

Lq,n ≤ L̂n − (1− λ)Lq∗,n ≤ 1

η
ln λ−N + λn.

The minimal value on the right-hand side is achieved by λ = N/ηn, which yields the bound
of the theorem.

3.4 The Greedy Forecaster

In several arguments we have seen so far for analyzing the performance of weighted average
forecasters, the key of the proof is bounding the increase of the value of the potential function
�(Rt ) on the regret at time t with respect to the previous value �(Rt−1). In Theorem 2.1 we
do this using the Blackwell condition. In some cases special properties of the loss function
may be used to derive sharper bounds. For example, in Section 3.3 it is shown that for some
loss functions the exponential potential in fact decreases at each step (see Theorem 3.2).
Thus, one may be tempted to construct prediction strategies which, at each time instance,
minimize the worst-case increase of the potential. The purpose of this section is to explore
this possibility.

The first idea one might have is to construct a forecaster p̂ that, at each time instant t ,
predicts to minimize the worst-case regret, that is,

p̂t = argmin
p∈D

sup
yt∈Y

max
i=1,...,N

Ri,t

= argmin
p∈D

sup
yt∈Y

max
i=1,...,N

(
Ri,t−1 + �(pt , yt )− �( fi,t , yt )

)
.

It is easy to see that the minimum in p̂t exists whenever the loss function � is bounded and
convex in its first argument. However, the minimum may not be unique. In such cases we
may choose a minimizer by any pre-specified rule. Unfortunately, this strategy, known as
fictitious play in the context of playing repeated games (see Chapter 7), fails to guarantee
a vanishing per-round regret (see the exercises).
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A next attempt may be to minimize, instead of maxi≤N Ri,t , a “smooth” version of the
same such as the exponential potential

�η(Rt ) = 1

η
ln

(
N∑

i=1

eηRi,t

)
.

Note that if η maxi≤N Ri,t is large, then �η(Rt ) ≈ maxi≤N Ri,t ; but �η is now a smooth
function of its components. The quantity η is a kind of smoothing parameter. For large
values of η the approximation is tighter, though the level curves of �η become less smooth
(see Figure 2.3).

On the basis of the potential function �, we may now introduce the forecaster p̂ that, at
every time instant, greedily minimizes the largest possible increase of the potential function
for all possible outcomes yt . That is,

p̂t = argmin
p∈D

sup
yt∈Y

�(Rt−1 + rt ) (the greedy forecaster).

Recall that the i th component of the regret vector rt is �(p, yt )− �( fi,t , yt ). Note that, for
the exponential potential, the previous condition is equivalent to

p̂t = argmin
p∈D

sup
yt∈Y

(
�(p, yt )+ 1

η
ln

N∑
i=1

e−ηLi,t

)
.

In what follows, we show that the greedy forecaster is well defined, and, in fact, has
the same performance guarantees as the weighted average forecaster based on the same
potential function.

Assume that the potential function � is convex. Then, because the supremum of convex
functions is convex, supyt∈Y �(Rt−1 + rt ) is a convex function of p if � is convex in its
first argument. Thus, the minimum over p exists, though it may not be unique. Once again,
a minimizer may be chosen by any pre-specified rule. To compute the predictions p̂t , a
convex function has to be minimized at each step. This is computationally feasible in many
cases, though it is, in general, not as simple as computing, for example, the predictions of
a weighted average forecaster. In some cases, however, the predictions may be given in a
closed form. We provide some examples.

The following obvious result helps analyze greedy forecasters. Better bounds for certain
losses are derived in Section 3.5 (see Proposition 3.3).

Theorem 3.4. Let � : R
N → R be a nonnegative, twice differentiable convex function.

Assume that there exists a forecaster whose regret vector satisfies

�(R′t ) ≤ �(R′t−1)+ ct

for any sequence r′1, . . . , r′n of regret vectors and for any t = 1, . . . , n, where ct is a constant
depending on t only. Then the regret Rt of the greedy forecaster satisfies

�(Rn) ≤ �(0)+
n∑

t=1

ct .

Proof. It suffices to show that, for every t = 1, . . . , n,

�(Rt ) ≤ �(Rt−1)+ ct .
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By the definition of the greedy forecaster, this is equivalent to saying that there exists a
p̂t ∈ D such that

sup
yt∈Y

� (Rt−1 + rt ) ≤ �(Rt−1)+ ct ,

where rt is the vector with components �( p̂t , yt )− �( fi,t , yt ), i = 1, . . . , N . The existence
of such a p̂t is guaranteed by assumption.

The weighted average forecasters analyzed in Sections 2.1 and 3.3 all satisfy the con-
dition of Theorem 3.4, and therefore the corresponding greedy forecasters inherit their
properties proven in Theorems 2.1 and 3.2. Some simple examples of greedy forecasters
using the exponential potential �η follow.

Absolute Loss
Consider the absolute loss �( p̂, y) = |̂p − y| in the simple case when Y = {0, 1} and
D = [0, 1]. Consider the greedy forecaster based on the exponential potential �η. Since
yt is binary valued, determining p̂t amounts to minimizing the maximum of two convex
functions. After trivial simplifications we obtain

p̂t = argmin
p∈[0,1]

max

{
N∑

i=1

eη(�(p,0)−�( fi,t ,0)−Li,t−1),
N∑

i=1

eη(�(p,1)−�( fi,t ,1)−Li,t−1)
}

.

(Recall that Li,t = �( fi,1, y1)+ · · · + �( fi,t , yt ) denotes the cumulative loss of expert i at
time t .) To determine the minimum, just observe that the maximum of two convex functions
achieves its minimum either at a point where the two functions are equal or at the minimum
of one of the two functions. Thus, p̂ either equals 0 or 1, or

1

2
+ 1

2η
ln

∑N
i=1 e−ηLi,t−1−η�( fi,t ,1)∑N
j=1 e−ηL j,t−1−η�( f j,t ,0)

depending on which of the three values gives a smaller worst-case value of the potential
function. Now it follows by Theorems 3.4 and 2.2 that the cumulative loss of this greedy
forecaster is bounded as

L̂n − min
i=1,...,N

Li,n ≤ ln N

η
+ nη

8
.

Square Loss
Consider next the setup of the previous example with the only difference that the loss
function now is �( p̂, y) = ( p̂ − y)2. The calculations may be repeated the same way, and,
interestingly, it turns out that the greedy forecaster p̂t has exactly the same form as before;
that is, it equals either 0 or 1, or

1

2
+ 1

2η
ln

∑N
i=1 e−ηLi,t−1−η�( fi,t ,1)∑N
j=1 e−ηL j,t−1−η�( f j,t ,0)

depending on which of the three values gives a smaller worst-case value of the potential
function. In Theorem 3.2 it is shown that special properties of the square loss imply that
if the exponentially weighted average forecaster is used with η = 1/2, then the potential
function cannot increase in any step. Theorem 3.2, combined with the previous result shows



52 Tight Bounds for Specific Losses

that if η = 1/2, then the greedy forecaster satisfies

L̂n − min
i=1,...,N

Li,n ≤ 2 ln N .

Logarithmic Loss
Again let Y = {0, 1} and D = [0, 1], and consider the logarithmic loss �( p̂, y) =
−I{y=1} ln p̂ − I{y=0} ln(1− p̂) and the exponential potential. It is interesting that in this
case, for η = 1, the greedy forecaster coincides with the exponentially weighted average
forecaster (see the exercises).

3.5 The Aggregating Forecaster

The analysis based on exp-concavity from Section 3.3 hinges on finding, for a given loss,
some η > 0 such that the exponential potential �η(Rn) remains bounded by the initial
potential �η(0) when the predictions are computed by the exponentially weighted average
forecaster. If such an η is found, then Proposition 3.1 entails that the regret remains
uniformly bounded by (ln N )/η. However, as we show in this section, for all losses for
which such an η exists, one might obtain an even better regret bound by finding a forecaster
(not necessarily based on weighted averages) guaranteeing �η(Rn) ≤ �η(0) for a larger
value of η than the largest η that the weighted average forecaster can afford. Thus, we
look for a forecaster whose predictions p̂t satisfy �η(Rt−1 + rt ) ≤ �η(Rt−1) irrespective
of the choice of the next outcome yt ∈ Y (recall that, as usual, rt = (r1,t , . . . , rN ,t ), where
ri,t = �( p̂t , yt )− �( fi,t , yt )). It is easy to see that this is equivalent to the condition

�( p̂t , yt ) ≤ −1

η
ln

(
N∑

i=1

e−η�( fi,t ,yt )qi,t−1

)
for all yt ∈ Y .

The distribution q1,t−1, . . . , qN ,t−1 is defined via the weights associated with the exponential
potential. That is, qi,t−1 = e−ηLi,t−1

/(∑N
j=1 e−ηL j,t−1

)
. To allow the analysis of losses for

which no forecaster is able to prevent the exponential potential from ever increasing,
we somewhat relax the previous condition by replacing the factor 1/η with µ(η)/η. The
real-valued function µ is called the mixability curve for the loss �, and it is formally
defined as follows. For all η > 0, µ(η) is the infimum of all numbers c such that for all
N , for all probability distributions (q1, . . . , qN ), and for all choices of the expert advice
f1, . . . , fN ∈ D, there exists a p̂ ∈ D such that

�( p̂, y) ≤ − c

η
ln

(
N∑

i=1

e−η�( fi ,y)qi

)
for all y ∈ Y . (3.3)

Using the terminology introduced by Vovk, we call aggregating forecaster any forecaster
that, when run with input parameter η, predicts using p̂, which satisfies (3.3), with c = µ(η).

The mixability curve can be used to obtain a bound on the loss of the aggregating
forecaster for all values η > 0.

Proposition 3.2. Let µ be the mixability curve for an arbitrary loss function �. Then, for
all η > 0, the aggregating forecaster achieves

L̂n ≤ µ(η) min
i=1,...,N

Li,n + µ(η)

η
ln N

for all n ≥ 1 and for all y1, . . . , yn ∈ Y .
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Proof. Let Wt =
∑N

i=1 e−ηLi,t . Then, by definition of mixability, for each t there exists a
p̂t ∈ D such that

�( p̂t , yt ) ≤ −µ(η)

η
ln

(∑N
i=1 e−ηLi,t−1 e−η�( fi,t ,yt )∑N

j=1 e−ηL j,t−1

)
= −µ(η)

η
ln

(
Wt

Wt−1

)
.

Summing the leftmost and rightmost members of this inequality for t = 1, . . . , n we get

L̂n ≤ −µ(η)

η
ln

(
n∏

t=1

Wt

Wt−1

)

= −µ(η)

η
ln

Wn

W0

= −µ(η)

η
ln

(∑N
j=1 e−ηL j,n

N

)

≤ µ(η)

η

(
ηLi,n + ln N

)
for any expert i = 1, . . . , N .

In the introduction to Chapter 2 we described the problem of prediction with expert
advice as an iterated game between the forecaster and the environment. To play this game,
the environment must use some strategy for choosing expert advice and outcome at each
round based on the forecaster’s past predictions. Fix such a strategy for the environment
and fix a strategy for the forecaster (e.g., the weighted average forecaster). For a pair
(a, b) ∈ R

2
+, say that the forecaster wins if his strategy achieves

L̂n ≤ a min
i=1,...,N

Li,n + b ln N

for all n, N ≥ 1; otherwise the environment wins (suppose that the number N of experts is
chosen by the environment at the beginning of the game).

This game was introduced and analyzed through the notion of mixability curve in the
pioneering work of Vovk [298]. Under mild conditions on D, Y , and �, Vovk shows the
following result:

� For each pair (a, b) ∈ R
2
+ the game is determined. That is, either there exists a forecasting

strategy that wins irrespective of the strategy used by the environment or the environment
has a strategy that defeats any forecasting strategy.

� The forecaster wins exactly for those pairs (a, b) ∈ R
2
+ such that there exists some η ≥ 0

satisfying µ(η) ≤ a and µ(η)/η ≤ b.

Vovk’s result shows that the mixability curve is exactly the boundary of the set of all pairs
(a, b) such that the forecaster can always guarantee that L̂n ≤ a mini≤N Li,n + b ln N . It
can be shown, under mild assumptions on �, that µ ≥ 1. The largest value of η for which
µ(η) = 1 is especially relevant to our regret minimization goal. Indeed, for this η we can
get the strong regret bounds of the form (ln N )/η.

We call η-mixable any loss function for which there exists an η satisfying µ(η) = 1 in
the special case D = [0, 1] and Y = {0, 1} (the choice of 0 and 1 is arbitrary; the theorem
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can be proven for any two real numbers a, b, with a < b). The next result characterizes
mixable losses.

Theorem 3.5 (Mixability Theorem). LetD = [0, 1],Y = {0, 1}, and choose a loss function
�. Consider the set S ⊆ [0, 1]2 of all pairs (x, y) such that there exists some p ∈ [0, 1]
satisfying �(p, 0) ≤ x and �(p, 1) ≤ y. For each η > 0, introduce the homeomorphism
Hη : [0, 1]2 → [e−η, 1]2 defined by Hη(x, y) = (e−ηx , e−ηy). Then � is η-mixable if and
only if the set Hη(S) is convex.

Proof. We need to find, for some η > 0, for all y ∈ {0, 1}, for all probability distributions
q1, . . . , qN , and for any expert advice f1, . . . , fN ∈ [0, 1], a number p ∈ [0, 1] satisfying

�(p, y) ≤ −1

η
ln

(
N∑

i=1

e−η�( fi ,y)qi

)
.

This condition can be rewritten as

e−η�(p,y) ≥
N∑

i=1

e−η�( fi ,y)qi

and, recalling that y ∈ {0, 1}, as

e−η�(p,0 ) ≥
N∑

i=1

e−η�( fi ,0)qi and e−η�(p,1) ≥
N∑

i=1

e−η�( fi ,1)qi .

The condition says that a prediction p must exist so that each coordinate of
Hη

(
�(p, 0), �(p, 1)

)
is not smaller than the corresponding coordinate of the convex com-

bination
∑N

i=1 Hη

(
�( fi , 0), �( fi , 1)

)
qi . If Hη(S) is convex, then the convex combination

belongs to Hη(S). Therefore such a p always exists by definition of S (see Figure 3.2). This
condition is easily seen to be also necessary.

Remark 3.1. Assume that �0(p) = �(p, 0) and �1(p) = �(p, 1) are twice differentiable so
that �0(0) = �1(1) = 0, �′0(p) > 0, �′1(p) < 0 for all 0 < p < 1. Then, for each η > 0, there
exists a twice differentiable function hη such that yη(p) = hη

(
xη(p)

)
and, by Theorem 3.5,

� is η-mixable if and only if hη is concave. Using again the assumptions on �, the concavity
of hη is equivalent to (see Exercise 3.11)

η ≤ inf
0<p<1

�′0(p)�′′1(p)− �′′0(p)�′1(p)

�′0(p)�′1(p)
(
�′1(p)− �′0(p)

) .
Remark 3.2. We can extend the mixability theorem to provide a condition sufficient for
mixability in the cases where D = Y = [0, 1]. To do this, we must verify that e−η�(p,0) ≥∑N

i=1 e−η�( fi ,0)qi and e−η�(p,1) ≥∑N
i=1 e−η�( fi ,1)qi together imply that e−η�(p,y) ≥∑N

i=1 e−η�( fi ,y)qi for all 0 ≤ y ≤ 1. This implication is satisfied whenever

e−η�(p,y) −
N∑

i=1

e−η�( fi ,y)qi (3.4)

is a concave function of y ∈ [0, 1] for each fixed p ∈ [0, 1], fi , and qi , i = 1 . . . , N .
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H∗
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Hη(S)

e−η

e−η
1

1

Figure 3.2. Mixability for

(a)

the square loss. (a) Region S of points (x, y)

(b)

satisfying (p −
0)2 ≤ x and (p − 1)2 ≤ y for some p ∈ [0, 1]. (b) Prediction p must correspond to a point
H ∗

η = Hη

(
�(p, 0), �(p, 1)

)
to the north-east of f =∑N

i=1 Hη

(
�( fi , 0), �( fi , 1)

)
qi . Note that f is in

the convex hull (the shaded region) whose vertices are in Hη(S). Therefore, if Hη(S) is convex, then
f ∈ Hη(S), and finding such a p is always possible by definition of S.

The next result proves a simple relationship between the aggregating forecaster and the
greedy forecaster of Section 3.4.

Proposition 3.3. For any η-mixable loss function �, the greedy forecaster using the expo-
nential potential �η is an aggregating forecaster.

Proof. If a loss � is mixable, then for each t and for all yt ∈ Y there exists p̂t ∈ D
satisfying

�( p̂t , yt ) ≤ −1

η
ln

∑N
i=1 e−ηLi,t−1−η�( fi,t ,yt )∑N

j=1 e−ηL j,t−1
.

Such a p̂t may then be defined by

p̂t = argmin
p∈D

sup
yt∈Y

(
�(p, yt )+ 1

η
ln

∑N
i=1 e−ηLi,t−1−η�( fi,t ,yt )∑N

j=1 e−ηL j,t−1

)

= argmin
p∈D

sup
yt∈Y

(
�(p, yt )+ 1

η
ln

N∑
i=1

e−ηLi,t

)
,

which is exactly the definition of the greedy forecaster using the exponential potential.

Oracle Inequality for Mixable Losses
The aggregating forecaster may be extended, in a simple way, to handle countably infinite
classes of experts. Consider a sequence f1, f2, . . . of experts such that, at time t , the
prediction of expert fi is fi,t ∈ D. The goal of the forecaster is to predict as well as any of
the experts fi . In order to do this, we assign, to each expert, a positive number πi > 0 such
that

∑∞
i=1 πi = 1. The numbers πi may be called prior probabilities.
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Assume now that the decision space D is a compact metric space and the loss function �

is continuous. Let µ be the mixability curve of �. By the definition of µ, for every yt ∈ Y ,
every sequence q1, q2, . . . of positive numbers with

∑
i qi = 1, and N > 0, there exists a

p̂(N ) ∈ D such that

�( p̂(N ), yt ) ≤ −µ(η)

η
ln

(
N∑

i=1

e−η�( fi ,yt )
qi∑N
j=1 q j

)
≤ −µ(η)

η
ln

(
N∑

i=1

e−η�( fi ,yt )qi

)
.

Because D is compact, the sequence { p̂(N )} has an accumulation point p̂ ∈ D. Moreover,
by the continuity of �, this accumulation point satisfies

�( p̂, yt ) ≤ −µ(η)

η
ln

( ∞∑
i=1

e−η�( fi ,yt )qi

)
.

In other words, the aggregating forecaster, defined by p̂t satisfying

�( p̂t , yt ) ≤ −µ(η)

η
ln

∑∞
i=1 πi e−ηLi,t−1−η�( fi,t ,yt )∑∞

j=1 π j e−ηL j,t−1

is well defined. Then, by the same argument as in Corollary 3.1, for all η > 0, we obtain

L̂n ≤ µ(η) min
i=1,2,...

(
Li,n + 1

η
ln

1

πi

)
for all n ≥ 1 and for all y1, . . . , yn ∈ Y .

By writing the forecaster in the form

�( p̂t , yt ) ≤ −µ(η)

η
ln

∑∞
i=1

exp

(
−η

(
Li,t−1 + 1

η
ln

1

πi

)
− η�( fi,t , yt )

)
∑∞

j=1
exp

(
−η

(
L j,t−1 + 1

η
ln

1

π j

))
we see that the quantity 1

η
ln(1/πi ) may be regarded as a “penalty” added to the cumulative

loss of expert i at each time t . The performance bound for the aggregating forecaster is a
so-called “oracle inequality,” which states that it achieves a cumulative loss matching the
best penalized cumulative loss of the experts.

3.6 Mixability for Certain Losses

In this section, we examine the mixability properties of various loss functions of special
importance.

The Relative Entropy Loss Is 1-Mixable
Recall that this loss is defined by

�(p, y) = y ln
y

p
+ (1− y) ln

1− y

1− p
, where p, y ∈ [0, 1].

Let us first consider the special case when y ∈ {0, 1} (logarithmic loss). It is easy to
see that the conditions of the mixability theorem are satisfied with η = 1. Note that for
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this choice of η, the unique prediction p̂ satisfying definition (3.3) of the aggregating
forecaster with c = 1 is exactly the prediction of the exponentially weighted average
forecaster. Therefore, in the case of logarithmic loss, this approach does not offer any
advantage with respect to the analysis based on exp-concavity from Section 3.3. Also
recall from Section 3.4 that for η = 1 the exponentially weighted average forecaster is
the unique greedy minimizer of the potential function. Thus, for the logarithmic loss, this
predictor has various interesting properties. Indeed, in Chapter 9 we show that when the
set of experts is finite, the exponentially weighted average forecaster is the best possible
forecaster.

Returning to the relative entropy loss, the validity of (3.3) for c = 1, η = 1, and p̂ =∑N
i=1 fi qi (i.e., when p̂ is the weighted average prediction) is obtained directly from the

exp-concavity of the function F(z) = e−η�(z,y), which we proved in Section 3.3. Therefore,
the exponentially weighted average forecaster with η = 1 satisfies the conditions of the
mixability theorem also for the relative entropy loss. Again, on the other hand, we do not
get any improvement with respect to the analysis based on exp-concavity.

The Square Loss Is 2-Mixable
For the square loss �(p, y) = (p − y)2, p, y ∈ [0, 1], we begin again by assuming y ∈
{0, 1}. Then the conditions of the mixability theorem are easily verified with η = 2. With a
bit more work, we can also verify that function (3.4) is concave in y ∈ [0, 1] (Exercise 3.12).
Therefore, the conditions of the mixability theorem are satisfied also whenD = Y = [0, 1].
Note that, unlike in the case of the relative entropy loss, here we gain a factor of 4 in the regret
bound with respect to the analysis based on exp-concavity. This gain is real, because it can
be shown that the conditions of the mixability theorem cannot be satisfied, in general, by the
exponentially weighted average forecaster. Moreover, it can be shown that no prediction of
the form p̂ = g

(∑N
i=1 fi qi

)
satisfies (3.3) with c = 1 and η = 2 no matter which function

g is picked (Exercise 3.13).
We now derive a closed-form expression for the prediction p̂t of the aggregating fore-

caster. Since the square loss is mixable, by Proposition 3.3 the greedy forecaster is an
aggregating forecaster. Recalling from Section 3.4 the prediction of the greedy forecaster
for the square loss, we get

p̂t =
⎧⎨⎩

0 if rt < 0
rt if 0 ≤ rt ≤ 1
1 if rt > 1

where

rt = 1

2
+ 1

2η
ln

∑N
i=1 e−ηLi,t−1−η�( fi,t ,1)∑N
j=1 e−ηL j,t−1−η�( f j,t ,0)

.

The Absolute Loss Is Not Mixable
The absolute loss, defined by �(p, y) = |p − y| for p, y ∈ [0, 1], does not satisfy the
conditions of the mixability theorem. Hence, we cannot hope to find η > 0 such that µ(η) =
1. However, we can get a bound for the loss for all η > 0 by applying Proposition 3.2. To do
this, we need to find the mixability function for the absolute loss, that is, the smallest function
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µ : R+ → R+ such that, for all distributions q1, . . . , qN , for all f1, . . . , fN ∈ [0, 1], and
for all outcomes y, there exists a p̂ ∈ [0, 1] satisfying

|̂p − y| ≤ −µ(η)

η
ln

(
N∑

i=1

e−η| fi−y|qi

)
. (3.5)

Here we only consider the simple case when y ∈ {0, 1} (prediction of binary outcomes). In
this case, the prediction p̂ achieving mixability is expressible as a (nonlinear) function of
the exponentially weighted average forecaster. In the more general case, when y ∈ [0, 1],
no prediction of the form p̂ = g

(∑N
i=1 fi qi

)
achieves mixability no matter how function g

is chosen (Exercise 3.14).
Using the linear interpolation e−ηx ≤ 1− (1− e−η

)
x , which holds for all η > 0 and

0 ≤ x ≤ 1, we get

−µ(η)

η
ln

(
N∑

i=1

e−η| fi−y|qi

)

≥ −µ(η)

η
ln

(
1−

N∑
i=1

(
1− e−η

) | fi − y|qi

)
(3.6)

= −µ(η)

η
ln

(
1− (1− e−η

) ∣∣∣∣∣
N∑

i=1

fi qi − y

∣∣∣∣∣
)

,

where in the last step we used the assumption y ∈ {0, 1}. Hence, using the notation r =∑N
i=1 fi qi , it is sufficient to prove that

|̂p − y| ≤ −µ(η)

η
ln
(
1− (1− e−η)|r − y|)

or equivalently, using again the assumption y ∈ {0, 1},

1+ µ(η)

η
ln
(
1− (1− e−η)(1− r )

) ≤ p̂ ≤ −µ(η)

η
ln
(
1− (1− e−η)r

)
. (3.7)

By setting r = 1/2 in inequality (3.7), we get

1+ µ(η)

η
ln

(
1+ e−η

2

)
≤ −µ(η)

η
ln

(
1+ e−η

2

)
, (3.8)

which is satisfied only by the assignment

µ(η) = η/2

ln
(
2/(1+ e−η)

) .
Note that for this assignment, (3.8) holds with equality. Simple calculations show that the
choice of µ above satisfies (3.7) for all 0 ≤ r ≤ 1. Note further that for f1, . . . , fN ∈ {0, 1}
the linear approximation (3.6) is tight. If in addition r =∑N

i=1 fi qi = 1/2, then there
exists only one function µ such that (3.5) holds. Therefore, µ is indeed the mixability
curve for the absolute loss with binary outcomes. It can be proven (Exercise 3.15) that
this function is also the mixability curve for the more general case when y ∈ [0, 1]. In
Figure 3.3 we show, as a function of r , the upper and lower bounds (3.7) on the prediction p̂
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0
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1

1

Figure 3.3. The two dashed lines show, as a function of the weighted average r , the upper and lower
bounds (3.7) on the mixability-achieving prediction p̂ for the absolute loss when η = 2; the solid line
in between is a mixability-achieving prediction p̂ obtained by taking the average of the upper and
lower bounds. Note that, in this case, p̂ can be expressed as a (nonlinear) function of the weighted
average.

achieving mixability and the curve p̂ = p̂(r ) obtained by taking the average of the upper and
lower bounds. Comparing the regret bound for the mixability-achieving forecaster obtained
via Proposition 3.2 with the bound of Theorem 2.2 for the weighted average forecaster,
one sees that the former has a better dependence on η than the latter. However, as we
show in Section 3.7 the bound of Theorem 2.2 is asymptotically tight. Hence, the benefit
of using the more complicated mixability-achieving forecaster vanishes as n grows to
infinity.

The relationships between the various losses examined so far are summarized in
Figure 3.4.

3.7 General Lower Bounds

We now address the question of the tightness of the upper bounds obtained so far in this
and the previous chapters. Our purpose here is to derive lower bounds for the worst-case
regret. More precisely, we investigate the behavior of the minimax regret V (N )

n . Recall from
Section 2.10 that, given a loss function �, V (N )

n is defined as the regret of the best possible
forecasting strategy for the worst possible choice of n outcomes and advice fi,t for N
experts, where i = 1, . . . , N and t = 1, . . . , n.

The upper bound of Theorem 2.2 shows that if the loss function is bounded between
0 and 1 then V (N )

n ≤ √(n/2) ln N . On the other hand, the mixability theorem proven
in this chapter shows that for any mixable loss �, the significantly tighter upper bound
V (N )

n ≤ c� ln N holds, where c� is a parameter that depends on the specific mixable loss.
(See Remark 3.1 for an analytic characterization of this parameter.) In this section we
show that, in some sense, both of these upper bounds are tight. The next result shows
that, apart from trivial and uninteresting cases, the minimax loss is at least proportional to
the logarithm of the number N of experts. The theorem provides a lower bound for any
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Bounded Convex

Mixable

Exp-concave

Figure 3.4. A Venn diagram illustrating the hierarchy of losses examined so far. The minimax
regret for bounded and convex losses is O

(√
n ln N

)
, and this value is achieved by the weighted

average forecaster. Mixable losses, which are not always bounded, have a minimax regret of the form
c ln N . This regret is not necessarily achieved by the weighted average forecaster. Exp-concave losses
are those mixable losses for which the weighted average forecaster does guarantee a regret c ln N .
Such losses are properly included in the set of mixable losses in the following sense: for certain
values of η, some losses are η-mixable but not exp-concave (e.g., the square loss). The minimax
regret for bounded losses that are not necessarily convex is studied in Chapter 4 using randomized
forecasters.

loss function. When applied to mixable losses, this lower bound captures the logarithmic
dependence on N , but it does not provide a matching constant.

Theorem 3.6. Fix any loss function �. Then V (N )
n�log2 N� ≥ �log2 N�V (2)

n for all N ≥ 2 and
all n ≥ 1.

Proof. Without loss of generality, assume that there are N = 2M experts for some M ≥ 1.
For any m ≤ N/2, we say that the expert advice f1,t , . . . , fN ,t at time t is m-coupled if
fi,t = fm+i,t for all i = 1, . . . , m. Similarly, we say that the expert advice at time t is
m-simple if f1,t = · · · = fm,t and fm+1,t = · · · = f2m,t . Note that these definitions impose
no constraints on the advice of experts with index i > 2m. We break time in M stages of
n time steps each. We say that the expert advice is m-simple (m-coupled) in stage s if it
is m-simple (m-coupled) on each time step in the stage. We choose the expert advice so
that

1. the advice is 2s−1-simple for each stage s = 1, . . . , M ;
2. for each s = 1, . . . , M − 1, the advice is 2s-coupled in all time steps up to stage s

included.

Note that we can obtain such an advice simply by choosing, at each stage s = 1, . . . , M ,
an arbitrary 2s−1-simple expert advice for the first 2s experts, and then copying this advice
onto the remaining experts (see Figure 3.5).
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Figure 3.5. An assignment of expert advice achieving the lower bound of Theorem 3.6 for N = 8
and n = 1. Note that the advice is 1-simple for s = 1, 2-simple for s = 2, and 4-simple for s = 3. In
addition, the advice is also 2-coupled for s = 1 and 4-coupled for s = 1, 2.

Consider an arbitrary forecasting strategy P . For any fixed sequence y1, . . . , yM on
which P is run, and for any pair of stages 1 ≤ r ≤ s ≤ M , let

Ri (ys
r ) =

ns∑
t=n(r−1)+1

(
�( p̂t , yt )− �( fi,t , yt )

)
,

where p̂t is the prediction computed by P at time t .
For the sake of simplicity, assume that n = 1. Fix some arbitrary expert i and pick any

expert j (possibly equal to i). If i, j ≤ 2M−1 or i, j > 2M−1, then Ri (yM
1 ) = Ri (yM−1

1 )+
R j (yM ) because the advice at s = M is 2M−1-simple. Otherwise, assume without loss of
generality that i ≤ 2M−1 and j > 2M−1. Since the advice at s = 1, . . . , M − 1 is 2M−1-
coupled, there exists k > 2M−1 such that Ri (yM−1

1 ) = Rk(yM−1
1 ). In addition, since the

advice at t = M is 2M−1-simple, R j (yM ) = Rk(yM ). We have thus shown that for any i and
j there always exists k such that Ri (yM

1 ) = Rk(yM−1
1 )+ R j (yM ). Repeating this argument,

and using our recursive assumptions on the expert advice, we obtain

Ri (yM
1 ) =

M∑
s=1

R js (ys),

where j1, . . . , jM = j are arbitrary experts. This reasoning can be easily extended to the
case n ≥ 1, obtaining

Ri
(
ynM

1

) = M∑
s=1

R js

(
yns

n(s−1)+1

)
.

Now note that the expert advice at each stage s = 1, . . . , M is 2s−1-simple, implying that
we have a pool of at least two “uncommitted experts” at each time step. Hence, using the
fact that the sequence y1, . . . , ynM is arbitrary and

V (N )
n = inf

P
sup

{F : |F |=N }
sup

yn∈Yn
max

i=1,...,N

n∑
t=1

(
�( p̂t , yt )− �( fi,t , yt )

)
,

where F are classes of static experts (see Section 2.10), we have, for each stage s,

R js

(
yns

n(s−1)+1

) ≥ V (2)
n
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for some choices of outcomes yt , expert index js , and static expert advice. To conclude the
proof note that, trivially, V (N )

M ≥ Ri (yM
1 ).

Using a more involved argument, it is possible to prove a parametric lower bound that
asymptotically (for both N , n →∞) matches the upper bound c� ln N , where c� is the best
constant achieved by the mixability theorem.

What can be said about V (N )
n for nonmixable losses? Consider, for example, the absolute

loss �(p, y) = |p − y|. By Theorem 2.2, the exponentially weighted average forecaster has
a regret bounded by

√
(n/2) ln N , which implies that, for all n and N ,

V (N )
n√

(n/2) ln N
≤ 1.

The next result shows that, in a sense, this bound cannot be improved further. It also shows
that the exponentially weighted average forecaster is asymptotically optimal.

Theorem 3.7. If Y = {0, 1}, D = [0, 1] and � is the absolute loss �(p, y) = |p − y|, then

sup
n,N

V (N )
n√

(n/2) ln N
≥ 1.

Proof. Clearly, V (N )
n ≥ supF : |F |=N Vn(F), where we take the supremum over classes of

N static experts (see Section 2.9 for the definition of a static expert). We start by lower
bounding Vn(F) for a fixed F . Recall that the minimax regret Vn(F) for a fixed class of
experts is defined as

Vn(F) = inf
P

sup
yn∈{0,1}n

sup
f ∈F

n∑
t=1

(|̂pt − yt | − | ft − yt |
)
,

where the infimum is taken over all forecasting strategies P . Introducing i.i.d. symmetric
Bernoulli random variables Y1, . . . , Yn (i.e., P[Yt = 0] = P[Yt = 1] = 1/2), one clearly
has

Vn(F) ≥ inf
P

E sup
f ∈F

n∑
t=1

(|̂pt − Yt | − | ft − Yt |
)

= inf
P

E

n∑
t=1

|̂pt − Yt | − E inf
f ∈F

n∑
t=1

| ft − Yt |.

(In Chapter 8 we show that this actually holds with equality.) Since the sequence Y1, . . . , Yn

is completely random, for all forecasting strategies one obviously has E
∑n

t=1 |̂pt − Yt | =
n/2. Thus,

Vn(F) ≥ n

2
− E

[
inf
f ∈F

n∑
t=1

| ft − Yt |
]

= E

[
sup
f ∈F

n∑
t=1

(
1

2
− | ft − Yt |

)]

= E

[
sup
f ∈F

n∑
t=1

(
1

2
− ft

)
σt

]
,
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where σt = 1− 2Yt are i.i.d. Rademacher random variables (i.e., with P[σt = 1] = P[σt =
−1] = 1/2). We lower bound supF : |F |=N Vn(F) by taking an average over an appropriately
chosen set of expert classes containing N experts. This may be done by replacing each
expert f = ( f1, . . . , fn) by a sequence of symmetric i.i.d. Bernoulli random variables.
More precisely, let {Zi,t } be an N × n array of i.i.d. Rademacher random variables with
distribution P[Zi,t = −1] = P[Zi,t = 1] = 1/2. Then

sup
F : |F |=N

Vn(F) ≥ sup
F : |F |=N

E

[
sup
f ∈F

n∑
t=1

(
1

2
− ft

)
σt

]

≥ 1

2
E

[
max

i=1,...,N

n∑
t=1

Zi,tσt

]

= 1

2
E

[
max

i=1,...,N

n∑
t=1

Zi,t

]
.

By the central limit theorem, for each i = 1, . . . , N , n−1/2∑n
t=1 Zi,t converges to a standard

normal random variable. In fact, it is not difficult to show (see Lemma A.11 in the Appendix
for the details) that

lim
n→∞E

[
max

i=1,...,N

1√
n

n∑
t=1

Zi,t

]
= E

[
max

i=1,...,N
Gi

]
,

where G1, . . . , G N are independent standard normal random variables. But it is well known
(see Lemma A.12 in the Appendix) that

lim
N→∞

E
[
maxi=1,...,N Gi

]
√

2 ln N
= 1,

and this concludes the proof.

3.8 Bibliographic Remarks

The follow-the-best-expert forecaster and its variants have been thoroughly studied in a
somewhat more general framework, known as the sequential compound decision problem
first put forward by Robbins [244]; see also Blackwell [28, 29], Gilliland [127], Gilliland
and Hannan [128], Hannan [141], Hannan and Robbins [142], Merhav and Feder [213],
van Ryzin [254], and Samuel [256, 257]. In these papers general conditions may be found
that guarantee that the per-round regret converges to 0. Lemma 3.1 is due to Hannan [141].
The example of the square loss with constant experts has been studied by Takimoto and
Warmuth [284], who show that the minimax regret is ln n − ln ln n + o(1).

Exp-concave loss functions were studied by Kivinen and Warmuth [182]. Theorem 3.3
is a generalization of an argument of Blum and Kalai [33]. The mixability curve of Sec-
tion 3.5 was introduced by Vovk [298, 300], and also studied by Haussler, Kivinen, and
Warmuth [151], who characterize the loss functions for which �(ln N ) regret bounds are
possible. The characterization of the optimal η for mixable functions given in Remark 3.1
is due to Haussler, Kivinen, and Warmuth [151]. The examples of mixability are taken
from Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth [48], Haussler,
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Figure 3.6. The Hellinger loss.

Kivinen, and Warmuth [151], and Vovk [298, 300]. The mixability curve of Section 3.5
is equivalent to the notion of “extended stochastic complexity” introduced by Yaman-
ishi [313]. This notion generalizes Rissanen’s stochastic complexity [240, 242].

In the case of binary outcomes Y = {0, 1}, mixability of a loss function � is equivalent
to the existence of the predictive complexity for �, as shown by Kalnishkan, Vovk and
Vyugin [178], who also provide an analytical characterization of mixability in the binary
case. The predictive complexity for the logarithmic loss is equivalent to Levin’s version of
Kolmogorov complexity, see Zvonkin and Levin [320]. In this sense, predictive complexity
may be viewed as a generalization of Kolmogorov complexity.

Theorem 3.6 is due to Haussler, Kivinen, and Warmuth [151]. In the same paper, they
also prove a lower bound that, asymptotically for both N , n →∞, matches the upper
bound c� ln N for any mixable loss �. This result was initially proven by Vovk [298] with a
more involved analysis. Theorem 3.7 is due to Cesa-Bianchi, Freund, Haussler, Helmbold,
Schapire, and Warmuth [48]. Similar results for other loss functions appear in Haussler,
Kivinen, and Warmuth [151]. More general lower bounds for the absolute loss were proved
by Cesa-Bianchi and Lugosi [51].

3.9 Exercises

3.1 Consider the follow-the-best-expert forecaster studied in Section 3.2. Assume that D = Y is a
convex subset of a topological vector space. Assume that the sequence of outcomes is such that
limn→∞ 1

n

∑n
t=1 yt = y for some y ∈ Y . Establish weak general conditions that guarantee that

the per-round regret of the forecaster converges to 0.

3.2 Let Y = D = [0, 1], and consider the Hellinger loss

�(z, y) = 1

2

((√
x −√y

)2 + (√1− x −
√

1− y
)2
)

(see Figure 3.6). Determine the values of η for which the function F(z) defined in Section 3.3
is concave.
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3.3 Let Y = D be the closed ball of radius r > 0, centered at the origin in R
d , and consider the

loss �(z, y) = ‖z − y‖2 (where ‖ · ‖ denotes the euclidean norm in R
d ). Show that F(z) of

Theorem 3.2 is concave whenever η ≤ 1/(8r 2).

3.4 Show that if for a y ∈ Y the function F(z) = e−η�(z,y) is concave, then �(z, y) is a convex
function of z.

3.5 Show that if a loss function is exp-concave for a certain value of η > 0, then it is also exp-concave
for any η′ ∈ (0, η).

3.6 In classification problems, various versions of the so-called hinge loss have been used. Typically,
Y = {−, 1}, D = [−1, 1], and the loss function has the form �( p̂, y) = c(−y p̂), where c is a
nonnegative, increasing, and convex cost function. Derive conditions for c and the parameter η

under which the hinge loss is exp-concave.

3.7 (Discounted regret for exp-concave losses) Consider the discounted regret

ρi,n =
n∑

t=1

βn−t

(
�( p̂t , yt )− �( fi,t , yt )

)
defined in Section 2.11, where 1 = β0 ≥ β1 ≥ · · · is a nonincreasing sequence of discount
factors. Assume that the loss function � is exp-concave for some η > 0, and consider the
discounted exponentially weighted average forecaster

p̂t =
∑N

i=1 fi,t exp
(
−η
∑t−1

s=1 βn−s�( fi,s, ys)
)

∑N
j=1 exp

(
−η
∑t−1

s=1 βn−s�( f j,s, ys)
) .

Show that the average discounted regret is bounded by

max
i=1,...,N

∑n
t=1 βn−t ri,t∑n

t=1 βn−t
≤ ln N

η
∑n

t=1 βn−t
.

In particular, show that the average discounted regret is o(1) if and only if
∑∞

t=0 βt = ∞.

3.8 Show that the greedy forecaster based on “fictitious play” defined at the beginning of Section 3.4
does not guarantee that n−1 maxi≤N Ri,n converge to 0 as n →∞ for all outcome sequences.
Hint: It suffices to consider the simple example when Y = D = [0, 1], �( p̂, y) = |̂p − y|, and
N = 2.

3.9 Show that for Y = {0, 1}, D = [0, 1] and the logarithmic loss function, the greedy forecaster
based on the exponential potential with η = 1 is just the exponentially weighted average fore-
caster (also with η = 1).

3.10 Show that µ(η) ≥ 1 for all loss functions � on D × Y satisfying the following conditions: (1)
there exists p ∈ D such that �(p, y) <∞ for all y ∈ Y; (2) there exists no p ∈ D such that
�(p, y) = 0 for all y ∈ Y (Vovk [298]).

3.11 Show the following: Let C ⊂ R
2 be a curve with parametric equations x = x(t) and y = y(t),

which are twice differentiable functions. If there exists a twice differentiable function h such
that y(t) = h(x(t)) for t in some open interval, then

dy

dx
=

dy
dt
dx
dt

and
d2 y

dx2
=

d
dt

dy
dx

dx
dt

.

3.12 Check that for the square loss �(p, y) = (p − y)2, p, y ∈ [0, 1], function (3.4) is concave in y
if η ≤ 1/2 (Vovk [300]).

3.13 Prove that for the square loss there is no function g such that the prediction p̂ = g
(∑N

i=1 fi qi

)
satisfies (3.3) with c = 1. Hint: Consider N = 2 and find f1, f2, q1, q2 and f ′1, f ′2, q ′1, q ′2
such that f1q1 + f2q2 = f ′1q ′1 + f ′2q ′2 but plugging these values in (3.3) yields a contradiction
(Haussler, Kivinen, and Warmuth [151]).
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3.14 Prove that for the absolute loss there is no function g for which the prediction p̂ = g
(∑N

i=1 fi qi

)
satisfies (3.5), where µ(η) is the mixability curve for the absolute loss. Hint: Set η = 1 and
follow the hint in Exercise 3.13 (Haussler, Kivinen, and Warmuth [151]).

3.15 Prove that the mixability curve for the absolute loss with binary outcomes is also the mixability
function for the case when the outcome space is [0, 1] (Haussler, Kivinen, and Warmuth [151]).
Warning: This exercise is not easy.

3.16 Find the mixability curve for the following loss:D is the probability simplex in R
N ,Y = [0, 1]N ,

and �( p̂, y) = p̂ · y (Vovk [298]). Warning: This exercise is not easy.
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Randomized Prediction

4.1 Introduction

The results of Chapter 2 crucially build on the assumption that the loss function � is convex
in its first argument. While this assumption is natural in many applications, it is not satisfied
in some important examples.

One such example is the case when both the decision space and the outcome space
are {0, 1} and the loss function is �(p, y) = I{p �=y}. In this case it is clear that for any
deterministic strategy of the forecaster, there exists an outcome sequence yn = (y1, . . . , yn)
such that the forecaster errs at every single time instant, that is, L̂n = n. Thus, except for
trivial cases, it is impossible to achieve L̂n −mini=1,...,N Li,n = o(n) uniformly over all
outcome sequences. For example, if N = 2 and the two experts’ predictions are f1,t = 0
and f2,t = 1 for all t , then mini=1,2 Li,n ≤ n/2 , and no matter what the forecaster does,

max
yn∈Yn

(
L̂n(yn)− min

i=1,...,N
Li,n(yn)

)
≥ n

2
.

One of the key ideas of the theory of prediction of individual sequences is that in such a
situation randomization may help. Next we describe a version of the sequential prediction
problem in which the forecaster has access, at each time instant, to an independent random
variable uniformly distributed on the interval [0, 1]. The scenario is conveniently described
in the framework of playing repeated games.

Consider a game between a player (the forecaster) and the environment. At each round
of the game, the player chooses an action i ∈ {1, . . . , N }, and the environment chooses an
action y ∈ Y (in analogy with Chapters 2 and 3 we also call “outcome” the adversary’s
action). The player’s loss �(i, y) at time t is the value of a loss function � : {1, . . . , N } ×
Y → [0, 1]. Now suppose that, at the t th round of the game, the player chooses a probability
distribution pt = (p1,t , . . . , pN ,t ) over the set of actions and plays action i with probability
pi,t . Formally, the player’s action It at time t is defined by

It = i if and only if Ut ∈
⎡⎣ i−1∑

j=1

p j,t ,

i∑
j=1

p j,t

⎞⎠
so that

P [It = i | U1, . . . , Ut−1] = pi,t , i = 1, . . . , N ,

67
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where U1, U2, . . . are independent random variables, uniformly distributed in the interval
[0, 1]. Adopting a game-theoretic terminology, we often call an action a pure strategy and
a probability distribution over actions a mixed strategy. Suppose the environment chooses
action yt ∈ Y . The loss of the player is then �(It , yt ).

If I1, I2, . . . is the sequence of forecaster’s actions and y1, y2, . . . is the sequence of
outcomes chosen by the environment, the player’s goal is to minimize the cumulative regret

L̂n − min
i=1,...,N

Li,n =
n∑

t=1

�(It , yt )− min
i=1,...,N

n∑
t=1

�(i, yt ),

that is, the realized difference between the cumulative loss and the loss of the best pure
strategy.

Remark 4.1 (Experts vs. actions). Note that, unlike for the game of prediction with expert
advice analyzed in Chapter 2, here we define the regret in terms of the forecaster’s best
constant prediction rather than in terms of the best expert. Hence, as experts can be arbitrarily
complex prediction strategies, this game appears to be easier for the forecaster than the
game of Chapter 2. However, as our forecasting algorithms make assumptions neither on
the structure of the outcome space Y nor on the structure of the loss function �, we can
prove for the expert model the same bounds proven in this chapter. This is done via a
simple reduction in which we use {1, . . . , N } to index the set of experts and define the loss
�′(i, yt ) = �( fi,t , yt ), where � is the loss function used to score predictions in the expert
game.

Before moving on, we point out an important subtlety brought in by allowing the forecaster
to randomize. The actions yt of the environment are now random variables Yt as they may
depend on the past (randomized) plays I1, . . . , It−1 of the forecaster. One may even allow
the environment to introduce an independent randomization to determine the outcomes Yt ,
but this is irrelevant for the material of this section; so, for simplicity, we exclude this
possibility. We explicitly deal with such situations in Chapter 7.

A slightly less powerful model is obtained if one does not allow the actions of the
environment to depend on the predictions It of the forecaster. In this model, which we
call the oblivious opponent, the whole sequence y1, y2, . . . of outcomes is determined
before the game starts. Then, at time t , the forecaster makes its (randomized) prediction It

and the environment reveals the t th outcome yt . Thus, in this model, the yt ’s are nonrandom
fixed values. The model of an oblivious opponent is realistic whenever it is reasonable to
believe that the actions of the forecaster do not have an effect on future outcomes of the
sequence to be predicted. This is the case in many applications, such as weather forecasting
or predicting a sequence of bits of a speech signal for encoding purposes. However, there
are important cases when one cannot reasonably assume that the opponent is oblivious.
The main example is when a player of a game predicts the other players’ next move and
bases his action on such a prediction. In such cases the other players’ future actions may
depend on the action (and therefore on the forecast) of the player in any complicated way.
The stock market comes to mind as an obvious example. Such game-theoretic applications
are discussed in Chapter 7.

Formally, an oblivious opponent is defined by a fixed sequence y1, y2, . . . of outcomes,
whereas a nonoblivious opponent is defined by a sequence of functions g1, g2, . . . , with
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gt : {1, . . . , N }t−1 → Y , and each outcome Yt is given by Yt = gt (I1, . . . , It−1). Thus Yt is
measurable with respect to the σ -algebra generated by the random variables U1, . . . , Ut−1.

Interestingly, any forecaster that is guaranteed to work well against an oblivious opponent
also works well in the general model against any strategy of a nonoblivious opponent, in a
certain sense. To formulate this fact, we introduce the expected loss

�(pt , Yt )
def= E

[
�(It , Yt )

∣∣U1, . . . , Ut−1
] = Et �(It , Yt ) =

N∑
i=1

�(i, Yt )pi,t .

Here the “expected value” Et is taken only with respect to the random variable It . More
precisely, �(pt , Yt ) is the conditional expectation of �(It , Yt ) given the past plays I1, . . . , It−1

(we use Et to denote this conditional expectation). Since Yt = gt (I1, . . . , It−1), the value
of �(pt , Yt ) is determined solely by U1, . . . , Ut−1.

An important property of the forecasters investigated in this chapter is that the probability
distribution pt of play is fully determined by the past outcomes Y1, . . . , Yt−1; that is, it does
not explicitly depend on the past plays I1, . . . , It−1. Formally, pt : Y t−1 → D is a function
taking values in the simplex D of probability distributions over N actions.

Note that the next result, which assumes that the forecaster is of the above form, is in
terms of the cumulative expected loss

∑n
t=1 �(pt , Yt ), and not in terms of its expected value

E

[
n∑

t=1

�(pt , Yt )

]
= E

[
n∑

t=1

�(It , Yt )

]
.

Exercise 4.1 describes a closely related result about the expected value of the cumulative
losses.

Lemma 4.1. Let B, C be positive constants. Consider a randomized forecaster such that,
for every t = 1, . . . , n, pt is fully determined by the past outcomes y1, . . . , yt−1. Assume
the forecaster’s expected regret against an oblivious opponent satisfies

sup
yn∈Yn

E

[
n∑

t=1

�(It , yt )− C
n∑

t=1

�(i, yt )

]
≤ B, i = 1, . . . , N .

If the same forecaster is used against a nonoblivious opponent, then

n∑
t=1

�(pt , Yt )− C
n∑

t=1

�(i, Yt ) ≤ B, i = 1, . . . , N

holds. Moreover, for all δ > 0, with probability at least 1− δ the actual cumulative loss
satisfies, for any (nonoblivious) strategy of the opponent,

n∑
t=1

�(It , Yt )− C min
i=1,...,N

n∑
t=1

�(i, Yt ) ≤ B +
√

n

2
ln

1

δ
.

Proof. Observe first that if the opponent is oblivious, that is, the sequence y1, . . . , yn is
fixed, then pt is also fixed and thus for each i = 1, . . . , N ,

E

[
n∑

t=1

�(It , yt )− C
n∑

t=1

�(i, yt )

]
=

n∑
t=1

�(pt , yt )− C
n∑

t=1

�(i, yt ),
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which is bounded by B by assumption. If the opponent is nonoblivious, then for each
i = 1, . . . , N ,

n∑
t=1

�(pt , Yt )− C
n∑

t=1

�(i, Yt )

≤ sup
y1∈Y

E1
[
�(I1, y1)− C�(i, y1)

]+ · · · + sup
yn∈Y

En
[
�(In, yn)− C�(i, yn)

]
= sup

yn∈Yn

(
E1
[
�(I1, y1)− C�(i, y1)

]+ · · · + En
[
�(In, yn)− C�(i, yn)

])
.

To see why the last equality holds, consider n = 2. Since the quantity E1[�(I1, y1)−
C�(i, y1)] does not depend on the value of y2, and since y2, owing to our assumptions on
p2, does not depend on the realization of I1, we have

sup
y1∈Y

E1
[
�(I1, y1)− C�(i, y1)

]+ sup
y2∈Y

E2
[
�(I2, y2)− C�(i, y2)

]
= sup

y1∈Y
sup
y2∈Y

(
E1
[
�(I1, y1)− C�(i, y1)

]+ E2
[
�(I2, y2)− C�(i, y2)

])
.

The proof for n > 2 follows by repeating the same argument. By assumption,

sup
yn∈Yn

(
E1
[
�(I1, y1)− C�(i, y1)

]+ · · · + En
[
�(In, yn)− C�(i, yn)

]) ≤ B,

which concludes the proof of the first statement of the lemma.
To prove the second statement just observe that the random variables �(It , Yt )−

�(pt , Yt ), t = 1, 2, . . . form a sequence of bounded martingale differences (with respect
to the sequence U1, U2, . . . of randomizing variables). Thus, a simple application of the
Hoeffding–Azuma inequality (see Lemma A.7 in the Appendix) yields that for every
δ > 0, with probability at least 1− δ,

n∑
t=1

�(It , Yt ) ≤
n∑

t=1

�(pt , Yt )+
√

n

2
ln

1

δ
.

Combine this inequality with the first statement to complete the proof.

Most of the results presented in this and the next two chapters (with the exception of those
of Section 6.10) are valid in the general model of the nonoblivious opponent. So, unless
otherwise specified, we allow the actions of environment to depend on the randomized
predictions of the forecaster.

In Section 4.2 we show that the techniques of Chapter 2 may be used in the setup of
randomized prediction as well. In particular, a simple adaptation of the weighted average
forecaster guarantees that the actual regret becomes negligible as n grows. This property is
known as Hannan consistency.

In Section 4.3 we describe and analyze a randomized forecaster suggested by Hannan.
This forecaster adds a small random “noise” to the observed cumulative losses of all
strategies and selects the one achieving the minimal value. We show that this simple
method achieves a regret comparable to that of weighted average predictors. In particular,
the forecaster is Hannan consistent.

In Section 4.4, a refined notion of regret, the so-called internal regret, is introduced. It
is shown that even though control of internal regret is more difficult than achieving Hannan
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consistency, the results of Chapter 2 may be used to construct prediction strategies with
small internal regret.

An interesting application of no-internal-regret prediction is described in Section 4.5.
The forecasters considered there predict a {0, 1}-valued sequence with numbers between
[0, 1]. Each number is interpreted as the predicted “chance” of the next outcome being 1.
A forecaster is well calibrated if at those time instances in which a certain percentage is
predicted, the fraction of 1’s indeed turns out to be the predicted value. The main result
of the section is the description of a randomized forecaster that is well calibrated for all
possible sequences of outcomes.

In Section 4.6 we introduce a general notion of regret that contains both internal and
external regret as special cases, as well as a number of other applications.

The chapter is concluded by describing, in Section 4.7, a significantly stronger notion of
calibration, by introducing checking rules. The existence of a calibrated forecaster, in this
stronger sense, follows by a simple application of the general setup of Section 4.6.

4.2 Weighted Average Forecasters

In order to understand the randomized prediction problem described above, we first consider
a simplified version in which we only consider the expected loss Et�(It , Yt ) = �(pt , Yt ). If
the player’s goal is to minimize the difference between the cumulative expected loss

Ln
def=

n∑
t=1

�(pt , Yt )

and the loss of the best pure strategy, then the problem becomes a special case of the
problem of prediction using expert advice described in Chapter 2. To see this, define the
decision space D of the forecaster (player) as the simplex of probability distributions in R

N .
Then the instantaneous regret for the player is the vector rt ∈ R

N , whose i th component is

ri,t = �(pt , Yt )− �(i, Yt ).

This quantity measures the expected change in the player’s loss if it were to deterministically
choose action i and the environment did not change its action. Observe that the “expected”
loss function is linear (and therefore convex) in its first argument, and Lemma 2.1 may be
applied in this situation. To this end, we recall the weighted average forecaster of Section 2.1
based on the potential function

�(u) = ψ

(
N∑

i=1

φ(ui )

)
,

where φ : R → R is any nonnegative, increasing, and twice differentiable function and
ψ : R → R is any nonnegative, strictly increasing, concave, and twice differentiable aux-
iliary function (which only plays a role in the analysis but not in the definition of the
forecasting strategy). The general potential-based weighted average strategy pt is now

pi,t = ∇�(Rt−1)i∑N
k=1 ∇�(Rt−1)k

= φ′(Ri,t−1)∑N
k=1 φ′(Rk,t−1)

for t > 1 and pi,1 = 1/N for i = 1, . . . , N .
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By Lemma 2.1, for any yt ∈ Y , the Blackwell condition holds, that is,

rt · ∇�(Rt−1) ≤ 0. (4.1)

In fact, by the linearity of the loss function, it is immediate to see that inequality (4.1) is
satisfied with equality. Thus, because the loss function ranges in [0, 1], then choosing φ(x) =
x p
+ (with p ≥ 2) or φ(x) = eηx , the respective performance bounds of Corollaries 2.1 and 2.2

hold in this new setup as well. Also, Theorem 2.2 may be applied, which we recall here for
completeness: consider the exponentially weighted average player given by

pi,t =
exp

(−η
∑t

s=1 �(i, Ys)
)∑N

k=1 exp
(−η

∑t
s=1 �(k, Ys)

) i = 1, . . . , N ,

where η > 0. Then

Ln − min
i=1,...,N

Li,n ≤ ln N

η
+ nη

8
.

With the choice η = √8 ln N/n the upper bound becomes
√

(n ln N )/2. We remark here
that this bound is essentially unimprovable in this generality. Indeed, in Section 3.7 we
prove the following.

Corollary 4.1. Let n, N ≥ 1. There exists a loss function � such that for any randomized
forecasting strategy,

sup
yn∈Yn

(
Ln − min

i=1,...,N
Li,n

)
≥ (1− εN ,n

)√n ln N

2
,

where limN→∞ limn→∞ εN ,n = 0.

Thus the expected cumulative loss of randomized forecasters may be effectively bounded by
the results of Chapter 2. On the other hand, it is more interesting to study the behavior of the
actual (random) cumulative loss �(I1, Y1)+ · · · + �(In, Yn). As we have already observed
in the proof of Lemma 4.1, the random variables �(It , Yt )− �(pt , Yt ), for t = 1, 2, . . . , form
a sequence of bounded martingale differences, and a simple application of the Hoeffding–
Azuma inequality yields the following.

Corollary 4.2. Let n, N ≥ 1 and δ ∈ (0, 1). The exponentially weighted average forecaster
with η = √8 ln N/n satisfies, with probability at least 1− δ,

n∑
t=1

�(It , Yt )− min
i=1,...,N

n∑
t=1

�(i, Yt ) ≤
√

n ln N

2
+
√

n

2
ln

1

δ
.

The relationship between the forecaster’s cumulative loss and the cumulative loss of the
best possible action appears in the classical notion of Hannan consistency, first established
by Hannan [141]. A forecaster is said to be Hannan consistent if

lim sup
n→∞

1

n

(
n∑

t=1

�(It , Yt )− min
i=1,...,N

n∑
t=1

�(i, Yt )

)
= 0, with probability 1,

where “probability” is understood with respect to the randomization of the forecaster. A
simple modification of Corollary 4.2 leads to the following.
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Corollary 4.3. Consider the exponentially weighted average forecaster defined above. If
the parameter η = ηt is chosen by ηt =

√
(8 ln N )/t (as in Section 2.8), then the forecaster

is Hannan consistent.

The simple proof is left as an exercise. In the exercises some other modifications are
described as well.

In the definition of Hannan consistency the number of pure strategies N is kept fixed while
we let the number n of rounds of the game grow to infinity. However, in some cases it is
more reasonable to set up the asymptotic problem by allowing the number of comparison
strategies to grow with n. Of course, this may be done in many different ways. Next
we briefly describe such a model. The nonasymptotic nature of the performance bounds
described above may be directly used to address this general problem. Let � : {1, . . . , N } ×
Y → [0, 1] be a loss function, and consider the forecasting game defined above. A dynamic
strategy s is simply a sequence of indices s1, s2, . . . , where st ∈ {1, . . . , N } marks the
guess a forecaster predicting according to this strategy makes at time t . Given a class S
of dynamic strategies, the forecaster’s goal is to achieve a cumulative loss not much larger
than the best of the strategies in S regardless of the outcome sequence, that is, to keep the
difference

n∑
t=1

�(It , Yt )−min
s∈S

n∑
t=1

�(st , Yt )

as small as possible. The weighted average strategy described earlier may be generalized
to this situation in a straightforward way, and repeating the same proof we thus obtain the
following.

Theorem 4.1. Let S be an arbitrary class of dynamic strategies and, for each t ≥ 1, denote
by Nt the number of different vectors s = (s1, . . . , st ) ∈ {1, . . . , N }t , s ∈ S. For any η > 0
there exists a randomized forecaster such that for all δ ∈ (0, 1), with probability at least
1− δ,

n∑
t=1

�(It , Yt )−min
s∈S

n∑
t=1

�(st , Yt ) ≤ ln Nn

η
+ nη

8
+
√

n

2
ln

1

δ
.

Moreover, there exists a strategy such that if n−1 ln Nn → 0 as n →∞, then

1

n

n∑
t=1

�(It , Yt )− 1

n
min
s∈S

n∑
t=1

�(st , Yt ) → 0, with probability 1.

The details of the proof are left as an easy exercise. As an example, consider the following
class of dynamic strategies. Let k1, k2, . . . be a monotonically increasing sequence of posi-
tive integers such that kn ≤ n for all n ≥ 1. Let S contain all dynamic strategies such that
each strategy changes actions at most kn − 1 times between time 1 and n, for all n. In other
words, each s ∈ S is such that the sequence s1, . . . , sn consists of kn constant segments. It
is easy to see that, for each n, Nn =

∑kn
k=1

(n−1
k−1

)
N (N − 1)k−1. Indeed, for each k, there are(n−1

k−1

)
different ways of dividing the time segment 1, . . . , n into k pieces, and for a division

with segment lengths n1, . . . , nk , there are N (N − 1)k−1 different ways of assigning actions
to the segments such that no two consecutive segments have the same actions assigned.
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Thus, Theorem 4.1 implies that, whenever the sequence {kn} is such that kn ln n = o(n), we
have

1

n

n∑
t=1

�(It , Yt )− 1

n
min
s∈S

n∑
t=1

�(st , Yt ) → 0, with probability 1.

Of course, calculating the weighted average forecaster for a large class of dynamic strate-
gies may be computationally prohibitive. However, in many important cases (such as the
concrete example given above), efficient algorithms exist. Several examples are described
in Chapter 5.

Corollary 4.2 is based on the Hoeffding–Azuma inequality, which asserts that, with
probability at least 1− δ,

n∑
t=1

�(It , Yt )−
n∑

t=1

�(pt , Yt ) ≤
√

n

2
ln

1

δ
.

This inequality is combined with the fact that the cumulative expected regret is bounded as∑n
t=1 �(pt , Yt )−mini=1,...,N

∑n
t=1 �(i, Yt ) ≤

√
(n/2) ln N . The term bounding the random

fluctuations is thus about the same order of magnitude as the bound for the expected regret.
However, it is pointed out in Section 2.4 that if the cumulative loss mini=1,...,N

∑n
t=1 �(i, Yt )

is guaranteed to be bounded by a quantity L∗n � n, then significantly improved per-
formance bounds, of the form

√
2L∗n ln N + ln N , may be achieved. In this case the

term
√

(n/2) ln(1/δ) resulting from the Hoeffding–Azuma inequality becomes dominat-
ing. However, in such a situation improved bounds may be established for the difference
between the “actual” and “expected” cumulative losses. This may be done by invok-
ing Bernstein’s inequality for martingales (see Lemma A.8 in the Appendix). Indeed,
because

Et
[
�(It , Yt )− �(pt , Yt )

]2 = Et�(It , Yt )
2 − (�(pt , Yt )

)2
≤ Et�(It , Yt )

2 ≤ Et�(It , Yt ) = �(pt , Yt ),

the sum of the conditional variances is bounded by the expected cumulative loss
Ln =

∑n
t=1 �(pt , Yt ). Then by Lemma A.8, with probability at least 1− δ,

n∑
t=1

�(It , Yt )−
n∑

t=1

�(pt , Yt ) ≤
√

2Ln ln
1

δ
+ 2

√
2

3
ln

1

δ
.

If the cumulative loss of the best action is bounded by a number L∗n known in advance,
then Ln can be bounded by L∗n +

√
2L∗n ln N + ln N (see Corollary 2.4), and the effect of

the random fluctuations is comparable with the bound for the expected regret.

4.3 Follow the Perturbed Leader

One may wonder whether “following the leader,” that is, predicting at time t according
to the action i whose cumulative loss Li,t−1 up to that time is minimal, is a reasonable
algorithm. In Section 3.2 we saw that under certain conditions for the loss function, this
is quite a powerful strategy. However, it is easy to see that in the setup of this chapter
this strategy, also known as fictitious play, does not achieve Hannan consistency. To see
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this, just consider N = 2 actions such that the sequence of losses �(1, yt ) of the first action
is (1/2, 0, 1, 0, 1, 0, 1, . . .) while the values of �(2, yt ) are (1/2, 1, 0, 1, 0, 1, 0, . . .). Then
Li,n is about n/2 for both i = 1 and i = 2, but fictitious play suffers a loss close to n. (See
also Exercises 3.8 and 4.6.) However, as it was pointed out by Hannan [141], a simple
modification suffices to achieve a significantly improved performance. One merely has
to add a small random perturbation to the cumulative losses and follow the “perturbed”
leader.

Formally, let Z1, Z2, . . . be independent, identically distributed random N -vectors with
components Zi,t (i = 1, . . . , N ). For simplicity, assume that Zt has an absolutely continuous
distribution (with respect to the N -dimensional Lebesgue measure) and denote its density
by f . The follow-the-perturbed-leader forecaster selects, at time t , an action

It = argmin
i=1,...,N

(
Li,t−1 + Zi,t

)
.

(Ties may be broken, say, in favor of the smallest index.)
Unlike in the case of weighted average predictors, the definition of the forecaster does

not explicitly specify the probabilities pi,t of selecting action i at time t . However, it is clear
from the definition that given the past sequence of plays and outcomes, the value of pi,t

only depends on the joint distribution of the random variables Zi,t but not on their random
values. Therefore, by Lemma 4.1 it suffices to consider the model of oblivious opponent
and derive bounds for the expected regret in that case.

To state the main result of this section, observe that the loss �(It , yt ) suffered at time t
is a function of the random vector Zt and denote this function by Ft (Zt ) = �(It , yt ). The
precise definition of Ft : R

N → [0, 1] is given by

Ft (z) = �

(
argmin
i=1,...,N

(
Li,t−1 + zi

)
, yt

)
, z = (z1, . . . , zN ).

Denoting by �t =
(
�(i, yt ), . . . , �(N , yt )

)
the vector of losses of the actions at time t , we

have the following general result.

Theorem 4.2. Consider the randomized prediction problem with an oblivious opponent.
The expected cumulative loss of the follow-the-perturbed-leader forecaster is bounded by

Ln − min
i=1,...,N

Li,n

≤ E max
i=1,...,N

Zi,1 + E max
i=1,...,N

(−Zi,1)+
n∑

t=1

∫
Ft (z)

(
f (z)− f (z− �t )

)
dz

and also

Ln ≤ sup
z,t

f (z)

f (z− �t )

(
min

i=1,...,N
Li,n + E max

i=1,...,N
Zi,1 + E max

i=1,...,N
(−Zi,1)

)
.

Even though in this chapter we only consider losses taking values in [0, 1], it is worth
pointing out that Theorem 4.2 holds for all, not necessarily bounded, loss functions. Before
proving the general statement, we illustrate its meaning by the following immediate corol-
lary. (Boundedness of � is necessary for the corollary.)
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Corollary 4.4. Assume that the random vector Zt has independent components Zi,t uni-
formly distributed on [0,�], where � > 0. Then the expected cumulative loss of the follow-
the-perturbed-leader forecaster with an oblivious opponent satisfies

Ln − min
i=1,...,N

Li,n ≤ �+ Nn

�
.

In particular, if � = √nN, then

Ln − min
i=1,...,N

Li,n ≤ 2
√

nN .

Moreover, with any (nonoblivious) opponent, with probability at least 1− δ, the actual
regret satisfies

n∑
t=1

�(It , Yt )− min
i=1,...,N

n∑
t=1

�(i, Yt ) ≤ 2
√

nN +
√

n

2
ln

1

δ
.

Proof. On the one hand, we obviously have

E max
i=1,...,N

(−Zi,1) ≤ 0 and E max
i=1,...,N

|Zi,1| ≤ �.

On the other hand, because f (z) = �−N
I{z∈ [0,�]N } and Ft is between 0 and 1,∫

Ft (z)
(

f (z)− f (z− �t )
)
dz ≤

∫
{z : f (z)> f (z−�t )}

f (z) dz

= 1

�N
Volume

({z : f (z) > f (z− �t )}
)

= 1

�N
Volume

({z : (∃i) zi ≤ �(i, yt )}
)

≤ 1

�N

N∑
i=1

�(i, yt )�
N−1

≤ N

�

as desired. The last statement follows by applying Lemma 4.1.

Note that in order to achieve the bound 2
√

nN , previous knowledge of n is required.
This may be easily avoided by choosing a time-dependent value of �. In fact, by choosing
�t =

√
t N , the bound 2

√
2nN is achieved (see Exercise 4.7). Thus the price of not knowing

the horizon n in advance is at most a factor of
√

2 in the upper bound.
The dependence of the upper bound

√
nN derived above on the number N of actions is

significantly worse than that of the O(
√

n ln N ) bounds derived in the previous section for
certain weighted average forecasters. Bounds of the optimal order may be achieved by the
follow-the-perturbed-leader forecaster if the distribution of the perturbations Zt is chosen
more carefully. Such an example is described in the following corollary.
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Corollary 4.5. Assume that the Zi,t are independent with two-sided exponential distribution
of parameter η > 0, so that the joint density of Zt is f (z) = (η/2)N e−η‖z‖1 , where ‖z‖1 =∑N

i=1 |zi |. Then the expected cumulative loss of the follow-the-perturbed-leader forecaster
against an oblivious opponent satisfies

Ln ≤ eη

(
L∗n +

2(1+ ln N )

η

)
,

where L∗n = mini=1,...,N Li,n.
In particular, if η = min

{
1,
√

2(1+ ln N )/((e − 1)L∗n)
}
, then

Ln − L∗n ≤ 2
√

2(e − 1)L∗n(1+ ln N )+ 2(e + 1)(1+ ln N ).

Remark 4.2 (Nonoblivious opponent). Just as in Corollary 4.4, an analogous result may
be established for the actual regret under any nonoblivious opponent. Using Lemma 4.1
(and L∗n ≤ n) it is immediate to see that with probability at least 1− δ, the actual regret
satisfies

n∑
t=1

�(It , Yt )− min
i=1,...,N

n∑
t=1

�(i, Yt )

≤ 2
√

2(e − 1)n(1+ ln N )+ 2(e + 1)(1+ ln N )+
√

n

2
ln

N

δ
.

Proof of Corollary 4.5. Applying the theorem directly does not quite give the desired result.
However, the following simple observation makes it possible to obtain the optimal depen-
dence in terms of N . Consider the performance of the follow-the-perturbed-leader forecaster
on a related prediction problem, which has the property that, in each step, at most one action
has a nonzero loss. Observe that any prediction problem may be converted to satisfy this
property by replacing each round of play with loss vector �t =

(
�(1, yt ), . . . , �(N , yt )

)
by

N rounds so that in the i th round only the i th action has a positive loss, namely �(i, yt ). The
new problem has nN rounds of play, the total cumulative loss of the best action does not
change, and the follow-the-perturbed-leader has an expected cumulative loss at least as large
as in the original problem. To see this, consider time t of the original problem in which the
expected loss is �(pt , yt ) =

∑
i �(i, yt )pi,t . This corresponds to steps N (t − 1)+ 1, . . . , Nt

of the converted problem. At the beginning of this period of length N , the cumulative losses
of all actions coincide with the cumulative losses of the actions at time t − 1 in the orig-
inal problem. At time N (t − 1)+ 1 the expected loss is �(1, yt )p1,t (where pi,t denotes
the probability of i assigned by the follow-the-perturbed-leader forecaster at time t in the
original problem). At time N (t − 1)+ 2 in the converted problem the cumulative losses of
all actions stay the same as in the previous time instant, except for the first action whose
loss has increased. Thus the probabilities assigned by the follow-the-perturbed-leader fore-
caster increase except for that of the first action. This implies that at time N (t − 1)+ 2
the expected loss is at least �(2, yt )p2,t . By repeating the argument N times we see that
the expected loss accumulated during these N periods of the converted problem is at least
�(1, yt )p1,t + · · · + �(N , yt )pN ,t = �(pt , yt ). Therefore, it suffices to prove the corollary
for prediction problems satisfying ‖�t‖1 ≤ 1 for all t .
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We apply the second inequality of Theorem 4.2. First note that

E max
i=1,...,N

Zi,1 + E max
i=1,...,N

(−Zi,1)

≤ 2 E max
i=1,...,N

Zi,1

= 2
∫ ∞

0
P

[
max

i=1,...,N
Zi,1 > u

]
du

≤ 2v + 2N
∫ ∞

v
P
[
Z1,1 > u

]
du (for any v > 0)

= 2v + 2N

η
e−ηv

= 2(1+ ln N )

η
(by choosing v = ln N/η).

On the other hand, for each z and t the triangle inequality implies that,

f (z)

f (z− �t )
= exp

(−η
(‖z‖1 − ‖z− �t‖1

)) ≤ exp
(
η‖�t‖1

) ≤ eη,

where we used the fact that ‖�t‖ ≤ 1 in the converted prediction problem. This proves the
first inequality. To derive the second, just note that eη ≤ 1+ (e − 1)η for η ∈ [0, 1], and
substitute the given value of η in the first inequality.

The follow-the-perturbed-leader forecaster with exponentially distributed perturbations
has thus a performance comparable to that of the best weighted average predictors (see
Section 2.4). If L∗n is not known in advance, the adaptive techniques described in Chapter 2
may be used.

It remains to prove Theorem 4.2.

Proof of Theorem 4.2. The proof is based on an adaptation of the arguments of Section
3.2. First we investigate a related “forecaster” defined by

Ît = argmin
i=1,...,N

(
Li,t + Zi,t

) = argmin
i=1,...,N

t∑
s=1

(
�(i, ys)+ Zi,s − Zi,s−1

)
,

where we define Zi,0 = 0 for all i . Observe that Ît is not a legal forecaster because it uses
the unknown values of the losses at time t . However, we show in what follows that It and
Ît have a similar behavior. To bound the performance of Ît we apply Lemma 3.1 for the
losses �(i, ys)+ Zi,s − Zi,s−1. We obtain

n∑
t=1

(
�(̂It , yt )+ Z Ît ,t − Z Ît ,t−1

) ≤ min
i=1,...,N

n∑
t=1

(
�(i, yt )+ Zi,t − Zi,t−1

)
= min

i=1,...,N

(
n∑

t=1

�(i, yt )+ Zi,n

)
≤ min

i=1,...,N
Li,n + Zi∗,n,
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where i∗ is the index of the overall best action. Rearranging, we obtain
n∑

t=1

�(̂It , yt ) ≤ min
i=1,...,N

Li,n + Zi∗,n +
n∑

t=1

(
Z Ît ,t−1 − Z Ît ,t

)
≤ min

i=1,...,N
Li,n + max

i=1,...,N
Zi,n +

n∑
t=1

max
i=1,...,N

(
Zi,t−1 − Zi,t

)
.

Our next aim is to bound the expected value

E

n∑
t=1

�(̂It , yt ) =
n∑

t=1

E �(̂It , yt ).

The key observation is that, because the opponent is oblivious, for each t , the value
E �(̂It , yt ) only depends on the vector Zt = (Z1,t , . . . , Z N ,t ) but not on Zs , s �= t . Therefore,
E
∑n

t=1 �(̂It , yt ) remains unchanged if the Zi,t are replaced by Z ′i,t in the definition of Ît as
long as the marginal distribution of the vector Z′t = (Z ′1,t , . . . , Z ′N ,t ) remains the same as
that of Zt . In particular, unlike Z1, . . . , Zn , the new vectors Z′1, . . . , Z′n do not need to be
independent. The convenient choice is to take them all equal so that Z′1 = Z′2 = · · · = Z′n .
Then the inequality derived above implies that

E

n∑
t=1

�(̂It , yt ) ≤ E

[
min

i=1,...,N
Li,n + max

i=1,...,N
Z ′i,n +

n∑
t=1

max
i=1,...,N

(
Z ′i,t−1 − Z ′i,t

)]
= min

i=1,...,N
Li,n + E max

i=1,...,N
Zi,n + E max

i=1,...,N
(−Zi,1).

The last step is to relate E
∑n

t=1 �(̂It , yt ) to the expected loss E
∑n

t=1 �(It , yt ) of the follow-
the-perturbed-leader forecaster. To this end, just observe that

E �(̂It , yt ) =
∫

Ft (z+ �t ) f (z)dz =
∫

Ft (z) f (z− �t ) dz.

Thus,

E

n∑
t=1

�(It , yt )− E

n∑
t=1

�(̂It , yt ) =
n∑

t=1

∫
Ft (z)

(
f (z)− f (z− �t )

)
dz

and the first inequality follows. To obtain the second, simply observe that

E �(It , yt ) =
∫

Ft (z) f (z)dz

≤ sup
z,t

f (z)

f (z− �t )

∫
Ft (z) f (z− �t ) dz

= sup
z,t

f (z)

f (z− �t )
E �(̂It , yt ).

4.4 Internal Regret

In this section we design forecasters able to minimize a notion of regret, which we call
“internal,” strictly stronger than the regret for randomized prediction analyzed in this
chapter. A game-theoretic motivation for the study of internal regret is offered in Section 7.4.
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Recall the following randomized prediction problem: at each time instance t the fore-
caster (or player) determines a probability distribution pt = (p1,t . . . , pN ,t ) over the set of N
possible actions and chooses an action randomly according to this distribution. In this sec-
tion, for simplicity, we focus our attention on the expected loss �(pt , Yt ) =

∑N
i=1 �(i, Yt )pi,t

and not on the actual random loss to which we return in Section 7.4.
Up to this point we have always compared the (expected) cumulative loss of the forecaster

to the cumulative loss of each action, and we have investigated prediction schemes, such as
the exponentially weighted average forecaster, guaranteeing that the forecaster’s cumulative
expected loss is not much larger than the cumulative loss of the best action. The difference

n∑
t=1

�(pt , Yt )− min
i=1,...,N

n∑
t=1

�(i, Yt )

= max
i=1,...,N

n∑
t=1

N∑
j=1

p j,t
(
�( j, Yt )− �(i, Yt )

)
is sometimes called the external regret of the forecaster. Next we investigate a closely
related but different notion of regret.

Roughly speaking, a forecaster has a small internal regret if, for each pair of experts
(i, j), the forecaster does not regret of not having followed expert j each time he followed
expert i .

The internal cumulative regret of a forecaster pt is defined by

max
i, j=1,...,N

R(i, j),n = max
i, j=1,...,N

n∑
t=1

pi,t
(
�(i, Yt )− �( j, Yt )

)
.

Thus, r(i, j),t = pi,t (�(i, Yt )− �( j, Yt )) = EtI{It=i}(�(It , Yt )− �( j, Yt )) expresses the fore-
caster’s expected regret of having taken action i instead of action j . Equivalently, r(i, j),t is
the forecaster’s regret of having put the probability mass pi,t on the i th expert instead of on
the j th one. Now, clearly, the external regret of the forecaster pt equals

max
i=1,...,N

N∑
j=1

R(i, j),n ≤ N max
i, j=1,...,N

R(i, j),n,

which shows that any algorithm with a small (i.e., sublinear in n) internal regret also has
a small external regret. On the other hand, it is easy to see that a small external regret
does not imply small internal regret. In fact, as it is shown in the following example, even
the exponentially weighted average algorithm defined in Section 4.2 may have a linearly
growing internal regret.

Example 4.1 (Weighted average forecaster has a large internal regret). Consider the
following example with three actions A, B, and C . Let n be a large multiple of 3, and
assume that time is divided in three equally long regimes characterized by a constant loss
for each action. These losses are summarized in Table 4.1. We claim that the regret R(B,C),n

of B versus C grows linearly with n, that is,

lim inf
n→∞

1

n

n∑
t=1

pB,t
(
�(B, yt )− �(C, yt )

) = γ > 0,
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Table 4.1. Example of a problem in which the exponentially
weighted average forecaster has a large internal regret.

Regimes �(A, yt ) �(B, yt ) �(C, yt )

1 ≤ t ≤ n/3 0 1 5
n/3+ 1 ≤ t ≤ 2n/3 1 0 5
2n/3+ 1 ≤ t ≤ n 1 0 −1

where pB,t denotes the weight assigned by the exponentially weighted average forecaster
to action B:

pB,t = e−ηL B,t−1

e−ηL A,t−1 + e−ηL B,t−1 + e−ηLC,t−1
,

where Li,t =
∑t

s=1 �(i, ys) denotes the cumulative loss of action i and η is chosen as usual,
that is,

η = 1

6

√
8 ln 3

n
= K√

n
,

with K = √8 ln 3/6. The intuition behind this example is that at the end of the second
regime the forecaster quickly switches from A to B, and the weight of action C can never
recover because of its disastrous behavior in the first two regimes. But since action C
behaves much better than B in the third regime, the weighted average forecaster will regret
of not having chosen C each time it chose B. Figure 4.1 illustrates the behavior of the
weight of action B.
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Figure 4.1. The evolution of the weight assigned to B in Example 4.1 for n = 10000.
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More precisely, we show that during the first two regimes the number of times when
pB,t is more than ε is of the order of

√
n and that, in the third regime, pB,t is always more

than a fixed constant (1/3, say). In the first regime, a sufficient condition for pB,t ≤ ε is
e−ηL B,t−1 ≤ ε. This occurs whenever t ≥ t0 = (− ln ε)

√
n/K . For the second regime, we

lower bound the time instant t1 when pB,t gets larger than ε. To this end, note that pB,t ≥ ε

is equivalent to

(1− ε)e−ηL B,t−1 ≥ ε
(
e−ηL A,t−1 + e−ηLC,t−1

)
.

Thus, pB,t ≥ ε implies that (1− ε)e−ηL B,t−1 ≥ εe−ηL A,t−1 , which leads to

t1 ≤ 2n

3
+
√

n

K
ln

1− ε

ε
.

Finally, in the third regime, we have at each time instant L B,t−1 ≤ L A,t−1 and L B,t−1 ≤
LC,t−1, so that pB,t ≥ 1/3. Putting these three steps together, we obtain the following lower
bound for the internal regret of B versus C

n∑
t=1

pB,t
(
�(B, yt )− �(C, yt )

)
=

n/3∑
t=1

pB,t
(
�(B, yt )− �(C, yt )

)+ 2n/3∑
t=n/3+1

pB,t
(
�(B, yt )− �(C, yt )

)
+

n∑
t=2n/3+1

pB,t
(
�(B, yt )− �(C, yt )

)
≥ −4

(
n

3
−
√

n

K
ln

1

ε

)
ε − 5

(
n

3
+
√

n

K
ln

1− ε

ε

)
ε + n

9

= −3nε − ε
√

n

K
ln

1

ε
− 5

ε
√

n

K
ln(1− ε)+ n

9
,

which is about n/9 if ε is of the order of n−1/2. �

This example shows that special algorithms need to be designed to guarantee a small
internal regret. To construct such a forecasting strategy, we first recall the exponential
potential function � : R

M → R defined, for all η > 0, by

�(u) = 1

η
ln

(
M∑

i=1

eηui

)
,

where we set M = N (N − 1). Hence, by the results of Section 2.1, writing rt for the
M-vector with components r(i, j),t and setting Rt =

∑t
s=1 rs , we find that any forecaster

satisfying Blackwell’s condition ∇�(Rt−1) · rt ≤ 0, for all t ≥ 1, also satisfies

max
i, j=1,...,N

R(i, j),t ≤ ln N (N − 1)

η
+ η

2
t B2,

where

B = max
i, j=1,...,N

max
s=1,...,t

r2
(i, j),s .
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By choosing η optimally, one then obtains an internal regret bounded by 2B
√

n ln N (see
Corollary 2.2).

To design a forecaster satisfying the Blackwell condition, observe that the following
simple exchange of the order of summation yields

∇�(Rt−1) · rt

=
N∑

i, j=1

∇(i, j)�(Rt−1)pi,t
(
�(i, Yt )− �( j, Yt )

)
=

N∑
i=1

N∑
j=1

∇(i, j)�(Rt−1)pi,t�(i, Yt )−
N∑

i=1

N∑
j=1

∇(i, j)�(Rt−1)pi,t�( j, Yt )

=
N∑

i=1

N∑
j=1

∇(i, j)�(Rt−1)pi,t�(i, Yt )−
N∑

j=1

N∑
i=1

∇( j,i)�(Rt−1)p j,t�(i, Yt )

=
N∑

i=1

�(i, Yt )

⎛⎝ N∑
j=1

∇(i, j)�(Rt−1)pi,t −
N∑

k=1

∇(k,i)�(Rt−1)pk,t

⎞⎠ .

To guarantee that this quantity is nonpositive, it suffices to require that

pi,t

N∑
j=1

∇(i, j)�(Rt−1)−
N∑

k=1

∇(k,i)�(Rt−1)pk,t = 0

for all i = 1, . . . , N . The existence of such a vector pt = (p1,t , . . . , pN ,t ) may be proven
by noting that pt satisfies p�t A = 0, where A is an N × N matrix whose entries are

Ak,i =
{ −∇(k,i)�(Rt−1) if i �= k,∑

j �=i ∇(k, j)�(Rt−1) otherwise.

To this end, first note that ∇(i, j)�(Rt−1) ≥ 0 for all i, j . Let amax = maxi, j |Ai, j | and let
I be the N × N identity matrix. Then I − A/amax is a nonnegative row-stochastic matrix,
and the Perron–Frobenius theorem (see, e.g., Seneta [263]) implies that a probability vector
q exists such that q� (I − A/amax) = q�.

As such a q also satisfies q�A = 0�, the choice pt = q leads to a forecaster satisftying
the Blackwell condition. Foster and Vohra [107] suggest a gaussian elimination method for
the practical computation of pt .

We remark that instead of the exponential potential defined above, other potential func-
tions may also be used with success. For example, polynomial potentials of the form

�(u) =
(

N∑
i=1

(ui )
p
+

)2/p

for p ≥ 2 lead to the bound maxi, j=1,...,N R(i, j),t ≤ B
√

2(p − 1)t N 4/p.

From Small External Regret to Small Internal Regret
We close this section by describing a simple way of converting any external-regret-
minimizing (i.e., Hannan consistent) forecaster into a strategy to minimize the inter-
nal regret. Such a method may be defined recursively as follows. At time t = 1, let
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p1 = (1/N , . . . , 1/N ) be the uniform distribution over N actions. Consider now t > 1
and assume that at time t − 1 the forecaster chose an action according to the distribution
pt−1 = (p1,t−1, . . . , pN ,t−1). For each pair (i, j) of actions (i �= j) define the probability
distribution pi→ j

t−1 by the vector whose components are the same as those of pt−1, except

that the i th component of pi→ j
t−1 equals zero and the j th component equals pi,t−1 + p j,t−1.

Thus, pi→ j
t−1 is obtained from pt−1 by transporting the probability mass from i to j . We

call these the i → j modified strategies. Consider now any external-regret-minimizing
strategy that uses the i → j modified strategies as experts. More precisely, let �t be
a probability distribution over the pairs i �= j that has the property that its cumulative
expected loss is almost as small as that of the best modified strategy, that is,

1

n

n∑
t=1

∑
i �= j

�(pi→ j
t , Yt )�(i, j),t ≤ min

i �= j

1

n

n∑
t=1

�(pi→ j
t , Yt )+ εn

for some εn → 0. For example, the exponentially weighted average strategy

�(i, j),t =
exp

(
−η
∑t−1

s=1 �(pi→ j
s , Ys)

)
∑

(k,l) : k �=l exp
(
−η
∑t−1

s=1 �(pk→l
s , Ys)

)
guarantees that εn =

√
ln(N (N − 1))/(2n) ≤ √(ln N )/n by Theorem 2.2 and for a properly

chosen value of η.
Given such a “meta-forecaster,” we define the forecaster pt by the fixed point equality

pt =
∑

(i, j) : i �= j

pi→ j
t �(i, j),t . (4.2)

The existence of a solution of the defining equation may be seen by an argument similar
to the one we used to prove the existence of the potential-based internal-regret-minimizing
forecaster defined earlier in this section. It follows from the defining equality that for
each t ,

�(pt , Yt ) =
∑
i �= j

�(pi→ j
t , Yt ) �(i, j),t

and therefore the cumulative loss of the forecaster pt is bounded by

1

n

n∑
t=1

�(pt , Yt ) ≤ min
i �= j

1

n

n∑
t=1

�(pi→ j
t , Yt )+ εn

or, equivalently,

1

n
max
i �= j

R(i, j),n ≤ εn.

Observe that if the meta-forecaster �t is a potential-based weighted average forecaster,
then the derived forecaster pt and the one introduced earlier in this section coincide (just
note that the latter forecaster satisfies Blackwell’s condition). The bound obtained here
improves the earlier one by a factor of 2.
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4.5 Calibration

In the practice of forecasting binary sequences it is common to form the prediction in
terms of percentages. For example, weather forecasters often publish their prevision in
statements like “the chance of rain tomorrow is 30%.” The quality of such forecasts may
be assessed in various ways. In Chapters 8 and 9 we define and study different notions
of quality of such sequential probability assignments. Here we are merely concerned with
a simple notion known as calibration. While predictions of binary sequences in terms of
“chances” or “probabilities” may not be obvious to interpret, a forecaster is definitely not
doing his job well if, on a long run, the proportion of all rainy days for which the chance of
rain was predicted to be 30% does not turn out to be about 30%. In such cases we say that
the predictor is not well calibrated.

One may formalize the setup and the notion of calibration as follows. We consider a
sequence of binary-valued outcomes y1, y2, . . . ∈ {0, 1}. Assume that, at each time instant,
the forecaster selects a decision qt from the interval [0, 1]. The value of qt may be interpreted
as the prediction of the “probability” that yt = 1. In this section, instead of defining a “loss”
of predicting qt when the outcome is yt , we only require that for any fixed x ∈ [0, 1] of
the time instances when qt is close to x , the proportion of times with yt = 1 should be
approximately x . To quantify this notion, for all ε > 0 define ρε

n(x) to be the average of
outcomes yt at the times t = 1, . . . , n when a value qt close to x was predicted. Formally,

ρε
n(x) =

∑n
t=1 yt I{qt∈(x−ε,x+ε)}∑n

s=1 I{qs∈(x−ε,x+ε)}
.

If
∑n

t=1 I{qt∈(x−ε,x+ε)} = 0, we say ρε
n(x) = 0.

The forecaster is said to be ε-calibrated if, for all x ∈ [0, 1] for which
lim supn→∞

1
n

∑n
t=1 I{qt∈(x−ε,x+ε)} > 0,

lim sup
n→∞

∣∣ρε
n(x)− x

∣∣ ≤ ε.

A forecaster is well calibrated if it is ε-calibrated for all ε > 0.
For some sequences it is very easy to construct well-calibrated forecasters. For

example, if the outcome sequence happens to be stationary in the sense that the limit
limn→∞ 1

n

∑n
t=1 yt exists, then the forecaster

qt = 1

t − 1

t−1∑
s=1

ys

is well calibrated. (The proof is left as an easy exercise.)
However, for arbitrary sequences of outcomes, constructing a calibrated forecaster is

not a trivial issue. In fact, it is not difficult to see that no deterministic forecaster can
be calibrated for all possible sequences of outcomes (see Exercise 4.9). Interestingly,
however, if the forecaster is allowed to randomize, well-calibrated prediction is possible.
Of the several known possibilities the one we describe next is based on the minimization
of the internal regret of a suitably defined associated prediction problem. The existence of
internal regret minimizing strategies, proved in the previous section, will then immediately
imply the existence of well-calibrated forecasters for all possible sequences.

In what follows, we assume that the forecaster is allowed to randomize. We adopt
the model described at the beginning of this chapter. That is, at each time instance t ,
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before making his prediction qt , the forecaster has access to a random variable Ut , where
U1, U2, . . . is a sequence of independent random variables uniformly distributed in [0, 1].
These values remain hidden from the opponent who sets the outcomes yt ∈ {0, 1}, where
yt may depend on the predictions of the forecaster up to time t − 1.

Remark 4.3. Once one allows randomized forecasters, it has to be clarified whether the
opponent is oblivious or not. As noted earlier, we allow nonoblivious opponents. To keep the
notation coherent, in this section we continue using lower-case yt to denote the outcomes,
but we keep in mind that yt is a random variable, measurable with respect to U1, . . . , Ut−1.

The first step of showing the existence of a well-calibrated randomized forecaster is noting
that it suffices to construct ε-calibrated forecasters. This observation may be proved by a
simple application of a doubling trick whose details are left as an exercise.

Lemma 4.2. Suppose for each ε > 0 there is a forecaster that is ε-calibrated for all possible
sequences of outcomes. Then a well-calibrated forecaster can be constructed.

To construct an ε-calibrated forecaster for a fixed positive ε, it is clearly sufficient to consider
strategies whose predictions are restricted to a sufficiently fine grid of the unit interval [0, 1].
In the sequel we consider forecasters whose prediction takes the form qt = It/N , where N
is a fixed positive integer and It takes its values from the set {0, 1, . . . , N }. At each time
instance t , the forecaster determines a probability distribution pt = (p0,t , . . . , pN ,t ) and
selects prediction It randomly according to this distribution. The quality of such a predictor
may be assessed by means of the discretized version of the function ρn defined as

ρn(i/N ) =
∑n

t=1 yt I{It=i}∑n
s=1 I{Is=i}

for i = 0, 1, . . . , N .

Define the quantity Cn , often called the Brier score, as

Cn =
N∑

i=0

(
ρn(i/N )− i

N

)2
(

1

n

n∑
t=1

I{It=i}

)
.

The following simple lemma shows that it is enough to make sure that the Brier score
remains small asymptotically. The routine proof is again left to the reader.

Lemma 4.3. Let ε > 0 be fixed and assume that (N + 1)/N 2 > 1/ε2. If a discretized
forecaster is such that

lim sup
n→∞

Cn ≤ N + 1

N 2
almost surely,

then the forecaster is almost surely ε-calibrated.

According to Lemmas 4.2 and 4.3, to prove the existence of a randomized forecaster that is
well calibrated for all possible sequences of outcomes it suffices to exhibit, for each fixed N ,
a “discretized” forecaster It such that lim supn→∞ Cn ≤ (N + 1)/N 2 almost surely. Such
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a forecaster may be constructed by a simple application of the techniques shown in the
previous chapter. To this end, define a loss function by

�(i, yt ) =
(

yt − i

N

)2

, i = 0, 1, . . . , N .

Then, by the results of Section 4.4, one may define a forecaster whose randomizing distri-
bution pt = (p0,t , . . . , pN ,t ) is such that the average internal regret

max
i, j=0,1,...,N

R(i, j),n

n
= max

i, j=0,1,...,N

1

n

n∑
t=1

r(i, j),t

= max
i, j=0,1,...,N

1

n

n∑
t=1

pi,t
(
�(i, yt )− �( j, yt )

)
converges to zero for all possible sequences of outcomes. The next result guarantees that
any such predictor has the desired property.

Lemma 4.4. Consider the loss function defined above and assume that p1, p2, . . . is such
that, for all sequences of outcomes,

lim
n→∞ max

i, j=0,1,...,N

1

n
R(i, j),n = 0.

If the forecaster is such that It is drawn, at each time instant, randomly according to the
distribution pt , then

lim sup
n→∞

Cn ≤ N + 1

N 2
almost surely.

Proof. Define, for each n = 1, 2, . . . and i = 0, 1, . . . , N ,

ρ̃n(i/N ) =
∑n

t=1 yt pi,t∑n
t=1 pi,t

and also

C̃n =
N∑

i=0

(
ρ̃n(i/N )− i

N

)2
(

1

n

n∑
t=1

pi,t

)
.

By martingale convergence (e.g., by Lemma A.7 and the Borel–Cantelli lemma) we
have

lim
n→∞

∣∣∣∣∣1n
n∑

t=1

yt I{It=i} − 1

n

n∑
t=1

yt pi,t

∣∣∣∣∣ = 0 almost surely

and, similarly,

lim
n→∞

∣∣∣∣∣1n
n∑

t=1

I{It=i} − 1

n

n∑
t=1

pi,t

∣∣∣∣∣ = 0 almost surely.



88 Randomized Prediction

This implies that

lim
n→∞

∣∣Cn − C̃n

∣∣ = 0 almost surely

and therefore it suffices to prove that

lim sup
n→∞

C̃n ≤ N + 1

N 2
.

To this end, observe that

r(i, j),t = pi,t

((
yt − i

N

)2

−
(

yt − j

N

)2
)
= pi,t

j − i

N

(
2yt − i + j

N

)
and therefore

R(i, j),n =
n∑

t=1

r(i, j),t

= 2( j − i)

N

n∑
t=1

pi,t

(
yt − i + j

2N

)

= 2( j − i)

N

(
n∑

t=1

pi,t

)(
ρ̃n(i/N )− i + j

2N

)

=
(

n∑
t=1

pi,t

)[(
ρ̃n(i/N )− i

N

)2

−
(

ρ̃n(i/N )− j

N

)2
]

.

For any fixed i = 0, 1, . . . , N , the quantity R(i, j),n is maximized for the value of j mini-
mizing (̃ρn(i/N )− j/N )2. Thus,(

n∑
t=1

pi,t

)(
ρ̃n(i/N )− i

N

)2

= max
j=0,1,...,N

R(i, j),n + min
j=0,1,...,N

(
n∑

t=1

pi,t

)(
ρ̃n(i/N )− j

N

)2

≤ max
j=0,1,...,N

R(i, j),n + n

N 2
.

This implies that

C̃n = 1

n

N∑
i=0

(
n∑

t=1

pi,t

)(
ρ̃n(i/N )− i

N

)2

≤
N∑

i=0

(
max

j=0,1,...,N

1

n
R(i, j),n + 1

N 2

)
≤ (N + 1) max

i, j=0,1,...,N

1

n
R(i, j),n + N + 1

N 2
,

which concludes the proof.

In summary, if N is sufficiently large, then any forecaster designed to keep the cumula-
tive internal regret small, based on the loss function �(i, yt ) = (yt − i/N )2, is guaranteed to
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be ε-calibrated. Because internal-regret-minimizing algorithms are not completely straight-
forward (see Section 4.4), the resulting forecaster is somewhat complex.

Interestingly, the form of the quadratic loss function is important. For example, fore-
casters that keep the internal regret based on the “absolute loss” �(i, yt ) = |yt − i/N | small
cannot be calibrated (see Exercise 4.14).

We remark here that the forecaster constructed above has some interesting extra features.
In fact, apart from being ε-calibrated, it is also a good predictor in the sense that its cumu-
lative squared loss is not much larger than that of the best constant predictor. Indeed, since
external regret is at most N times the internal regret maxi, j=0,1,...,N R(i, j),n , we immediately
find that the forecaster constructed in the proof of Lemma 4.4 satisfies

1

n

(
n∑

t=1

(
yt − It

N

)2

− min
i=0,1,...,N

n∑
t=1

(
yt − i

N

)2
)
→ 0 almost surely.

(See, however, Exercise 4.13.)
In fact, no matter what algorithm is used, calibrated forecasters must have a low excess

squared error in the above sense. Just note that the proof of Lemma 4.4 reveals that

C̃n ≥
N∑

i=0

(
max

j=0,1,...,N

1

n
R(i, j),n

)
≥ max

i, j=0,1,...,N

1

n
R(i, j),n.

Thus, any forecaster that keeps C̃n small has a small internal regret (defined on the basis
of the quadratic losses �(i, yt ) = (yt − i/N )2) and therefore has a small external regret as
well.

We conclude by pointing out that all results of this section may be extended to forecasting
nonbinary sequences. Assume that the outcomes yt take their values in the finite set Y =
{1, 2, . . . , m}. Then at time t the forecaster outputs a vector qt ∈ D in the probability
simplex

D =
⎧⎨⎩p = (p1, . . . , pm) :

m∑
j=1

p j = 1, p j ≥ 0, j = 1, . . . , m

⎫⎬⎭ ⊂ R
m .

Analogous to the case of binary outcomes, in this setup we may define, for all x ∈ D,

ρε
n(x) =

∑n
t=1 yt I{qt : ‖x−qt‖<ε}∑n

t=1 I{qt : ‖x−qt‖<ε}

(with ρε
n(x) = 0 if

∑n
t=1 I{qt : ‖x−qt‖<ε} = 0), where ‖ · ‖ denotes the euclidean distance and

yt denotes the m-vector (I{yt=1}, . . . , I{yt=m}).
The forecaster is now ε-calibrated if we have

lim sup
n→∞

∥∥ρε
n(x)− x

∥∥ ≤ ε

for all x ∈ D with lim supn→∞
1
n

∑n
t=1 I{qt : ‖x−qt‖<ε} > 0. The forecaster is well calibrated

if it is ε-calibrated for all ε > 0. The procedure of constructing a well-calibrated forecaster
may be extended in a straightforward way to this more general setup. The details are left to
the reader.
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Remark 4.4. We introduced the notion of ε-calibratedness by requiring

lim sup
n→∞

∣∣ρε
n(x)− x

∣∣ ≤ ε (4.3)

for all x ∈ [0, 1] satisfying lim supn→∞
1
n

∑n
t=1 I{qt∈(x−ε,x+ε)} > 0. A simple inspection of

the proof of the existence of well-calibrated forecasters reveals, in fact, the existence of a
forecaster satisfying (4.3) for all x ∈ [0, 1] with lim supn→∞ n−α

∑n
t=1 I{qt∈(x−ε,x+ε)} > 0,

where α is any number greater than 1/2. Some authors consider an even stronger definition
by requiring (4.3) to hold for all x for which

∑n
t=1 I{qt∈(x−ε,x+ε)} tends to infinity. See the

bibliographical comments for references to works proving that calibration is possible under
this stricter definition as well.

4.6 Generalized Regret

In this section we consider a more general notion of regret that encompasses internal and
external regret encountered in previous sections and makes it possible to treat, in a unified
framework, a variety of other notions of regret.

We still work within the framework of randomized prediction in which the fore-
caster determines, at every time instant t = 1, . . . , n, a probability distribution pt =
(p1,t , . . . , pN ,t ) over N actions and chooses an action It according to this distribution.
Similarly to the model introduced in Chapter 2, we compare the performance of the
forecaster to the performance of the best expert in a given set of m experts. However,
as forecasters here use randomization, we allow the predictions of experts at each time
t to depend also on the forecaster’s random action It . We use fi,t (It ) ∈ {1, . . . , N } to
denote the action taken by expert i at time t when It is the forecaster’s action. In this
model, the expert advice at time t thus consists of m vectors

(
fi,t (1), . . . , fi,t (N )

)
for

i = 1, . . . , m.
For each expert i = 1, . . . , m and time t we also define an activation function Ai,t :

{1, . . . , N } → {0, 1}. The activation function determines whether the corresponding expert
is active at the current prediction step. At each time instant t the values Ai,t (k) (i = 1, . . . , m,
k = 1, . . . , N ) of the activation function and the expert advice are revealed to the forecaster
who then computes pt = (p1,t , . . . , pN ,t ). Define the (expected) generalized regret of a
randomized forecaster with respect to expert i at round t by

ri,t =
N∑

k=1

pk,t Ai,t (k)
(
�(k, Yt )− �( fi,t (k), Yt )

)
= Et

[
Ai,t (It )

(
�(It , Yt )− �( fi,t (It ), Yt )

)]
.

Hence, the generalized regret with respect to expert i is nonzero only if expert i is active,
and the expert is active based on the current step t and, possibly, on the forecaster’s guess
k. In this model we allow that the functions fi,t and Ai,t depend on the past random choices
I1, . . . , It−1 of the forecaster (determined by a possibly nonoblivious adversary) and are
revealed to the forecaster just before round t .

The following examples show that special cases of the generalized regret include external
and internal regret and extend beyond these notions.
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Example 4.2 (External regret). Taking m = N , fi,t (k) = i for all k = 1, . . . , N , and letting
Ai,t (k) to be the constant function 1, the generalized regret becomes

ri,t =
N∑

k=1

pk,t
(
�(k, Yt )− �(i, Yt )

)
,

which is just the (external) regret introduced in Section 4.2. �

Example 4.3 (Internal regret). To see how the notion of internal regret may be recovered
as a special case, consider m = N (N − 1) experts indexed by pairs (i, j) for i �= j . For
each t expert (i, j) predicts as follows: f(i, j),t (k) = k if k �= i and f(i, j),t (i) = j otherwise.
Thus, if A(i, j),t ≡ 1, component (i, j) of the generalized regret vector rt ∈ R

m becomes

r(i, j),t = pi,t
(
�(i, Yt )− �( j, Yt )

)
which coincides with the definition of internal regret in Section 4.4. �

Example 4.4 (Swap regret). A natural extension of internal regret is obtained by letting the
experts f1, . . . , fm compute all N N functions {1, . . . , N } → {1, . . . , N } defined on the set
of actions. In other words, for each i = 1, . . . , m = N N the sequence ( fi (1), . . . , fi (N ))
takes its values in {1, . . . , N }. Note that, in this case, the prediction of the experts depends
on t only through It . The resulting regret is called swap regret. It is easy to see (Exercise 4.8)
that

max
σ∈�

Rσ,n ≤ N max
i �= j

R(i, j),n,

where � is the set of all functions {1, . . . , N } → {1, . . . , N } and Rσ is the regret against
the expert indexed by σ . Thus, any forecaster whose average internal regret converges to
zero also has a vanishing swap regret. Note that the forecaster of Theorem 4.3, run with the
exponential potential, has a swap regret bounded by O

(√
n(N ln N )

)
. This improves on the

bound O
(
N
√

n ln N
)
, which we obtain by combining the bound of Exercise 4.8 with the

regret bound for the exponentially weighted average forecaster of Section 4.2. �

This more general formulation permits us to consider an even wider family of prediction
problems. For example, by defining the activation function Ai,t (k) to depend on t and i
but not on k, one may model “specialists,” that is, experts that occasionally abstain from
making a prediction. In the next section we describe an application in which the activation
functions play an important role. See also the bibliographic remarks for other variants of
the problem.

The basic question now is whether it is possible to define a forecaster guaranteeing that
the generalized regret Ri,n = ri,1 + · · · + ri,n grows slower than n for all i = 1, . . . , m,
regardless of the sequence of outcomes, the experts, and the activation functions. Let
Rn = (R1,n, . . . , Rm,n) denote the vector of regrets. By Theorem 2.1, it suffices to show
the existence of a predictor pt satisfying the Blackwell condition ∇�(Rt−1) · rt ≤ 0 for
an appropriate potential function �. The existence of such pt is shown in the following
result. For such a predictor we may then apply Theorem 2.1 and its corollaries to obtain
performance bounds without further work.
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Theorem 4.3. Fix a potential � with ∇� ≥ 0. Then a randomized forecaster satisfying the
Blackwell condition for the generalized regret is defined by the unique solution to the set of
N linear equations

pk,t =
∑N

j=1 p j,t
∑m

i=1 I{ fi,t ( j)=k} Ai,t ( j)∇i�(Rt−1)∑m
i=1 Ai,t (k)∇i�(Rt−1)

, k = 1, . . . , N .

Observe that in the special case of external regret (i.e., m = N , fi,t (k) = i for all k =
1, . . . , N , and Ai,t ≡ 1), the predictor of Theorem 4.3 reduces to the usual weighted average
forecaster of Section 4.2. Also, in the case of internal regret described in Example 4.3, the
forecaster of Theorem 4.3 reduces to the forecaster studied in Section 4.4.

Proof. The proof is a generalization of the argument we used for the internal regret in
Section 4.4. We may rewrite the left-hand side of the Blackwell condition as follows:

∇�(Rt−1) · rt

=
m∑

i=1

∇i�(Rt−1)
N∑

k=1

pk,t Ai,t (k)
(
�(k, Yt )− �( fi,t (k), Yt )

)
=

N∑
k=1

N∑
j=1

m∑
i=1

I{ fi,t (k)= j}∇i�(Rt−1)pk,t Ai,t (k)
(
�(k, Yt )− �( fi,t (k), Yt )

)
=

N∑
k=1

N∑
j=1

m∑
i=1

I{ fi,t (k)= j}∇i�(Rt−1)pk,t Ai,t (k)�(k, Yt )

−
N∑

k=1

N∑
j=1

m∑
i=1

I{ fi,t (k)= j}∇i�(Rt−1)pk,t Ai,t (k)�( j, Yt )

=
N∑

k=1

N∑
j=1

m∑
i=1

I{ fi,t (k)= j}∇i�(Rt−1)pk,t Ai,t (k)�(k, Yt )

−
N∑

k=1

N∑
j=1

m∑
i=1

I{ fi,t ( j)=k}∇i�(Rt−1)p j,t Ai,t ( j)�(k, Yt )

=
N∑

k=1

�(k, Yt )

[
m∑

i=1

∇i�(Rt−1)pk,t Ai,t (k)

−
N∑

j=1

m∑
i=1

I{ fi,t ( j)=k}∇i�(Rt−1)p j,t Ai,t ( j)

⎤⎦ .

Because the �(k, Yt ) are arbitrary and nonnegative, the last expression is guaranteed to be
nonpositive whenever

pk,t

m∑
i=1

∇i�(Rt−1)Ai,t (k)−
N∑

j=1

m∑
i=1

I{ fi,t ( j)=k}∇i�(Rt−1)p j,t Ai,t ( j) = 0

for each k = 1, . . . , N . Solving for pk,t yields the result. It remains to check that such a
predictor always exists. For clarity, let ci, j = ∇i�(Rt−1)Ai,t ( j), so that the above condition



4.7 Calibration with Checking Rules 93

can be written as

pk,t

m∑
i=1

ci,k −
N∑

j=1

p j,t

m∑
i=1

I{ fi,t ( j)=k}ci, j = 0 for k = 1, . . . , N .

Now note that this condition is equivalent to p�t H = 0, where pt = (p1,t , . . . , pN ,t ) and H
is an N × N matrix whose entries are

Hj,k =
{−∑m

i=1 I{ fi,t (k)= j}ci,k if k �= j ,∑m
i=1 I{ fi,t ( j)�= j}ci, j otherwise.

As in the argument in Section 4.4, let hmax = maxi, j |Hi, j | and let I be the N × N iden-
tity matrix. Since ∇� ≥ 0, matrix I − H/hmax is nonnegative and row stochastic. The
Perron–Frobenius theorem then implies that there exists a probability vector q such that
q� (I − H/hmax) = q. Because such a q also satisfies q�H = 0�, the choice pt = q leads
to a forecaster satisftying the Blackwell condition.

4.7 Calibration with Checking Rules

The notion of calibration has some important weaknesses. While calibratedness is an impor-
tant basic property one expects from a probability forecaster, a well-calibrated forecaster
may have very little predictive power. To illustrate this, consider the sequence of outcomes
{yt } formed by alternating 0’s and 1’s: 01010101. . . . The forecaster qt ≡ 1/2 is well cali-
brated but unsatisfactory, as any sensible forecaster should, intuitively, predict something
close to 0 at time t = 2× 106 + 1 after having seen the pattern “01” repeated a million
times.

A way of strengthening the definition of calibration is by introducing so-called checking
rules. Consider the randomized forecasting problem described in Section 4.5. In this prob-
lem, at each time instance t = 1, 2, . . . the forecaster determines his randomized prediction
qt and then observes the outcome Yt . A checking rule A assigns, to each time instance
t , an indicator function At (x) = I{x∈St } of a set St ∈ [0, 1] and reveals it to the forecaster
before making a prediction qt . The set St may depend on the past sequence of outcomes
and forecasts q1, Y1, . . . , qt−1, Yt−1. (Formally, At is measurable with respect to the fil-
tration generated by the past forecasts and outcomes.) The role of checking rules is the
same as that of the activation functions introduced in Section 4.6. Given a countable family
{A(1), A(2), . . .} of checking rules, the goal of the forecaster now is to guarantee that, for all
checking rules A(k) with lim supn→∞

1
n

∑n
t=1 A(k)

t (qt ) > 0,

lim
n→∞

∣∣∣∣∣
∑n

t=1 yt A(k)
t (qt )∑n

s=1 A(k)
s (qs)

−
∑n

t=1 qt A(k)
t (qt )∑n

s=1 A(k)
s (qs)

∣∣∣∣∣ = 0.

We call a forecaster satisfying this property well calibrated under checking rules.
Thus, any checking rule selects, on the basis of the past, a subset of [0, 1], and we

calculate the average of the forecasts only over those periods in which the checking rule
was active at qt . Before making the prediction, the forecaster is warned on what sets
the checking rules are active at that period. The goal of the predictor is to force the average
of his forecasts, computed over the periods in which a checking rule was active, to be
close to the average of the outcomes over the same periods. By considering checking rules
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of the form At (q) = I{q∈(x−ε,x+ε)} we recover the original notion of calibration introduced
in Section 4.5. However, by introducing checking rules that depend on the time instance
t and/or on the past, one may obtain much more interesting notions of calibration. For
example, one may include checking rules that are active only at even periods of time, others
that are active at odd periods of time, others that are only active if the last three outcomes
were 0, etc. One may even consider a checking rule that is only active when the average of
past outcomes is far away from the average of the past forecasts, calculated over the time
instances in which the rule was active in the past.

By a simple combination of Theorem 4.3 and the arguments of Section 4.5, it is now
easy to establish the existence of well calibrated forecasters under a wide class of checking
rules. Just like in Section 4.5, the first step of the argument is a discretization. Fix an ε > 0
and consider first a division of the unit interval [0, 1] into intervals of length N = �1/ε�.
Consider checking rules A such that, for all t and histories q1, Y1, . . . , qt−1, Yt−1, At is an
indicator function of a union of some of these N intervals. Call a checking rule satisfying
this property an ε-checking rule. The proof of the following result is left as an exercise.

Theorem 4.4. Let ε > 0. For any countable family {A(1), A(2), . . .} of ε-checking
rules, there exists a randomized forecaster such that, almost surely, for all A(k) with
lim supn→∞

1
n

∑n
t=1 A(k)

t (qt ) > 0,

lim sup
n→∞

∣∣∣∣∣
∑n

t=1 yt A(k)
t (qt )∑n

s=1 A(k)
s (qs)

−
∑n

t=1 qt A(k)
t (qt )∑n

s=1 A(k)
s (qs)

∣∣∣∣∣ = 0.

4.8 Bibliographic Remarks

Randomized forecasters have been considered in various different setups; see, for example,
Feder, Merhav, and Gutman [95], Foster and Vohra [107], Cesa-Bianchi and Lugosi [51].
For surveys we refer to Foster and Vohra [107], Vovk [300], Merhav and Feder [214]. The
first Hannan consistent forecasters were proposed by Hannan [141] and Blackwell [29].
Hannan’s original forecaster is based on the idea of “following the perturbed leader,”
as described in Section 4.3. Blackwell’s procedure is, instead, in same the spirit as the
weighted average forecasters based on the quadratic potential. (This is described in detail
in Section 7.5.)

The analysis of Hannan’s forecaster presented in Section 4.3 is due to Kalai and Vem-
pala [174]. Hutter and Poland [164] provide a refined analysis. Hart and Mas-Colell [146]
characterize the whole class of potentials for which the Blackwell condition (4.1) yields a
Hannan consistent player.

The existence of strategies with small internal regret was first shown by Foster and
Vohra [105], see also Fudenberg and Levine [118,121] and Hart and Mas Colell [145,146].
The forecaster described here is based on Hart and Mas Colell [146] and is taken from Cesa-
Bianchi and Lugosi [54]. The example showing that simple weighted average predictors are
not sufficient appears in Stoltz and Lugosi [279]. The method of converting forecasters with
small external regret into the ones with small internal regret described here was suggested
by Stoltz and Lugosi [279] – see also Blum and Mansour [34] for a related result. The
swap regret was introduced in [34], where a polynomial time algorithm is introduced that
achieves a bound of the order of

√
nN ln N for the swap regret.
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The notion of calibration was introduced in the weather forecasting literature by
Brier [42], after whom the Brier score is named. It was Dawid [80] who introduced
the problem to the literature of mathematical statistics – see also Dawid’s related work on
calibration and “prequential” statistics [81, 82, 84]. Oakes [226] and Dawid [83] pointed
out the impossibility of deterministic calibration. The fact that randomized calibrated fore-
casters exist was proved by Foster and Vohra [106], and the construction of the forecaster
of Section 4.5 is based on their paper. Foster [104], Hart (see [106]), and Fudenberg and
Levine [120] also introduce calibrated forecasters. The constructions of Hart and Fuden-
berg and Levine are based on von Neumann’s minimax theorem. The notion of calibration
discussed in Section 4.5 has been strengthened by Lehrer [194], Sandroni, Smorodin-
sky, and Vohra [259], and Vovk and Shafer [301]. These last references also consider
checking rules and establish results in the spirit of the one presented in Section 4.7.
These last two papers construct well-calibrated forecasters using even stronger notions of
checking rules. Kakade and Foster [171] and Vovk, Takemura, and Shafer [302] indepen-
dently define a weaker notion of calibration by requiring that for all nonnegative Lipschitz
functions w ,

lim
n→∞

1

n

n∑
t=1

w(qt )(yt − qt ) = 0.

They show the existence of a deterministic weakly calibrated forecaster and use this to
define an “almost deterministic” calibrated forecaster. Calibration is also closely related
to the notion of “merging” originated by Blackwell and Dubins [30]. Kalai, Lehrer, and
Smorodinsky [177] show that, in fact, these two notions are equivalent in some sense, see
Kalai and Lehrer [176], Lehrer, and Smorodinsky [196], Sandroni and Smorodinsky [258]
for related results.

Generalized regret (Section 4.6) was introduced by Lehrer [195] (see also Cesa-
Bianchi and Lugosi [54]). The “specialist” algorithm of Freund, Schapire, Singer, and
Warmuth [115] is a special case of the forecaster for generalized regret defined in Theo-
rem 4.3. The framework of specialists has been applied by Cohen and Singer [65] to a text
categorization problem.

4.9 Exercises

4.1 Let Bn : Yn → [0,∞] be a function that assigns a nonnegative number to any sequence yn =
(y1, . . . , yn) of outcomes, and consider a randomized forecaster whose expected cumulative
loss satisfies

sup
yn

(
E

n∑
t=1

�(It , yt )− Bn(yn)

)
≤ 0.

Show that if the same forecaster is used against a nonoblivious opponent, then its expected
performance satisfies

E

[
n∑

t=1

�(It , Yt )− Bn(Y n)

]
≤ 0
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(Hutter and Poland [164]). Hint: Show that when the forecaster is used against a nonoblivious
opponent, then

sup
y1∈Y

E1 sup
y2∈Y

E2 . . . sup
yn∈Y

En

[
n∑

t=1

�(It , yt )− Bn(yn)

]
≤ 0.

Proceed as in Lemma 4.1.

4.2 Prove Corollary 4.3. First show that the difference between the cumulative loss
∑n

t=1 �(It , Yt )
and its expected value

∑n
t=1 �(pt , Yt ) is, with overwhelming probability, not larger than some-

thing of the order of
√

n. Hint: Use the Hoeffding–Azuma inequality and the Borel–Cantelli
lemma.

4.3 Investigate the same problem as in the previous exercise but now for the modification of the
randomized forecaster defined as

pi,t = φ′(R̃i,t−1)∑N
j=1 φ′(R̃ j,t−1)

,

where R̃i,t =
∑t

s=1

(
�(Is, Ys)− �( fi,s, Ys)

)
. Warning: There is an important difference here

between different choices of φ. φ(x) = eηx is the easiest case.

4.4 Consider the randomized forecasters of Section 4.2. Prove that the cumulative loss L̂n of the
exponentially weighted average forecaster is always at least as large as the cumulative loss
mini=1,...,N Li,n of the best pure strategy. Hint: Reverse the proof of Theorem 2.2.

4.5 Prove Theorem 4.1. Hint: The first statement is straightforward after defining appropriately the
exponentially weighted average strategy. To prove the second statement, combine the first part
with the results of Section 2.8.

4.6 Show that the regret of the follow-the-leader algorithm (i.e., fictitious play) mentioned at the
beginning of Section 4.3 is bounded by the number of times the “leader” (i.e., the action with
minimal cumulative loss) is changed during the sequence of plays.

4.7 Consider the version of the follow-the-perturbed-leader forecaster in which the distribution of
Zt is uniform on the cube [0,�t ]N where �t =

√
t N . Show that the expected cumulative loss

after n rounds is bounded as

Ln − min
i=1,...,N

Li,n ≤ 2
√

2nN .

Conclude that the forecaster is Hannan consistent (Hannan [141], Kalai and Vempala [174]).

4.8 Show that the swap regret is bounded by N times the internal regret.

4.9 Consider the setup of Section 4.5. Show that if ε < 1/3, then for any deterministic forecaster, that
is, for any sequence of functions qt : {0, 1}t−1 → [0, 1], t = 1, 2, . . . , there exists a sequence
of outcomes y1, y2, . . . such that the forecaster qt = qt (yt−1

1 ) is not ε-calibrated (Oakes [226],
Dawid [83]).

4.10 Show that if limn→∞ 1
n

∑n
t=1 yt exists, then the deterministic forecaster

qt = 1

t − 1

t−1∑
s=1

ys

is well calibrated.

4.11 Prove Lemma 4.2.

4.12 Prove Lemma 4.3.
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4.13 This exercise points out that calibrated forecasters are necessarily bad in a certain sense. Show
that for any well-calibrated forecaster qt there exists a sequence of outcomes such that

lim inf
n→∞

1

n

(
n∑

t=1

|yt − qt | −min

{
n∑

t=1

|yt − 0|,
n∑

t=1

|yt − 1|
})

> 0.

4.14 Let N > 0 be fixed and consider any forecaster that keeps the internal regret based on the
absolute loss

max
i, j=0,1,...,N

1

n
R(i, j),n = max

i, j=0,1,...,N

1

n

n∑
t=1

pi,t

(|yt − i/N | − |yt − j/N |)
small (i.e., it converges to 0). Show that for any ε, if N is sufficiently large, such a forecaster
cannot be ε calibrated. Hint: Use the result of the previous exercise.

4.15 (Uniform calibration) Recall the notation of Section 4.5. A forecaster is said to be uniformly
well calibrated if for all ε > 0,

lim sup
n→∞

sup
x∈[0,1]

|ρε
n (x)− x | < ε.

Show that there exists a uniformly well-calibrated randomized forecaster.

4.16 (Uniform calibration continued) An even stronger notion of calibration is obtained if we
define, for all sets A ⊂ [0, 1],

ρn(A) =
∑n

t=1 yt I{qt∈A}∑n
s=1 I{qs∈A}

.

Let Aε = {x : ∃y ∈ A such that |x − y| < ε} be the ε-blowup of set A and let λ denote the
Lebesgue measure. Show that there exists a forecaster such that, for all ε > 0,

lim sup
n→∞

sup
A

∣∣∣∣∣ρn(Aε)−
∫

Aε
xdx

λ(Aε)

∣∣∣∣∣ < ε,

where the supremum is taken over all subsets of [0, 1]. (Note that if the supremum is only taken
over all singletons A = {x}, then we recover the notion of uniform calibration defined in the
previous exercise.)

4.17 (Uniform calibration of non-binary sequences) We may extend the notion of uniform cal-
ibration to the case of forecasting non-binary sequences described at the end of Section 4.5.
Here yt ∈ Y = {1, 2, . . . , m} and the forecaster outputs a vector qt ∈ D. For any subset A of
the probability simplex D, define

ρn(A) =
∑n

t=1 yt I{qt∈A}∑n
s=1 I{qs∈A}

,

where yt = (I{yt=1}, . . . , I{yt=m}). Writing Aε = {x : (∃ x′ ∈ A) ‖x− x′‖ < ε} and λ for the
uniform probability measure over D, show that there exists a forecaster such that for all A ⊂ D
and for all ε > 0,

lim sup
n→∞

∣∣∣∣∣ρn(Aε)−
∫

Aε
x dx

λ(Aε)

∣∣∣∣∣ < ε.

Prove the uniform version of this result by showing the existence of a forecaster such that, for
all ε > 0,

lim sup
n→∞

sup
A

∣∣∣∣∣ρn(Aε)−
∫

Aε
x dx

λ(Aε)

∣∣∣∣∣ < ε,

where the supremum is taken over all subsets of D.
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4.18 (Hannan consistency for discounted regret) Consider the problem of randomized prediction
described in Section 4.1. Let β0 ≥ β1 ≥ · · · be a sequence of positive discount factors. A
forecaster is said to satisfy discounted Hannan consistency if

lim sup
n→∞

∑n
t=1 βn−t�(It , Yt )−mini=1,...,N

∑n
t=1 βn−t�(i, Yt )∑n

t=1 βn−t
= 0

with probability 1. Derive sufficient and necessary conditions for the sequences of discount
factors for which discounted Hannan consistency may be achieved.

4.19 Prove Theorem 4.4. Hint: First assume a finite class of ε-checking rules and show, by com-
bining the arguments of Section 4.5 with Theorem 4.3, that for any interval of the form (i/N ,

(i + 1)/N ],

lim sup
n→∞

∣∣∣∣∣
∑n

t=1(yt − qt )I{A(k)
t (qt )∈(i/N ,(i+1)/N ]}∑n

s=1 I{A(k)
s (qs )∈(i/N ,(i+1)/N ]}

∣∣∣∣∣ = 0

whenever lim supn→∞
1
n

∑n
t=1 I{A(k)

t (qt )∈(i/N ,(i+1)/N ]} > 0.
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Efficient Forecasters for Large Classes
of Experts

5.1 Introduction

The results presented in Chapters 2, 3, and 4 show that it is possible to construct algorithms
for online forecasting that predict an arbitrary sequence of outcomes almost as well as the
best of N experts. Namely, the per-round cumulative loss of the predictor is at most as large
as that of the best expert plus a term proportional to

√
ln N/n for any bounded loss function,

where n is the number of rounds in the prediction game. The logarithmic dependence on
the number of experts makes it possible to obtain meaningful bounds even if the pool of
experts is very large. However, the basic prediction algorithms, such as weighted average
forecasters, have a computational complexity proportional to the number of experts, and
they are therefore infeasible when the number of experts is very large.

On the other hand, in many applications the set of experts has a certain structure that
may be exploited to construct efficient prediction algorithms. Perhaps the best known such
example is the problem of tracking the best expert, in which there is a small number of
“base” experts and the goal of the forecaster is to predict as well as the best “compound”
expert. This expert is defined by a sequence consisting of at most m + 1 blocks of base
experts so that in each block the compound expert predicts according to a fixed base expert.
If there are N base experts and the length of the prediction game is n, then the total number
of compound experts is �

(
N (nN/m)m

)
, exponentially large in m. In Section 5.2 we develop

a forecasting algorithm able to track the best expert on any sequence of outcomes while
requiring only O(N ) computations in each time period.

Prototypical examples of structured classes of experts for which efficient algorithms
have been constructed include classes that can be represented by discrete structures such
as lists, trees, and paths in graphs. It turns out that many of the forecasters we analyze in
this book can be efficiently calculated over large classes of such “combinatorial experts.”
Computational efficiency is achieved because combinatorial experts are generated via
manipulation of a simple base structure (i.e., a class might include experts associated with
all sublists of a given list or all subtrees of a given tree), and for this reason their predictions
are tightly related.

Most of these algorithms are based on efficient implementations of the exponentially
weighted average forecaster. We describe two important examples in Section 5.3, concerned
with experts defined on binary trees, and in Section 5.4, devoted to experts defined by paths
in a given graph. A different approach uses follow-the-perturbed-leader predictors (see
Section 4.3) that may be used to obtain efficient algorithms for a large class of problems,
including the shortest path problem. This application is described in Section 5.4. The

99
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purpose of Section 5.5 is to develop efficient algorithms to track the best expert in the case
when the class of “base” experts is already very large and has some structure. This is, in a
sense, a combination of the two types of problems described above.

For simplicity, we analyze combinatorial experts in the framework of randomized pre-
diction (see Chapter 4). Most results of this chapter (with the exception of the algorithms
using the follow-the-perturbed-leader forecaster) can also be presented in the deterministic
framework developed in Chapters 2 and 3. Following the model and convention introduced
in Chapter 4, we sometimes use the term action instead of expert. The two are synonymous
in the context of this chapter.

5.2 Tracking the Best Expert

In the basic model of randomized prediction the forecaster’s predictions are evaluated
against the best performing single action. This criterion is formalized by the usual notion
of regret

n∑
t=1

�(It , Yt )− min
i=1,...,N

n∑
t=1

�(i, Yt ),

which expresses the excess cumulative loss of the forecaster when compared with strategies
that use the same action all the time. In this section we are interested in comparing the
cumulative loss of the forecaster with more flexible strategies that are allowed to switch
actions a limited number of times. (Recall that in Section 4.2 we briefly addressed such
comparison classes of “dynamic” strategies.) This is clearly a significantly richer class,
because there may be many outcome sequences Y1, . . . , Yn such that

min
i=1,...,N

n∑
t=1

�(i, Yt )

is large, but there is a partition of the sequence in blocks Y t1−1
1 , Y t2−1

t1 , . . . , Y n
tm of consecutive

outcomes so that on each block Y tk+1−1
tk = (Ytk , . . . , Ytk+1−1) some action ik performs very

well.
Forecasting strategies that are able to “track” the sequence i1, i2, . . . , im+1 of good

actions would then perform substantially better than any individual action. This motivates
the following generalization of regret. Fix a horizon n. Given any sequence i1, . . . , in of
actions from {1, . . . , N }, define the tracking regret by

R(i1, . . . , in) =
n∑

t=1

�(It , Yt )−
n∑

t=1

�(it , Yt ),

where, as usual, I1, . . . , In is the sequence of randomized actions drawn by the forecaster.
To simplify the arguments, throughout this chapter we study the “expected” regret

R(i1, . . . , in) =
n∑

t=1

�(pt , Yt )−
n∑

t=1

�(it , Yt ),

where, following the notation introduced in Chapter 4, pt = (p1,t , . . . , pN ,t ) denotes
the distribution according to which the random action It is drawn at time t , and
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�(pt , Yt ) =
∑N

i=1 pi,t�(It , Yt ) is the expected loss of the forecaster at time t . Recall from
Section 4.1 that, with probability at least 1− δ,

n∑
t=1

�(It , Yt ) ≤
n∑

t=1

�(pt , Yt )+
√

n

2
ln

1

δ

and even tighter bounds can be established if
∑n

t=1 �(pt , Yt ) is small.
Clearly, it is unreasonable to require that a forecaster perform well against the best

sequence of actions for any given sequence of outcomes. Ideally, the tracking regret should
scale, with some measure of complexity, penalizing action sequences that are, in a certain
sense, harder to track. To this purpose, introduce

size (i1, . . . , in) =
n∑

t=2

I{it−1 �=it }

counting how many switches (it , it+1) with it �= it+1 occur in the sequence. Note that

n∑
t=1

�(pt , Yt )− min
(i1,...,in ) : size (i1,...,in )=0

n∑
t=1

�(it , Yt )

corresponds to the usual (nontracking) regret.
It is not difficult to modify the randomized forecasting strategies of Chapter 4 in order to

achieve a good tracking regret against any sequence of actions with a bounded number of
switches. We may simply associate a compound action with each action sequence i1, . . . , in

so that size (i1, . . . , in) ≤ m for some m and fixed horizon n. We then run our randomized
forecaster over the set of compound actions: at any time t the randomized forecaster draws a
compound action (I1, . . . , In) and plays action It . Denote by M the number of all compound
actions with size bounded by m. If we use the randomized exponentially weighted forecaster
over this set of all compound actions, then Corollary 4.2 implies that the tracking regret
is bounded by

√
(n ln M)/2. Hence, it suffices to count the number of compound actions:

for each k = 0, . . . , m there are
(n−1

k

)
ways to pick k time steps t = 1, . . . , n − 1 where a

switch it �= it+1 occurs, and there are N (N − 1)k ways to assign a distinct action to each
of the k + 1 resulting blocks. This gives

M =
m∑

k=0

(
n − 1

k

)
N (N − 1)k ≤ N m+1 exp

(
(n − 1)H

(
m

n − 1

))
,

where H (x) = −x ln x − (1− x) ln(1− x) is the binary entropy function defined for x ∈
[0, 1]. Substituting this bound in the above expression, we find that the tracking regret of
the randomized exponentially weighted forecaster for compound actions satisfies

R(i1, . . . , in) ≤
√

n

2

(
(m + 1) ln N + (n − 1)H

(
m

n − 1

))
on any action sequence i1, . . . , in such that size (i1, . . . , in) ≤ m.

The Fixed Share Forecaster
In its straightforward implementation, the exponentially weighted average forecaster
requires to explicitly manage an exponential number of compound actions. We now show
how to efficiently implement a generalized version of this forecasting strategy that achieves
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the same performance bound for the tracking regret. This efficient forecaster is derived
from a variant of the exponentially weighted forecaster where the initial weight distribution
is not uniform. The basis of this argument is the next simple general result. Consider the
randomized exponentially weighted average forecaster defined in Section 4.2, with the only
difference that the initial weights wi,0 assigned to the N actions are not necessarily uniform.
Via a straightforward combination of the proof of Theorem 2.2 (see also Exercise 2.5) with
the results of Section 4.2, we obtain the following result.

Lemma 5.1. For all n ≥ 1, if the randomized exponentially weighted forecaster is run using
initial weights w1,0, . . . , w N ,0 ≥ 0 such that W0 = w1,0 + · · · + w N ,0 ≤ 1, then

n∑
t=1

�(pt , Yt ) ≤ 1

η
ln

1

Wn
+ η

8
n,

where Wn =
∑N

i=1 wi,n =
∑N

i=1 wi,0e−η
∑n

t=1 �(i,Yt ) is the sum of the weights after n rounds.

Nonuniform initial weights may be interpreted to assign prior importance to the different
actions. The weighted average forecaster gives more importance to actions with larger
initial weight and is guaranteed to achieve a smaller regret with respect to these experts.

For the tracking application, we choose the initial weights of compound actions
(i1, . . . , in) so that their values correspond to a probability distribution parameterized by
a real number α ∈ (0, 1). We show that our efficient forecaster achieves the same track-
ing regret bound as the (nonefficient) exponentially weighted forecaster run with uniform
weights over all compound actions whose number of switches is bounded by a function
of α.

We start by defining the initial weight assignment. Throughout the whole section we
assume that the horizon n is fixed and known in advance. We write w ′

t (i1, . . . , in) to denote
the weight assigned at time t by the exponentially weighted forecaster to the compound
action (i1, . . . , in). For any fixed choice of the parameter α ∈ (0, 1), the initial weights of
the compound actions are defined by

w ′
0(i1, . . . , in) = 1

N

( α

N

)size (i1,...,in ) (
1− α + α

N

)n−size (i1,...,in )
.

Introducing the “marginalized” weights

w ′
0(i1, . . . , it ) =

∑
it+1,...,in

w ′
0(i1, . . . , it , it+1, . . . , in)

for all t = 1, . . . , n, it is easy to see that the initial weights are recursively computed as
follows:

w ′
0(i1) = 1/N

w ′
0(i1, . . . , it+1) = w ′

0(i1, . . . , it )
( α

N
+ (1− α)I{it+1=it }

)
.

Note that, for any n, this assignment corresponds to a probability distribution over
{1, . . . , N }n , the set of all compound actions of length n. In particular, the ratio
w ′

0(i1, . . . , it+1)/w ′
0(i1, . . . , it ) can be viewed as the conditional probability that a ran-

dom compound action (I1, . . . , In), drawn according to the distribution w ′
0, has It+1 = it+1

given that It = it . Hence, w ′
0 is the joint distribution of a Markov process over the set
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{1, . . . , N } such that I1 is drawn uniformly at random, and each next action It+1 is equal
to the previous action It with probability 1− α + α/N , and is equal to a different action
j �= It with probability α/N . Thus, choosing α small amounts to assigning a small initial
weight to compound actions with a large number of switches.

At any time t , a generic weight of the exponentially weighted forecaster has the form

w ′
t (i1, . . . , in) = w ′

0(i1, . . . , in) exp

(
−η

t∑
s=1

�(is, Ys)

)
and the forecaster draws action i at time t + 1 with probability w ′

i,t/W ′
t , where W ′

t =
w ′

1,t + · · · + w ′
N ,t and

w ′
i,t =

∑
i1,...,it ,it+2,...,in

w ′
t (i1, . . . , it , i, it+2, . . . , in) for t ≥ 1 and w ′

i,0 =
1

N
.

We now define a general forecasting strategy for running efficiently the exponentially
weighted forecaster with this choice of initial weights.

THE FIXED SHARE FORECASTER

Parameters: Real numbers η > 0 and 0 ≤ α ≤ 1.

Initialization: w0 = (1/N , . . . , 1/N ).

For each round t = 1, 2, . . .

(1) draw an action It from {1, . . . , N } according to the distribution

pi,t = wi,t−1∑N
j=1 w j,t−1

, i = 1, . . . , N .

(2) obtain Yt and compute

vi,t = wi,t−1 e−η �(i,Yt ) for each i = 1, . . . , N .

(3) let

wi,t = α
Wt

N
+ (1− α)vi,t for each i = 1, . . . , N ,

where Wt = v1,t + · · · + vN ,t .

Note that with α = 0 the fixed share forecaster reduces to the simple exponentially weighted
average forecaster over N base actions. A positive value of α forces the weights to stay
above a minimal level, which allows to track the best compound action. We will see shortly
that if the goal is to track the best compound action with at most m switches, then the right
choice of α is about m/n.

The following result shows that the fixed share forecaster is indeed an efficient version
of the exponentially weighted forecaster.

Theorem 5.1. For all α ∈ [0, 1], for any sequence of n outcomes, and for all t = 1, . . . , n,
the conditional (given the past) distribution of the action It , drawn at time t by the fixed
share forecaster with input parameter α, is the same as the conditional distribution of
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action I ′t drawn at time t by the exponentially weighted forecaster run over the compound
actions (i1, . . . , in) using initial weights w ′

0(i1, . . . , in) set with the same value of α.

Proof. It is enough to show that, for all i and t , wi,t = w ′
i,t . We proceed by induction on

t . For t = 0, wi,0 = w ′
i,0 = 1/N for all i . For the induction step, assume that wi,s = w ′

i,s

for all i and s < t . We have

w ′
i,t =

∑
i1,...,it ,it+2,...,in

w ′
t (i1, . . . , it , i, it+2, . . . , in)

=
∑

i1,...,it

exp

(
−η

t∑
s=1

�(is, Ys)

)
w ′

0(i1, . . . , it , i)

=
∑

i1,...,it

exp

(
−η

t∑
s=1

�(is, Ys)

)
w ′

0(i1, . . . , it )
w ′

0(i1, . . . , it , i)

w ′
0(i1, . . . , it )

=
∑

i1,...,it

exp

(
−η

t∑
s=1

�(is, Ys)

)
w ′

0(i1, . . . , it )
( α

N
+ (1− α)I{it=i}

)
(using the recursive definition of w ′

0)

=
∑

it

e−η�(it ,Yt )w ′
it ,t−1

( α

N
+ (1− α)I{it=i}

)
=
∑

it

e−η�(it ,Yt )wit ,t−1

( α

N
+ (1− α)I{it=i}

)
(by the induction hypothesis)

=
∑

it

vit ,t

( α

N
+ (1− α)I{it=i}

)
(using step 2 of fixed share)

= wi,t (using step 3 of fixed share).

Note that n does not appear in the proof, and the choice of n is thus immaterial in the
statement of the theorem. Hence, unless α and η are chosen in terms of n, the prediction
at time t of the exponentially weighted forecaster can be computed without knowing the
length of the compound actions.

We are now ready to state the tracking regret bound for the fixed share forecaster.

Theorem 5.2. For all n ≥ 1, the tracking regret of the fixed share forecaster satisfies

R(i1, . . . , in) ≤ m + 1

η
ln N + 1

η
ln

1

(α/N )m(1− α)n−m−1
+ η

8
n

for all action sequences i1, . . . , in, where m = size (i1, . . . , in).

We emphasize that the bound of Theorem 5.2 is true for all sequences i1, . . . , in , and the
bound on the regret depends on size (i1, . . . , in), the complexity of the sequence. If the
objective is to minimize the tracking regret for all sequences with size bounded by m,
then the parameters α and η can be tuned to minimize the right-hand side. This is shown
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in the next result. We see that by tuning the parameters α and η we obtain a tracking
regret bound exactly equal to the one proven for the exponentially weighted forecaster
run with uniform weights over all compound actions of complexity bounded by m. The
good choice of α turns out to be m/(n − 1). Observe that with this choice the compound
actions with m switches have the largest initial weight. In fact, it is easy to see that
the initial weight distribution is concentrated on the set of compound actions with about
m switches. This intuitively explains why the next performance bound matches the one
obtained for the exponentially weighted average algorithm run over the full set of compound
actions.

Corollary 5.1. For all n, m such that 0 ≤ m < n, if the fixed share forecaster is run with
parameters α = m/(n − 1), where for m = 0 we let α = 0, and

η =
√

8

n

(
(m + 1) ln N + (n − 1)H

(
m

n − 1

))
,

then

R(i1, . . . , in) ≤
√

n

2

(
(m + 1) ln N + (n − 1)H

(
m

n − 1

))
for all action sequences i1, . . . , in such that size (i1, . . . , in) ≤ m.

Proof. First of all, note that for α = m/(n − 1)

ln
1

αm(1− α)n−m−1
≤ −m ln

m

n − 1
− (n − m − 1) ln

n − m − 1

n − 1

= (n − 1)H

(
m

n − 1

)
.

Using our choice for η in the bound of Theorem 5.2 concludes the proof.

In the special case m = 0, when the tracking regret reduces to the usual regret, the
bound of Corollary 5.1 is

√
(n/2) ln N , which is the bound for the exponentially weighted

forecaster proven in Theorem 2.2.

Proof of Theorem 5.2. Recall that for an arbitrary compound action i1, . . . , in we have

ln w ′
n(i1, . . . , in) = ln w ′

0(i1, . . . , in)− η

n∑
t=1

�(it , Yt ).

By definition of w ′
0, if m = size (i1, . . . , in),

w ′
0(i1, . . . , in) = 1

N

( α

N

)m ( α

N
+ (1− α)

)n−m−1
≥ 1

N

( α

N

)m
(1− α)n−m−1.
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Therefore, using this in the bound of Lemma 5.1 we get, for any sequence (i1, . . . , in) with
size (i1, . . . , in) = m,

n∑
t=1

�(pt , Yt )

≤ 1

η
ln

1

W ′
n

+ η

8
n

≤ 1

η
ln

1

w ′
n(i1, . . . , in)

+ η

8
n

≤
n∑

t=1

�(it , Yt )+ 1

η
ln N + m

η
ln

N

α
− n − m − 1

η
ln(1− α)+ η

8
n,

which concludes the proof.

Hannan Consistency
A natural question is under what conditions Hannan consistency for the tracking regret can
be achieved. In particular, if we assume that at time n the tracking regret is measured against
the best compound action with at most µ(n) switches, we may ask what is the fastest rate
of growth of µ(n) a Hannan consistent forecaster can tolerate. The following result shows
that a growth slightly slower than linear is already sufficient.

Corollary 5.2. Let µ : N → N be any nondecreasing integer-valued function such that

µ(n) = o

(
n

log(n) log log(n)

)
.

Then there exists a randomized forecaster such that

lim sup
n→∞

1

n

(
n∑

t=1

�(It , Yt )−min
Fn

n∑
t=1

�(it , Yt )

)
= 0 with probability 1,

where Fn is the set of compound actions (i1, . . . , in) whose size is at most µ(n).

The proof of Corollary 5.2 goes along the same lines as the proof of Corollary 6.1, and we
leave it as an exercise.

The Variable Share Forecaster
Recall that if the best action has a small cumulative loss, then improved regret bounds
may be achieved that involve the loss of the best action (see Section 2.4). Next we show
how this can be done in the tracking framework such that the resulting forecaster is still
computationally feasible. This is achieved by a modification of the fixed share forecaster.
All we have to do is to change the initial weight assignment appropriately.

A crucial feature of the choice of initial weights w ′
0 when forecasting compound actions

is that for any i and t , the weight w ′
i,t depends only on w ′

0(i1, . . . , it , i) and on the realized
losses up to time t . That is, for computing the prediction at time t + 1 there is no need to
know how w ′

0(i1, . . . , it , i) is split into w ′
0(i1, . . . , it , i, it+2, . . . , in) for each continuation

it+2, . . . , in ∈ {1, . . . , N }. This fact, which is the key to the proof of Theorem 5.1, can
be exploited to define w ′

0(i1, . . . , it , it+1) using information that is only made available at
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time t . For example, consider the following recursive definition

w ′
0(i1, . . . , it+1)

= w ′
0(i1, . . . , it )

(
1− (1− α)�(it ,Yt )

N − 1
I{it �=it+1} + (1− α)�(it ,Yt )I{it=it+1}

)
.

This is similar to the definition of the Markov process associated with the initial weight
distribution used by the fixed share forecaster. The difference is that here we see that, given
It = it , the probability of It+1 �= it grows with �(it , Yt ), the loss incurred by action it at time
t . Hence, this new distribution assigns a further penalty to compound actions that switch to
a new action when the old one incurs a small loss.

On the basis of this new distribution, we introduce the variable share forecaster, replac-
ing step 3 of the fixed share forecaster with

wi,t = 1

N − 1

∑
j �=i

(
1− (1− α)�( j,Yt )

)
v j,t + (1− α)�(i,Yt ) vi,t .

Mimicking the proof of Theorem 5.1, it is easy to check that the weights w ′
i,t of the variable

share forecaster satisfy

wi,t =
∑

i1,...,it ,it+2,...,in

w ′
t (i1, . . . , it , i, it+2, . . . , in).

Hence, the computation carried out by the variable share forecaster efficiently updates the
weights w ′

i,t .
Note that this initial weight distribution assigns a negligible weight w ′

0 to all compound
actions (i1, . . . , in) such that it+1 �= it and �(it , Yt ) is close to 0 for some t . In Theorem 5.3 we
analyze the performance of the variable share forecaster under the simplifying assumption
of binary losses � ∈ {0, 1}. Via a similar, but somewhat more complicated, argument, a
regret bound slightly larger than the bound of Theorem 5.3 can be proven in the general
setup where � ∈ [0, 1] (see Exercise 5.4).

Theorem 5.3. Fix a time horizon n. Under the assumption � ∈ {0, 1}, for all η > 0 and for
all α ≤ (N − 1)/N the tracking regret of the variable share forecaster satisfies

n∑
t=1

�(pt , Yt )−
n∑

t=1

�(it , Yt )

≤ m + m + 1

η
ln N + m

η
ln

1

α
+ 1

η

(
n∑

t=1

�(it , Yt )

)
ln

1

1− α
+ η

8
n

for all action sequences i1, . . . , in, where m = size (i1, . . . , in).

Observe that the performance bound guaranteed by the theorem is similar to that of
Theorem 5.2 with the only exception that

n − m − 1

η
ln

1

1− α
is replaced by

1

η

(
n∑

t=1

�(it , Yt )

)
ln

1

1− α
+ m.

Because the inequality holds for all sequences with size (i1, . . . , in) ≤ m, this is a significant
improvement if there exists a sequence (i1, . . . , in) with at most m switches, with m not
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too large, that has a small cumulative loss. Of course, if the goal of the forecaster is to
minimize the cumulative regret with respect to the class of all compound actions with
size (i1, . . . , in) ≤ m, then the optimal choice of α and η depends on the smallest such
cumulative loss of the compound actions. In the lack of prior knowledge of the minimal
loss, these parameters may be chosen adaptively to achieve a regret bound of the desired
order. The details are left to the reader.

Proof of Theorem 5.3. In its current form, Lemma 5.1 cannot be applied to the initial
weights w ′

0 of the variable share distribution because these weights depend on the outcome
sequence Y1, . . . , Yn that, in turn, may depend on the actions of the forecaster. (Recall that in
the model of randomized prediction we allow nonoblivious opponents.) However, because
the draw It of the variable share forecaster is conditionally independent (given the past
outcomes Y1, . . . , Yt−1) of the past random draws I1, . . . , It−1, Lemma 4.1 may be used,
which states that, without loss of generality, we may assume that the opponent is oblivious.
In other words, it suffices to prove our result for any fixed (nonrandom) outcome sequence
y1, . . . , yn . Once the outcome sequence is fixed, the initial weights are well defined and we
can apply Lemma 5.1.

Introduce the notation L( j1, . . . , jn) = �( j1, y1)+ . . .+ �( jn, yn). Fix any compound
action (i1, . . . , in). Let m = size (i1, . . . , in) and L∗ = L(i1, . . . , in). If m = 0, then

ln W ′
n ≥ ln w ′

n(i1, . . . , in) = ln

(
1

N
e−ηL∗ (1− α)L∗

)
and the theorem follows from Lemma 5.1. Assume then m ≥ 1. Denote by FL∗+m the set
of compound actions ( j1, . . . , jn) with cumulative loss L( j1, . . . , jn) ≤ L∗ + m. Then

ln W ′
n = ln

⎛⎝ ∑
( j1,..., jn )∈{1,...,N }m

w ′
0( j1, . . . , jn)e−η L( j1,..., jn )

⎞⎠
≥ ln

⎛⎝ ∑
( j1,..., jn )∈FL∗+m

w ′
0( j1, . . . , jn)e−η(L∗+m)

⎞⎠
= −η(L∗ + m)+ ln

⎛⎝ ∑
( j1,..., jn )∈FL∗+m

w ′
0( j1, . . . , jn)

⎞⎠ .

We now show that FL∗+m contains at least a compound action ( j1, . . . , jn) with a large
weight w ′

0( j1, . . . , jn). This compound action ( j1, . . . , jn) mimics (i1, . . . , in) until the
latter makes a switch. If the switch is made right after a step t where �(it , yt ) = 0, then
( j1, . . . , jn) delays the switch (which would imply w ′

0( j1, . . . , jn) = 0) and keeps repeating
action it until some later time step t ′ where �(it , y′t ) = 1. Then, from time t ′ + 1 onward,
( j1, . . . , jn) mimics (i1, . . . , in) again until the next switch occurs.

We formalize the above argument as follows. Let t1 be the time step where the first switch
it1 �= it1+1 occurs. Set jt = it for all t = 1, . . . , t1. Then set jt = it1 for all t = t1 + 1, . . . , t ′1,
where t ′1 is the first step after t1 such that �(it1 , yt ′1 ) = 1. If no such t ′1 exists, then let t ′1 = n.
Proceed by setting jt = it for all t = t ′1 + 1, t ′1 + 2, . . . until a new switch it2 �= it2+1 occurs
for some t2 > t ′1 (if there are no more switches after t ′1, then set jt = it for all t = t ′1 +
1, . . . , n). Repeat the procedure described above until the end of the sequence is reached.

Call a sequence of steps t ′k + 1, . . . , tk+1 − 1 (where t ′k may be 1 and tk+1 − 1 may be n)
an A-block, and a sequence of steps tk, . . . , t ′k (where t ′k may be n) a B-block. Note that
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( j1, . . . , jn) never makes a switch within an A-block and makes at most one switch
within each B-block. Also, L( j1, . . . , jn) ≤ L∗ + m, because jt = it within A-blocks,
L( jtk , . . . , jt ′k ) ≤ 1 within each B-block, and the number of B-blocks is at most m.

Introduce the notation

Qt = 1− (1− α)�(it ,yt )

N − 1
I{it �=it+1} + (1− α)�(it ,yt )I{it=it+1}.

By definition of w ′
0 we have

w ′
0( j1, . . . , jn) = w ′

0( j1)
n−1∏
t=1

Qt .

For all t in an A-block, Qt = (1− α)�(it ,yt ). Now fix any B-block tk, . . . , t ′k . Then �( jt , yt ) =
0 for all t = tk, . . . , t ′k − 1 and �( jt ′k , yt ′k ) ≤ 1, as �( jt ′k , yt ′k ) might be 0 when t ′k = n. We thus
have ∏

t∈B-block

Qt ≥ (1− α)0 × · · · × (1− α)0 × 1− (1− α)1

N − 1
= α

N − 1
.

The factor
(
1− (1− α)1

)/
(N − 1) appears under the assumption that jt ′k < n and jt ′k+1 �=

jt ′k . If it ′k+1 = itk , implying jt ′k+1 = jt ′k , then Qt ′k = (1− α)1 and the above inequality still
holds since α/(N − 1) ≤ 1− α is implied by the assumption α ≤ (N − 1)/N .

Now, as explained earlier,∑
t

�( jt , yt ) ≤ L∗ and
∑

t ′
�( jt ′ , yt ′ ) ≤ m,

where the first sum is over all t in A-blocks and the second sum is over all t ′ in B-blocks
(recall that there are at most m B-blocks). Thus, there exists a ( j1, . . . , jn) ∈ FL∗+m with

w ′
0( j1, . . . , jn) = w ′

0( j1)
n−1∏
t=1

Qt ≥ 1

N
(1− α)L∗

(
α

N − 1

)m

.

Hence,

ln
∑
FL∗+m

w ′
0( j1, . . . , jn) ≥ ln

(
1

N
(1− α)L∗

(
α

N − 1

)m)
,

which concludes the proof.

5.3 Tree Experts

An important example of structured classes of experts is obtained by representing experts
(i.e., actions) by binary trees. We call such structured actions tree experts. A tree expert E
is a finite ordered binary tree in which each node has either 2 child nodes (a left child and
a right child) or no child nodes (if it is a leaf). The leaves of E are labeled with actions
chosen from {1, . . . , N }. We use λ to indicate the root of E and 0 and 1 to indicate the
left and right children of λ. In general, (x1, . . . , xd ) ∈ {0, 1}d denotes the left (if xd = 0) or
right (if xd = 1) child of the node (x1, . . . , xd−1).

Like the frameworks studied in Chapters 9, 11, and 12, we assume that, at each pre-
diction round, a piece of “side information” is made available to the forecaster. We do
not make any assumptions on the source of this side information. In the case of tree
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Figure 5.1. A binary tree (a)

(a)

and a tree expert based on it (b). Given any

(b)

side information vector
with prefix (1, 0, . . .), this tree expert chooses action 4, the label of leaf (1, 0).

experts the side information is represented, at each time step t , by an infinite binary
vector xt = (x1,t , x2,t , . . .). In the example described in this section, however, we only
make use of a finite number of components in the side information vector.

An expert E uses the side information to select a leaf in its tree and outputs the action
labeling that leaf. Given side information x = (x1, x2, . . .), let v = (v1, . . . , vd ) be the
unique leaf of E such that v1 = x1, . . . , vd = xd . The label of this leaf, denoted by iE (x) ∈
{1, . . . , N }, is the action chosen by expert E upon observation of x (see Figure 5.1).

Example 5.1 (Context trees). A simple application where unbounded side information
occurs is the following: consider the set of actions {0, 1}, let Y = {0, 1}, and define � by
�(i, Y ) = I{i �=Y }. This setup models a randomized binary prediction problem in which the
forecaster is scored with the number of prediction mistakes. Define the side information
at time t by xt = (Yt−1, Yt−2, . . .), where Yt for t ≤ 0 is defined arbitrarily, say, as Yt = 0.
Hence, the leaf of a tree expert E determining the expert’s prediction iE (xt ) is selected
according to a suffix of the outcome sequence. However, depending on E , the length of the
suffix used to determine iE (xt ) may vary. This model of interaction between the outcome
sequence and the expert predictions was originated in the area of information theory. Suffix-
based tree experts are also known as prediction suffix trees, context trees, or variable-length
Markov models. �

We define the (expected) regret of a randomized forecaster against the tree expert E by

RE,n =
n∑

t=1

�(pt , Yt )−
n∑

t=1

�(iE (xt ), Yt ).

In this section we derive bounds for the maximal regret against any tree expert such that the
depth of the corresponding binary tree (i.e., the depth of the node of maximum distance from
the root) is bounded. As in Section 5.2, this is achieved by a version of the exponentially
weighted average forecaster. Furthermore, we will see that the forecaster is easy to compute.

Before moving on to the analysis of regret for tree experts, we state and prove a general
result about sums of functions associated with the leaves of a binary tree. We use T to denote
a finite binary tree. Thus, a tree expert E is a binary tree T with an action labeling each
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0

0

1

1

v

Tv

Figure 5.2. A fragment of a binary tree. The dashed line shows a subtree Tv rooted at v.

leaf. The size ‖T ‖ of a finite binary tree T is the number of nodes in T . In the following,
we often consider binary subtrees rooted at arbitrary nodes v (see Figure 5.2).

Lemma 5.2. Let g : {0, 1}∗ → R be any nonnegative function defined over the set of all
binary sequences of finite length, and introduce the function G : {0, 1}∗ → R by

G(v) =
∑

Tv

2−‖Tv‖
∏

x∈leaves(Tv)

g(x),

where the sum is over all finite binary subtrees Tv rooted at v = (v1, . . . , vd ). Then

G(v) = g(v)

2
+ 1

2
G(v1, . . . , vd , 0)G(v1, . . . , vd , 1).

Proof. Fix any node v = (v1, . . . , vd ) and let T0 and T1 range over all the finite binary
subtrees rooted, respectively, at (v1, . . . , vd , 0) and (v1, . . . , vd , 1). The leaves of any subtree
rooted at v can be split in three subsets: those belonging to the left subtree T0 of v, those
belonging to the right subtree T1 of v, and the singleton set {v} belonging to the subtree
containing only the leaf v. Thus we have

G(v) = g(v)

2
+
∑

T0

∑
T1

2−(1+‖T0‖+‖T1‖)

⎛⎝ ∏
x∈leaves(T0)

g(x)

⎞⎠⎛⎝ ∏
x′∈leaves(T1)

g(x′)

⎞⎠
= g(v)

2
+ 1

2

⎛⎝∑
T0

2−‖T0‖
∏

x∈leaves(T0)

g(x)

⎞⎠⎛⎝∑
T1

2−‖T1‖
∏

x′∈leaves(T1)

g(x′)

⎞⎠
= g(v)

2
+ 1

2
G(v1, . . . , vd , 0)G(v1, . . . , vd , 1).
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Our next goal is to define the randomized exponentially weighted forecaster for the set
of tree experts. To deal with finitely many tree experts, we assume a fixed bound D ≥ 0
on the maximum depth of a tree expert (see Exercise 5.8 for a more general analysis).
Hence, the first D bits of the side information x = (x1, x2, . . .) are sufficient to determine
the predictions of all such tree experts. We use depth(v) to denote the depth d of a node
v = (v1, . . . , vd ) in a binary tree T , and depth(T ) to denote the maximum depth of a leaf
in T . (We define depth(λ) = 0.) Because the number of tree experts based on binary trees
of depth bounded by D is N 2D

(see Exercise 5.10), computing a weight separately for
each tree expert is computationally infeasible even for moderate values of D. To obtain an
easily calculable approximation, we use, just as in Section 5.2, the exponentially weighted
average forecaster with nonuniform initial weights. In view of using Lemma 5.1, we just
have to assign initial weights to all tree experts so that the sum of these weights is at most
1. This can be done as follows.

For D ≥ 0 fixed, define the D-size of a binary tree T of depth at most D as the number
of nodes in T minus the number of leaves at depth D:

‖T ‖D = ‖T ‖ − ∣∣{v ∈ leaves(T ) : depth(v) = D
}∣∣.

Lemma 5.3. For any D ≥ 0, ∑
T : depth(T )≤D

2−‖T ‖D = 1,

where the summation is over all trees rooted at λ, of depth at most D.

Proof. We proceed by induction on D. For D = 0 the lemma holds because ‖T ‖0 = 0
for the single-node tree {λ} of depth 0. For the induction step, fix D ≥ 1 and define

g(v) =
⎧⎨⎩

0 if depth(v) > D
2 if depth(v) = D
1 otherwise.

Then, for any tree T ,

2−‖T ‖ ∏
x∈leaves(T )

g(x) =
{

0 if depth(T ) > D
2−‖T ‖D if depth(T ) ≤ D.

Applying Lemma 5.2 with v = λ we get∑
T : depth(T )≤D

2−‖T ‖D =
∑

T

2−‖T ‖ ∏
x∈leaves(T )

g(x) = g(λ)

2
+ 1

2
G(0)G(1).

Since λ has depth 0 and D ≥ 1, g(λ) = 1. Furthermore, letting T0 and T1 range over the
trees rooted at node 0 (the left child of λ) and node 1 (the right child of λ), for each b ∈ {0, 1}
we have

G(b) =
∑

Tb : depth(Tb)≤D−1

2−‖Tb‖
∏

x∈leaves(Tb)

g(x) =
∑

T : depth(T )≤D−1

2−‖T ‖D−1 = 1

by induction hypothesis.
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Using Lemma 5.3, we can define an initial weight over all tree experts E of depth at
most D as follows:

w E,0 = 2−‖E‖D N−|leaves(E)|

where, in order to simplify notation, we write ‖E‖D and leaves(E) for ‖T ‖D and leaves(T )
whenever the tree expert E has T as the underlying binary tree. (In general, when we speak
about a leaf, node, or depth of a tree expert, we always mean a leaf, node, or depth of the
underlying tree T .) The factor N−|leaves(E)| in the definition of wE,0 accounts for the fact
that there are N |leaves(E)| tree experts E for each binary tree T .

If u = (u1, . . . , ud ) is a prefix of v = (u1, . . . , ud , . . . , uD), we write u � v. In particular,
u � v if u � v and v has at least one extra component vd+1 with respect to u.

Define the weight wE,t−1 of a tree expert E at time t by

w E,t−1 = w E,0

∏
v∈leaves(E)

w E,v,t−1,

where w E,v,t−1, the weight of leaf v in E , is defined as follows: w E,v,0 = 1 and

w E,v,t =
{

w E,v,t−1e−η �(iE (v),Yt ) if v � xt

w E,v,t−1 otherwise,

where iE (v) = iE (xt ) is the action labeling the leaf v � xt of E . (Note that v is unique.) As
no other leaf v′ �= v of E is updated at time t , we have w E,v′,t = w E,v′,t−1 for all such v′,
and therefore

w E,t = w E,t−1e−η �(iE (xt ),Yt ) for all t = 1, 2, . . .

as v � xt always holds for exactly one leaf of E . At time t , the randomized exponentially
weighted forecaster draws action k with probability

pk,t =
∑

E I{iE (xt )=k}w E,t−1∑
E ′ w E ′,t−1

,

where the sums are over tree experts E with depth(E) ≤ D. Using Lemma 5.1, we imme-
diately get the following regret bound.

Theorem 5.4. For all n ≥ 1, the regret of the randomized exponentially weighted forecaster
run over the set of tree experts of depth at most D satisfies

RE,n ≤ ‖E‖D

η
ln 2+ |leaves(E)|

η
ln N + η

8
n

for all such tree experts E and for all sequences x1, . . . , xn of side information.

Observe that if the depth of the tree is at most D, then ‖E‖D ≤ 2D − 1 and |leaves(E)| ≤
2D , leading to the regret bound

max
E : depth(E)≤D

RE,n ≤ 2D

η
ln(2N )+ η

8
n.

Thus, choosing η to minimize the upper bound yields a forecaster with

max
E : depth(E)≤D

RE,n ≤
√

n2D−1 ln(2N ).



114 Efficient Forecasters for Large Classes of Experts

We now show how to implement this forecaster using N weights for each node of the
complete binary tree of depth D; thus N (2D+1 − 1) weights in total. This is a substantial
improvement with respect to using a weight for each tree expert because there are N 2D

tree experts with corresponding tree of depth at most D (see Exercise 5.10). The efficient
forecaster, which we call the tree expert forecaster, is described in the following. Because
we only consider tree experts of depth D at most, we may assume without loss of generality
that the side information xt is a string of D bits, that is, xt ∈ {0, 1}D . This convention
simplifies the notation that follows.

THE TREE EXPERT FORECASTER

Parameters: Real number η > 0, integer D ≥ 0.

Initialization: wi,v,0 = 1, wi,v,0 = 1 for each i = 1, . . . , N and for each node v =
(v1, . . . , vd ) with d ≤ D.

For each round t = 1, 2, . . .

(1) draw an action It from {1, . . . , N } according to the distribution

pi,t = wi,λ,t−1∑N
j=1 w j,λ,t−1

, i = 1, . . . , N ;

(2) obtain Yt and compute, for each v and for each i = 1, . . . , N ,

wi,v,t =
{

wi,v,t−1 e−η �(i,Yt ) if v � xt

wi,v,t−1 otherwise;

(3) recursively update each node v = (v1, . . . , vd ) with d = D, D − 1, . . . , 0

wi,v,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2N wi,v,t if v = xt

1
2N

∑N
j=1 w j,v,t if depth(v) = D

and v �= xt

1
2N wi,v,t + 1

2N

(
wi,v0,t + wi,v1,t

)
if v � xt

wi,v,t−1 if depth(v) < D
and v �� xt

where v0 = (v1, . . . , vd , 0) and v1 = (v1, . . . , vd , 1).

With each weight wi,v,t the tree expert forecaster associates an auxiliary weight wi,v,t . As
shown in the next theorem, the auxiliary weight wi,λ,t equals∑

E

I{iE (xt )=i}w E,t .

The computation of wi,v,t and wi,v,t given wi,v,t−1 and wi,v,t−1 for each v, i can be carried
out in O(D) time using a simple dynamic programming scheme. Indeed, only the weights
associated with the D nodes v � xt change their values from time t − 1 to time t .

Theorem 5.5. Fix a nonnegative integer D ≥ 0. For any sequence of outcomes and for
all t ≥ 1, the conditional distribution of the action It drawn at time t by the tree expert
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forecaster with input parameter D is the same as the conditional distribution of the action
I ′t drawn at time t by the exponentially weighted forecaster run over the set of all tree
experts of depth bounded by D using the initial weights w E,0 defined earlier.

Proof. We show that for each t = 0, 1, . . . and for each k = 1, . . . , N ,∑
E

I{iE (xt )=k}w E,t−1 = wk,λ,t−1,

where the sum is over all tree experts E such that depth(E) ≤ D. We start by rewriting the
left-hand side of the this expression as∑

E

I{iE (xt )=k}w E,t−1 =
∑

E

2−‖E‖D N−leaves(E)
I{iE (xt )=k}

∏
v∈leaves(E)

w E,v,t−1

=
∑

E

2−‖E‖D I{iE (xt )=k}
∏

v∈leaves(E)

w E,v,t−1

N

=
∑

T

2−‖T ‖D
∑

(i1,...,id )

d∏
j=1

wi j ,v j ,t−1

N
I{v j�xt⇒i j=k}

where in the last step we split the sum over tree experts E in a sum over trees T and a
sum over all assignments (i1, . . . , id ) ∈ {1, . . . , N }d of actions to the leaves v1, . . . , vd of
T . The indicator function selects those assignments (i1, . . . , id ) such that the unique leaf
v j satisfying v j � xt has the desired label k. We now proceed the above derivation by
exchanging

∑
(i1,...,id ) with

∏d
j=1. This gives

∑
E

I{iE (xt )=k}w E,t−1 =
∑

T

2−‖T ‖D

d∏
j=1

N∑
i=1

wi,v j ,t−1

N
I{v j�xt⇒i=k}.

Note that this last expression is of the form

∑
T

2−‖T ‖D
∏

v∈leaves(T )

gt−1(v) for gt−1(v) =
N∑

i=1

wi,v,t−1

N
I{v�xt⇒i=k}.

Let

Gt−1(v) =
∑

Tv

2−‖Tv‖D
∏

x∈leaves(Tv)

gt−1(x),

where Tv ranges over all trees rooted at v. By Lemma 5.2 (noting that the lemma remains
true if ‖Tv‖ is replaced by ‖Tv‖D), and using the definition of gt−1, for all v = (v1, . . . , vd ),

Gt−1(v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
2N wk,v,t−1 if v = xt

1
2N

∑N
i=1 wi,v j ,t−1 if depth(v) = D

and v �= xt

1
2N wk,v,t−1 + 1

2

(
Gt−1(v0)+ Gt−1(v1)

)
otherwise
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where v0 = (v1, . . . , vd , 0) and v1 = (v1, . . . , vd , 1). We now prove, by induction on t ≥ 1,
that Gt−1(λ) = wk,λ,t−1 for all t . For t = 1, wk,λ,0 = 1. Also,

G0(λ) =
∑

T

2−‖T ‖D
∏

v∈leaves(T )

1

N

N∑
i=1

wi,v,0 = 1

because wi,v,0 = 1 for all i and v, and we used Lemma 5.3 to sum 2−‖T ‖D . Assuming the
claim holds for t − 1, note that the definition of Gt (v) and wk,v,t is the same for the cases v =
xt , v �= xt , and v � xt . For the case v �� xt with depth(v) < D, we have wi,v,t = wi,v,t−1.
Furthermore, wi,v,t = wi,v,t−1 for all i . Thus Gt (v) = Gt−1(v) as all further v′ involved in
the recursion for Gt (v) also satisfy v′ �� xt . By induction hypothesis, Gt−1(v) = wi,v,t−1

and the proof is concluded.

5.4 The Shortest Path Problem

In this section we discuss a representative example of structured expert classes that has
received attention in the literature for its many applications. Our purpose is to describe
the main ideas in the simplest form rather than to offer an exhaustive account of online
prediction problems for which computationally efficient solutions exist. The shortest path
problem is the ideal guinea pig for our purposes.

Consider a network represented by a set of nodes connected by edges, and assume that
we have to send a stream of packets from a source node to a destination node. At each
time instance a packet is sent along a chosen route connecting source and destination.
Depending on traffic, each edge in the network may have a different delay, and the total
delay the packet suffers on the chosen route is the sum of delays of the edges composing
the route. The delays may vary in each time instance in an arbitrary way, and our goal is to
find a way of choosing the route in each time instance such that the sum of the total delays
over time is not much more than that of the best fixed route in the network.

Of course, this problem may be cast as a sequential prediction problem in which each
possible route is represented by an expert. However, the number of routes is typically expo-
nentially large in the number of edges, and therefore computationally efficient predictors
are called for. In this section we describe two solutions of very different flavor. One of them
is based on the follow-the-perturbed-leader forecaster discussed in Section 4.3, whereas the
other is based on an efficient computation of the exponentially weighted average forecaster.
Both solutions have different advantages and may be generalized in different directions.
The key for both solutions is the additive structure of the loss, that is; the fact that the delay
corresponding to each route may be computed as the sum of the delays of the edges on the
route.

To formalize the problem, consider a (finite) directed acyclic graph with a set of edges
E = {e1, . . . , e|E |} and set of vertices V . Thus, each edge e ∈ E is an ordered pair of vertices
(v1, v2). Let u and v be two distinguished vertices in V . A path from u to v is a sequence
of edges e(1), . . . , e(k) such that e(1) = (u, v1), e( j) = (v j−1, v j ) for all j = 2, . . . , k − 1,
and e(k) = (vk−1, v). We identify a path with a binary vector i ∈ {0, 1}|E | such that the j th
component of i equals 1 if and only if the edge e j is in the path. For simplicity, we assume
that every edge in E is on some path from u to v and every vertex in V is an endpoint of an
edge (see Figure 5.3 for examples).
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u

u

v

v

Figure 5.3. Two examples of directed acyclic graphs for the shortest path problem.

In each round t = 1, . . . , n of the forecasting game, the forecaster chooses a path It

among all paths from u to v . Then a loss �e,t ∈ [0, 1] is assigned to each edge e ∈ E .
Formally, we may identify the outcome Yt with the vector �t ∈ [0, 1]|E | of losses whose j th
component is �e j ,t . The loss of a path i at time t equals the sum of the losses of the edges
on the path, that is,

�(i, Yt ) = i · �t .

Just as before, the forecaster is allowed to randomize and to choose It according to the
distribution pt over all paths from u to v . We study the “expected” regret

n∑
t=1

�(pt , Yt )−min
i

n∑
t=1

�(i, Yt ),

where the minimum is taken over all paths i from u to v and �(pt , Yt ) =
∑

i pi,t�(i, Yt ).
Note that the loss �(i, Yt ) is not bounded by 1 but rather by the length K of the longest path
from u to v . Thus, by the Hoeffding–Azuma inequality, with probability at least 1− δ, the
difference between the actual cumulative loss

∑n
t=1 �(It , Yt ) and

∑n
t=1 �(pt , Yt ) is bounded

by K
√

(n/2) ln(1/δ).
We describe two different computationally efficient forecasters with similar performance

guarantees.

Follow the Perturbed Leader
The first solution is based on selecting, at each time t , the path that minimizes the “perturbed”
cumulative loss up to time t − 1. This is the idea of the forecaster analyzed in Section 4.3
that may be adapted to the shortest path problem easily as follows.

Let Z1, . . . , Zn be independent, identically distributed random vectors taking values in
R
|E |. The follow-the-perturbed-leader forecaster chooses the path

It = argmin
i

i ·
(

t−1∑
s=1

�s + Zt

)
.

Thus, at time t , the cumulative loss of each edge e j is “perturbed” by the random quantity
Z j,t and It is the path that minimizes the perturbed cumulative loss over all paths. Since
efficient algorithms exist for finding the shortest path in a directed acyclic graph (for acyclic
graphs linear-time algorithms are known), the forecaster may be computed efficiently. The
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following theorem bounds the regret of this simple algorithm when the perturbation vectors
Zt are uniformly distributed. An improved performance bound may be obtained by using
two-sided exponential distribution instead (just as in Corollary 4.5). The straightforward
details are left as an exercise (see Exercises 5.11 and 5.12).

Theorem 5.6. Consider the follow-the-perturbed-leader forecaster for the shortest path
problem such that the vectors Zt are distributed uniformly in [0,�]|E |. Then, with proba-
bility at least 1− δ,

n∑
t=1

�(It , Yt )−min
i

n∑
t=1

�(i, Yt ) ≤ K�+ nK |E |
�

+ K

√
n

2
ln

1

δ
,

where K is the length of the longest path from u to v. With the choice � = √n|E | the upper
bound becomes 2K

√
n|E | + K

√
(n/2) ln(1/δ).

Proof. The proof mimics the arguments of Theorem 4.2 and Corollary 4.4: by Lemma 4.1,
it suffices to consider an oblivious opponent and to show that in that case the expected regret
satisfies

E

n∑
t=1

�(It , yt )−min
i

n∑
t=1

�(i, yt ) ≤ K�+ nK |E |
�

.

As in the proof of Theorem 4.2, we define the fictitious forecaster

Ît = argmin
i

i ·
(

t∑
s=1

�s + Zt

)
,

which differs from It in that the cumulative loss is now calculated up to time t (rather than
t − 1). Of course, Ît cannot be calculated by the forecaster because he uses information
not available at time t : it is defined merely for the purpose of the proof. Exactly as in
Theorem 4.2, one has, for the expected cumulative loss of the fictitious forecaster,

E

n∑
t=1

�(̂It , yt ) ≤ min
i

n∑
t=1

�(i, yt )+ E max
i

(i · Zn)+ E max
i

(−i · Z1) .

Since the components of Z1 are assumed to be nonnegative, the last term on the right-hand
side may be dropped. On the other hand,

E max
i

(i · Zn) ≤ max
i
‖i‖1 E ‖Zn‖∞ ≤ K�,

where K = maxi ‖i‖1 is the length of the longest path from u to v . It remains to compare
the cumulative loss of It with that of Ît . Once again, this may be done just as in Theorem
4.2. Define, for any z ∈ R

|E |, the optimal path

i∗(z) = argmin
i

i · z

and the function

Ft (z) = i∗
(

t−1∑
s=1

�s + z

)
· �t .
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Denoting the density function of the random vector Zt by f (z), we clearly have

E �(It , yt ) =
∫

R|E |
Ft (z) f (z) dz and E �(̂It , yt ) =

∫
R|E |

Ft (z) f (z− �t ) dz.

Therefore, for each t = 1, . . . , n,

E �(It , yt )− E �(̂It , yt )

= �t ·
∫

R|E |
i∗
(

t−1∑
s=1

�s + z

) (
f (z)− f (z− �t )

)
dz

≤ �t ·
∫
{z : f (z)> f (z−�t )}

i∗
(

t−1∑
s=1

�s + z

)
f (z) dz

≤ ‖�t‖∞
∥∥∥∥∥
∫
{z : f (z)> f (z−�t )}

i∗
(

t−1∑
s=1

�s + z

)
f (z) dz

∥∥∥∥∥
1

≤ K
∫
{z : f (z)> f (z−�t )}

f (z) dz

(since ‖�t‖∞ ≤ 1 and all paths have length at most K )

≤ K |E |
�

,

where the last inequality follows from the argument in Corollary 4.4.

Theorem 5.6 asserts that the follow-the-perturbed-leader forecaster used with uni-
formly distributed perturbations has a cumulative regret of the order of K

√
n|E |.

By using two-sided exponentially distributed perturbation, an alternative bound of the
order of

√
L∗|E |K ln |E | ≤ K

√
n|E | ln |E | may be achieved (Exercise 5.11) or even√

L∗|E | ln M ≤ √nK |E | ln M , where M is the number of all paths in the graph lead-
ing from u to v (Exercise 5.12). Clearly, M ≤ (|E |K

)
, but in concrete cases (e.g., in the

two examples of Figure 5.3) M may be significantly smaller than this upper bound. These
bounds can be improved to K

√
n ln M by a fundamentally different solution, which we

describe next.

Efficient Computation of the Weighted Average Forecaster
A conceptually different way of approaching the shortest path problem is to consider each
path as an action (expert) and look for an efficient algorithm that computes the exponentially
weighted average predictor over the set of these experts.

The exponentially weighted average forecaster, calculated over the set of experts given
by all paths from u to v , selects, at time t , a path It randomly, according to the probability
distribution

Pt [It = i] = pi,t = e−η
∑t−1

s=1 i·�s∑
i′ e
−η
∑t−1

s=1 i′·�s
,

where η > 0 is a parameter of the forecaster and Pt denotes the conditional probability
given the past actions.

In the remaining part of this section we show that it is possible to draw the random path
It in an efficiently computable way. The main idea is that we select the edges of the path one
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by one, according to the appropriate conditional distributions generated by the distribution
over the set of paths given above.

With an abuse of notation, we write e ∈ i if the edge e ∈ E belongs to the path represented
by the binary vector i. Then observe that for any t = 1, . . . , n and path i,

i · �t =
∑
e∈i

�e,t ,

and therefore the cumulative loss of each expert i takes the additive form

t∑
s=1

i · �s =
∑
e∈i

Le,t ,

where Le,t =
∑t

s=1 �e,s is the loss accumulated by edge e during the first t rounds of the
game.

For any vertex w ∈ V , let Pw denote the set of paths from w to v . To each vertex w and
t = 1, . . . , n, we assign the value

Gt (w) =
∑
i∈Pw

e−η
∑

e∈i Le,t.

First observe that the function Gt (w) may be computed efficiently. To this end, assume that
the vertices v1, . . . , v|V | of the graph are labeled such that u = v1, v = v|V |, and if i < j , then
there is no edge from z j to zi . (Note that such a labeling can be found in time O(|E |)). Then
Gt (v) = 1, and once Gt (vi ) has been calculated for all vi with i = |V |, |V − 1|, . . . , j + 1,
then Gt (v j ) is obtained, recursively, by

Gt (v j ) =
∑

w : (v j ,w)∈E

Gt (w)e−ηL (v j ,w),t.

Thus, at time t , all values of Gt (w) may be calculated in time O(|E |).
It remains to see how the values Gt−1(w) may be used to generate a random path It

according to the distribution prescribed by the exponentially weighted average forecaster.
We may draw the path It by drawing its edges successively. Denote the kth vertex along a
path i ∈ Pu by vi,k for k = 0, 1, . . . , Ki, where vi,0 = u, vi,Ki = v , and Ki = ‖i‖1 denotes
the length of the path i. For each path i, we may write

pi,t = Pt [It = i] =
Ki∏

k=1

Pt
[
vIt ,k = vi,k

∣∣ vIt ,k−1 = vi,k−1, . . . , vIt ,0 = vi,0
]
.

To generate a random path It with this distribution, it suffices to generate the vertices vIt ,k

successively for k = 1, 2, . . . such that the product of the conditional probabilities is just
pi,t .

Next we show that, for any k, the probability that the kth vertex in the path It is vi,k ,
given that the previous vertices in the graph are vi,0, . . . , vi,k−1, is

Pt
[
vIt ,k = vi,k

∣∣ vIt ,k−1 = vi,k−1, . . . , vIt ,0 = vi,0
]

=
⎧⎨⎩

Gt−1(vi,k)

Gt−1(vi,k−1)
if (vi,k−1, vi,k) ∈ E

0 otherwise.



5.5 Tracking the Best of Many Actions 121

To see this, just observe that if (vi,k−1, vi,k) ∈ E ,

Pt
[
vIt ,k = vi,k

∣∣ vIt ,k−1 = vi,k−1, . . . , vIt ,0 = vi,0
]

=
∑

j∈Pvi,k
e−η

∑
e∈j Le,t−1∑

j′∈Pvi,k−1
e−η

∑
e∈j′ Le,t−1

= Gt−1(vi,k)

Gt−1(vi,k−1)

as desired. Summarizing, we have the following.

Theorem 5.7. The algorithm described above computes the exponentially weighted average
forecaster over all paths between vertices u and v in a directed acyclic graph such that, at
each time instance, the algorithm requires O(|E |) operations. The regret is bounded, with
probability at least 1− δ, by

n∑
t=1

�(It , Yt )−min
i

n∑
t=1

�(i, Yt ) ≤ K

(
ln M

η
+ nη

8
+
√

n

2
ln

1

δ

)
,

where M is the total number of paths from u to v in the graph and K is the length of the
longest path.

5.5 Tracking the Best of Many Actions

The purpose of this section is to develop efficient algorithms to track the best action in the
case when the class of “base” experts is already very large but has some structure. Thus,
in a sense, we consider a combination of the problem of tracking the best action described
in Section 5.2 with predicting as well as the best in a large class of experts with a certain
structure, such as the examples described in Sections 5.3 and 5.4.

Our approach is based on a reformulation of the fixed share tracking algorithm that
allows one to apply it, in a computationally efficient way, over some classes of large and
structured experts. We will illustrate the method on the problem of “tracking the shortest
path.”

The main step to this direction is an alternative expression of the weights of the fixed
share forecaster.

Lemma 5.4. Consider the fixed share forecaster of Section 5.2. For any t = 2, . . . , n, the
probability pi,t and the corresponding normalization factor Wt−1 can be obtained as

pi,t = (1− α)t−1

N Wt−1
e−η

∑t−1
s=1 �(i,Ys )

+ α

N Wt−1

t−1∑
t ′=2

(1− α)t−t ′Wt ′−1e−η
∑t−1

s=t ′ �(i,Ys ) + α

N

Wt−1 = α

N

t−1∑
t ′=2

(1− α)t−1−t ′Wt ′−1 Zt ′,t−1 + (1− α)t−2

N
Z1,t−1,

where Zt ′,t−1 =
∑N

i=1 e−η
∑t−1

s=t ′ �(i,Ys ) is the sum of the (unnormalized) weights assigned to
the experts by the exponentially weighted average forecaster method based on the partial
past outcome sequence (Yt ′ , . . . , Yt−1).
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Proof. The expressions in the lemma follow directly from the recursive definition of the
weights wi,t−1. First we show that, for t = 1, . . . , n,

vi,t = α

N

t∑
t ′=2

(1− α)t−t ′Wt ′−1e−η
∑t

s=t ′ �(i,Ys )

+ (1− α)t−1

N
e−η

∑t
s=1 �(i,Ys ) (5.1)

and

wi,t = α

N
Wt + α

N

t∑
t ′=2

(1− α)t+1−t ′Wt ′−1e−η
∑t

s=t ′ �(i,Ys )

+ (1− α)t

N
e−η

∑t
s=1 �(i,Ys ). (5.2)

Clearly, for a given t , (5.1) implies (5.2) by the definition of the fixed share forecaster.
Since wi,0 = 1/N for every expert i , (5.1) and (5.2) hold for t = 1 and t = 2 (for t = 1 the
summations are 0 in both equations). Now assume that they hold for some t ≥ 2. We show
that then (5.1) holds for t + 1. By definition,

vi,t+1 = wi,t e
−η�(i,Yt+1)

= α

N
Wt e

−η�(i,Yt+1) + α

N

t∑
t ′=2

(1− α)t+1−t ′Wt ′−1e−η
∑t+1

s=t ′ �(i,Ys )

+ (1− α)t

N
e−η

∑t+1
s=1 �(i,Ys )

= α

N

t+1∑
t ′=2

(1− α)t+1−t ′Wt ′−1e−η
∑t+1

s=t ′ �(i,Ys ) + (1− α)t

N
e−η

∑t+1
s=1 �(i,Ys )

and therefore (5.1) and (5.2) hold for all t = 1, . . . , n. Now the expression for pi,t follows
from (5.2) by normalization for t = 2, . . . , n + 1. Finally, the recursive formula for Wt−1

can easily be proved from (5.1). Indeed, recalling that
∑

i wi,t =
∑

i vi,t , we have that for
any t = 2, . . . , n,

Wt−1 =
N∑

i=1

wi,t−1

=
N∑

i=1

( α

N

t−1∑
t ′=2

(1− α)t−1−t ′Wt ′−1e−η
∑t−1

s=t ′ �(i,Ys ) + (1− α)t−2

N
e−η

∑t−1
s=1 �(i,Ys )

)

= α

N

t−1∑
t ′=2

(1− α)t−1−t ′Wt ′−1

N∑
i=1

e−η
∑t−1

s=t ′ �(i,Ys ) + (1− α)t−2

N

N∑
i=1

e−η
∑t−1

s=1 �(i,Ys )

= α

N

t−1∑
t ′=2

(1− α)t−1−t ′Wt ′−1 Zt ′,t−1 + (1− α)t−2

N
Z1,t−1.

Examining the formula for pi,t = Pt [It = i] given by Lemma 5.4, one may realize that It

may be drawn by the following two-step procedure.
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THE ALTERNATIVE FIXED SHARE FORECASTER

Parameters: Real numbers η > 0 and 0 ≤ α ≤ 1.

Initialization: For t = 1, choose I1 uniformly from the set {1, . . . , N }.
For each round t = 2, 3 . . .

(1) draw τt randomly according to the distribution

Pt [τt = t ′] =
⎧⎨⎩

(1−α)t−1 Z1,t−1

N Wt−1
for t ′ = 1

α(1−α)t−t ′Wt ′−1 Zt ′,t−1

N Wt−1
for t ′ = 2, . . . , t,

where we define Zt,t−1 = N ;
(2) given τt = t ′, choose It randomly according to the probabilities

Pt [It = i |τt = t ′] =
{

e
−η
∑t−1

s=t ′ �(i,Ys )

Zt ′,t−1
for t ′ = 1, . . . , t − 1

1/N for t ′ = t .

Indeed, Lemma 5.4 immediately implies that

pi,t =
t∑

t ′=1

Pt [It = i | τ = t ′] Pt [τ = t ′]

and therefore the alternative fixed share forecaster provides an equivalent implementation
of the fixed share forecaster.

Theorem 5.8. The fixed share forecaster and the alternative fixed share forecaster are
equivalent in the sense that the generated forecasters have the same distribution. More
precisely, the sequence (I1, . . . , In) generated by the alternative fixed share forecaster
satisfies

Pt [It = i] = pi,t

for all t and i , where pi,t is the probability of drawing action i at time t computed by the
fixed share forecaster.

Observe that once the value τ = t ′ is determined, the conditional probability of It = i
is equivalent to the weight assigned to expert i by the exponentially weighted average
forecaster computed for the last t − t ′ outcomes of the sequence, that is, for (Yt ′ , . . . , Yt−1).
Therefore, for t ≥ 2, the randomized prediction It of the fixed share forecaster can be
determined in two steps. First we choose a random time τt , which specifies how many of
the most recent outcomes we use for the prediction. Then we choose It according to the
exponentially weighted average forecaster based only on these outcomes.

It is not immediately obvious why the alternative implementation of the fixed share
forecaster is more efficient. However, in many cases the probabilities Pt [It = i | τt = t ′]
and normalization factors Zt ′,t−1 may be computed efficiently, and in all those cases,
since Wt−1 can be obtained via the recursion formula of Lemma 5.4, the alternative fixed
share forecaster becomes feasible. Theorem 5.8 offers a general tool for obtaining such
algorithms.



124 Efficient Forecasters for Large Classes of Experts

Rather than isolating a single theorem that summarizes conditions under which such an
efficient computation is possible, we illustrate the use of this algorithm on the problem of
“tracking the shortest path,” that is, when the base experts are defined by paths in a directed
acyclic graph between two fixed vertices. Thus, we are interested in an efficient forecaster
that is able to choose a path at each time instant such that the cumulative loss is not much
larger than the best forecaster that is allowed to switch paths m times. In other words, the
class of (base) experts is the one defined in Section 5.4, and the goal is to track the best such
expert. Because the number of paths is typically exponentially large in the number of edges
of the graph, a direct implementation of the fixed share forecaster is infeasible. However, the
alternative fixed share forecaster may be combined with the efficient implementation of the
exponentially weighted average forecaster for the shortest path problem (see Section 5.4)
to obtain a computationally efficient way of tracking the shortest path. In particular, we
obtain the following result. Its straightforward, though somewhat technical, proof is left as
an exercise (see Exercise 5.13).

Theorem 5.9. Consider the problem of tracking the shortest path between two fixed vertices
in a directed acyclic graph described above. The alternative fixed share algorithm can be
implemented such that, at time t, computing the prediction It requires time O(t K |E | + t2).
The expected tracking regret of the algorithm satisfies

R(i1, . . . , in) ≤ K

√
n

2

(
(m + 1) ln M + m ln

e(n − 1)

m

)
for all sequences of paths i1, . . . , in such that size (i1, . . . , in) ≤ m, where M is the number
of all paths in the graph between vertices u and v and K is the length of the longest path.

Note that we extended, in the obvious way, the definition of size (·) to sequences (i1, . . . , in).

5.6 Bibliographic Remarks

The notion of tracking regret, the fixed share forecaster, and the variable share forecaster
were introduced by Herbster and Warmuth [159]. The tracking regret bounds stated in The-
orem 5.2, Corollary 5.1, and Theorem 5.3 were originally proven in [159]. Vovk [299] has
shown that the fixed and variable share forecasters correspond to efficient implementations
of the exponentially weighted average forecaster run over the set of compound actions with
a specific choice of the initial weights. Our proofs follow Vovk’s analysis; The work [299]
also provides an elegant solution to the problem of tuning the parameter α optimally (see
Exercise 5.6).

Minimization of tracking regret is similar to the sequential allocation problems studied
within the competitive analysis model (see Borodin and El-Yaniv [36]). Indeed, Blum and
Burch [32] use tracking regret and the exponentially weighted average forecaster to solve
a certain class of sequential allocation problems.

Bousquet and Warmuth [40] consider the tracking regret measured against all compound
actions with at most m switches and including at most k distinct actions (out of the N
available actions). They prove that a variant of the fixed share forecaster achieves, with
high probability, the bound of Theorem 5.2 in which the factor m ln N is replaced by
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k ln N + m ln k (see Exercise 5.1). We also refer to Auer and Warmuth [15] and Herbster
and Warmuth [160] for various extensions and powerful variants of the problem.

Tree-based experts are natural evolutions of tree sources, a probabilistic model inten-
sively studied in information theory. Lemma 5.2 is due to Willems, Shtarkov, and
Tjalkens [311], who were the first to show how to efficiently compute averages over
all trees of bounded depth. Theorem 5.4 was proven by Helmbold and Schapire [156].
An alternative efficient forecaster for tree experts, also based on dynamic programming, is
proposed and analyzed by Takimoto, Maruoka, and Vovk [283]. Freund Schapire, Singer,
and Warmuth [115] propose a more general expert framework in which experts may occa-
sionally abstain from predicting (see also Section 4.8). Their algorithm can be efficiently
applied to tree experts, even though the resulting bound apparently has a quadratic (rather
than linear) dependence on the number of leaves of the tree. Other closely related references
include Pereira and Singer [233] and Takimoto and Warmuth [285], which consider planar
decision graphs. The dynamic programming implementations of the forecasters for tree
experts and for the shortest path problem, both involving computations of sums of products
over the nodes of a directed acyclic graph, are special cases of the general sum–product
algorithm of Kschischang, Frey, and Loeliger [187].

Kalai and Vempala [174] were the first to promote the use of follow-the-perturbed-
leader type forecasters for efficiently computable prediction, described in Section 5.4.
Their framework is more general, and the shortest path problem discussed here is just an
example of a family of online optimization problems. The required property is that the loss
has an additive form. Awerbuch and Kleinberg [19] and McMahan and Blum [211] extend
the follow-the-perturbed-leader forecaster to the bandit setting. For a general framework
of linear-time algorithms to find the shortest path in a directed acyclic graph, we refer
to [219]. Takimoto and Warmuth [286] consider a family of algorithms based on the efficient
computation of weighted average predictors for the shortest path problem. György, Linder,
and Lugosi [137, 138] apply similar techniques to the ones described for the shortest path
problem in online lossy data compression, where the experts correspond to scalar quantizers.
The material in Section 5.5 is based on György, Linder, and Lugosi [139].

A further example of efficient forecasters for exponentially many experts is provided by
Maass and Warmuth [207]. Their technique is used to learn the class of indicator functions
of axis-parallel boxes when all “instances” xt (i.e., side information elements) belong to the
d-dimensional grid {1, . . . , N }d . Note that the complement of any such box is represented as
the union of 2d axis-parallel halfspaces. This union can be learned by the Winnow algorithm
(see Section 12.2) by mapping each original instance xt to a transformed boolean instance
whose components are the indicator functions of all 2Nd axis-parallel halfspaces in the grid.
Maass an Warmuth show that Winnow can be run over the transformed instances in time
polynomial in d and log N , thus achieving an exponential speedup in N . In addition, they
show that the resulting mistake bound is essentially the best possible, even if computational
issues are disregarded.

5.7 Exercises

5.1 (Tracking a subset of actions) Consider the problem of tracking a small unknown subset of k
actions chosen from the set of all N actions. That is, we want to bound the tracking regret

n∑
t=1

�(pt , Yt )−
n∑

t=1

�(it , Yt ),
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where size (i1, . . . , in) ≤ m and the compound action (i1, . . . , in) contains at most k distinct
actions, k being typically much smaller than m and N . Prove that by running the fixed share
forecaster over a set of at most N k meta-actions, and by tuning the parameter α in a suitable
way, a tracking regret bound of order√

n
(
k ln N + m ln k + m ln n

)
is achieved (Bousquet and Warmuth [40].)

5.2 Prove Corollary 5.2.

5.3 (Lower bound for tracking regret) Show that there exists a loss function such that for any
forecaster there exists a sequence of outcomes on which the tracking regret

sup
(i1,...,in ) : size (i1,...,in )=m

R(i1, . . . , in)

is lower bounded by a quantity of the order of
√

nm ln N .

5.4 Prove that a slightly weaker version of the tracking regret bound established by Theo-
rem 5.3 holds when � ∈ [0, 1]. Hint: Fix an arbitrary compound action (i1, . . . , in) with
size(i1, . . . , in) = m and cumulative loss L∗. Prove a lower bound on the sum of the weights
w ′

0( j1, . . . , jn) of all compound actions ( j1, . . . , jn) with cumulative loss bounded by L∗ + 2m
(Herbster and Warmuth [159], Vovk [299]).

5.5 (Tracking experts that switch very often) In Section 5.2 we focused on tracking compound
actions that can switch no more than m times, where m � n. This exercise shows that it is
possible to track the best compound action that switches almost all times. Consider the problem
of tracking the best action when N = 2. Construct a computationally efficient forecaster such
that, for all action sequences i1, . . . , in such that size (i1, . . . , in) ≥ n − m − 1, the tracking
regret is bounded by

R(i1, . . . , in) ≤
√

n

2

(
(m + 1) ln 2+ m ln

e(n − 1)

m

)
.

Hint: Use the fixed share forecaster with appropriately chosen parameters.

5.6 (Exponential forecaster with average weights) In the problem of tracking the best expert,
consider the initial assignment of weights where each compound action (i1, . . . , in), with m =
size (i1, . . . , in), gets a weight

w ′
0,α(i1, . . . , in) = 1

N

( α

N

)m ( α

N
+ (1− α)

)n−m−1
εαε−1

for each value of α ∈ (0, 1), where ε > 0. Using known facts on the Beta distribution (see
Section A.1.9 in the Appendix) and the lower bound B(a, b) ≥ �(a)

(
b + (a − 1)+

)−a
for all

a, b > 0, prove a bound on the tracking regret R(i1, . . . , in) for the exponentially weighted
average forecaster that predicts at time t based on the average weights

w ′
t−1(i1, . . . , in) =

∫ 1

0
w ′

t−1,α(i1, . . . , in) dα

(Vovk [299]).

5.7 (Fixed share with automatic tuning) Obtain an efficient implementation of the exponential
forecaster introduced in Exercise 5.6 by a suitable modification of the fixed share forecaster.
Hint: Each action i gets an initial weight wi,0(α) = (εαε−1)/N . At time t , predict with

pi,t = wi,t−1∑N
j=1 w j,t−1

i = 1, . . . , N ,
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where

wi,t−1 =
∫ 1

0
wi,t−1(α) dα for i = 1, . . . , N .

Use the recursive representations of weights given in Lemma 5.4 and properties of the Beta
distribution to show that wi,t can be updated in time O(Nt) (Vovk [299].)

5.8 (Arbitrary-depth tree experts) Prove an oracle inequality of the form

n∑
t=1

�(pt , Yt ) ≤ min
E

(
n∑

t=1

�(iE (xt ), Yt )+ c

η

(‖E‖ + |leaves(E)| ln N
))+ η

8
n,

Which holds for the randomized exponentially weighted forecaster run over the (infinite) set of
all finite tree experts. Here c is a positive constant. Hint: Use the fact that the number of binary
trees with 2k + 1 nodes is

ak = 1

k

(
2k

k − 1

)
for k = 1, 2, . . .

(closely related to the Catalan numbers) and that the series a−1
1 + a−1

2 + · · · is convergent.
Ignore the computability issues involved in storing and updating an infinite number of weights.

5.9 (Continued) Prove an oracle inequality of the same form as the one stated in Exercise 5.8 when
the randomized exponentially weighted forecaster is only allowed to perform a finite amount
of computation to select an action. Hint: Exploit the exponentially decreasing initial weights
to show that, at time t , the probability of picking a tree expert E whose size ‖E‖ is larger than
some function of t is so small that can be safely ignored irrespective of the performance of the
expert.

5.10 Show that the number of tree experts corresponding to the set of all ordered binary trees of depth
at most D is N 2D

. Use this to derive a regret bound for the ordinary exponentially weighted
average forecaster over this class of experts. Compare the bound with Theorem 5.4.

5.11 (Exponential perturbation) Consider the follow-the-perturbed-leader forecaster for the short-
est path problem. Assume that the distribution of Zt is such that it has independent components,
all distributed according to the two-sided exponential distribution with parameter η > 0 so that
the joint density of Zt is f (z) = (η/2)|E |e−η‖z‖1 . Show that with a proper tuning of η, the regret
of the forecaster satisfies, with probability at least 1− δ,

n∑
t=1

�(It , yt )− L∗ ≤ c
(√

L∗K |E | ln |E | + K |E | ln |E |
)
+ K

√
n

2
ln

1

δ
,

where L∗ = mini
∑n

t=1 �(i, yt ) ≤ K n and c is a constant. (Note that L∗ may be as large as K n
in which case this bound is worse than that of Theorem 5.6.) Hint: Combine the proofs of
Theorem 5.6 and Corollary 4.5.

5.12 (Continued) Improve the bound of the previous exercise to
n∑

t=1

�(It , yt )− L∗ ≤ c
(√

L∗|E | ln M + |E | ln M
)
+ K

√
n

2
ln

1

δ
,

where M is the number of all paths from u to v in the graph. Hint: Bound E maxi |i · Zn | more
carefully. First show that for all λ ∈ (0, η) and path i, E eλi·Zn ≤ (2η2/(η − λ)2

)K
, and then use

the technique of Lemma A.13.

5.13 Prove Theorem 5.9. Hint: The efficient implementation of the algorithm is obtained by combin-
ing the alternative fixed share forecaster with the techniques used to establish the computation-
ally efficient implementation of the exponentially weighted average in Section 5.4. The regret
bound is a direct application of Corollary 5.1 (György, Linder, and Lugosi [139].)
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Prediction with Limited Feedback

6.1 Introduction

This chapter investigates several variants of the randomized prediction problem. These
variants are more difficult than the basic version treated in Chapter 4 in that the forecaster
has only limited information about the past outcomes of the sequence to be predicted. In
particular, after making a prediction, the true outcome yt is not necessarily revealed to the
forecaster, and a whole range of different problems can be defined depending on the type
of information the forecaster has access to.

One of the main messages of this chapter is that Hannan consistency may be achieved
under significantly more restricted circumstances, a surprising fact in some of the cases
described later. The price paid for not having full information about the outcomes is reflected
in the deterioration of the rate at which the per-round regret approaches 0.

In the first variant, investigated in Sections 6.2 and 6.3, only a small fraction of the
outcomes is made available to the forecaster. Surprisingly, even in this “label efficient”
version of the prediction game, Hannan consistency may be achieved under the only
assumption that the number of outcomes revealed after n prediction rounds grows faster
than log(n) log log(n).

Section 6.4 formulates prediction problems with limited information in a general frame-
work. In the setup of prediction under partial monitoring, the forecaster, instead of his own
loss, only receives a feedback signal. The difficulty of the problem depends on the relation-
ship between losses and feedbacks. We determine general conditions under which Hannan
consistency can be achieved. The best achievable rates of convergence are determined in
Section 6.5, while sufficient and necessary conditions for Hannan consistency are briefly
described in Section 6.6.

Sections 6.7, 6.8, and 6.9 are dedicated to the multi-armed bandit problem, an impor-
tant special case of forecasting with partial monitoring where the forecaster only gets to
see his own loss �(It , yt ) but not the loss �(i, yt ) of the other actions i �= It . In other
words, the feedback received by the forecaster corresponds to his own loss. Hannan con-
sistency may be achieved by the results of Section 6.4. The issue of rates of convergence
is somewhat more delicate, and to achieve the fastest possible rate, appropriate mod-
ifications of the prediction method are necessary. These issues are treated in detail in
Sections 6.8 and 6.9.

In another variant of the prediction problem, studied in Section 6.10, the forecaster
observes the sequence of outcomes during a period whose length he decides and then
selects a single action that cannot be changed for the rest of the game.

128
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Perhaps the main message of this chapter is that randomization is a tool of unexpected
power. All forecasters introduced in this chapter use randomization in a clever way to
compensate for the reduction in the amount of information that is made available after each
prediction. Surprisingly, being able to access independent uniform random variables offers
a way of estimating this hidden information. These estimates can then be used to effectively
construct randomized forecasters with nontrivial performance guarantees. Accordingly, the
main technical tools build on probability theory. More specifically, martingale inequalities
are at the heart of the analysis in many cases.

6.2 Label Efficient Prediction

Here we discuss a version of the sequential prediction problem in which obtaining the value
of the outcome is costly. More precisely, after choosing a guess at time t , the forecaster
decides whether to query the outcome (or “label”) Yt . However, the number µ(n) of queries
that can be issued within a given time horizon n by the forecaster is limited. Formally, the
“label efficient” prediction game is defined as follows:

LABEL EFFICIENT PREDICTION

Parameters: Number N of actions, outcome space Y , loss function �, query rate
µ : N → N.

For each round t = 1, 2, . . .

(1) the environment chooses the next outcome Yt ∈ Y without revealing it;
(2) the forecaster chooses an action It ∈ {1, . . . , N };
(3) the forecaster incurs loss �(It , Yt ) and each action i incurs loss �(i, Yt ) where

none of these values is revealed to the forecaster;
(4) if less than µ(t) queries have been issued so far, the forecaster may issue a new

query to obtain the outcome Yt ; if no query is issued, then Yt remains unknown.

The goal of the forecaster is to keep the difference

L̂n − min
i=1,...,N

Li,n =
n∑

t=1

�(It , Yt )− min
i=1,...,N

n∑
t=1

�(i, Yt )

as small as possible regardless of the outcome sequence. We start by considering the finite-
horizon case in which the forecaster’s goal is to control the regret after n predictions, where
n is fixed in advance. In this restricted setup we also assume that at most m = µ(n) queries
can be issued, where µ is the query rate function. However, we do not impose any further
restriction on the distribution of these m queries in the n time steps; that is, µ(t) = m
for all t = 1, . . . , n. For this setup we define a simple forecaster whose expected regret
is bounded by n

√
2(ln N )/m. Thus, if m = n, we recover the order of the optimal bound

of Section 4.2.
It is easy to see that in order to achieve a nontrivial performance, a forecaster must use

randomization in determining whether a label should be revealed or not. It turns out that a
simple biased coin does the job.



130 Prediction with Limited Feedback

LABEL EFFICIENT FORECASTER

Parameters: Real numbers η > 0 and 0 ≤ ε ≤ 1.

Initialization: w0 = (1, . . . , 1).

For each round t = 1, 2, . . .

(1) draw an action It from {1, . . . , N } according to the distribution pi,t =
wi,t−1/(w1,t−1 + · · · + w N ,t−1) for i = 1, . . . , N .

(2) draw a Bernoulli random variable Zt such that P[Zt = 1] = ε;
(3) if Zt = 1, then obtain Yt and compute

wi,t = wi,t−1 e−η �(i,Yt )/ε for each i = 1, . . . , N ;

else, let wt = wt−1.

Our label efficient forecaster uses an i.i.d. sequence Z1, Z2, . . . , Zn of Bernoulli random
variables such that P[Zt = 1] = 1− P[Zt = 0] = ε and asks the label Yt to be revealed
whenever Zt = 1. Here ε > 0 is a parameter and typically we take ε ≈ m/n so that the
number of solicited labels during n rounds is about m (note that this way the forecaster may
ask the value of more than m labels, but we ignore this detail as it can be dealt with by a
simple adjustment). Because the forecasting strategy is randomized, we distinguish between
oblivious and nonoblivious opponents. In particular, following the protocol introduced in
Chapter 4, we use Yt to denote outcomes generated by a nonoblivious opponent, thus
emphasizing that the outcome Yt may depend on the past actions I1, . . . , It−1 of the
forecaster, as well as on Z1, . . . , Zt−1.

The label efficient forecaster is an exponentially weighted average forecaster using the
estimated losses

�̃(i, Yt ) =
{

�(i, Yt )/ε if Zt = 1
0 otherwise

instead of the true losses. Note that

Et �̃(i, Yt ) = E
[
�̃(i, Yt )

∣∣ I1, Z1, . . . , It−1, Zt−1
] = �(i, Yt ),

where I1, . . . , It−1 is the sequence of previously chosen actions. Therefore, �̃(i, Yt ) may be
considered as an unbiased estimate of the true loss �(i, Yt ). The expected performance of
this forecaster may be bounded as follows.

Theorem 6.1. Fix a time horizon n and consider the label efficient forecaster run with
parameters ε = m/n and η = (

√
2m ln N )/n. Then the expected number of revealed labels

equals m and

E L̂n − min
i=1,...,N

E Li,n ≤ n

√
2 ln N

m
.

Before proceeding to the proof we introduce the notation

�̃(pt , Yt ) =
N∑

i=1

pi,t �̃(i, Yt ) and L̃ i,n =
n∑

t=1

�̃(i, Yt ) for i = 1, . . . , N .
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Proof. The basis of the proof is a simple modification of the proof of Theorem 2.2. For
t ≥ 0 let Wt = w1,t + · · · + w N ,t . On the one hand,

ln
Wn

W0
= ln

(
N∑

i=1

e−ηL̃ i,n

)
− ln N

≥ ln

(
max

i=1,...,N
e−ηL̃ i,n

)
− ln N

= −η min
i=1,...,N

L̃i,n − ln N .

On the other hand, for each t = 1, . . . , n,

ln
Wt

Wt−1
= ln

N∑
i=1

pi,t e
−η̃�(i,Yt )

≤ ln
N∑

i=1

pi,t

(
1− η �̃(i, Yt )+ η2

2
�̃2(i, Yt )

)

≤ −η

N∑
i=1

pi,t �̃(i, Yt )+ η2

2

N∑
i=1

pi,t �̃2(i, Yt )

≤ −η̃�(pt , Yt )+ η2

2ε
�̃(pt , Yt ),

where we used the facts e−x ≤ 1− x + x2/2 for x ≥ 0, ln(1+ x) ≤ x for all x ≥ −1, and
�̃(i, Yt ) ∈ [0, 1/ε].

Summing this inequality over t = 1, . . . , n, and using the obtained lower bound for
ln(Wn/W0), we get, for all i = 1, . . . , N ,

n∑
t=1

�̃(pt , Yt )− L̃ i,n ≤ η

2ε

n∑
t=1

�̃(pt , Yt )+ ln N

η
. (6.1)

Now note that E
[∑n

t=1 �̃(pt , Yt )
] = E L̂n ≤ n. Hence, taking the expected value of both

sides, we obtain, for all i = 1, . . . , N ,

E
[
L̂n − Li,n

] ≤ nη

2ε
+ ln N

η
.

Substituting the value η = √(2ε ln N )/n we conclude the proof.

Remark 6.1 (Switching to a new action not too often). Theorem 6.1 (and similarly Theo-
rem 6.2) can be strengthened by considering the following “lazy” forecaster.
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LAZY LABEL EFFICIENT FORECASTER

Parameters: Real numbers η > 0 and 0 ≤ ε ≤ 1.

Initialization: w0 = (1, . . . , 1), Z0 = 1.

For each round t = 1, 2, . . .

(1) if Zt−1 = 1, then draw an action It from {1, . . . , N } according to the distribution
pi,t = wi,t−1/(w1,t−1 + · · · + w N ,t−1), i = 1, . . . , N ; otherwise, let It = It−1;

(2) draw a Bernoulli random variable Zt such that P[Zt = 1] = ε;
(3) if Zt = 1, then obtain Yt and compute

wi,t = wi,t−1 e−η �(i,Yt )/ε for each i = 1, . . . , N ;

else, let wt = wt−1.

Note that this forecaster keeps choosing the same action as long as no new queries are issued.
It can be proven (Exercise 6.2) that the bound of Theorem 6.1 holds for the lazy forecaster
against any oblivious opponent with the additional statement that, with probability 1, the
number of changes of an action (i.e., the number of steps where It �= It+1) is at most the
number of queried labels. (Note that Lemma 4.1 cannot be used to extend this result to
nonoblivious opponents as the lemma is only valid for forecasters that use independent
randomization at each time instant.) A similar result can be proven for Theorem 6.2
(Exercise 6.3).

Theorem 6.1 guarantees that the expected per-round regret converges to 0 whenever
m →∞ as n →∞. However, a bound on the expected regret gives very limited information
about the actual behavior of the (random) regret L̂ t −mini=1,...,N Li,t . Theorem 6.1 does
not exclude the possibility that the regret has enormous fluctuations around its mean. Just
note that the outcomes Yt may depend, in any complicated way, on the past randomized
actions of the forecaster, as well as on the random draws of the variables Zs for s < t . The
next result shows that the regret cannot exceed by much its expected value and it is, with
overwhelming probability, bounded by a quantity proportional to n

√
(ln N )/m.

Theorem 6.2. Fix a time horizon n and a number δ ∈ (0, 1). Consider the label efficient
forecaster run with parameters

ε = max

{
0,

m −√2m ln(4/δ)

n

}
and η =

√
2ε ln N

n
.

Then, with probability at least 1− δ, the number of revealed labels is at most m and

∀ t = 1, . . . , n L̂t − min
i=1,...,N

Li,t ≤ 2n

√
ln N

m
+ 6n

√
ln(4N/δ)

m
.

Before proving Theorem 6.2 note that if δ ≤ 4Ne−m/8, then the right-hand side of the
inequality is greater than n and therefore the statement is trivial. Thus we may assume
throughout the proof that δ > 4Ne−m/8. This ensures that ε ≥ m/(2n) > 0. We need a few
of preliminary lemmas.



6.2 Label Efficient Prediction 133

Lemma 6.1. The probability that the label efficient forecaster asks for more than m labels
is at most δ/4.

Proof. Note that the number of labels M = Z1 + · · · + Zn asked is binomially distributed
with parameters n and ε. Therefore, writing γ = m/n − ε = n−1√2m ln(4/δ) and using
Bernstein’s inequality (see Corollary A.3) we obtain

P[M > m] = P[M − E M > nγ ] ≤ e−nγ 2/(2ε+2γ /3) ≤ e−n2γ 2/2m ≤ δ

4
.

The next lemma relates the “expected” loss �(ps, Ys) =∑N
i=1 pi,s�(i, Ys) to the estimated

loss �̃(ps, Ys) =∑N
i=1 pi,s̃�(i, Ys).

Lemma 6.2. With probability at least 1− δ/4, for all t = 1, . . . , n,

t∑
s=1

�(ps, Ys) ≤
t∑

s=1

�̃(ps, Ys)+ 4n√
3

√
ln(4/δ)

m
.

Furthermore, with probability at least 1− δ/4, for all t = 1, . . . , n and i = 1, . . . , N,

L̃i,t ≤ Li,t + 4n√
3

√
ln(4N/δ)

m
.

Proof. The proof in both cases is based on Bernstein’s inequality for martingales (see
Lemma A.8). To prove the first inequality, introduce the martingale St = X1 + · · · + Xt ,
where Xs = �(ps, Ys)− �̃(ps, Ys), s = 1, . . . , n, is a martingale difference sequence with
respect to the sequence (Is, Zs). For all t = 1, . . . , n, define

�2
t =

t∑
s=1

E
[
X2

s | Zs−1, I s−1
]
.

Now note that, for all s = 1, . . . , n,

E
[
X2

s | Zs−1, I s−1
] = E

[(
�(ps, Ys)− �̃(ps, Ys)

)2 | Zs−1, I s−1
]

≤ E
[̃
�(ps, Ys)2 | Zs−1, I s−1

] ≤ 1/ε,

which implies that �2
t ≤ n/ε for all t = 1, . . . , n. We now apply Lemma A.8. noting that

maxt |Xt | ≤ 1/ε with probability 1. For u > 0 this yields

P

[
max

t=1,...,n
St > u

]
= P

[
max

t=1,...,n
St > u and �2

n ≤
n

ε

]
≤ exp

(
− u2

2 (n/ε + u/(3 ε))

)
.

Choosing u = (4/
√

3)n
√

(1/m) ln(4/δ), and using ln(4/δ) ≤ m/8 implied by the assump-
tion δ > 4Ne−m/8, we see that u ≤ n. This, combined with ε ≥ m/(2n), shows that

u2

2 (n/ε + u/(3 ε))
≥ u2

(8/3) n/ε
≥ 3u2 m

16 n2
= ln

4

δ
,

thus proving the first inequality.
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To prove the second inequality note that, as just seen, for each fixed i , we have

P

[
max

t=1,...,n
L̃i,t − Li,t > (4/

√
3) n

√
ln(4N/δ)

m

]
≤ δ

4N
.

An application of the union-of-events bound to i = 1, . . . , N concludes the proof.

Proof of Theorem 6.2. When m ≤ ln N , the bound of the theorem is trivial. Therefore,
we only need to consider the case m > ln N . In this case ε ≥ m/(2n) implies that 1−
η/(2ε) ≥ 0. Thus, a straightforward combination of Lemmas 6.1 and 6.2 with (6.1) shows
that, with probability at least 1− 3δ/4, the following events simultaneously hold (where
Lt =

∑t
s=1 �(ps, Ys)):

1. the strategy asks for at most m labels;
2. for all t = 1, . . . , n(

1− η

2ε

)
Lt ≤ min

i=1,...,N
Li,t + 8√

3
n

√
1

m
ln

4N

δ
+ ln N

η
.

Since Lt ≤ n for all t ≤ n, the inequality implies that for all t = 1 . . . , n

Lt − min
i=1,...,N

Li,t ≤ nη

2ε
+ 8n√

3

√
1

m
ln

4N

δ
+ ln N

η

= 2n

√
ln N

m
+ 8n√

3

√
1

m
ln

4N

δ

by our choice of η, and using 1/(2ε) ≤ n/m derived from ε ≥ m/(2n). The proof is
finished by noting that the Hoeffding–Azuma inequality (see Lemma A.7) implies that,
with probability at least 1− δ/4, for all t = 1, . . . , n,

L̂ t ≤ Lt +
√

n

2
ln

4

δ
≤ Lt + n

√
1

2m
ln

4N

δ
,

where we used m ≤ n in the last step.

Theorem 6.1 does not directly imply Hannan consistency of the associated forecast-
ing strategy because the regret bound does not hold uniformly over the sequence length
n. However, using standard dynamical tuning techniques (such as the “doubling trick”
described in Chapter 2) Hannan consistency can be achieved. The main quantity that
arises in the analysis is the query rate µ(n), which is the number of queries that can be
issued up to time n. The next result shows that Hannan consistency is achievable whenever
µ(n)/(log(n) log log(n)) →∞.

Corollary 6.1. Let µ : N → N be any nondecreasing integer-valued function such that

lim
n→∞

µ(n)

log2(n) log2 log2(n)
= ∞.

Then there exists a Hannan consistent randomized label efficient forecaster that issues at
most µ(n) queries in the first n predictions for any n ∈ N.
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Proof. The algorithm we consider divides time into consecutive epochs of increasing
lengths nr = 2r for r = 0, 1, 2, . . . . In the r th epoch (of length 2r ) the algorithm runs the
forecaster of Theorem 6.2 with parameters n = 2r , m = mr , and δr = 1/(1+ r )2, where mr

will be determined by the analysis (without loss of generality, we assume that the forecaster
always asks for at most mr labels in each epoch r ). Our choice of δr and the Borel–Cantelli
lemma implies that the bound of Theorem 6.2 holds for all but finitely many epochs. Denote
the (random) index of the last epoch in which the bound does not hold by R̂. Let L (r ) be
cumulative loss of the best action in epoch r and let L̂ (r ) be the cumulative loss of the
forecaster in the same epoch. Introduce R(n) = �log2 n�. Then, by Theorem 6.2 and by
definition of R̂, for each n and for each realization of I n and Zn , we have

L̂n − L∗n ≤
R(n)−1∑

r=0

(
L̂ (r ) − L (r )

)+ n∑
t=2R(n)

�(It , Yt )− min
j=1,...,N

n∑
t=2R(n)

�( j, Yn)

≤
R̂∑

r=0

2r + 8
R(n)∑

r=R̂+1

2r

√
ln(4N (r + 1)2)

mr
.

This, the finiteness of R̂ and 1/n ≤ 2−R(n) imply that, with probability 1,

lim sup
n→∞

L̂n − L∗n
n

≤ 8 lim sup
R→∞

2−R
R∑

r=0

2r

√
ln(4N (r + 1)2)

mr
.

Cesaro’s lemma ensures that this lim sup equals 0 as soon as mr/ ln r →+∞. It remains to
see that the latter condition is satisfied under the additional requirement that the forecaster
does not issue more than µ(n) queries up to time n. This is guaranteed whenever m0 +
m1 + · · · + m R(n) ≤ µ(n) for each n. Denote by φ the largest nondecreasing function such
that

φ(t) ≤ µ(t)

(1+ log2 t) log2(1+ log2 t)
for all t = 1, 2, . . . .

As µ grows faster than log2(n) log2 log2(n), we have that φ(t) →+∞. Thus, choosing m0 =
0, and mr = �φ(2r ) log2(1+ r )�, we indeed ensure that mr/ ln r →+∞. Furthermore,
considering that mr is nondecreasing as a function of r , and using the monotonicity of φ,

R(n)∑
r=0

mr ≤ (R(n)+ 1)φ(2R(n)) log2(1+ R(n))

≤ (1+ log2 n)φ(n) log2(1+ log2 n) ≤ µ(n).

This concludes the proof.

We also note here that in case the cumulative loss of the best action L∗n = mini=1,...,N Li,n

is small, Theorem 6.2 may be improved by a more careful analysis. In particular, an upper
bound of the order √

nL∗n(ln Nn)

m
+ n(ln Nn)

m

holds. Thus, when L∗n = 0, the rate of convergence becomes significantly faster. For the
details we refer the reader to Exercise 6.4.
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6.3 Lower Bounds

Here we show that the performance bounds proved in the previous section for the label
efficient exponentially weighted average forecaster are essentially unimprovable in the
strong sense that no other label efficient forecasting strategy can have a significantly better
performance for all problems. The main result of the previous section is that there exists a
randomized forecasting algorithm such that its regret is bounded by a quantity of the order
of n

√
ln N/m if m is the maximum number of revealed labels during the n rounds. The

next result shows that for all possible forecasters asking for at most m labels, there exists a
prediction problem such that the expected excess cumulative loss is at least a constant times
n
√

ln N/m. In other words, the best achievable per-round regret is of the order
√

ln N/m.
Interestingly, this does not depend on the number n of rounds but only on the number m of
revealed labels. Recall that in the “full information” case of Chapter 4 the best achievable
per-round regret has the form

√
ln N/n. Intuitively, m plays the role of the “sample size”

in the problem of label efficient prediction.
To present the main ideas in a transparent way, first we assume that N = 2; that is,

the forecaster has two actions to choose from at each time instance, and the outcome
space is binary as well, for example, Y = {0, 1}. The general result for N > 2 is shown
subsequently. Consider the simple zero-one loss function given by �(i, y) = I{i �=y}. Then
we have the following lower bound.

Theorem 6.3. Let n ≥ m and consider the setup described earlier. Then for any, possibly
randomized, prediction strategy that asks for at most m labels,

sup
yn∈{0,1}n

(
E L̂n − min

i=0,1
Li,n

)
≥ 0.14

n√
m

where the expectation is taken with respect to the randomization of the forecaster.

Proof. As is usual in proofs of lower bounds, we construct a random outcome sequence
and show that the expected value (with respect to the random choice of the outcome
sequence) of the excess loss L̂n −mini=0,1 Li,n is bounded from below by 0.14 n/

√
m for

any prediction strategy, randomized not. This obviously implies the theorem, because the
expected value can never exceed the supremum.

To this end, we define the outcome sequence Y1, . . . , Yn as a sequence of random vari-
ables whose joint distribution is defined as follows. Let σ be a symmetric Bernoulli random
variable P[σ = 0] = P[σ = 1] = 1/2. Given the event σ = 1, the Yt ’s are conditionally
independent with distribution

P[Yt = 1 | σ = 1] = 1− P[Yt = 0 | σ = 1] = 1

2
+ ε,

where ε is a positive number specified later. Given σ = 0, the Yt ’s are also conditionally
independent with

P[Yt = 1 | σ = 0] = 1− P[Yt = 0 | σ = 0] = 1

2
− ε.

Now it suffices to establish a lower bound for E
[
L̂n −mini=0,1 Li,n

]
when the outcome

sequence is Y1, . . . , Yn and the expected value is taken with respect to both the random-
ization of the forecaster and the distribution of the Yi ’s. Note that we may assume at this
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point that the prediction strategy is deterministic. Since any randomized strategy may be
regarded as a randomized choice from a class of deterministic strategies, if the lower bound
is true for any deterministic strategy, by Fubini’s theorem it must also hold for the average
over all deterministic strategies according to the randomization. First note that

E min
{

L0,n, L1,n
}

= 1

2

(
E
[
min{L0,n, L1,n}

∣∣ σ = 1
]+ E

[
min{L0,n, L1,n}

∣∣ σ = 0
])

≤ 1

2

(
min
{
E[L0,n | σ = 1], E[L1,n | σ = 1]

}
+min

{
E[L0,n | σ = 0], E[L1,n | σ = 0]

})
= n

(
1

2
− ε

)
and therefore

E

[
L̂n − min

i=0,1
Li,n

]
≥ E L̂n − n

(
1

2
− ε

)
.

It remains to prove a lower bound for E L̂n =
∑n

t=1 E �(It , Yt ), where It is the action chosen
by the predictor at time t . Denote by 1 ≤ T1 ≤ . . . ≤ TK ≤ n the prediction rounds when the
forecaster queried a label, and let Z1 = YT1 , . . . , ZK = YTK be the revealed labels. Here the
random variable K denotes the number of labels queried by the forecaster in n rounds. By
the label efficient assumption, K ≤ m. Recall that we consider only deterministic prediction
strategies. Since the predictions of the forecaster can only depend on the labels revealed
up to that time, such a strategy may be formalized by a function gt : {0, 1, �}m → {0, 1} so
that at time t the forecaster outputs

It = gt (Z1, . . . , ZK , �, . . . , �︸ ︷︷ ︸
m−K times

).

Defining the random vector Z = (Z1, . . . , ZK ), by a slight abuse of notation we may simply
write

It = gt (Z).

The expected loss at time t is then

E �(It , Yt ) = P[gt (Z) �= Yt ] =
m∑

k=1

P[K = k] P[gt (Z) �= Yt | K = k].

To simplify notation, in the sequel we use

Pk[·] = P[· | K = k] and Ek[·] = E[· | K = k]

to denote the conditional distribution and expectation given that exactly k labels have been
revealed up to time t . Since, for any t , the event {Ti = t} is determined by the values taken
by Y1, . . . , Yt , a well-known fact of probability theory (see, e.g., Chow and Teicher [59,
Lemma 2, p. 138]) implies that Z1 = YT1 , . . . , ZK = YTK are independent and identically
distributed, with the same distribution as Y1. It follows by a basic identity of the theory of
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binary classification (see Lemma A.15) – by taking Yt as Y and the pair (Z, σ ) as X – that

Pk[gt (Z) �= Yt ] = 1

2
− ε + (2ε)Pk[gt (Z) �= σ ].

Thus, it suffices to obtain a lower bound for Pk[gt (Z) �= σ ]. By Lemmas A.14 and A.15,
this probability is at least

Ek min
{
Pk[σ = 0 | Z], Pk[σ = 1 | Z]

}
.

Observe that for any z ∈ {0, 1}k ,

Pk[σ = 0 | Z = z] = Pk[σ = 0] Pk[Z = z | σ = 0]

Pk[Z = z]

= (1/2+ ε)n0 (1/2− ε)n1

2Pk[Z = z]
,

where n0 and n1 denote the number of 0’s and 1’s in the string z ∈ {0, 1}k . Similarly,

Pk[σ = 1 | Z = z] = (1/2− ε)n0 (1/2+ ε)n1

2Pk[Z = z]

and therefore

Pk[gt (Z) �= σ ]

≥ Ek min
{
Pk[σ = 0 | Z], Pk[σ = 1 | Z]

}
=

∑
z∈{0,1}k

Pk[Z = z] min
{
Pk[σ = 0 | Z = z], Pk[σ = 1 | Z = z]

}
= 1

2

∑
z∈{0,1}k

min
{
(1/2− ε)n0 (1/2+ ε)n1 , (1/2− ε)n1 (1/2+ ε)n0

}
= 1

2

k∑
j=0

(
k

j

)
min
{
(1/2− ε) j (1/2+ ε)k− j , (1/2− ε)k− j (1/2+ ε) j

}
≥

k∑
j=�k/2�

(
k

j

)
(1/2− ε) j (1/2+ ε)k− j

= P

[
B ≥ k

2

]
,

where B is a binomial random variable with parameters k and 1/2− ε. By the central limit
theorem this probability may be bounded from below by a constant if ε is at most of the
order 1/

√
k. Since k ≤ m, this may be achieved by taking, for example, ε = 1/(4

√
m).

To get a nonasymptotic bound, we use Slud’s inequality (see Lemma A.10) implying
that

P

[
B ≥ k

2

]
≥ 1−�

(
ε
√

k√
(1/2− ε)(1/2+ ε)

)

≥ 1−�

(
1/4√

1/4− 1/(16m)

)
≥ 1−� (0.577) ≥ 0.28,

where � is the distribution function of a standard normal random variable. Here we used
the fact that k ≤ m.
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In summary, we have proved that

E

[
L̂n − min

i=0,1
Li,n

]
≥ E L̂n − n

(
1

2
− ε

)
=

n∑
t=1

m∑
k=1

P[K = k] Pk[gt (Z) �= Yt ]− n

(
1

2
− ε

)

= 2ε

n∑
t=1

m∑
k=1

P[K = k] Pk[gt (Z) �= σ ]

≥ 2nε × 0.28 = 0.14
n√
m

as desired.

Now we extend Theorem 6.3 to the general case of N > 2 actions. The next result shows
that, as suggested by the upper bounds of Theorems 6.1 and 6.2, the best achievable regret
is proportional to the square root of the logarithm of the number of actions.

Theorem 6.4. Assume that N is an integer power of 2. There exists a loss function �

such that for all sets of N actions and for all n ≥ m ≥ 4(
√

3− 1)2 log2 N, the expected
cumulative loss of any forecaster that asks for at most m labels while predicting a binary
sequence of n outcomes satisfies the inequality

sup
yn∈{0,1}n

(
E L̂n − min

i=1,...,N
Li,n

)
≥ cn

√
log2 N

m
,

where c = ((√3− 1)/8
)
e−
√

3/2 > 0.0384.

Proof. The way to proceed is similar to Theorem 6.3, though the randomizing distribution
of the outcomes and the losses needs to be chosen more carefully. The main idea is to
consider a certain family of prediction problems defined by sequences of outcomes and
loss functions and then show that for any forecaster there exists a prediction problem in the
class such that the regret of the forecaster is at least as large as announced.

The family is parameterized by three sequences: the “side information” sequence
x = (x1, . . . , xn) with

x1, . . . , xn ∈ {1, 2, . . . , log2 N },
the binary vector σ = (σ1 . . . , σlog2 N ) ∈ {0, 1}log2 N , and the sequence u of real numbers
u1, . . . , un ∈ [0, 1]. For any fixed value of these parameters, define the sequence of out-
comes by

yt =
{

1 if ut ≤ 1
2 + ε(2σxt − 1)

0 otherwise,

where ε > 0 is a parameter whose value will be set later. The N actions correspond to
the binary vectors b = (b1 . . . , blog2 N ) ∈ {0, 1}log2 N such that the loss of action b at time
t is �(b, yt ) = I{bxt �=yt }. For any forecaster that asks for at most m labels, we establish a
lower bound for the maximal regret within the family of problems by choosing the problem
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randomly and lower bounding the expected regret. To this end, we choose the parameters
x, σ , and u randomly such that X1, . . . , Xn are independent and uniformly distributed
over {1, . . . , log2 N }, the Ui are also i.i.d. uniformly distributed over [0, 1], and the σi are
independent symmetric Bernoulli random variables. Note that with this choice, given Xt

and σ , the conditional probability of Yt = 1 is 1/2+ ε if σXt = 1 and 1/2− ε if σXt = 0.
Now we have

sup
x,σ ,u

(
E L̂n −min

b
Lb,n

)
≥ E

(
L̂n −min

b
Lb,n

)
,

where the expected value on the right-hand side is taken with respect to all randomizations
introduced earlier, as well as the randomization the forecaster may use.

Clearly, for each fixed value of σ ,

EX,U min
b

Lb,n ≤ min
b

EX,U Lb,n = n

(
1

2
− ε

)
,

where EX,U denotes expectation with respect to X and U (i.e., conditioned on σ ). Thus, if
It denotes the forecaster’s decision at time t ,

E

(
L̂n −min

b
Lb,n

)
≥

n∑
t=1

(
P[It �= Yt ]−

(
1

2
− ε

))
.

By the same argument as in the proof of Theorem 6.3 it suffices to consider forecasters
of the form It = gt (Z), where, as before, gt is an arbitrary {0, 1}-valued function and
Z = (YT1 , . . . , YTK ) is the vector of outcomes at the times in which the forecaster asked for
labels. To derive a lower bound for

n∑
t=1

inf
gt

(
m∑

k=1

P[K = k] Pk[gt (Z) �= Yt ]−
(

1

2
− ε

))

≥
n∑

t=1

m∑
k=1

P[K = k] inf
gt

(
Pk[gt (Z) �= Yt ]−

(
1

2
− ε

))
,

note that for each t ,

inf
gt

Pk[gt (Z) �= Yt ] ≥ inf
g′t

Pk[g′t (Z
′) �= Yt ]

where Z′ = (XT1 , YT1 , . . . , XTK , YTK , Xt ) is the vector of revealed labels augmented by the
corresponding side information plus the actual side information Xt . Now g′t can be any
binary-valued function of Z′.

Consider the classification problem of guessing Yt from the pair Z′, σ (see Section A.3
for the basic notions). The Bayes decision is clearly g∗(Z′, σ ) = σXt whose probability of
error is 1/2− ε. Thus, by Lemma A.15,

Pk[g′t (Z
′) �= Yt ]−

(
1

2
− ε

)
= (2ε)Pk[g′t (Z

′) �= σXt ],

where we used the fact that Pk[Yt = 1 | Z′, σ ] = 1/2+ ε(2σXt − 1). To bound Pk[g′t (Z
′) �=

σXt ] we use Lemmas A.14 and A.15. Clearly, this probability may be bounded from below
by the Bayes probability of error L∗(Z′, σXt ) of guessing the value of σXt from Z′.
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All we have to do is to find a suitable lower bound for

Pk[g′t (Z
′) �= σXt ] ≥ L∗(Z′, σXt ) = Ek min

{
Pk[σXt = 1 | Z′], Pk[σXt = 0 | Z′]

}
.

Observe that

Pk[σXt = 1 | Z′] =
{

1/2 if Xt �= Xt1 , . . . , Xt �= Xtk

Pk[σXt = 1 | Yi1 , . . . , Yi j ] otherwise,

where i1, . . . , i j are those indices among t1, . . . , tk for which Xi1 = . . . = Xi j = Xt .
Using i to denote the value of Xt in Z′, we compute

Pk[σi = 1 | Yi1 = y1, . . . , Yi j = y j ]

for y1, . . . , y j ∈ {0, 1}. Denoting with j0 and j1 the numbers of 0’s and 1’s in y1, . . . , y j ,
we see that

Pk[σi = 1 | Yi1 = y1, . . . , Yi j = y j ]

= (1− 2ε) j0 (1+ 2ε) j1

(1− 2ε) j0 (1+ 2ε) j1 + (1+ 2ε) j0 (1− 2ε) j1
.

Therefore, if Xt = Xi1 = . . . = Xi j = i , then

min
{
Pk[σXt = 1 | Z′], Pk[σXt = 0 | Z′]

}
= min

{
(1− 2ε) j0 (1+ 2ε) j1 , (1+ 2ε) j0 (1− 2ε) j1

}
(1− 2ε) j0 (1+ 2ε) j1 + (1+ 2ε) j0 (1− 2ε) j1

=
min

{
1,
(

1+2ε
1−2ε

) j0− j1
}

1+ ( 1+2ε
1−2ε

) j0− j1

= 1

1+ ( 1+2ε
1−2ε

)| j1− j0| .

In summary, denoting a = (1+ 2ε)/(1− 2ε), we have

L∗(Z′, σXt ) = Ek

[
1

1+ a
∣∣∣∑l:Xtl =Xt

(2Ytl−1)
∣∣∣
]

≥ Ek

[
1

2a
∣∣∣∑l:Xtl =Xt

(2Ytl−1)
∣∣∣
]

= 1

2

log2 N∑
i=1

1

log2 N
Eka

−
∣∣∣∑l:Xtl =i (2Ytl−1)

∣∣∣

= 1

2
a
−Ek

∣∣∣∑l:Xtl =1(2Ytl−1)
∣∣∣
.
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Next we bound Ek

∣∣∑
l : Xtl=1(2Ytl − 1)

∣∣. Clearly, if B( j, q) denotes a binomial random
variable with parameters j and q and Ek,σ1=y denotes the Ek further conditioned on σ1 = y,

Ek

∣∣∣∣∣∣
∑

l : Xtl=1

(2Ytl − 1)

∣∣∣∣∣∣ = P[σ1 = 0] Ek,σ1=0

∣∣∣∣∣∣
∑

l : Xtl=1

(2Ytl − 1)

∣∣∣∣∣∣
+P[σ1 = 1] Ek,σ1=1

∣∣∣∣∣∣
∑

l : Xtl=1

(2Ytl − 1)

∣∣∣∣∣∣
= Ek,σ1=0

∣∣∣∣∣∣
∑

l : Xtl=1

(2Ytl − 1)

∣∣∣∣∣∣ (by symmetry)

=
k∑

j=0

(
k

j

)
p j (1− p)k− j

E
∣∣2B( j, 1/2− ε)− j

∣∣,
where we write p = 1/ log2 N . However, by straightforward calculation we see that

E
∣∣2B( j, 1/2− ε)− j

∣∣ ≤ √E
[
(2B( j, 1/2− ε)− j)2

]
=
√

j(1− 4ε2)+ 4 j2ε2

≤ 2 jε +
√

j .

Therefore, applying Jensen’s inequality, we get

k∑
j=0

(
k

j

)
p j (1− p)k− j

E
∣∣2B( j, 1/2− ε)− j

∣∣ ≤ 2kpε +
√

kp.

Summarizing what we have obtained so far, we have

sup
x,σ ,u

(
E L̂n −min

b
Lb,n

)
≥

n∑
t=1

m∑
k=1

P[K = k](2ε)L∗(Z′, σXt )

≥
n∑

t=1

m∑
k=1

P[K = k](2ε)
1

2
a−2kε/ log2 N−

√
k/ log2 N

≥ nεa−2mε/ log2 N−
√

m/ log2 N (because k ≤ m)

≥ nεe
−(a−1)

(
2mε/ log2 N+

√
m/ log2 N

)
(using ln a ≤ a − 1)

= nε exp

(
− 8mε2

(1− 2ε) log2 N
− 4ε

1− 2ε

√
m

log2 N

)
.

We choose ε = c
√

log2 N/m, which is less than 1/4 if m > (4c)2 log2 N . With this choice
the lower bound is at least nc

√
log2 N/m e−16c2−8c. This is maximized by choosing c =

(
√

3− 1)/8, which leads to the announced result.
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6.4 Partial Monitoring

In a wide and important class of prediction problems the forecaster does not know the
losses he has suffered in the past and instead receives feedback often carrying quite lim-
ited information. Such situations have often been called prediction problems with partial
monitoring.

Before describing the formal setup, consider the following dynamic pricing problem as a
nontrivial example of a partial-monitoring problem. A vendor sells a product to a sequence
of customers who he attends one by one. To each customer, the seller offers the product
at a price he selects, say, from the set {1, . . . , N }. The customer then decides whether to
buy the product. No bargaining is possible and no other information is exchanged between
buyer and seller. The goal of the seller is to achieve an income almost as large as if he
knew the maximal price each customer is willing to pay for the product. Thus, if the price
offered to the t th customer is It and the highest price this customer is willing to pay is
Yt ∈ {1, . . . , N }, then the loss of the seller is

�(It , Yt ) = (Yt − It )I{It≤Yt } + cI{It >Yt }
N

,

where 0 ≤ c ≤ N . Thus, if the product is bought (i.e., It ≤ Yt ), then the loss of the seller
is proportional to the difference between the best possible and the offered prices, and if
the product is not bought, then the seller suffers a constant loss c/N . (The factor 1/N is
merely here to assure that the loss is between 0 and 1.) In another version of the problem
the constant c is replaced by Yt . In either case, if the seller knew in advance the sequence
of Yt ’s then he could set a constant price i ∈ {1, . . . , N } that minimizes his overall loss. A
question we investigate in this section is whether there exists a randomized algorithm for
the seller such that his regret

n∑
t=1

�(It , Yt )− min
i=1,...,N

n∑
t=1

�(i, Yt )

is guaranteed to be o(n) regardless of the sequence Y1, Y2, . . . of highest customer prices.
The difficulty in this problem is that the only information the seller (i.e., the forecaster) has
access to is whether It > Yt , but neither Yt nor �(It , Yt ) are revealed. (Note that if Yt were
revealed to the forecaster in each step, then we would be back to the full-information case
studied in Section 4.2.)

We treat such limited-feedback (or partial monitoring) prediction problems in a
more general framework, which we describe next. The dynamic pricing problem is a
special case.

In the prediction problem with partial monitoring, we assume that the outcome space
is finite with M elements. Without loss of generality, we assume that Y = {1, . . . , M}.
Denote the matrix of losses by L = [�(i, j)]N×M . (This matrix is assumed to be known
by the forecaster.) If, at time t , the forecaster chooses an action It ∈ {1, . . . , N } and
the outcome is Yt ∈ Y , then the forecaster suffers loss �(It , Yt ). However, instead of the
outcome Yt , the forecaster only observes the feedback h(It , Yt ), where h is a known
feedback function that assigns, to each action/outcome pair in {1, . . . , N } × Y , an element
of a finite set S = {s1, . . . , sm} of signals. The values of h are collected in a feedback matrix
H = [h(i, j)]N×M . Here we also allow a nonoblivious adversary; that is, the outcome Yt

may depend on the past actions I1, . . . , It−1 of the forecaster.
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The partial monitoring prediction game is described as follows.

PREDICTION WITH PARTIAL MONITORING

Parameters: finite outcome spaceY = {1, . . . , M}, number of actions N , loss function
�, feedback function h.

For each round t = 1, 2 . . .,

(1) the environment chooses the next outcome Yt ∈ Y without revealing it;
(2) the forecaster chooses an action It ∈ {1, . . . , N };
(3) the forecaster incurs loss �(It , Yt ) and each action i incurs loss �(i, Yt ), where

none of these values is revealed to the forecaster;
(4) the feedback h(It , Yt ) is revealed to the forecaster.

We note here that some authors consider a more general setup in which the feedback
may be random. For the sake of clarity we stay with the simpler problem described above.
Exercise 6.11 points out that most results shown below may be extended, in a straightforward
way, to the case of random feedbacks.

It is an interesting and complex problem to investigate the possibilities of a predictor
only supplied by the limited information of the feedback. For example, one may ask under
what conditions it is possible to achieve Hannan consistency, that is, to guarantee that,
asymptotically, the cumulative loss of the predictor is not larger than that of the best
constant action, with probability 1. Naturally, this depends on the relationship between the
loss and feedback functions. Note that the predictor is free to encode the values h(i, j)
of the feedback function by real numbers. The only restriction is that if h(i, j) = h(i, j ′),
then the corresponding real numbers should also coincide. To avoid ambiguities by trivial
rescaling, we assume that |h(i, j)| ≤ 1 for all pairs (i, j). Thus, in the sequel we assume
that H = [h(i, j)]N×M is a matrix of real numbers between −1 and 1 and keep in mind
that the predictor may replace this matrix by Hφ = [φi (h(i, j))]N×M for arbitrary functions
φi : [−1, 1] → [−1, 1], i = 1, . . . , N . Note that the set S of signals may be chosen such
that it has m ≤ M elements, though after numerical encoding the matrix may have as many
as M N distinct elements.

Before introducing a general prediction strategy, we describe a few concrete examples.

Example 6.1 (Multi-armed bandit problem). In many prediction problems the forecaster,
after taking an action, is able to measure his loss (or reward) but does not have access
to what would have happened had he chosen another possible action. Such prediction
problems have been known as multi-armed bandit problems. The name refers to a gambler
who plays a pool of slot machines (called “one-armed bandits”). The gambler places his
bet each time on a possibly different slot machine and his goal is to win almost as much
as if he had known in advance which slot machine would return the maximal total reward.
The multi-armed bandit problem is a special case of the partial monitoring problem. Here
we may simply take H = L, that is, the feedback received by the forecaster is just his
own loss. This problem has been widely studied both in a stochastic and a worst-case
setting, and has several unique features, which we study separately in Sections 6.7, 6.8,
and 6.9. �
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Example 6.2 (Dynamic pricing). In the dynamic pricing problem described in the intro-
duction of the section we may take M = N and the loss matrix is

L = [�(i, j)]N×N where �(i, j) = ( j − i)I{i≤ j} + cI{i> j}
N

.

The information the forecaster (i.e., the vendor) receives is simply whether the predicted
value It is greater than the outcome Yt . Thus, the entries of the feedback matrix H may be
taken to be h(i, j) = I{i> j} or, after an appropriate re-encoding,

h(i, j) = aI{i≤ j} + bI{i> j}, i, j = 1, . . . , N

where a and b are constants chosen by the forecaster satisfying a, b ∈ [−1, 1]. �

Example 6.3 (Apple tasting). Consider the simple example in which N = M = 2 and the
loss and feedback matrices are given by

L =
[

1 0
0 1

]
and H =

[
a a
b c

]
.

Thus, the predictor only receives feedback about the outcome Yt when he chooses the
second action. This example has been known as the apple tasting problem. (Imagine that
apples are to be classified as “good for sale” or “rotten.” An apple classified as “rotten”
may be opened to check whether its classification was correct. On the other hand, since
apples that have been checked cannot be put on sale, an apple classified “good for sale” is
never checked.) �

Example 6.4 (Label efficient prediction). A variant of the label efficient prediction problem
of Sections 6.2 and 6.3 may also be cast as a partial monitoring problem. Let N = 3, M = 2,
and consider loss and feedback matrices of the form

L =
⎡⎣1 1

0 1
1 0

⎤⎦ and H =
⎡⎣a b

c c
c c

⎤⎦ .

In this example the only times useful feedback is received are when the first action is played,
in which case a maximal loss is incurred regardless of the outcome. Thus, just as in the
problem of label efficient prediction, playing the “informative” action has to be limited;
otherwise there is no hope for Hannan consistency. �

Remark 6.2 (Compound actions and dynamic strategies). In setting up the problem, for
simplicity, we restricted our attention to forecasters whose aim is to predict as well as the
best constant action. This is reflected in the definition of regret in which the cumulative
loss of the forecaster is compared with mini=1,...,N

∑n
t=1 �(i, Yt ), the cumulative loss of the

best constant action. However, just as in the full information case described in Sections 4.2
and 5.2, one may define the regret in terms of a class of compound actions (or dynamic
strategies). Recall that a compound action is a sequence i = (i1, . . . , in) of actions it ∈
{1, . . . , N }. Given a class S of compound actions, one may define the regret

n∑
t=1

�(It , Yt )−min
i∈S

n∑
t=1

�(it , Yt ).
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The forecasters defined for the partial monitoring problem introduced below can be easily
generalized to handle this more general case; see, for example, Exercise 6.16.

6.5 A General Forecaster for Partial Monitoring

We now present a general prediction strategy that works in the partial monitoring setting
provided the feedback matrix contains “enough information” about the loss matrix. The
forecaster is a modification of the exponentially weighted average forecaster (see Sec-
tion 4.2). The main modification is that the losses �(i, Yt ) are now replaced by appropriate
estimates. However, an estimate with the desired properties can only be constructed under
some conditions on the loss and feedback matrices.

The crucial assumption is that there exists a matrix K = [k(i, j)]N×N such that L = K H,
that is,

H and

[
H
L

]
have the same rank. In other words, we may write, for all i ∈ {1, . . . , N } and j ∈
{1, . . . , M},

�(i, j) =
N∑

l=1

k(i, l)h(l, j).

In this case one may define the estimated losses �̃ by

�̃(i, Yt ) = k(i, It )h(It , Yt )

pIt ,t
, i = 1, . . . , N

and their sums as L̃ i,n = �̃(i, Y1)+ · · · + �̃(i, Yn). The forecaster for partial monitoring is
then defined as follows.

A GENERAL FORECASTER FOR PARTIAL MONITORING

Parameters: matrix of losses L, feedback matrix H, matrix K such that L = K H, real
numbers 0 < η, γ < 1.

Initialization: w0 = (1, . . . , 1).

For each round t = 1, 2, . . .

(1) draw an action It ∈ {1, . . . , N } according to the distribution

pi,t = (1− γ )
wi,t−1

Wt−1
+ γ

N
i = 1, . . . , N ;

(2) get feedback ht = h(It , Yt ) and compute �̃i,t = k(i, It )ht/pIt ,t for all i =
1, . . . , N;

(3) compute wi,t = wi,t−1e−η�̃(i,Yt ) for all i = 1, . . . , N .

As this forecaster is randomized, we carry out its analysis in the nonoblivious opponent
model and thus write the outcomes as random variables Yt .
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Denoting by Et the conditional expectation given I1, . . . , It−1 (i.e., the expectation with
respect to the distribution pt of the random variable It ), observe that

Et �̃(i, Yt ) =
N∑

j=1

p j,t
k(i, j)h( j, Yt )

p j,t

=
N∑

j=1

k(i, j)h( j, Yt ) = �(i, Yt )

and therefore �̃(i, Yt ) is an unbiased estimate of the loss �(i, Yt ).
The next result bounds the expected regret of the forecaster defined above. It serves as a

first step of a more useful result, Theorem 6.6, which states that a similar bound also applies
for the actual (random) regret with overwhelming probability. In this result the per-round
regret 1

n

(
L̂n −mini=1,...,N Li,n

)
decreases to 0 at a rate n−1/3. This is significantly slower

than the best rate n−1/2 obtained in the “full information” case. In Section 6.6 we show that
this rate cannot be improved in general. Thus, the price paid for having access only to some
feedback except for the actual outcomes is the deterioration in the rate of convergence.
However, Hannan consistency is still achievable whenever the conditions of the theorem
are satisfied. (See also Theorem 6.6 for a significantly more precise statement.)

Theorem 6.5. Consider a partial monitoring game (L, H) such that the loss and feedback
matrices satisfy L = K H for some N × N matrix K, with k∗ = max

{
1, maxi, j |k(i, j)|}.

Then the forecaster for partial monitoring, run with parameters

η = 1

C

(
ln N

Nn

)2/3

and γ = C

(
N 2 ln N

n

)1/3

,

where C = (k∗
√

e − 2)2/3, satisfies

E

[
n∑

t=1

�(It , Yt )

]
− min

i=1,...,N
E

[
n∑

t=1

�(i, Yt )

]
≤ 3

(
k∗
√

e − 2
)2/3

(Nn)2/3(ln N )1/3

for all n ≥ (ln N )/(Nk∗
√

e − 2).

Proof. The first steps of the proof are based on a simple modification of the standard
argument of Theorem 2.2. On the one hand, for any j = 1, . . . , N we have

ln
Wn

W0
= ln

(
N∑

i=1

e−ηL̃ i,n

)
− ln N ≥ −ηL̃ j,n − ln N .

On the other hand, for each t = 1, . . . , n,

ln
Wt

Wt−1
= ln

N∑
i=1

wi,t−1

Wt−1
e−η̃�(i,Yt )

= ln
N∑

i=1

pi,t − γ /N

1− γ
e−η̃�(i,Yt )
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≤ ln
N∑

i=1

pi,t − γ /N

1− γ

(
1− η̃�(i, Yt )+ (e − 2) η2 �̃(i, Yt )

2)
(since ex ≤ 1+ x + (e − 2)x2 whenever x ≤ 1)

≤ ln

(
1− η

1− γ

N∑
i=1

�̃(i, Yt )
(

pi,t − γ

N

)
+ (e − 2)η2

1− γ

N∑
i=1

�̃(i, Yt )
2 pi,t

)

≤ − η

1− γ

N∑
i=1

�̃(i, Yt )
(

pi,t − γ

N

)
+ (e − 2)η2

1− γ

N∑
i=1

�̃(i, Yt )
2 pi,t .

Summing the inequality over t = 1, . . . , n and comparing the obtained upper and lower
bounds for ln(Wn/W0), we have

n∑
t=1

N∑
i=1

�̃(i, Yt )pi,t − (1− γ )L̃ j,n

≤ (1− γ )
ln N

η
+ η(1− γ )(e − 2)

n∑
t=1

N∑
i=1

�̃(i, Yt )
2 pi,t +

n∑
t=1

N∑
i=1

γ

N
�̃i,t

≤ ln N

η
+ η(e − 2)

n∑
t=1

N∑
i=1

�̃(i, Yt )
2 pi,t + γ

N

N∑
i=1

L̃ i,n. (6.2)

Note that we used the fact that |η̃�(i, Yt )| ≤ 1 for all t and i . This condition is satisfied
whenever Nk∗η/γ ≤ 1, which holds for our choice of η, γ , and n. Note that the assumption
on n guarantees that η ≤ 1. Furthermore, since our choice of γ implies that for γ > 1 the
bound stated in the theorem holds trivially, we also assume γ ≤ 1.

Now, recalling that Et �̃(i, Yt ) = �(i, Yt ), we get, after some trivial upper bounding,

E

[
n∑

t=1

�(It , Yt )

]
− min

j=1,...,N
E L j,n ≤ ln N

η
+ γ n + η(e − 2)

n∑
t=1

N∑
i=1

E
[

pi,t �̃(i, Yt )
2
]
,

where we used L j,n =
∑n

t=1 �( j, Yt ) ≤ n.
The proof is concluded by handling the squared terms as follows:

Et
[̃
�(i, Yt )

2] = N∑
j=1

k(i, j)2h( j, Yt )2

p j,t
≤ N 2(k∗)2

γ
. (6.3)

Our choice of η and γ finally yields the statement.

As promised, the next result shows that an upper bound of the order n2/3 holds not
only for the expected regret but also with a large probability. The extension is not at all
immediate, because it requires a careful analysis of the estimated losses. This is done by
appropriate tail estimates for sums of martingale differences. The main result of this section
is the following theorem.

Theorem 6.6. Consider a partial monitoring game (L, H) such that the loss and feedback
matrices satisfy L = K H for some N × N matrix K, with k∗ = max

{
1, maxi, j |k(i, j)|}.
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Let δ ∈ (0, 1). Then the forecaster for partial monitoring, run with parameters

η =
(

ln N

2Nnk∗

)2/3

and γ =
(

(k∗N )2 ln N

4n

)1/3

satisfies, for all

n ≥ 1

k∗N

(
ln

N + 3

δ

)3/2

and with probability at least 1− δ,

n∑
t=1

�(It , Yt )− min
i=1,...,N

n∑
t=1

�(i, Yt )

≤ 10
(
Nnk∗

)2/3
(ln N )1/3

√
ln

2(N + 3)

δ
.

The starting point of the proof is inequality (6.2). We show that, with an overwhelming
probability, the right-hand side is less than something of the order n2/3 and that the left-hand
side is close to the actual regret

n∑
t=1

�(It , Yt )− min
j=1,...,N

L j,n.

Our main tool is the martingale inequality in Lemma A.8. This inequality implies the
following two lemmas. Recall the notation

�(pt , Yt ) =
N∑

i=1

pi,t �(It , Yt ) and �̃(pt , Yt ) =
N∑

i=1

pi,t �̃(It , Yt ).

Lemma 6.3. With probability at least 1− δ/(N + 3),

n∑
t=1

�(pt , Yt ) ≤
n∑

t=1

�̃(pt , Yt )+ 2k∗N

√
n

γ
ln

N + 3

δ
.

Proof. Define Xt = �(pt , Yt )− �̃(pt , Yt ). Clearly, Et Xt = 0 and the Xt ’s form a martin-
gale difference sequence with respect to I1, I2, . . . . Since

Et
[
X2

t

] =∑
i, j

pi,t p j,t Et
[̃
�(i, Yt )̃�( j, Yt )

]
=
∑
i, j

pi,t p j,t

N∑
m=1

pm,t
k(i, m)k( j, m)h(m, Yt )2

p2
m,t

,

we have �2
n =

∑n
t=1 Et [X2

t ] ≤ n(k∗)2 N 2/γ . Thus, the statement follows directly by
Lemma A.8 and the assumption on n.
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Lemma 6.4. For each fixed j , with probability at least 1− δ/(N + 3),

∣∣L j,n − L̃ j,n

∣∣ ≤ 2k∗N

√
n

γ
ln

2(N + 3)

δ
.

Proof. Just as in the previous lemma, use Lemma A.8 for the martingale difference
sequence �̃( j, Yt )− �( j, Yt ) to obtain the stated inequality.

The next two lemmas are easy consequences of the Hoeffding–Azuma inequality. In
particular, the following result is an immediate corollary of Lemma A.7.

Lemma 6.5. With probability at least 1− δ/(N + 3),

n∑
t=1

�(It , Yt ) ≤
n∑

t=1

�(pt , Yt )+
√

n

2
ln

N + 3

δ
.

Lemma 6.6. With probability at least 1− δ/(N + 3),

n∑
t=1

N∑
i=1

�̃(i, Yt )
2 pi,t ≤ (Nk∗)2

γ
n + (Nk∗)2

γ 2

√
n

2
ln

N + 3

δ
.

Proof. Let Xt =
∑N

i=1 �̃(i, Yt )2 pi,t . Since 0 ≤ Xt ≤ (Nk∗/γ )2, Lemma A.7 implies that

P

[
n∑

t=1

Vt >

(
Nk∗

γ

)2
√

n

2
ln

N + 3

δ

]
≤ δ

N + 3
,

where Vt = Xt − Et Xt . The proof is now concluded by using Et Xt ≤ (Nk∗)2/γ , as already
proved in (6.3).

The proof of the main result is now an easy combination of these lemmas.

Proof of Theorem 6.6. The condition Nk∗η/γ ≤ 1 is satisfied with the proposed choices
of η and γ , thus (6.2) is still valid. By Lemmas 6.3, 6.4, 6.5, and 6.6, combined with the
union-of-events bound, with probability at least 1− δ we have, simultaneously,

n∑
t=1

�(pt , Yt ) ≤
n∑

t=1

�̃(pt , Yt )+ 2k∗N

√
n

γ
ln

N + 3

δ
(6.4)

∣∣L j,n − L̃ j,n

∣∣ ≤ 2k∗N

√
n

γ
ln

2(N + 3)

δ
(6.5)

n∑
t=1

�(It , Yt ) ≤
n∑

t=1

�(pt , Yt )+
√

n

2
ln

N + 3

δ
(6.6)
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and

n∑
t=1

N∑
i=1

�̃(i, Yt )
2 pi,t ≤ (Nk∗)2

γ
n + (Nk∗)2

γ 2

√
n

2
ln

N + 3

δ
. (6.7)

On this event, we can bound the regret as follows:

n∑
t=1

�(It , Yt )− min
j=1,...,N

L j,n

≤
n∑

t=1

�(pt , Yt )− min
j=1,...,N

L j,n +
√

n

2
ln

N + 3

δ
(by (6.6))

≤
n∑

t=1

�̃(pt , Yt )− min
j=1,...,N

L j,n + 2k∗N

√
n

γ
ln

N + 3

δ
+
√

n

2
ln

N + 3

δ
(by (6.4))

≤
n∑

t=1

�̃(pt , Yt )− min
j=1,...,N

L̃ j,n + 4k∗N

√
n

γ
ln

2(N + 3)

δ
+
√

n

2
ln

N + 3

δ
(by (6.5))

≤ ln N

η
+ η(e − 2)

n∑
t=1

N∑
i=1

�̃(i, Yt )
2 pi,t + nγ + 4k∗N

√
n

γ
ln

2(N + 3)

δ

+
√

n

2
ln

N + 3

δ
(by (6.2) and (6.5))

≤ ln N

η
+ η(e − 2)

(Nk∗)2

γ
n + η(e − 2)

(Nk∗)2

γ 2

√
n

2
ln

N + 3

δ
+ nγ

+ 4k∗N

√
n

γ
ln

2(N + 3)

δ
+
√

n

2
ln

N + 3

δ
(by (6.7)).

Resubstituting the proposed values of γ and η, and overapproximating, gives the claimed
result.

Theorem 6.6 guarantees the existence of a forecasting strategy with a regret of order
n2/3 whenever the rank of the feedback matrix H is not smaller than the rank of the
matrix

[
H
L

]
. (Note that Hannan consistency may be achieved under the same condition,

see Exercise 6.5.) This condition is satisfied for a wide class of problems. As an illustration,
we consider the examples described in Section 6.4.

Example 6.5 (Multi-armed bandit problem). Recall that in the case of the multi-armed
bandit problem the condition of Theorem 6.6 is trivially satisfied because H = L. Indeed,
one may take K to be the identity matrix so that k∗ = 1. In a subsequent section we show
that in this case significantly smaller regrets may be achieved than those guaranteed by
Theorem 6.6 by a carefully designed prediction algorithm. �
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Example 6.6 (Dynamic pricing). In the dynamic pricing problem, described in the intro-
duction of this chapter, the feedback matrix is given by h(i, j) = a I{i≤ j} + b I{i> j} for some
arbitrarily chosen values of a and b. By choosing, for example, a = 1 and b = 0, it is clear
that H is an invertible matrix and therefore one may choose K = L ·H−1 and obtain a
Hannan-consistent strategy with regret of order n2/3. Thus, the seller has a way of selecting
the prices It such that his loss is not much larger than what could have been achieved had
he known the values Yt of all customers and offered the best constant price. Note that with
this choice of a and b the value of k∗ equals 1 (i.e., does not depend on N ). Therefore the
upper bound for the regret in terms of n and N is of the order (nN log N )2/3. Note also
that the defining expression of K does not assume any special form for the loss matrix L.
Hence, whenever H is invertible, Hannan consistency is achieved no matter how the loss
matrix is chosen. �

Example 6.7 (Apple tasting). In the apple tasting problem described earlier one may choose
the feedback values a = b = 1 and c = 0. This makes the feedback matrix invertible and,
once again, Theorem 6.6 applies. �

Example 6.8 (Label efficient prediction). Recall next the variant of the label efficient
prediction problem in which the loss and feedback matrices are

L =
⎡⎣1 1

0 1
1 0

⎤⎦ and H =
⎡⎣a b

c c
c c

⎤⎦ .

Here the rank of L equals 2, and so it suffices to encode the feedback matrix such that its
rank equals 2. One possibility is to choose a = 1/2, b = 1, and c = 1/4. Then we have
L = K H for

K =
⎡⎣ 0 2 2

2 −2 −2
−2 4 4

⎤⎦ .

This example of label efficient prediction reveals that the bound of Theorems 6.5 and 6.6
cannot be improved significantly in general. In particular, there exist partial monitoring
games for which the conditions of the theorems hold, yet the regret is �(n2/3). This follows
by a slight modification of the proof of Theorem 6.4 by noting that the lower bound
obtained in the setting of label efficient prediction holds in the earlier example in the partial
monitoring problem. More precisely, we have the following. �

Theorem 6.7. For any label efficient forecaster there exists a sequence of outcomes
y1, y2, . . . such that, for all large enough n, the forecaster’s expected regret satisfies

E

[
n∑

t=1

�(It , yt )− min
i=1,...,N

n∑
t=1

�(i, yt )

]
≥ cn2/3

where c is a universal constant.
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The proof is left to the reader as an exercise.

Remark 6.3. Even though it is not possible to improve the dependence in n of the upper
bounds of Theorems 6.5 and 6.6 in general, in some special cases a rate of O(n−1/2)
is achievable. A main example of this situation is the multi-armed bandit problem (see
Section 6.8). Another instance is described in Exercise 6.7. Note also that the bound of
Theorem 6.6 does not depend explicitly on the value of the cardinality M of the set of
outcomes, but a dependence on M may be hidden in k∗. However, in some important
special cases, such as the multi-armed bandit problem, this value is independent of M . In
such cases the result extends easily to infinite sets Y of outcomes. In particular, the case
when the loss matrix changes with time can be treated this way.

6.6 Hannan Consistency and Partial Monitoring

In this section we discuss conditions on the loss and feedback matrices under which
it is possible to construct Hannan-consistent forecasting strategies. Theorem 6.6 (more
precisely, Exercise 6.5) states that whenever there is an encoding of the values of the
feedback such that the rank of the loss-feedback matrix

[
H
L

]
does not exceed that of the

feedback matrix H, then Hannan consistency is achievable.
This condition is basically sufficient and necessary for obtaining Hannan consistency

if either N = 2 (i.e., the predictor has two actions to choose from) or M = 2 (i.e., the
outcomes are binary). When N = 2 or M = 2, then, apart from trivial cases, Hannan
consistency is impossible to achieve if L cannot be written as K H for some encoding of
the feedback matrix H and for some matrix K (for the precise statements, see Exercises 6.8
and 6.9).

In general, however, it is not true that the existence of a Hannan consistent predictor is
guaranteed if and only if the loss matrix L can be expressed as K H. To see this, consider
the following simple example.

Example 6.9. Let N = M = 3 and

L =
⎡⎣0 1 1

1 0 1
1 1 0

⎤⎦ and H =
⎡⎣ a b c

d d d
e e e

⎤⎦ .

Clearly, for all choices of the numbers a, b, c, d, e, the rank of the feedback matrix is at
most 2 and therefore there is no matrix K for which L = K H. However, note that whenever
the first action is played, the forecaster has full information about the outcome Yt . Formally,
an action i ∈ {1, . . . , N } is said to be revealing for a feedback matrix H if all entries in the
i th row of H are different. We now prove the existence of a Hannan-consistent forecaster
for all problems in which there exists a revealing action. �

We start by introducing our forecasting strategy for partial monitoring games with
revealing actions.
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A FORECASTER FOR REVEALING ACTIONS

Parameters: 0 ≤ ε ≤ 1 and η > 0. Action r is revealing.

Initialization: w0 = (1, . . . , 1).

For each round t = 1, 2, . . . ,

(1) draw an action Jt from {1, . . . , N } according to the distribution pi,t =
wi,t−1/(w1,t−1 + · · · + w N ,t−1) for i = 1, . . . , N ;

(2) draw a Bernoulli random variable Zt such that P[Zt = 1] = ε;
(3) if Zt = 1, then play the revealing action, It = r , observe Yt , and compute

wi,t = wi,t−1e−η �(i,Yt )/ε for each i = 1, . . . , N ;

(4) otherwise, play It = Jt and let wi,t = wi,t−1 for each i = 1, . . . , N .

Theorem 6.8. Consider a partial monitoring game (L, H) such that L has a revealing
action. Let δ ∈ (0, 1). If the forecaster for revealing actions is run with parameters

ε = max

{
0,

m −√2m ln(4/δ)

n

}
and η =

√
2ε ln N

n
,

where m = (4n)2/3(ln(4N/δ))1/3, then

1

n

(
n∑

t=1

�(It , Yt )− min
i=1,...,N

L1,n

)
≤ 8n−1/3

(
ln

4N

δ

)1/3

holds with probability at least 1− δ.

Proof. The proof is a straightforward adaptation of the proof of Theorem 6.2 for the label
efficient forecaster. In particular, the forecaster for revealing actions essentially coincides
with the label efficient forecaster in Section 6.2. Indeed, Theorem 6.2 ensures that, with
probability at least 1− δ, not more than m among the Zt have value 1 and that the regret

accumulated over those rounds with Zt = 0 is bounded by 8n
√

1
m ln 4N

δ
. Since each time a

revealing action is chosen the loss suffered is at most 1, this in turn implies that
n∑

t=1

�(It , Yt )− min
j=1,...,N

n∑
t=1

�( j, Yt ) ≤ m + 8n

√
ln(4N/δ)

m
.

Substituting the proposed value for the parameter m concludes the proof.

Remark 6.4 (Dependence on the number of actions). Observe that, even when the condi-
tion of Theorem 6.6 is satisfied, the bound of Theorem 6.8 is considerably tighter. Indeed,
even though the dependence on the time horizon n is identical in both bounds (of order
n−1/3), the bound of Theorem 6.8 depends on the number of actions N in a logarithmic way
only. As an example, consider the case of the multi-armed bandit problem. Recall that here
H = L and there is a revealing action if and only if the loss matrix has a row whose elements
are all different. In such a case Theorem 6.8 provides a bound of order

(
(ln N )/n

)1/3
. On

the other hand, there exist bandit problems for which, if N ≤ n, it is impossible to achieve
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a per-round regret smaller than 1
20

√
N/n (see Theorem 6.11). If N is large, the logarithmic

dependence of Theorem 6.8 thus gives a considerable advantage.

Interestingly, even if L cannot be expressed as K H, the existence of a revealing action
ensures that the general forecaster of Section 6.5 may be used to achieve a small regret.
This may be done by first converting the problem into another partial monitoring problem
for which the general forecaster can be used. The basic step of this conversion is to replace
the pair (L, H) of N × M matrices by a pair (L′, H′) of m N × M matrices where m ≤ M
denotes the cardinality of the set S = {s1, . . . , sm} of signals (i.e., the number of distinct
elements of the matrix H). In the obtained prediction problem the forecaster chooses
among m N actions at each time instance. The converted loss matrix L′ is obtained simply
by repeating each row of the original loss matrix m times. The new feedback matrix H′ is
binary and is defined by

H ′(m(i − 1)+ k, j) = I{h(i, j)=sk }, i = 1, . . . , N , k = 1, . . . , m, j = 1, . . . , M.

Note that this way we get rid of the inconvenient problem of how to encode, in a natural
way, the feedback symbols. If the matrices

H′ and

[
H′

L′

]
have the same rank, then there exists a matrix K′ such that L′ = K′ H′ and the forecaster of
Section 6.5 may be applied to obtain a forecaster that has an average regret of order n−1/3

for the converted problem. However, it is easy to see that any forecaster A with such a
bounded regret for the converted problem may be trivially transformed into a forecaster A′

for the original problem with the same regret bound: A′ simply takes an action i whenever
A takes an action of the form m(i − 1)+ k for any k = 1, . . . , m.

The conversion procedure guarantees Hannan consistency for a large class of partial
monitoring problems. For example, if the original problem has a revealing action i , then
m = M and the M × M submatrix formed by the rows M(i − 1)+ 1, . . . , Mi of H′ is the
identity matrix (up to some permutations over the rows) and therefore has full rank. Then
obviously a matrix K′ with the desired property exists and the procedure described above
leads to a forecaster with an average regret of order n−1/3.

This last statement may be generalized in a straightforward way to an even larger class
of problems as follows.

Corollary 6.2 (Distinguishing actions). Assume that the feedback matrix H is such that
for each outcome j = 1, . . . , M there exists an action i ∈ {1, . . . , N } such that for all
outcomes j ′ �= j , h(i, j) �= h(i, j ′). Then the conversion procedure described above leads
to a Hannan-consistent forecaster with an average regret of order n−1/3.

The rank of H′ may be considered as a measure of the information provided by
the feedback. The highest possible value is achieved by matrices H′ with rank M . For
such feedback matrices, Hannan-consistency may be achieved for all associated loss
matrices L′.

Even though the above conversion strategy applies to a large class of problems, the asso-
ciated condition fails to characterize the set of pairs (L, H) for which a Hannan consistent
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forecaster exists. Indeed, Piccolboni and Schindelhauer [234] show a second simple con-
version of the pair (L′, H′) that can be applied in situations when there is no matrix K′

with the property L′ = K′ H′ (this second conversion basically deals with some actions
that they define as “useless”). In these situations a Hannan-consistent procedure may be
constructed on the basis of the forecaster of Section 6.5. On the other hand, Piccolboni
and Schindelhauer also show that if the condition of Theorem 6.6 is not satisfied after the
second step of conversion, then there exists an external randomization over the sequences of
outcomes such that the sequence of expected regrets grows at least as n, where the expec-
tations are understood with respect to the forecaster’s auxiliary randomization and the
external randomization. Thus, a proof by contradiction using the dominated-convergence
theorem shows that Hannan consistency is impossible to achieve in these cases. This result,
combined with Theorem 6.6, implies the following gap theorem.

Corollary 6.3. Consider a partial monitoring game (L, H). If Hannan consistency can be
achieved, then there exists a Hannan-consistent forecaster whose average regret vanishes
at rate n−1/3.

Thus, whenever it is possible to force the average regret to converge to 0, a convergence
rate of order n−1/3 is also possible.

We close this section by pointing out a situation in which Hannan consistency is impos-
sible to achieve.

Example 6.10. Consider a case with N = M = 3 and

L =
⎡⎣0 1 1

1 0 1
1 1 0

⎤⎦ and H =
⎡⎣a b b

a b b
a b b

⎤⎦ .

In this example, the second and third outcomes are indistinguishable for the forecaster.
Obviously, Hannan consistency is impossible to achieve in this case. However, it is easy to
construct a strategy for which

1

n

(
n∑

t=1

�(It , Yt )−min

(
L1,n,

L2,n + L3,n

2

))
= o(1),

with probability 1 (see Exercise 6.10 for a somewhat more general statement). �

6.7 Multi-armed Bandit Problems

This and the next two sections are dedicated to multi-armed bandit problems, which we
define in Example 6.1 of Section 6.4. Recall that in this problem the forecaster, after making
a prediction, learns his own loss �(It , Yt ) but not the value of the outcome Yt . Thus, the
forecaster does not have access to the losses he would have suffered had he chosen a
different action. The goal of the forecaster remains the same, which is to guarantee that
his cumulative loss

∑n
t=1 �(It , Yt ) is not much larger than the cumulative loss of the best

action, mini=1,...,N
∑n

t=1 �(i, Yt ).
In the classical formulation of multi-armed bandit problems (see, e.g., Robbins [245],

Lai and Robbins [189]) it is assumed that, for each action i , the losses �(i, y1), . . . , �(i, yn)
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are randomly and independently drawn according to a fixed but unknown distribution. In
such a case, at the beginning of the game one may sample all arms to estimate the means
of the loss distributions (this is called the exploration phase), and while the forecaster has
a high level of confidence in the sharpness of the estimated values, one may keep choosing
the action with the smallest estimated loss (the exploitation phase). Indeed, under mild
conditions on the distribution, one may achieve that the per-round regret

1

n

n∑
t=1

�(It , yt )− 1

n
min

i=1,...,N

n∑
t=1

�(i, yt )

converges to 0 with probability 1, and delicate tradeoff between exploitation and exploration
may be achieved under additional assumptions (see the exercises).

Here we investigate the significantly more challenging problem when the outcomes
Yt are generated in the nonoblivious opponent model. This variant has been called the
nonstochastic (or adversarial) multi-armed bandit problem. Thus, the problem we consider
is the same as in Section 4.2, but now the forecaster’s actions cannot depend on the past
values of �(i, Yt ) except when i = It .

As we have already observed in Example 6.1, the adversarial bandit problem is a special
case of the prediction problem under partial monitoring defined in Section 6.4. In this
special case the feedback matrix H equals the loss matrix L. Therefore, Theorems 6.5
and 6.6 apply because one may use the general forecaster for partial monitoring with K
taken as the identity matrix. The forecaster that, according to these theorems, achieves a
per-round regret of order n−1/3 (and is, therefore, Hannan-consistent) takes, at time t , the
action It drawn according to the distribution pt , defined by

pi,t = (1− γ )
e−ηL̃ i,t−1∑N

k=1 e−ηL̃k,t−1
+ γ

N
,

where L̃ i,t =
∑t

s=1 �̃(i, Yt ) is the estimated cumulative loss and

�̃(i, Yt ) =
{

�(i, Yt )/pi,t if It = i
0 otherwise

is used to estimate the loss �(i, Yt ) at time t for all i = 1, . . . , N . The parameters γ, η ∈
(0, 1) may be set according to the values specified in Theorems 6.5 and 6.6 (with k∗ = 1).

Interestingly, even though the bounds of order n2/3 established in Theorems 6.5 and 6.6
are not improvable in general partial monitoring problems (see Theorem 6.7), in the special
case of the multi-armed bandit problem, significantly better performance may be achieved
by an appropriate modification of the forecaster described above. The details and the
corresponding bound are shown in Section 6.8, and Section 6.9 establishes a matching
lower bound.

We close this section by mentioning that the forecaster strategy defined above, which
may be viewed as an extension of the exponentially weighted average predictor, may be
generalized. In particular, just as in Section 4.2, we allow the use of potential functions other
than the exponential. This way we obtain a large family of Hannan-consistent forecasting
strategies for the adversarial multi-armed bandit problem.
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Recall that weighted-average randomized strategies were defined such that at time t , the
forecaster chooses action i randomly with probability

pi,t = ∇i�(Rt−1)∑N
k=1 ∇k�(Rt−1)

= φ′(Ri,t−1)∑N
k=1 φ′(Rk,t−1)

,

where � is an appropriate potential function defined in Section 4.2. In the bandit problem
this strategy is not feasible because the regrets Ri,t−1 =

∑t−1
s=1

(
�(ps, Ys)− �(i, Ys)

)
are not

available to the forecaster. The components ri,t = �(pt , Yt )− �(i, Yt ) of the regret vector
rt are substituted by the components r̃i,t = �(It , Yt )− �̃(i, Yt ) of the estimated regret r̃t .
Finally, at time t an action It is chosen from the set {1, . . . , N } randomly according to the
distribution pt , defined by

pi,t = (1− γt )
φ′(R̃i,t−1)∑N

k=1 φ′(R̃k,t−1)
+ γt

N
,

where γt ∈ (0, 1) is a nonincreasing sequence of constants that we typically choose to
converge to 0 at a certain rate.

First of all note that the defined prediction strategy is feasible because at time t it only
depends on the past losses �(Is, Ys), s = 1, . . . , t − 1. Note that the estimated regret r̃t is
an “unbiased” estimate of the regret rt in the sense that E

[
r̃i,t | I1, . . . , It−1

] = ri,t .
Observe also that, apart from the necessary modification of the notion of regret, we have

also introduced the constants γt whose role is to keep the probabilities pi,t far away from
0 for all i , which is necessary to make sure that a sufficient amount of time is spent for
“exploration.”

The next result states Hannan consistency of the strategy defined above under general
conditions on the potential function.

Theorem 6.9. Let

�(u) = ψ

(
N∑

i=1

φ(ui )

)
be a potential function. Assume that

(i)
∑n

t=1 1/γ 2
t = o(n2/ ln n);

(ii) For all vectors vt = (v1,t , . . . , vn,t ) with |vi,t | ≤ N/γt ,

lim
n→∞

1

ψ(φ(n))

n∑
t=1

C(vt ) = 0,

where C is the function defined in Theorem 2.1;
(iii) for all vectors ut = (u1,t , . . . , un,t ), with ui,t ≤ t ,

lim
n→∞

1

ψ(φ(n))

n∑
t=1

γt

N∑
i=1

∇i�(ut ) = 0

(iv) for all vectors ut = (u1,t , . . . , un,t ), with ui,t ≤ t ,

lim
n→∞

ln n

ψ(φ(n))

√√√√ n∑
t=1

1

γ 2
t

(
N∑

i=1

∇i�(ut )

)2

= 0
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Then the potential-based prediction strategy defined above satisfies

lim
n→∞

1

n

(
n∑

t=1

�(It , Yt )− min
i=1,...,N

n∑
t=1

�(i, Yt )

)
= 0,

with probability 1.

The proof is an appropriate extension of the proof of Theorem 2.1 and is left as a guided
exercise (see Exercise 6.19). The theorem merely states Hannan consistency, but the rates
of convergence that may be deduced from the proof are far from being optimal. To achieve
the best rates the martingale inequalities used in the proof should be considerably refined,
as is done in the next section. Two concrete examples follow.

Exponential Potentials
In the special case of exponential potentials of the form

�η(u) = 1

η
ln

(
N∑

i=1

eηui

)
,

the forecaster of Theorem 6.9 coincides with that described at the beginning of the section.
Its Hannan consistency may be deduced from both Theorem 6.9 and Theorem 6.6.

Polynomial Potentials
Recall, from Chapter 2, the polynomial potentials of the form

�p(u) =
(

N∑
i=1

(ui )
p
+

)2/p

= ‖u+‖2
p,

where p ≥ 2. Here one may take φ(x) = x p
+ and ψ(x) = x2/p. In this case the conditions of

Theorem 6.9 may be checked easily. First note that ψ(φ(n)) = n2. Recall from Section 2.1
that for any u ∈ RN , C(u) ≤ 2(p − 1) ‖u‖2

p. Thus for condition (ii) of Theorem 6.9 to hold,
it suffices that

∑n
t=1(1/γ 2

t ) = o(n2), which is implied by condition (i). To verify conditions
(iii) and (iv) note that, for any u = (u1, . . . , uN ) ∈ RN ,

N∑
i=1

∇i�(u) = 2‖u+‖p−1
p−1

‖u+‖p−2
p

≤ 2N p‖u+‖p−1
p

‖u+‖p−2
p

= 2N p‖u+‖p,

where u+ = ((u1)+, . . . , (uN )+) and we applied Hölder’s inequality. Thus, conditions

(iii) and (iv) are satisfied whenever (1/n2)
∑n

t=1 t γt → 0 and (ln n/n2)
√∑n

t=1 t2/γ 2
t →

0, respectively. These two conditions, together with condition (i) requiring
(ln n/n2)

∑n
t=1(1/γ 2

t ) → 0, are sufficient to guarantee Hannan consistency of the potential-
based strategy for any polynomial potential with p ≥ 2. Taking, for example, γt = ta , it is
easy to check that all three conditions are satisfied for any a ∈ (−1/2, 0).
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6.8 An Improved Bandit Strategy

In the previous sections we presented several forecasting strategies that guarantee Hannan-
consistent prediction in the nonstochastic multi-armed bandit problem. The rates of con-
vergence that may be obtained in a straightforward manner from Theorems 6.5 and 6.9 are,
however, suboptimal. The purpose of this section is to introduce a slight modification in
the forecaster of the previous section and achieve optimal rates of convergence.

We only consider exponential potentials and assume that the horizon (i.e., the total
length n of the sequence to be predicted) is fixed and known in advance. The extension to
unbounded or unknown horizon is, by now, a routine exercise.

Two modifications of the strategy described at the beginning of the previous section are
necessary to achieve better rates of convergence. First of all, the modified strategy estimates
gains instead of losses. For convenience, we introduce the notation g(i, Yt ) = 1− �(i, Yt )
and the estimated gains

g̃(i, Yt ) =
{

g(i, Yt )/pi,t if It = i
0 otherwise,

i = 1, . . . , N .

Note that E[ g̃(i, Yt ) | I1, . . . , It−1] = g(i, Yt ), and therefore g̃(i, Yt ) is an unbiased estimate
of g(i, Yt ) (different from 1− �̃(i, Yt ) used in the previous section). The reason for this
modification is subtle. With the modified estimate the difference g(i, t)− g̃(i, t) is bounded
by 1 from above, which is used in the martingale-type bound of Lemma 6.7 below.

The forecasting strategy is defined as follows.

A STRATEGY FOR THE MULTI-ARMED
BANDIT PROBLEM

Parameters: Number of actions N , positive reals β, η, γ ≤ 1.

Initialization: wi,0 = 1 and pi,1 = 1/N for i = 1, . . . , N .

For each round t = 1, 2 . . .

(1) select an action It ∈ {1, . . . , N } according to the probability distribution pt ;
(2) calculate the estimated gains

g′(i, Yt ) = g̃(i, Yt )+ β

pi,t
=
{(

g(i, Yt )+ β
)
/pi,t if It = i

β/pi,t otherwise;

(3) update the weights wi,t = wi,t−1eηg′(i,Yt );
(4) calculate the updated probability distribution

pi,t+1 = (1− γ )
wi,t

Wt
+ γ

N
, i = 1, . . . , N .

Another modification is that instead of an unbiased estimate, a slightly larger quantity is
used by the strategy. To this end, the strategy uses the quantities g′(i, Yt ) = g̃(i, Yt )+ β/pi,t ,
where β is a positive parameter whose value is to be determined later. Note that we give up
the unbiasedness of the estimate to guarantee that the estimated cumulative gains are, with
large probability, not much smaller than the actual (unknown) cumulative gains. Thus, the
new estimate may be interpreted as an upper confidence bound on the gain.
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The next theorem shows that, as a function of the number of rounds n, the regret is
of the same order O(

√
n) of magnitude as in the “full information” case, that is, in the

problem of randomized prediction with expert advice discussed in Section 4.2. The price
one has to pay for not being able to measure the loss of the actions (except for the selected
one) is in the dependence on the number N of actions. The bound derived in Theorem
6.10 is proportional to

√
N ln N , as opposed to the “full information” bound, which only

grows as
√

ln N with the number of actions. Thus, the bound is significantly better than
that implied by Theorem 6.6, which only guarantees a bound of order (nN )2/3(ln N )1/3.
In Section 6.9 we show that the

√
nN ln N upper bound shown here is optimal up to a

factor of order
√

ln N . Thus, the per-round regret is about the order
√

ln N/(n/N ), opposed
to
√

(ln N )/n achieved in the full information case. This bound reflects the fact that the
available information in the bandit problem is the N th part of that of the original, full
information case. This phenomenon is similar to the one we observed in the case of label
efficient prediction, where the per-round regret was of the form

√
ln N/m.

Theorem 6.10. For any δ ∈ (0, 1) and for any n ≥ 8N ln(N/δ), if the forecaster for the
multi-armed bandit problem is run with parameters

γ ≤ 1

2
, 0 < η ≤ γ

2N
, and

√
1

nN
ln

N

δ
≤ β ≤ 1

then, with probability at least 1− δ, the regret satisfies

L̂n − min
i=1,...,N

Li,n ≤ n
(
γ + η(1+ β)N

)+ ln N

η
+ 2nNβ.

In particular, choosing

β =
√

1

nN
ln

N

δ
, γ = 4Nβ

3+ β
, and η = γ

2N
,

one has

L̂n − min
i=1,...,N

Li,n ≤ 11

2

√
nN ln(N/δ)+ ln N

2
.

The condition on n ensures that 4Nβ/(3+ β) = γ is at most 1/2 for the stated choice
of β.

The analysis of Theorem 6.10 is similar, in spirit, to the proof of Theorem 6.6. The
essential novelty necessary to obtain the refined bounds is a more careful bounding of the
difference between the estimated and true cumulative losses of each action.

Introduce the notation

G ′
i,n =

n∑
t=1

g′(i, Yt ) and Gi,n =
n∑

t=1

g(i, Yt ).

The following lemma is the key to the proof of Theorem 6.10.

Lemma 6.7. Let δ ∈ (0, 1). For any β ∈ [√ln(N/δ)/(nN ), 1
]

and i ∈ {1, . . . , N }, we have
P
[
Gi,n > G ′

i,n + βnN
] ≤ δ/N.
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Proof.

P
[
Gi,n > G ′

i,n + βnN
] = P

[
Gi,n − G ′

i,n > βnN
]

≤ E
[
exp

(
β
(
Gi,n − G ′

i,n

))]
exp

(−β2nN
)

(by Markov’s inequality).

Observe now that since β ≥ √ln(N/δ)/(nN ), exp
(−β2nN

) ≤ δ/N , and therefore it suf-
fices to prove that E

[
exp

(
β
(
Gi,n − G ′

i,n

))] ≤ 1. Introducing for t = 1, . . . , n the random
variable

Zt = exp
(
β(Gi,t − G ′

i,t )
)
,

we clearly have

Zt = exp

(
β

(
g(i, Yt )− g̃(i, Yt )− β

pi,t

))
Zt−1.

Next, for t = 2, . . . , n, we bound E[Zt | I1, . . . , It−1] = Et Zt as follows:

Et Zt = Zt−1 Et

[
exp

(
β

(
g(i, Yt )− g̃(i, Yt )− β

pi,t

))]
≤ Zt−1e−β2/pi,t Et

[
1+ β

(
g(i, Yt )− g̃(i, Yt )

)+ β2
(
g(i, Yt )− g̃(i, Yt )

)2]
(since β ≤ 1, g(i, Yt )− g̃(i, Yt ) ≤ 1 and ex ≤ 1+ x + x2 for x ≤ 1)

= Zt−1e−β2/pi,t Et

[
1+ β2

(
g(i, Yt )− g̃(i, Yt )

)2]
(since Et

[
g(i, Yt )− g̃(i, Yt )

] = 0)

≤ Zt−1e−β2/pi,t

(
1+ β2

pi,t

)
(since Et

[
(g(i, Yt )− g̃(i, Yt ))2

] ≤ Et
[̃
g(i, Yt )2

] ≤ 1/pi,t )

≤ Zt−1 (since 1+ x ≤ ex ).

Taking expected values of both sides of the inequality, we have E Zt ≤ E Zt−1. Because
E Z1 ≤ 1, we obtain EZn ≤ 1, as desired.

Proof of Theorem 6.10. Let Wt =
∑N

i=1 wi,t . Note first that

ln
Wn

W0
= ln

(
N∑

i=1

eηG ′
i,n

)
− ln N

≥ ln

(
max

i=1,...,N
eηG ′

i,n

)
− ln N

= η max
i=1,...,N

G ′
i,n − ln N .
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On the other hand, for each t = 1, . . . , n, since β ≤ 1 and η ≤ γ /(2N ) imply that
ηg′(i, Yt ) ≤ 1, we may write

ln
Wt

Wt−1
= ln

N∑
i=1

wi,t−1

Wt−1
eηg′(i,Yt )

= ln
N∑

i=1

pi,t − γ /N

1− γ
eηg′(i,Yt )

≤ ln
N∑

i=1

pi,t − γ /N

1− γ

(
1+ ηg′(i, Yt )+ η2g′(i, Yt )

2
)

(since ex ≤ 1+ x + x2 for x ≤ 1)

≤ ln

(
1+ η

1− γ

N∑
i=1

pi,t g′(i, Yt )+ η2

1− γ

N∑
i=1

pi,t g′(i, Yt )
2

)
(since

∑N
i=1(pi,t − γ /N ) = 1− γ )

≤ η

1− γ

N∑
i=1

pi,t g′(i, Yt )+ η2

1− γ

N∑
i=1

pi,t g′(i, Yt )
2

(since ln(1+ x) ≤ x for all x > −1).

Observe now that, by the definition of g′(i, Yt ),

N∑
i=1

pi,t g′(i, Yt ) = g(It , Yt )+ Nβ

and that
N∑

i=1

pi,t g′(i, Yt )
2 =

N∑
i=1

pi,t g′(i, Yt )

(
I{It=i}

g(i, Yt )

pi,t
+ β

pi,t

)

= g′(It , Yt )g(It , Yt )+ β

N∑
i=1

g′(i, Yt )

≤ (1+ β)
N∑

i=1

g′(i, Yt ).

Substituting into the upper bound, summing over t = 1, . . . , n, and writing Ĝn =∑n
t=1 g(It , Yt ), we obtain

ln
Wn

W0
≤ η

1− γ
Ĝn + η

1− γ
nNβ + η2(1+ β)

1− γ

N∑
i=1

G ′
i,n.

Comparing the upper and lower bounds for ln(Wn/W0) and rearranging,

Ĝn − (1− γ ) max
i=1,...,N

G ′
i,n ≥ −

(1− γ ) ln N

η
− nNβ − η(1+ β)

N∑
i=1

G ′
i,n

≥ − ln N

η
− nNβ − η(1+ β)N max

i=1,...,N
G ′

i,n;
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that is,

Ĝn ≥
(
1− γ − η(1+ β)N

)
max

i=1,...,N
G ′

i,n −
ln N

η
− nNβ.

By Lemma 6.7 and the union-of-events bound, with probability at least 1− δ,

max
i=1,...,N

G ′
i,n ≥ max

i=1,...,N
Gi,n − βnN

whenever
√

ln(N/δ)/(nN ) ≤ β ≤ 1. Thus, with probability at least 1− δ, we have

Ĝn ≥
(
1− γ − η(1+ β)N

)
max

i=1,...,N
Gi,n − ln N

η
− nNβ

(
2− γ − η(1+ β)N

)
.

In terms of the losses L̂n = n − Ĝn and Li,n = n − Gi,n , and noting that 1− γ − η(1+
β)N ≥ 0 by the choice of the parameters, the inequality is rewritten as

L̂n ≤
(
1− γ − η(1+ β)N

)
min

i=1,...,N
Li,n + n

(
γ + η(1+ β)N

)+ ln N

η

+ nNβ
(
2− γ − η(1+ β)N

)
≤ min

i=1,...,N
Li,n + n

(
γ + η(1+ β)N

)+ ln N

η
+ 2nNβ,

as desired.

Remark 6.5 (Gains vs. losses). It is worth noting that there exists a fundamental asym-
metry in the non-stochastic multi-armed bandit problem considered here. The fact that our
randomized strategies sample with overwhelming probability the action with the currently
best estimate makes, in a certain sense, the game with losses easier than the game with
gains. The following simple argument explains why: with losses, if the loss of the action
more often sampled starts to increase, its sampling probability drops quickly. With gains, if
some action sampled with overwhelming probability becomes a bad action (yielding small
gains), its sampling probability simply ceases to grow.

Remark 6.6 (A technical note). One may be tempted to try to generalize the argument
of Theorem 6.10 to other problems of prediction under partial monitoring. By doing that,
one quickly sees that the key property of the bandit problem, which allows to obtain the
regret bound of order

√
n, is that the quadratic term

∑N
i=1 pi,t g′(i, Yt )2 can be bounded by

a random variable whose expected value is at most proportional to N . The corresponding
term in the proof of Theorem 6.5, dealing with the general partial monitoring problem,
could only be bounded by something of the order N 2(k∗)2/γ , making the regret bound of
order n2/3 inevitable.

6.9 Lower Bounds for the Bandit Problem

Next we present a simple lower bound for the performance of any multi-armed bandit
strategy. The main result of the section shows that the upper bound derived in the previous
section cannot be improved by more than logarithmic factors. In particular, it is shown
below that the regret of any prediction strategy (randomized or not) in the nonstochastic
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multi-armed bandit problem can be as large as �(
√

nN ). The dependence on time n
is similar to the “full information” case in which the best obtainable bound is of order√

n ln N . The main message of the next theorem is that the multi-armed bandit problem is
essentially more difficult than the simple randomized prediction problem of Section 4.2 in
that the dependence on the number of actions (or experts) is much heavier. This is due to
the fact that, because of the limited information available in bandit problems, an important
part of the effort has to be devoted to exploration, that is, to the estimation of the cumulative
losses of each action.

Theorem 6.11. Let n, N ≥ 1 be such that n > N/(4 ln(4/3)), and assume that the cardi-
nality M = |Y| of the outcome space is at least 2N . There exists a loss function such that
for any, possibly randomized, prediction strategy

sup
yn∈Yn

(
E L̂n − min

i=1,...,N
Li,n

)
≥
√

nN

√
2− 1√

32 ln(4/3)
.

Proof. First we prove the theorem for deterministic strategies. The general case will
follow by a simple argument. The main idea of the proof is to show that there exists a
loss function and random choices of the outcomes yt such that for any prediction strategy,
the expected regret is large (here expectation is understood with respect to the random
choice of the yt ). More precisely, we describe a probability distribution for the random
choice of �(i, yt ). It is easy to see that if M ≥ 2N , then there exists a loss function �

and a distribution for yt such that the distribution of �(i, yt ) is as described next. Let
�(i, yt ) = Xi,t , i = 1, . . . , N , t = 1, . . . , n be random variables whose joint distribution is
defined as follows: let Z be uniformly distributed on {1, . . . , N }. For each i , given Z = i ,
X j,1, . . . , X j,n are conditionally independent Bernoulli random variables with parameter
1/2 if j �= i and with parameter 1/2− ε if j = i , where the value of the positive parameter
ε < 1/4 is specified below. Then obviously, for any (non-randomized) prediction strategy,

sup
yn∈Yn

(
L̂n − min

i=1,...,N
Li,n

)
≥ E

[
L̂n − min

i=1,...,N
Li,n

]
,

where the expectation on the right-hand side is now with respect to the random variables
Xi,t . Thus, it suffices to bound, from below, the expected regret for the randomly chosen
losses. First observe that

E

[
min

i=1,...,N
Li,n

]
=

N∑
j=1

P[Z = j] E

[
min

i=1,...,N
Li,n

∣∣∣∣ Z = j

]

≤ 1

N

N∑
j=1

min
i=1,...,N

E
[

Li,n

∣∣ Z = j
]

= n

2
− nε.

The nontrivial part is to bound, from below, the expected loss E L̂n of an arbitrary prediction
strategy. To this end, fix a (deterministic) prediction strategy, and let It denote the action
it chooses at time t . Clearly, It is determined by the losses X I1,1, . . . , X It−1,t−1. Also, let
Tj =

∑n
t=1 I{It= j} be the number of times action j is played by the strategy. Then, writing
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Ei for E[· | Z = i], we may write

E L̂n = 1

N

N∑
i=1

Ei L̂n (by symmetry)

= 1

N

N∑
i=1

Ei

n∑
t=1

N∑
j=1

X j,t I{It= j}

= 1

N

N∑
i=1

n∑
t=1

N∑
j=1

Ei Ei [X j,t I{It= j} | X I1,1, . . . , X It−1,t−1]

= 1

N

N∑
i=1

n∑
t=1

N∑
j=1

Ei X j,t Ei I{It= j}

(since It is determined by X I1,1, . . . , X It−1,t−1)

= n

2
− ε

1

N

N∑
i=1

Ei Ti .

Hence,

E

[
L̂n − min

i=1,...,N
Li,n

]
≥ ε

(
n − 1

N

N∑
i=1

Ei Ti

)
and the proof reduces to bounding Ei Ti from above, that is, to showing that if ε is suffi-
ciently small, the best action cannot be chosen too many times by any prediction strategy.
We do this by comparing Ei Ti with the expected number of times action i is played
by the same prediction strategy when the distribution of the losses of all actions are
Bernoulli with parameter 1/2. To this end, introduce the i.i.d. random variables X ′j,t such
that P[X ′j,t = 0] = P[X ′j,t = 1] = 1/2 and let T ′i be the number of times action i is played
by the prediction strategy when �( j, yt ) = X ′j,t for all j and t . Similarly, I ′t denotes the index
of the action played at time t under the losses X ′j,t . Writing Pi for the conditional distri-
bution P[· | Z = i], introduce the probability distributions over the set of binary sequences
bn = (b1, . . . , bn) ∈ {0, 1}n ,

q(bn) = Pi
[
X I1,1 = b1, . . . , X In ,n = bn

]
and

q ′(bn) = Pi
[
X ′I ′1,1 = b1, . . . , X ′I ′n ,n = bn

]
.

Note that q ′(bn) = 2−n for all bn . Observe that for any bn ∈ {0, 1}n ,

Ei
[
Ti

∣∣ X I1,1 = b1, . . . , X In ,n = bn
] = E

[
T ′i
∣∣ X ′I ′1,1 = b1, . . . , X ′I ′n ,n = bn

]
,

and therefore we may write

Ei Ti − E T ′i
=

∑
bn∈{0,1}n

q(bn) Ei
[
Ti

∣∣ X I1,1 = b1, . . . , X In ,n = bn
]

−
∑

bn∈{0,1}n
q ′(bn) E

[
T ′i
∣∣ X ′I ′1,1 = b1, . . . , X ′I ′n ,n = bn

]
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=
∑

bn∈{0,1}n

(
q(bn)− q ′(bn)

)
Ei
[
Ti

∣∣ X I1,1 = b1, . . . , X In ,n = bn
]

≤
∑

bn : q(bn )>q ′(bn )

(
q(bn)− q ′(bn)

)
Ei
[
Ti

∣∣ X I1,1 = b1, . . . , X In ,n = bn
]

≤ n
∑

bn : q(bn )>q ′(bn )

(
q(bn)− q ′(bn)

)
(since Ei

[
Ti

∣∣ X I1,1 = b1, . . . , X In ,n = bn
] ≤ n).

The expression on the right-hand side is n times the so-called total variation distance of the
probability distributions q and q ′. The total variation distance may be bounded conveniently
by Pinsker’s inequality (see Section A.2), which states that

∑
bn : q(bn )>q ′(bn )

(
q(bn)− q ′(bn)

) ≤ √1

2
D(q ′‖q),

where

D(q ′‖q) =
∑

bn∈{0,1}n
q ′(bn) ln

q ′(bn)

q(bn)

is the Kullback–Leibler divergence of the distributions q ′ and q. Denoting

qt (bt | bt−1) = Pi
[
X It ,t = bt

∣∣ X I1,1 = b1, . . . , X It−1,t−1 = bt−1
]

and

q ′t (bt | bt−1) = Pi
[
X ′I ′t ,t = bt

∣∣ X ′I ′1,1 = b1, . . . , X ′I ′t−1,t−1 = bt−1
]

by the chain rule for relative entropy (see Section A.2) we have

D(q ′‖q) =
n∑

t=1

1

2t−1

∑
bt−1∈{0,1}t−1

D
(
q ′t (· | bt−1)

∥∥ qt (· | bt−1)
)

=
n∑

t=1

1

2t−1

⎛⎝ ∑
bt−1 : It �=i

D
(
q ′t (· | bt−1)

∥∥ qt (· | bt−1)
)

+
∑

bt−1 : It=i

D
(
q ′t (· | bt−1)

∥∥ qt (· | bt−1)
)⎞⎠

(since bt−1 determines the value It ).

Clearly, if bt−1 is such that It �= i , then q ′t (· | bt−1) and qt (· | bt−1) both are symmetric
Bernoulli distributions and D

(
q ′t (· | bt−1)

∥∥ qt (· | bt−1)
) = 0. On the other hand, if bt−1 is

such that It = i , then q ′t (· | bt−1) is a symmetric Bernoulli distribution and qt (· | bt−1) is
Bernoulli with parameter 1/2− ε. In this case

D
(
q ′t (· | bt−1)

∥∥ qt (· | bt−1)
) = −1

2
ln(1− 4ε2) ≤ 8 ln(4/3)ε2,
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where we used the elementary inequality − ln(1− x) ≤ 4 ln(4/3)x for x ∈ [0, 1/4]. We
have thus obtained

D(q ′‖q) ≤ 8 ln(4/3)ε2
n∑

t=1

1

2t−1

∑
bt−1

I{bt−1 : It=i}.

Summarizing, we have

1

N

N∑
i=1

(
Ei Ti − n

N

)
= 1

N

N∑
i=1

(
Ei Ti − ET ′i

)
≤ 1

N

N∑
i=1

n

√√√√1

2
8 ln(4/3)ε2

n∑
t=1

1

2t−1

∑
bt−1

I{bt−1 : It=i}

≤ n

√√√√ 1

N

N∑
i=1

4 ln(4/3)ε2
n∑

t=1

1

2t−1

∑
bt−1

I{bt−1 : It=i}

(by Jensen’s inequality)

= n

√√√√4 ln(4/3)ε2
n∑

t=1

1

N

N∑
i=1

1

2t−1

∑
bt−1

I{bt−1 : It=i}

= nε

√
4 ln(4/3)n

N
,

and therefore

E

[
L̂n − min

i=1,...,N
Li,n

]
≥ ε

(
n

(
1− 1

N

)
− n3/2ε

√
4 ln(4/3)

N

)
.

Bounding 1/N ≤ 1/2 and choosing ε = √cN/n, with c = 1/(8 ln(4/3)) (which is guar-
anteed to be less than 1/4 by the condition on n), we obtain

E

[
L̂n − min

i=1,...,N
Li,n

]
≥
√

nN

√
2− 1√

32 ln(4/3)

as desired. This finishes the proof for deterministic strategies. To see that the result remains
true for any randomized strategy, just note that any randomized strategy may be regarded as
a randomized choice from a class of deterministic strategies. Since the inequality is true for
any deterministic strategy, it must hold even if we average over all deterministic strategies
according to the randomization. Then, by Fubini’s theorem, we find that the expected value
(with respect to the random choice of the losses) of E L̂n −mini=1,...,N Li,n is bounded
from below by

√
nN (

√
2− 1)/

√
32 ln(4/3) (where in E L̂n the expectation is meant only

with respect to the randomization of the strategy). Thus, because the maximum is at least
as large as the expected value, we conclude that

sup
yn∈Yn

(
E L̂n − min

i=1,...,N
Li,n

)
≥
√

nN

√
2− 1√

32 ln(4/3)
.
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6.10 How to Select the Best Action

So far we have described several regret-minimizing strategies that draw, at each step, an
action according to a certain probability distribution over the possible actions. In this section
we investigate a different scenario in which the randomized strategy performs a single draw
from the set of possible actions and then is forced to use the drawn action at each subsequent
step. However, before performing the draw, the strategy is allowed to observe the outcome
of all actions for an arbitrary amount of time. The goal of the strategy is to pick as early as
possible an action yielding a large total gain. (In this setup it is more convenient to work
with gains rather than losses.)

As a motivating application consider an entrepreneur who wants to start manufacturing
a certain product. The production line can be configured to manufacture one of N different
products. As reconfiguring the line has a certain fixed cost, the entrepreneur wants to choose
a product whose sales will yield a total profit of at least d. The decision is based on a market
analysis reporting the temporal evolution of potential sales for each of the N products. At
the end of this “surveillance phase,” a single product is chosen to be manufactured. We cast
this example in our game-theoretic setup by assigning gain xi,t to action i at time t if xi,t is
the profit of the entrepreneur originating from the sales of product i in the t th time interval.
If the t-th time interval falls in the surveillance phase, then xi,t is the profit the entrepreneur
would have obtained had he chosen to manufacture product i at any time earlier than t (we
make the simplifying assumption that each such potential profit is measured exactly in the
surveillance phase).

In this analysis we only consider actions yielding binary gains; that is, xi,t ∈ {0, 1}
for each t = 1, 2 . . . and i = 1, . . . , N . We assume gains are generated in the oblivious
opponent model, specifying the binary gain of each action i = 1, . . . , N at each time step
t = 1, 2, . . . so that every action has a finite total gain. That is, for every i there exists ni

such that xi,t = 0 for all t > ni . Let Gi,t = xi,1 + · · · + xi,t , and let Gi = Gi,ni be the total
gain of action i . We write G∗ to denote maxi Gi . Because we are restricted to the oblivious
opponent model, we may think of a gain assignment xi,t ∈ {0, 1} for t = 1, . . . , ni and
i = 1, . . . , N being determined at the beginning of the game and identify the choice of the
opponent with the choice of a specific gain assignment.

Given an arbitrary and unknown gain assignment, at each time t = 1, 2, . . . a selection
strategy observes the tuple (x1,t , . . . , xN ,t ) of action gains and decides whether to choose
an action or not. If no action is chosen, then the next tuple is shown, otherwise, the game
ends. Suppose the game ends at time step t when the strategy chooses action k. Then the
total gain of the strategy is the remaining gain Gk − Gk,t of action k (all gains up to time t
are lost).

The question we investigate here is how large the best total gain G∗ has to be such that
some randomized selection algorithm guarantees (with large probability) a gain of at least
d, where d is a fixed quantity. Obviously, G∗ has to be at least d, and the larger G∗ the
“easier” it is to select an action with a large gain. On the other hand, it is clear intuitively
that G∗ has to be substantially larger than d. Just observe that any selection strategy has a
gain of d with probability at most 1/N on some game assignment satisfying G∗ = d. (Let
xi,t = 1 for all i and t ≤ d − 1, and let xi,d = 0 for all but one action i .) The main result
of this section shows that there exists a strategy gaining d with a large probability on every
gain assignment satisfying G∗ = �(d ln N ). More precisely, we show that the following
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randomized selection strategy, for any given d ≥ 1, gains at least d with probability at least
1− δ on any gain assignment such that G∗ = �

(
d
δ

ln N
δ

)
.

A RANDOMIZED STRATEGY TO SELECT
THE BEST ACTION

Parameters: real numbers a, b > 0.

Initialization: Gi,0 = 0 for i = 1, . . . , N .

For each round t = 1, 2, . . .

(1) for each j = 1, . . . , N observe x j,t and compute G j,t = G j,t−1 + x j,t ;
(2) determine the subset Nt ⊆ {1, . . . , N } of actions j such that x j,t = 1;
(3) for each j ∈ Nt draw a Bernoulli random variable Z j = Z j,G j,t such that

P[Z j ] = min{1, ea G j,t−b};
(4) if Z1 = 0, . . . , Z N = 0, then continue; otherwise output the smallest index

i ∈ Nt such that Zi = 1 and exit.

This bound cannot be significantly improved. In fact, we show that no selection strategy
can gain more than d with probability at least 1− δ on all gain assignments satisfying
G∗ = O

(
d
δ

ln N
)
. Our randomized selection strategy uses, for each action i , independent

Bernoulli random variables Zi,1, Zi,2, . . . such that Zi,k has parameter

p(k) = min{1, ea k−b}
for a, b > 0 (to be specified later).

Theorem 6.12. For all d ≥ 1 and 0 < δ < 1, if the randomized strategy defined above is
run with parameters a = δ/(6d) and b = ln(6d N/δ), then, with probability at least 1− δ,
some action i with a remaining gain of at least d will be selected whenever the gain
assignment is such that

G∗ ≥ d

(
1+ 6

δ
ln

(
6N

δ
ln

3

δ

))
.

Proof. Fix a gain assignment such that G∗ satisfies the condition of the theorem. We work
in the sample space generated by the independent random variables Zi,s for i = 1, . . . , N
and s ≥ 1. For each i and for each s > ni we set Zi,s = 0 with probability 1 to simplify
notation. Thus, Zi,s can only be equal to 1 if s equals Gi,t for some t with xi,t = 1. Hence
the sample space may be taken to be � = {0, 1}M , where M ≤ N G∗ is the total number of
those xi,t that are equal to 1.

Say that an action i is up at time t if xi,t = 1. Say that an action i is marked at time t if
i is up at time t and Zi,Gi,t = 1. Hence, the strategy selects action i at time t if i is marked
at time t , no other action j < i is marked at time t , and no action has been marked before
time t .

Let A ⊂ � be the event such that Z j,s = 0 for j = 1, . . . , N and s = 1, . . . , d. Let
Wi,t ⊂ � be the event such that (i) action i is the only action marked at time t and (ii)
Z j,s = 0 for all j = 1, . . . , N and all d < s < G j,t . Note that Wi,t and W j,t are disjoint for
i �= j and Wi,t is empty unless Gi > d. Let W =⋃i,t Wi,t . Define the one-to-one mapping
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µ with domain A ∩W that, for each i and t , maps each elementary event ω ∈ A ∩Wi,t to
the elementary event µ(ω) such that (recall that p(k) = min{1, ea k−b})

� if p(Gi,t − d) ≥ 1/2, then, µ(ω) is equal to ω except for the component of ω corre-
sponding to Zi,Gi,t−d , which is set to 1.

� if p(Gi,t − d) < 1/2, then µ(ω) is equal to ω except for the component of Zi,Gi,t , which
is set to 0, and the component of Zi,Gi,t−d , which is set to 1.

(Note that for all ω ∈ A ∩Wi,t , Zi,Gi,t = 1 and Zi,Gi,t−d = 0 by definition.)
The realization of the event µ(A ∩W ) implies that the strategy selects an action i at

time s such that Gi − Gi,s ≥ d (we call this a winning event). In fact, A ∩ Wi,t implies
that no action other than i is selected before time t . Hence, Zi,Gi,t−d = 1 ensures that i is
selected at time s < t and Gi − Gi,s ≥ d.

We now move on to lower bounding the probability of µ(A ∩ Wi,t ) in terms of
P
[
A ∩ Wi,t

]
. We distinguish three cases.

Case 1. If p(Gi,t − d) = 1, then P
[
µ(A ∩ Wi,t )

]
> P

[
A ∩ Wi,t

] = 0.

Case 2. If 1/2 ≤ p(Gi,t − d) < 1, then

P
[
µ(A ∩ Wi,t )

] = p(Gi,t − d)

1− p(Gi,t − d)
P
[
A ∩ Wi,t

]
,

and using 1/2 ≤ p(Gi,t − d) < 1 together with e−ad > 0,

p(Gi,t − d)

1− p(Gi,t − d)
= e−ad ea Gi,t−b

1− e−ad ea Gi,t−b
≥ e−ad/2

1− e−ad/2
.

Case 3. If p(Gi,t − d) < 1/2, then

P
[
µ(A ∩ Wi,t )

] = p(Gi,t − d)

1− p(Gi,t − d)

1− p(Gi,t )

p(Gi,t )
P
[
A ∩ Wi,t

]
.

Using p(Gi,t − d) < 1/2 and e−ad ≤ 1, we get

p(Gi,t − d)

1− p(Gi,t − d)

1− p(Gi,t )

p(Gi,t )
= e−ad 1− p(Gi,t )

1− e−ad p(Gi,t )
≥ e−ad/2

1− e−ad/2
.

Now, because

e−ad/2

1− e−ad/2
= e−ad

2− e−ad
≥ 1− ad

1+ ad
≥ 1− 2ad,

exploiting the independence of A and W we get

P [µ(A ∩ W )] ≥ (1− 2ad) P[A] P[W ].



172 Prediction with Limited Feedback

We now proceed by lower bounding the probabilities of the events A and W . For A we get

P[A] ≥
N∏

j=1

(
1− p(min{d, n j })

)min{d,n j }

≥
N∏

j=1

(
1− ea min{d,n j }−b

)min{d,n j }

≥ (1− ead−b
)d N

≥ 1− d N ead−b.

To lower bound P[W ], first observe that P[W ] ≥ 1− (1− p(G∗ − d))d . Indeed, the com-
plement of W implies that no action is ever marked after it has been up for d times, and this
in turn implies that even the action that gains G∗ is not marked the last d times it has been
up (here, without loss of generality, we implicitly assume that G∗ ≥ 2d). Furthermore,

1− (1− p(G∗ − d)
)d = { 1 if p(G∗ − d) = 1

1− (1− ea(G∗−d)−b
)d

if p(G∗ − d) < 1.

Piecing all together, we obtain

P [µ(A ∩ W )]

≥ (1− 2ad)
(
1− d N ead−b

) (
1− (1− ea(G∗−d)−b

)d)
≥ 1− 2ad − d N ead−b − (1− ea(G∗−d)−b

)d
.

To complete the proof, note that the setting a = δ/(6d) implies 2ad = δ/3. Moreover,
the setting b = ln(6d N/δ) implies d N ead−b ≤ δ/3. Finally, using 1− x ≤ e−x for all x ,
straightforward algebra yields

(
1− ea(G∗−d)−b

)d ≤ δ/3 whenever

G∗ ≥ d

(
1+ 6

δ
ln

(
6N

δ
ln

3

δ

))
.

This concludes the proof.

We now state and prove the lower bound.

Theorem 6.13. Let N ≥ 2, d ≥ 1, and 0 < δ < (ln N )/(ln N + 1). For any selection strat-
egy there exists a gain assignment with

G∗ =
⌊

1− δ

δ
ln N

⌋
d

such that, with probability at least 1− δ, the gain of the strategy is not more than d.

Proof. As in the proof of Theorem 6.11 in Section 6.9, we prove the lower bound with
respect to a random gain assignment and a possibly deterministic selection strategy. Then
we use Fubini’s theorem to turn this into a lower bound with respect to a deterministic
gain assignment and a randomized selection strategy. We begin by specifying a probability
distribution over gain assignments. Each action i satisfies xi,t = 1 for t = 1, . . . , Ti − 1
and xi,t = 0 for all t ≥ Ti , where T1, . . . , TN are random variables specified as follows. Say
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that an action i is alive at time t if t < Ti and dead otherwise. Immediately before each
of the time steps t = 1, 1+ d, 1+ 2d, . . . a random subset of the currently alive actions is
chosen and all actions in this subset become dead. The subset is chosen so that for each k =
1, 2, . . . there are exactly Nk = �N 1−k/m� actions alive at time steps 1+ (k − 1)d, . . . , kd,
where the integer m will be determined by the analysis. Eventually, during time steps
1+ (m − 1)d, . . . , md only one action remains alive (as we have Nm = 1), and from
t = 1+ md onward all actions are dead. Note that G∗ = md with probability 1.

It is easy to see that the strategy maximizing the probability, with respect to the random
generation of gains, of choosing an action that survives for more than d time steps should
select (it does not matter whether deterministically or probabilistically) an action among
those still alive in the interval 1+ (m − 2)d, . . . , (m − 1)d when Nm−1 = �N 1/m� actions
are still alive. Set

m =
⌊

1− δ

δ
ln N

⌋
.

The assumption δ < (ln N )/(ln N + 1) guarantees that m ≥ 1 (if m = 1, then the optimal
strategy chooses a random action at the very beginning of the game). Because Nm = 1, the
probability of picking the single action that survives after time (m − 1)d is at most

N−1/m ≤ N− δ/(1−δ)
ln N

= e−δ/(1−δ)

≤ eln(1−δ) (using ln(1+ x) ≤ x for all x > −1)

≤ 1− δ.

Following the argument in the proof of Theorem 6.11, we view a randomized selec-
tion strategy as a probability distribution over deterministic strategies and then apply
Fubini’s theorem. Formally, for any randomized selection strategy achieving a total gain
of Ĝ,

inf
µ

E
′ [

I{Ĝ>d}
] ≤ E E

′ [
I{Ĝ>d}

] = E
′
E
[
I{Ĝ>d}

] ≤ sup
S

E
[
I{Ĝ>d}

] ≤ 1− δ,

where µ ranges over all gain assignments, E
′ is the expectation taken with respect to

the selection strategy’s internal randomization, E is the expectation taken with respect to
the random choice of the gain assignment, and S ranges over all deterministic selection
strategies.

6.11 Bibliographic Remarks

The problem of label efficient prediction was introduced by Helmbold and Panizza [155]
in the restricted setup when losses are binary valued and there exists an action with zero
cumulative loss. The material of Sections 6.2 and 6.3 is due to Cesa-Bianchi, Lugosi, and
Stoltz [55]. However, the proof of Theorem 6.4 is substantially different from the proof
appearing in [55] and borrows ideas from analogous results from statistical learning theory
(see Devroye and Lugosi [89] and also Devroye, Györfi, and Lugosi [88]).

The notion of partial monitoring originates in game theory and was considered,
among others, by Mertens, Sorin, and Zamir [216], Rustichini [251], and Mannor and
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Shimkin [208]. Weissman and Merhav [308] and Weissman, Merhav, and Somekh-
Baruch [309] consider various prediction problems in which the forecaster only observes a
noisy version of the true outcomes. These may be considered as special partial monitoring
problems with random feedback (see Exercises 6.11 and 6.12).

Piccolboni and Schindelhauer [234] rediscovered partial monitoring as a sequential
prediction problem. Later, Cesa-Bianchi, Lugosi, and Stoltz [56] extended the results
in [234] and addressed the problem of optimal rates. See also Auer and Long [14] for
an analysis of some special cases of partial monitoring in prediction problems.

The forecaster strategy studied in Section 6.5 was defined by Piccolboni and Schindel-
hauer [234], who showed that its expected regret has a sublinear growth. The optimal rate of
convergence and pointwise behavior of this strategy, stated in Theorems 6.5 and 6.6, were
established in [56]. Piccolboni and Schindelhauer [234] describe sufficient and necessary
conditions under which Hannan consistency is achievable (see also [56]). Rustichini [251])
and Mannor and Shimkin [208] consider a more general setup in which the feedback is
not necessarily a deterministic function of the outcome and the action chosen by the fore-
caster, but it may be random with a distribution depending on the action/outcome pair.
Rustichini establishes a general existence theorem for Hannan-consistent strategies in this
more general framework, though he does not offer an explicit prediction strategy. Mannor
and Shimkin also consider cases when Hannan consistency may not be achieved, give a
partial solution, and point out important difficulties in such cases.

The apple tasting problem was considered by Helmbold, Littlestone, and Long [154] in
the special case when one of the actions has zero cumulative loss.

Multi-armed bandit problems were originally considered in a stochastic setting (see
Robbins [245] and Lai and Robbins [189]). Several variants of the basic problems have been
studied, see, for example, Berry and Fristedt [26] and Gittins [129]. The nonstochastic bandit
problem studied here was first considered by Baños [21] (see also Megiddo [212]). Hannan-
consistent strategies were constructed by Foster and Vohra [106], Auer, Cesa-Bianchi,
Freund, and Schapire [12], and Hart and Mas Colell [145, 147], see also Fudenberg and
Levine [119]. Hannan consistency of the potential-based strategy analyzed in Section 6.7
was proved by Hart and Mas-Colell [147] in the special case of the quadratic potential. The
algorithm analyzed by Auer, Cesa-Bianchi, Freund, and Schapire [12] uses the exponential
potential and is a simple variant of the strategy of Section 6.7. The multi-armed bandit
strategy of Section 6.8 and the corresponding performance bound is due to Auer et al.
[12], see also [10] (though the result presented here is an improved version). Theorem 6.11
is due to Auer et al. [12], though the main change-of-measure idea already appears in
Lai and Robbins [189]. For related lower bounds we refer to Auer, Cesa-Bianchi, and
Fischer [11], and Kulkarni and Lugosi [188]. Extensions of the nonstochastic bandits to
a scenario where the regret is measured with respect to sequences of actions, instead of
single actions (extending to the bandit framework the results on tracking actions described
in Chapter 5), have been considered in [12].

Our formulation and analysis of the problem of selecting the best action is based on
the paper by Awerbuch, Azar, Fiat, and Leighton [18]. Considering a natural extension of
the setup described here, in the same paper Awerbuch et al. show that with probability
1− O(1/N ) one can achieve a total gain of d ln N on any gain assignment satisfying
G∗ ≥ C d ln N whenever the selection strategy is allowed to change the selected action at
least logC N times for all (sufficiently large) constants C. By slightly increasing the number
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of allowed changes, one can also drop the requirement (implicit in Theorem 6.12) that an
estimate of D∗ is preliminarily available to the selection strategy.

6.12 Exercises

6.1 Consider the “zero-error” problem described at the beginning of Section 2.4, that is, when
Y = D = {0, 1}, �( p̂, y) = |̂p − y| ∈ {0, 1} and mini=1,...,N Li,n = 0. Consider a label efficient
version of the “halving” algorithm described is Section 2.4, which asks for a label randomly
similarly to the strategy of Section 6.2. Show that if the expected number of labels asked by
the forecaster is m, the expected number of mistakes it makes is bounded by (n/m) log2 N
(Helmbold and Panizza [155].) Derive a corresponding mistake bound that holds with large
probability.

6.2 (Switching actions not too often) Prove that in the oblivious opponent model, the lazy label
efficient forecaster achieves the regret bound of Theorem 6.1 with the additional feature that
with probability 1, the number of changes of an action (i.e., the number of steps where It �= It+1)
is at most the number of queried labels.

6.3 (Continued) Strengthen Theorem 6.2 in the same way.

6.4 Let m < n. Show that there exists a label efficient forecaster that, with probability at least 1− δ,
reveals at most m labels and has an excess loss bounded by

L̂n − L∗n ≤ c

(√
nL∗n ln(4N/δ)

m
+ n ln(4N/δ)

m

)
,

where L∗n = mini=1,...,N Li,n and c is a constant. Note that this inequality refines Theorem 6.2
in the spirit of Corollary 2.4 and, in the special case of L∗n = 0, matches the order of magnitude
of the bound of Exercise 6.1 (Cesa-Bianchi, Lugosi, and Stoltz [55].)

6.5 Complete the details of Hannan-consistency under the assumptions of Theorem 6.6. The pre-
diction algorithm of the theorem assumes that the total number n of rounds is known in advance,
because both η and γ depend on n. Show that this assumption may be dropped and construct a
Hannan-consistent procedure in which η and γ only depend on t . (Cesa-Bianchi, Lugosi, and
Stoltz [56].)

6.6 Prove Theorem 6.7.

6.7 (Fast rates in partial monitoring problems) Consider the version of the dynamic pricing
problem described in Section 6.4 in which the feedback matrix H is as before but the losses are
given by �(i, j) = |i − j |/N . Construct a prediction strategy for which, with large probability,

1

n

(
n∑

t=1

�(It , yt )− min
i=1,...,N

n∑
t=1

�(i, yt )

)
= O

(
n−1/2

)
.

Hint: Observe that the feedback reveals the value of the “derivative” of the loss and use an
algorithm based on the gradient of the loss, as described in Section 2.5.

6.8 (Consistency in partial monitoring) Consider the prediction problem with partial monitoring in
the special case when the predictor has N = 2 actions. (Note that the number M of outcomes may
be arbitrary.) Assume that the 2× M loss matrix L is such that none of the two actions dominates
the other in the sense that it is not true that for some i = 1, 2 and i ′ �= i , �(i, j) ≤ �(i ′, j) for
all j = 1, . . . , M . (If one of the actions dominates the other, Hannan consistency is trivial to
achieve by playing always the dominating action.) Show that there exists a Hannan-consistent
procedure if and only if the feedback is such that a feedback matrix H can be constructed such
that L = K H for some 2× 2 matrix K. Hint: If L = K H, then Theorem 6.6 guarantees Hannan
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consistency. It suffices to show that if for all possible encoding of the feedback by real numbers
the rank of H is 1, then Hannan consistency cannot be achieved.

6.9 (Continued) Consider now the case when M = 2, that is, the outcomes are binary but N may
be arbitrary. Assume again that there is no dominating action. Show that there exists a Hannan
consistent procedure if and only if for some version of H we may write L = K H for some
N × N matrix K. Hint: If the rank of L is less than 2, then there is a dominating action, so that
we may assume that the rank of L is 2. Next show that if for all versions of H, the rank of H is
at most 1, then all rows of H are constants and therefore there is no useful feedback.

6.10 Consider the partial monitoring prediction problem. Assume that M = N and the loss matrix
L is the identity matrix. Show that if some columns of the feedback matrix H are identi-
cal then Hannan consistency is impossible to achieve. Partition the set of possible outcomes
{1, . . . , M} into k sets S1, . . . , Sk such that in each set the columns of the feedback matrix
H corresponding to the outcomes in the set are identical. Denote the cardinality of these sets
by M1 = |S1|, . . . , Mk = |Sk |. (Thus, M1 + · · · + Mk = M .) Form an N × k matrix H′ whose
columns are the different columns of the feedback matrix H such that the j th column of H′ is
the column of H corresponding to the outcomes in the set Sj , j = 1, . . . , k. Let L′ be the N × k
matrix whose j th column is the average of the M j columns of L corresponding to the outcomes
in Sj , j = 1, . . . , k. Show that if there exists an N × N matrix K with L′ = K H′, then there is
randomized strategy such that

1

n

⎛⎝ n∑
t=1

�(It , yt )− min
i=1,...,N

n∑
t=1

k∑
j=1

I{yt∈S j }
1

M j

M j∑
m=1

�(i, m)

⎞⎠ = o(1),

with probability 1. (See Rustichini [251] for a more general result.)

6.11 (Partial monitoring with random feedback) Consider an extension of the prediction model
under partial monitoring described in Section 6.4 such that the feedback may not be a simple
function of the action and the outcome but rather a random variable. More precisely, denote by
�(S) the set of all probability distributions over the set of signals S. The signaling structure
is formed by a collection of N M probability distributions µ(i, j) over S for i = 1, . . . , N and
j = 1, . . . , M . At each round, the forecaster now observes a random variable H (It , yt ), drawn
independently from all the other random variables, with distribution µ(It ,yt ).

Denote by E(i, j) the expectation of µ(i, j) and by E the N × M matrix formed by these
elements. Show that if there exists a matrix K such that L = K E, then a Hannan-consistent
forecaster may be constructed. Hint: Consider the modification of the forecaster of Section 6.5
defined by the estimated losses

�̃(i, yt ) = k(i, It )H (It , yt )

pIt ,t
i = 1, . . . , N .

6.12 (Noisy observation) Consider the forecasting problem in which the outcome sequence is binary,
that is, Y = {0, 1}, expert i predicts according to the real number fi,t ∈ [0, 1] (i = 1, . . . , N ),
and the loss of expert i is measured by the absolute loss �( fi,t , yt ) = | fi,t − yt | (as in Chapter 8).
Suppose that instead of observing the true outcomes yt , the forecaster only has access to a “noisy”
version yt ⊕ Bt , where ⊕ denotes the xor operation (i.e., addition modulo 2) and B1, . . . , Bn

are i.i.d. Bernoulli random variables with unknown parameter 0 < p < 1/2. Show that the
simple exponentially weighted average forecaster achieves an expected regret

E L̂n − min
i=1,...,N

E Li,n ≤ 1

1− 2p

√
n

2
ln N .

(See Weissman and Merhav [308] and Weissman, Merhav, and Somekh-Baruch [309] for various
versions of the problem of noisy observations.)
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6.13 (Label efficient partial monitoring) Consider the label efficient version of the partial moni-
toring problem in which, during the n rounds of the game, the forecaster can ask for feedback
at most m times at periods of his choice. Assume that the loss and feedback matrices satisfy
L = K H for some N × N matrix K = [ki, j ], with k∗ = max{1, maxi, j |k(i, j)|}. Construct a
forecasting strategy whose expected regret satisfies

E L̂n − min
i=1,...,N

E Li,n ≤ cn
(Nk∗)2/3(ln N )1/3

m1/3
,

where c is a constant. Derive a similar upper bound for the regret that holds with high probability.

6.14 (Internal regret minimization under partial monitoring) Consider a partial monitoring prob-
lem in which the loss and feedback matrices satisfy L = K H for some N × N matrix K = [ki, j ],
with k∗ = max{1, maxi, j |k(i, j)|}. Construct a forecasting strategy such that, with probability
at least 1− δ, the internal regret

max
i, j=1,...,N

n∑
t=1

pi,t

(
�(i, Yt )− �( j, Yt )

)
is bounded by a constant times

(
(k∗)2 N 5 ln(N/δ)n2

)1/3
. (Cesa-Bianchi, Lugosi, and Stoltz [56].)

Hint: Use the conversion described at the end of Section 4.4 and proceed similarly as in
Section 6.5.

6.15 (Internal regret minimization in the bandit setting) Construct a forecasting strategy that
achieves, in the setting of the bandit problem, an internal regret of order

√
nN ln(N/δ). Hint:

Combine the conversion used in the previous exercise with the techniques of Section 6.8.

6.16 (Compound actions and partial monitoring) Let S be a set of compound actions (i.e.,
sequences i = (i1, . . . , in) of actions it ∈ {1, . . . , N }) of cardinality |S| = M . Consider a partial
monitoring problem in which the loss and feedback matrices satisfy L = K H for some N × N
matrix K. Construct a forecaster strategy whose expected regret (with respect to the S) satisfies

E

n∑
t=1

�(It , Yt )−min
i∈S

E

n∑
t=1

�(it , Yt ) ≤ 3
(

k∗
√

e − 2
)2/3

(Nn)2/3(ln M)1/3.

(Note that the dependence on the number of compound actions is only logarithmic!) Derive a
corresponding bound that holds with high probability. Hint: Consider the forecaster that assigns
a weight to every compound action i = (i1, . . . , in) ∈ S updated by w i,t = w i,t−1e−η�̃(it ,Yt ) (where
�̃ is the estimated loss introduced in Section 6.5) and draws action i with probability

pi,t = (1− γ )

∑
i : it=i w i,t∑

i∈S w i,t
+ γ

N
.

6.17 (The stochastic multi-armed bandit problem) Consider the multi-armed bandit problem under
the assumption that for each i ∈ {1, . . . , N }, the losses �(i, y1), �(i, y2), . . . form an indepen-
dent, identically distributed sequence of random variables such that E |�(i, y1)| <∞ for all i .
Construct a nonrandomized prediction scheme which guarantees that

1

n

n∑
t=1

�(It , yt )− 1

n
min

i=1,...,N

n∑
t=1

�(i, yt ) → 0,

with probability 1.

6.18 (Continued) Consider the setup of the previous example under the additional assumption that
the losses �(i, yt ) take their values in the interval [0, 1]. Consider the prediction rule that, at
time t , chooses an action i ∈ {1, . . . , N } by minimizing∑t−1

s=1 I{Is=i}�(i, ys)∑t−1
s=1 I{Is=i}

+
√

2 ln t∑t−1
s=1 I{Is=i}

.
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Prove that the expected number of times any action i with

E �(i, yt ) > min
j=1,...,N

E �( j, yt )

is played is bounded by a constant times ln n. (Auer, Cesa-Bianchi, and Fischer [11], see also
Lai and Robbins [189] for related results).

6.19 Prove Theorem 6.9. Hint: First observe that it suffices to prove that maxi=1,...,N R̃i,n = o(n) with
probability 1. This follows from the fact that for any fixed i ,

1

n

(
n∑

t=1

�(It , yt )−
n∑

t=1

�(i, yt )

)
= Ri,n

n
= R̃i,n

n
+ 1

n

n∑
t=1

(
ri,t − r̃i,t

)
,

and from the Hoeffding–Azuma inequality. Next bound maxi=1,...,N R̃i,n by an appropriate
modification of Theorem 2.1. The additional difficulty is that the Blackwell condition is not
satisfied and the first-order term cannot be ignored. Use Taylor’s theorem to bound �(R̃t ) in
terms of �(R̃t−1) to get

�(R̃n)

≤ �(0)+
n∑

t=1

E
[∇�(R̃t−1) · r̃t

∣∣ I1, . . . , It−1

]+ 1

2

n∑
t=1

C (̃rt )

+
n∑

t=1

(∇�(R̃t−1) · r̃t − E
[∇�(R̃t−1) · r̃t

∣∣ I1, . . . , It−1

])
. (6.8)

Because maxi R̃i,n ≤ φ−1(ψ−1(�(R̃n))), it suffices to show that the last three terms on the
right-hand side are of smaller order than ψ(φ(n)), almost surely.

To bound the first of the three terms, use the unbiasedness of the estimator r̃t to show

E
[∇�(R̃t−1) · r̃t

∣∣ I1, . . . , It−1

] ≤ γt

N∑
i=1

∇i�(R̃t−1).

Because the components of the regret vector satisfy R̃i,t−1 ≤ t − 1, assumption (iii) guarantees
that

n∑
t=1

E
[∇�(R̃t−1) · r̃t

∣∣ I1, . . . , It−1

] = o(ψ(φ(n))).

To bound the last term on the right-hand side of (6.8), observe that

∇�(R̃t−1) · r̃t ≤ max
i
|̃ri,t |

N∑
j=1

∇i�(R̃t−1) ≤ N

γt

N∑
j=1

∇i�(R̃t−1)

and use the Hoeffding–Azuma inequality.

6.20 Consider the potential-based strategy for the multi-armed bandit problem of Section 6.7 with
the time-varying exponential potential

�t (u) = 1

ηt
ln

(
N∑

i=1

eηt ui

)
,

where ηt > 0 may depend on t . Combine the proof of Theorem 6.9 with the techniques of
Section 2.3 to determine values of ηt and γt that lead to a Hannan-consistent strategy.
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6.21 (The tracking problem in the bandit setting) Consider the problem of tracking the best expert
studied in Section 5.2. Extend Theorem 5.2 by bounding the expected regret

E

[
n∑

t=1

�(It , Yt )−
n∑

t=1

�(it , Yt )

]
for any action sequence i1, . . . , in under the bandit assumption: after making each prediction, the
forecaster learns his own loss �(It , Yt ) but not the value of the outcome Yt (Auer, Cesa-Bianchi,
Freund, and Schapire [12]). Hint: To bound the expected regret, it is enough to consider the
forecaster of Section 6.7, drawing action i at time t with probability

pi,t = (1− γ )
e−ηL̃i,t−1∑N

k=1 e−ηL̃k,t−1
+ γ

N

where L̃ i,t =
∑t

s=1 �̃(i, Yt ) and

�̃(i, Yt ) =
{

�(i, Yt )/pi,t if It = i
0 otherwise.

To get the right dependence on the horizon n in the bound, analyze this forecaster using parts
of the proof of Theorem 6.10 combined with the proof of Theorem 5.2.

6.22 In the setup described in Section 6.10, at each time step t before the time step where an action is
drawn, the selection strategy observes the gains x1,t , . . . , xN ,t of all the actions. Prove a “bandit”
variant of Theorem 6.12 where the selection strategy may only observe the gain xk,t of a single
action k, where the index k of the action to observe is specified by the strategy.
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Prediction and Playing Games

7.1 Games and Equilibria

The prediction problems studied in previous chapters have been often represented as
repeated games between a forecaster and the environment. Our use of a game-theoretic
formalism is not accidental: there exists an intimate connection between sequential pre-
diction and some fundamental problems belonging to the theory of learning in games. We
devote this chapter to the exploration of some of these connections.

Rather than giving an exhaustive account of the area of learning in games, we only focus
on “regret-based” learning procedures (i.e., situations in which the players of the game base
their strategies only on regrets they have suffered in the past) and our fundamental concern
is whether such procedures lead to equilibria. We also limit our attention to finite strategic
or normal form games.

In this introductory section we present the basic definitions of the games we consider,
describe some notions of equilibria, and introduce the model of playing repeated games
that we investigate in the subsequent sections of this chapter.

K -Person Normal Form Games
A (finite) K -person game given in its strategic (or normal) form is defined as follows.
Player k (k = 1, . . . , K ) has Nk possible actions (or pure strategies) to choose from, where
Nk is a positive integer. If the action of each player k = 1, . . . , K is ik ∈ {1, . . . , Nk} and
we denote the K -tuple of all the players’ actions by i = (i1, . . . , iK ) ∈⊗K

k=1{1, . . . , Nk},
then the loss suffered by player k is �(k)(i), where �(k) :

⊗K
k=1{1, . . . , Nk} → [0, 1] for each

k = 1, . . . , K are given loss functions for all players. Note that, slightly deviating from
the usual game-theoretic terminology, we consider losses as opposed to the more standard
payoffs. The reader should keep in mind that the goal of each player is to minimize his loss,
which is the same as maximizing payoffs if one defines payoffs as negative losses. We use
this convention to harmonize notation with the rest of the book.

A mixed strategy for player k is a probability distribution p(k) = (p(k)
1 , . . . , p(k)

Nk
) over

the set {1, . . . , Nk} of actions. When mixed strategies are used, players randomize, that is,
choose an action according to the distribution specified by the mixed strategy. Denote the
action played by player k by I (k). Thus, I (k) is a random variable taking values in the set
{1, . . . , Nk} and distributed according to p(k). Let I = (I (1), . . . , I (k)) denote the K -tuple of
actions played by all players. If the random variables I (1), . . . , I (k) are independent (i.e., the
players randomize independently of each other), we denote their joint distribution by π . That
is, π is the joint distribution over the set

⊗K
k=1{1, . . . , Nk} of all possible K -tuples of actions

180
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obtained by the product of the mixed strategies p(1), . . . , p(K ). The product distribution π

is called a mixed strategy profile. Thus, for all i = (i1, . . . , ik) ∈⊗K
k=1{1, . . . , Nk},

π (i) = P[I = i] = p(1)
i1
× · · · × p(K )

iK
.

The expected loss of player k is

π�(k) def= E �(k)(I)

=
∑

i∈⊗K
k=1{1,...,Nk }

π (i) �(k)(i)

=
N1∑

i1=1

· · ·
NK∑

iK=1

p(1)
i1
× · · · × p(K )

iK
�(k)(i1, . . . , iK ).

Nash Equilibrium
Perhaps the most important notion of game theory is that of a Nash equilibrium. A mixed
strategy profile π = p(1) × · · · × p(K ) is called a Nash equilibrium if for all k = 1, . . . , K
and all mixed strategies q(k), if π ′k = p(1) × · · · × q(k) × · · · × p(K ) denotes the mixed strat-
egy profile obtained by replacing p(k) by q(k) and leaving all other players’ mixed strategies
unchanged, then

π�(k) ≤ π ′k�
(k).

This means that if π is a Nash equilibrium, then no player has an incentive of changing
his mixed strategy if all other players do not change theirs (i.e., every player is happy).
A celebrated result of Nash [222] shows that every finite game has at least one Nash
equilibrium. (The proof is typically based on fixed-point theorems.) However, a game may
have multiple Nash equilibria, and the set N of all Nash equilibria can have a quite complex
structure.

Two-Person Zero-Sum Games
A simple but important special class of games is the class of two-person zero-sum games.
These games are played by two players (i.e., K = 2) and the payoff functions are such that
for each pair of actions i = (i1, i2), where i1 ∈ {1, . . . , N1} and i2 ∈ {1, . . . , N2}, the losses
of the two players satisfy

�(1)(i) = −�(2)(i).

Thus, in such games the objective of the second player (often called column player) is to
maximize the loss of the first player (the row player). To simplify notation we will just write
� for �(1), replace N1, N2 by N and M , and write (i, j) instead of (i1, i2). Mixed strategies
of the row and column players will be denoted by p = (p1, . . . , pN ) and q = (q1, . . . , qM ).
It is immediate to see that the product distribution π = p× q is a Nash equilibrium if and
only if for all p′ = (p′1, . . . , p′N ) and q′ = (q ′1, . . . , q ′M ),

N∑
i=1

M∑
j=1

pi q ′j �(i, j) ≤
N∑

i=1

M∑
j=1

pi q j �(i, j) ≤
N∑

i=1

M∑
j=1

p′i q j �(i, j).
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Introducing the simplifying notation

�(p, q) =
N∑

i=1

M∑
j=1

pi q j �(i, j)

the above is equivalent to

max
q′

�(p, q′) = �(p, q) = min
p′

�(p′, q).

This obviously implies that

max
q′

�(p, q′) ≤ max
q′

min
p′

�(p′, q′),

and therefore the existence of a Nash equilibrium p× q implies that

min
p′

max
q′

�(p′, q′) ≤ max
q′

min
p′

�(p′, q′).

On the other hand, clearly, for all p and q′, �(p, q′) ≥ minp′ �(p′, q′) and therefore for all
p, maxq′ �(p, q′) ≥ maxq′ minp′ �(p′, q′), and in particular,

min
p′

max
q′

�(p′, q′) ≥ max
q′

min
p′

�(p′, q′).

In summary, the existence of a Nash equilibrium implies that

min
p′

max
q′

�(p′, q′) = max
q′

min
p′

�(p′, q′).

The common value of the left-hand and right-hand sides is called the value of the game
and will be denoted by V . This equation, known as von Neumann’s minimax theorem, is
one of the fundamental results of game theory. Here we derived it as a consequence of
the existence of Nash equilibria (which, in turn, is based on fixed-point theorems), but
significantly simpler proofs may be given. In Section 7.2 we offer an elementary “learning-
theoretic” proof, based on the basic techniques introduced in Chapter 2, of a powerful
minimax theorem that, in turn, implies von Neumann’s minimax theorem for two-person
zero-sum games.

It is also clear from the argument that any Nash equilibrium p× q achieves the value of
the game in the sense that

�(p, q) = V

and that any product distribution p× q with �(p, q) = V is a Nash equilibrium.

Correlated Equilibrium
An important generalization of the notion of Nash equilibrium, introduced by Aumann [16],
is the notion of correlated equilibrium. A probability distribution P over the set⊗K

k=1{1, . . . , Nk} of all possible K -tuples of actions is called a correlated equilibrium
if for all k = 1, . . . , K ,

E �(k)(I) ≤ E �(k)(I−, Ĩ (k)),

where the random variable I = (I (1), . . . , I (k)) is distributed according to P and (I−, Ĩ (k)) =
(I (1), . . . , I (k−1), Ĩ (k), I (k+1), . . . , I (K )), where Ĩ (k) is an arbitrary {1, . . . , Nk}-valued ran-
dom variable that is a function of I (k).
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The distinguishing feature of the notion is that, unlike in the definition of Nash equilibria,
the random variables I (k) do not need to be independent, or, in other words, P is not
necessarily a product distribution (hence the name “correlated”). Indeed, if P is a product
measure, a correlated equilibrium becomes a Nash equilibrium. The existence of a Nash
equilibrium of any game thus assures that correlated equilibria always exist.

A correlated equilibrium may be interpreted as follows. Before taking an action, each
player receives a recommendation I (k) such that the I (k) are drawn randomly according to
the joint distribution of P . The defining inequality expresses that, in an average sense, no
player has an incentive to divert from the recommendation, provided that all other players
follow theirs. Correlated equilibria model solutions of games in which the actions of players
may be influenced by external signals.

A simple equivalent description of a correlated equilibrium is given by the following
lemma whose proof is left as an exercise.

Lemma 7.1. A probability distribution P over the set of all K -tuples i = (i1, . . . , iK ) of
actions is a correlated equilibrium if and only if, for every player k ∈ {1, . . . , K } and
actions j, j ′ ∈ {1, . . . , Nk}, we have

∑
i : ik= j

P(i)
(
�(k)(i)− �(k)(i−, j ′)

) ≤ 0,

where (i−, j ′) = (i1, . . . , ik−1, j ′, ik+1, . . . , iK ).

Lemma 7.1 reveals that the set of all correlated equilibria is given by an intersection of
closed halfspaces and therefore it is a closed and convex polyhedron. For example, any
convex combination of Nash equilibria is a correlated equilibrium. (This can easily be seen
by observing that the inequalities of Lemma 7.1 trivially hold if one takes P as any weighted
mixture of Nash equilibria.) However, there may exist correlated equilibria outside of the
convex hull of Nash equilibria (see Exercise 7.4). In general, the structure of the set of
correlated equilibria is much simpler than that of Nash equilibria. In fact, the existence
of correlated equilibria may be proven directly and without having to resort to fixed point
theorems. We do this implicitly in Section 7.4. Also, as we show in Section 7.4, given a
game, it is computationally very easy to find a correlated equilibrium. Computing a Nash
equilibrium, on the other hand, appears to be a significantly harder problem.

Playing Repeated Games
The most natural application of the ideas of randomized prediction of Chapters 4 and 6 is in
the theory of playing repeated games. In the model we investigate, a K-person game (the so-
called one-shot game) is played repeatedly such that at each time instant t = 1, 2, . . . player
k (k = 1, . . . , K ) selects a mixed strategy p(k)

t = (p(k)
1,t , . . . , p(k)

Nk ,t
) over the set {1, . . . , Nk}

of his actions and draws an action I (k)
t according to this distribution. We assume that the

randomizations of the players are independent of each other and of past randomizations.
After the actions are taken, player k suffers a loss �(k)(It ), where It = (I (1)

t , . . . , I (K )
t ).

Formally, at time t player k has access to U (k)
t , where the U (k)

t are independent random
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variables uniformly distributed in [0, 1], and chooses I (k)
t such that

I (k)
t = i if and only if U (k)

t ∈
⎡⎣ i−1∑

j=1

p(k)
j,t ,

i∑
j=1

p(k)
j,t

⎞⎠
so that

P

[
I (k)
t = i

∣∣ past plays
]
= p(k)

i,t , i = 1, . . . , Nk .

In the basic setup we assume that after taking an action I (k)
t each player observes all

other players’ actions, that is, the whole K -tuple It = (I (1)
t , . . . , I (K )

t ). This means that
the mixed strategy p(k)

t played at time t may depend on the sequence of random variables
I1, . . . , It−1.

However, we will be concerned only with “uncoupled” ways of playing, that is, when
each player knows his own loss (or payoff) function but not those of the other players. More
specifically, we only consider regret-based procedures in which the mixed strategy chosen
by every player depends, in some way, on his past losses. We focus our attention on whether
such simple procedures can lead to some kind of equilibrium of the (one-shot) game. In
Section 7.3 we consider the simplest situation, the case of two-person zero-sum games. We
show that a simple application of the regret-minimization procedures of Section 4.2 leads
to a solution of the game in a quite robust sense.

In Section 7.4 it is shown that if all players play to keep their internal regret small,
then the joint empirical frequencies of play converge to the set of correlated equilibria. The
same convergence may also be achieved if every player uses a well-calibrated forecasting
strategy to predict the K -tuple of actions It and chooses an action that is a best reply to the
forecasted distribution. This is shown in Section 7.6. A model for learning in games even
more restrictive than uncoupledness is the model of an “unknown game.” In this model the
players cannot even observe the actions of the other players; the only information available
to them is their own loss suffered after each round of the game. In Section 7.5 we point
out that the forecasting techniques for the bandit problem discussed in Chapter 6 allow
convergence of the empirical frequencies of play even in this setup of limited information.

In Sections 7.7 and 7.8 we sketch Blackwell’s approachability theory. Blackwell consid-
ered two-person zero-sum games with vector-valued losses and proved a powerful gener-
alization of von Neumann’s minimax theorem, which is deeply connected with the regret-
minimizing forecasting methods of Chapter 4.

Sections 7.9 and 7.10 discuss the possibility of reaching a Nash equilibrium in uncoupled
repeated games. Simple learning dynamics, versions of a method called “regret testing,” are
introduced that guarantee that the joint plays approach a Nash equilibrium in some sense.
The case of unknown games is also investigated.

In Section 7.11 we address an important criticism of the notion of Hannan consistency.
In fact, the basic notions of regret compare the loss of the forecaster with that of the best
constant action, but without taking into account that the behavior of the opponent may
depend on the actions of the forecaster. In Section 7.11 we show that asymptotic regret
minimization is possible even in the presence of opponents that react, although we need to
impose certain restrictions on the behavior of the opponents.
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Fictitious Play
We close this introductory section by discussing perhaps the most natural strategy for
playing repeated games: fictitious play. Player k is said to use fictitious play if, at every
time instant t , he chooses an action that is a best response to the empirical distribution of
the opponents’ play up to time t − 1. In other words, the player chooses I (k)

t to minimize
the estimated loss

I (k)
t = argmin

ik∈{1,...,Nk }

1

t − 1

t−1∑
s=1

�(k)(I−s , ik),

where (I−s , ik) = (I (1)
s , . . . , ik, . . . , I (K )

s ). The nontrivial behavior of this simple strategy is a
good demonstration of the complexity of the problem of describing regret-based strategies
that lead to equilibrium. As we already mentioned in Section 4.3, fictitious play is not
Hannan consistent. This fact may invite one to conjecture that there is no hope to achieve
equilibrium via fictitious play. It may come as a surprise that this is often not the case.
First, Robinson [246] proved that if in repeated playing of a two-person zero-sum game
at each step both players use fictitious play, then the product distribution formed by the
frequencies of actions played by both players converges to the set of Nash equilibria. This
result was extended by Miyasawa [218] to general two-person games in which each player
has two actions (i.e., Nk = 2 for all k = 1, 2); see also [220] for more special cases in which
fictitious play leads to Nash equilibria in the same sense. However, Shapley [265] showed
that the result cannot be extended even for two-person non-zero-sum games. In fact, the
empirical frequencies of play may not even converge to the set of correlated equilibria (see
Exercise 7.2 for Shapley’s game).

7.2 Minimax Theorems

As a first contact with game-theoretic applications of the prediction problems studied in
earlier chapters, we derive a simple learning-style proof of a general minimax theorem
that implies von Neumann’s minimax theorem cited in the introduction of this chapter. In
particular, we prove the following.

Theorem 7.1. Let f (x, y) denote a bounded real-valued function defined on X × Y , where
X and Y are convex sets and X is compact. Suppose that f (·, y) is convex and continuous
for each fixed y ∈ Y and f (x, ·) is concave for each fixed x ∈ X . Then

inf
x∈X

sup
y∈Y

f (x, y) = sup
y∈Y

inf
x∈X

f (x, y).

Proof. For any function f , one obviously has

inf
x∈X

sup
y∈Y

f (x, y) ≥ sup
y∈Y

inf
x∈X

f (x, y).

(To see this, just note that for all x ′ ∈ X and y ∈ Y , f (x ′, y) ≥ infx f (x, y), so that for all
x ′ ∈ X , supy f (x ′, y) ≥ supy infx f (x, y), which implies the statement.)

To prove the reverse inequality, without loss of generality, we may assume that f (x, y) ∈
[0, 1] for each (x, y) ∈ X × Y . Fix a small ε > 0 and a large positive integer n. By the
compactness of X one may find a finite set of points {x (1), . . . , x (N )} ⊂ X such that each
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x ∈ X is within distance ε of at least one of the x (i). We define the sequences x1, . . . , xn ∈ X
and y1, . . . , yn ∈ Y recursively as follows. y0 is chosen arbitrarily. For each t = 1, . . . , n
let

xt =
∑N

i=1 x (i)e−η
∑t−1

s=0 f (x (i),ys )∑N
j=1 e−η

∑t−1
s=0 f (x ( j),ys )

,

where η = √8 ln N/n and yt is such that f (xt , yt ) ≥ supy∈Y f (xt , y)− 1/n. Then, by the
convexity of f in its first argument, we obtain (by Theorem 2.2) that

1

n

n∑
t=1

f (xt , yt ) ≤ min
i=1,...,N

1

n

n∑
t=1

f (x (i), yt )+
√

ln N

2n
. (7.1)

Thus, we have

inf
x∈X

sup
y∈Y

f (x, y)

≤ sup
y∈Y

f

(
1

n

n∑
t=1

xt , y

)

≤ sup
y∈Y

1

n

n∑
t=1

f (xt , y) (by convexity of f (·, y))

≤ 1

n

n∑
t=1

sup
y∈Y

f (xt , y)

≤ 1

n

n∑
t=1

f (xt , yt )+ 1

n
(by definition of yt )

≤ min
i=1,...,N

1

n

n∑
t=1

f (x (i), yt )+
√

ln N

2n
+ 1

n
(by inequality (7.1))

≤ min
i=1,...,N

f

(
x (i),

1

n

n∑
t=1

yt

)
+
√

ln N

2n
+ 1

n
(by concavity of f (x, ·))

≤ sup
y∈Y

min
i=1,...,N

f
(
x (i), y

)+√ ln N

2n
+ 1

n
.

Thus, we have, for each n,

inf
x∈X

sup
y∈Y

f (x, y) ≤ sup
y∈Y

min
i=1,...,N

f
(
x (i), y

)+√ ln N

2n
+ 1

n
,

so that, letting n →∞, we get

inf
x∈X

sup
y∈Y

f (x, y) ≤ sup
y∈Y

min
i=1,...,N

f
(
x (i), y

)
.

Letting ε → 0 and using the continuity of f , we conclude that

inf
x∈X

sup
y∈Y

f (x, y) ≤ sup
y∈Y

inf
x∈X

f (x, y),

as desired.
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Remark 7.1 (von Neumann’s minimax theorem). Observe that Theorem 7.1 implies von
Neumann’s minimax theorem for two-person zero-sum games. To see this, just note that
function � is bounded and linear in both of its arguments and the simplex of all mixed
strategies p (and similarly q) is a compact set. In this special case the infima and suprema
are achieved.

7.3 Repeated Two-Player Zero-Sum Games

We start our investigation of regret-based strategies for repeated game playing from the
simple case of two-person zero-sum games. Recall that in our model, at each round t ,
based on the past plays of both players, the row player chooses an action It ∈ {1, . . . , N }
according to the mixed strategy pt = (p1,t , . . . , pN ,t ) and the column player chooses an
action Jt = {1, . . . , M} according to the mixed strategy qt = (q1,t , . . . , qM,t ). The distri-
butions pt and qt may depend on the past plays of both. The row player’s loss at time t
is �(It , Jt ) and the column player’s loss is −�(It , Jt ). At each time instant, after making
the play, the row player observes the losses �(i, Jt ) he would have suffered had he played
strategy i , i = 1, . . . , N .

In view of studying the convergence to equilibrium in such games, we consider the
problem of minimizing the cumulative loss the row player. If the row player knew the
column player’s actions J1, . . . , Jn in advance, he would, at each time instant, choose his
actions to satisfy It = argmini=1,...,N �(i, Jt ) invoking a total loss

∑n
t=1 mini=1,...,N �(i, Jt ).

Achieving a cumulative loss close to this minimum without knowing the column player’s
actions is, except for trivial cases, impossible (see Exercise 7.6), and so the row player has
to put up with a less ambitious goal. A meaningful objective is to play almost as well as the
best constant strategy. Thus, we consider the problem of minimizing the difference between
the row player’s cumulative loss and the cumulative loss of the best constant strategy,
that is,

n∑
t=1

�(It , Jt )− min
i=1,...,N

n∑
t=1

�(i, Jt ).

By a simple application of regret-minimizing forecasters we show that simple strategies
indeed exist such that this difference grows sublinearly (almost surely) no matter how the
column player plays. This result is a simple consequence of the Hannan consistency results
of Chapter 4.

It is natural to consider regret-minimizing strategies for both players. For example, we
may assume that the players play according to Hannan consistent forecasting strategies.
More precisely, assume that the row player chooses his actions It such that, regardless of
what the column player does,

lim sup
n→∞

(
1

n

n∑
t=1

�(It , Jt )− min
i=1,...,N

1

n

n∑
t=1

�(i, Jt )

)
≤ 0 almost surely.

Recall from Section 4 that several such Hannan-consistent procedures are available. For
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example, this may be achieved by the exponentially weighted average mixed strategy

pi,t =
exp

(
−η
∑t−1

s=1 �(i, Js)
)

∑N
k=1 exp

(
−η
∑t−1

s=1 �(k, Js)
) , i = 1, . . . , N ,

where η > 0. For this particular forecaster we have, with probability at least 1− δ,

n∑
t=1

�(It , Jt )− min
i=1,...,N

n∑
t=1

�(i, Jt ) ≤ ln N

η
+ nη

8
+
√

n

2
ln

1

δ

(see Corollary 4.2).

Remark 7.2 (Nonoblivious opponent). It is important to point out that in the definition of
regret, the cumulative loss

∑n
t=1 �(i, Jt ) associated with the “constant” action i corresponds

to the sequence of plays J1, . . . , Jn of the opponent. The plays of the opponent may depend
on the forecaster’s actions, which, in this case, are I1, . . . , In . Therefore, it is important to
keep in mind that if the opponent is nonoblivious (recall the definition from Chapter 4),
then

∑n
t=1 �(i, Jt ) is not the same as the cumulative loss the forecaster would have suffered

had he played action It = i for all t . This issue is investigated in detail in Section 7.11.

Remark 7.3 (Time-varying games). The inequality above may be extended, in a straight-
forward way, to the case of time-varying games, that is, when the loss matrix is allowed
to change with time as long as the entries �t (i, j) stay uniformly bounded, say, between 0
and 1. The loss matrix �t does not need to be known in advance by the row player. All we
need to assume is that before making the play at time t , the column �t−1(·, Jt−1) of the loss
matrix corresponding to the opponent’s play in the previous round is revealed to the row
player. In a more difficult version of the problem, only the suffered loss �t−1(It−1, Jt−1) is
observed by the row player before time t . These problems may be handled by the techniques
of Section 6.7 (see also Section 7.5).

We now show the following remarkable fact: if the row player plays according to any
Hannan consistent strategy, then his average loss cannot be much larger than the value of
the game, regardless of the opponent’s strategy. (Note that by von Neumann’s minimax
theorem this may also be achieved if the row player plays according to any minimax
strategy; see Exercise 7.7.)

Recall that the value of the game characterized by the loss matrix � is defined by

V = max
q

min
p

�(p, q),

where the maximum is taken over all probability vectors q = (q1, . . . , qM ), the minimum
is taken over all probability vectors p = (q1, . . . , pN ), and

�(p, q) =
N∑

i=1

M∑
j=1

pi q j �(i, j).
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(Note that the maximum and the minimum are always achieved.) With some abuse of
notation we also write

�(p, j) =
N∑

i=1

pi �(i, j) and �(i, q) =
M∑

j=1

q j �(i, j).

Theorem 7.2. Assume that in a two-person zero-sum game the row player plays according
to a Hannan-consistent strategy. Then

lim sup
n→∞

1

n

n∑
t=1

�(It , Jt ) ≤ V almost surely.

Proof. By the assumption of Hannan consistency, it suffices to show that

min
i=1,...,N

1

n

n∑
t=1

�(i, Jt ) ≤ V .

This may be seen easily as follows. First,

min
i=1,...,N

1

n

n∑
t=1

�(i, Jt ) = min
p

1

n

n∑
t=1

�(p, Jt )

since
∑n

t=1 �(p, Jt ) is linear in p and its minimum, over the simplex of probability vectors,
is achieved in one of the corners. Then, letting q̂ j,n = 1

n

∑n
t=1 I{Jt= j} be the empirical

probability of the row player’s action being j ,

min
p

1

n

n∑
t=1

�(p, Jt ) = min
p

M∑
j=1

q̂ j,n�(p, j)

= min
p

�(p, q̂n) (where q̂n = (̂q1,n, . . . , q̂M,n))

≤ max
q

min
p

�(p, q) = V .

Theorem 7.2 shows that, regardless of what the opponent plays, if the row player plays
according to a Hannan-consistent strategy, then his cumulative loss is guaranteed to be
asymptotically not more than the value V of the game. It follows by symmetry that if both
players use the same strategy, then the cumulative loss of the row player converges to V .

Corollary 7.1. Assume that in a two-person zero-sum game, both players play according
to some Hannan consistent strategy. Then

lim
n→∞

1

n

n∑
t=1

�(It , Jt ) = V almost surely.

Proof. By Theorem 7.2

lim sup
n→∞

1

n

n∑
t=1

�(It , Jt ) ≤ V almost surely.
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The same theorem, applied to the column player, implies, using the fact that the column
player’s loss that is the negative of the row player’s loss, that

lim inf
n→∞

1

n

n∑
t=1

�(It , Jt ) ≥ min
p

max
q

�(p, q) almost surely.

By von Neumann’s minimax theorem, the latter quantity equals V .

Remark 7.4 (Convergence to equilibria). If both players follow some Hannan consistent
strategy, then it is also easy to see that the product distribution p̂n × q̂n formed by the
(marginal) empirical distributions of play

p̂i,n = 1

n

n∑
t=1

I{It=i} and q̂ j,n = 1

n

n∑
t=1

I{Jt= j}

of the two players converges, almost surely, to the set of Nash equilibria π = p× q of the
game (see Exercise 7.11). However, it is important to note that this does not mean that
the players’ joint play is close to a Nash equilibrium in the long run. Indeed, one cannot
conclude that the joint empirical frequencies of play

P̂n(i, j) = 1

n

n∑
t=1

I{It=i, Jt= j}

converge to the set of Nash equilibria. All one can say is that P̂n converges to the Hannan set
of the game (defined later), which, even for zero-sum games, may include joint distributions
that are not Nash equilibria (see Exercise 7.15).

7.4 Correlated Equilibrium and Internal Regret

In this section we consider repeated play of general K -person games. In the previous section
we have shown the following fact: if both players of a two-person zero-sum game follow a
Hannan-consistent strategy (i.e, play so that their external regret vanishes asymptotically),
then in the long run equilibrium is achieved in the sense that the product of the marginal
empirical frequencies of play converges to the set of Nash equilibria. It is natural to ask
whether the joint empirical frequencies of play converge in any general K -person game.
The answer is easily seen to be negative in general by the following argument. Assume that
in a repeated K -person game each player follows a Hannan consistent strategy; that is, if the
K -tuple of plays of all players at time t is It = (I (1)

t , . . . , I (K )
t ), then for all k = 1, . . . , K

the cumulative loss of player k satisfies

lim sup
n→∞

(
1

n

n∑
t=1

�(k)(It )− 1

n
min

ik=1,...,Nk

n∑
t=1

�(k)(I (1)
t , . . . , ik, . . . , I (K )

t )

)
≤ 0

almost surely. Writing

P̂n(i) = 1

n

n∑
t=1

I{It=i}, i = (i1, . . . , iK ) ∈
K⊗

k=1

{1, . . . , Nk},
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for the empirical joint distribution of play, the property of Hannan consistency may be
rewritten as follows: for all k = 1, . . . , K and for all j = 1, . . . , Nk ,

lim sup
n→∞

(∑
i

P̂n(i)�(k)(i)−
∑

i

P̂n(i)�(k)(i−, j)

)
≤ 0

almost surely, where (i−, j) = (i1, . . . , j, . . . , iK ) denotes the K -tuple obtained when the
kth component ik of i is replaced by j . Writing the condition of Hannan consistency in
this form reveals that if all players follow such a strategy, the empirical frequencies of
play converge, almost surely, to the set H of joint distributions P over

⊗K
k=1{1, . . . , Nk}

defined by

H =
{

P : ∀k = 1, . . . , K ,∀ j = 1, . . . , Nk,
∑

i

P(i)�(k)(i) ≤
∑

i

P(i)�(k)(i−, j)

}
(see Exercise 7.14). The set H is called the Hannan set of the game. Since C is an
intersection of

∑K
k=1 Nk halfspaces, it is a closed and convex subset of the simplex of

all joint distributions. In other words, if all players play according to any strategy that
asymptotically minimizes their external regret, the empirical frequencies of play converge
to the set H. Unfortunately, distributions in the Hannan set do not correspond to any natural
equilibrium concept. In fact, by comparing the definition of H with the characterization of
correlated equilibria given in Lemma 7.1, it is easy to see that H always contains the set C
of correlated equilibria. Even though for some special games (such as games in which all
players have two actions; see Exercise 7.18) H = C, in typical cases C is a proper subset of
H (see Exercise 7.16). Thus, except for special cases, if players are merely required to play
according to Hannan-consistent strategies (i.e., to minimize their external regret), there is
no hope to achieve a correlated equilibrium, let alone a Nash equilibrium.

However, by requiring just a little bit more, convergence to correlated equilibria may be
achieved. The main result of this section is that if each player plays according to a strategy
minimizing internal regret as described in Section 4.4, the joint empirical frequencies of
play converge to a correlated equilibrium.

More precisely, consider the model of playing repeated games described in Section 7.1.
For each player k and pair of actions j, j ′ ∈ {1, . . . , NK } define the conditional instanta-
neous regret at time t by

r̂ (k)
( j, j ′),t = I{I (k)

t = j}
(
�(k)(It )− �(k)(I−t , j ′)

)
,

where (I−t , j ′) = (I (1)
t , . . . , I (k−1)

t , j ′, I (k+1)
t , . . . , I (K )

t ) is obtained by replacing the play of
player k by action j ′. Note that the expected value of the conditional instantaneous regret
r̂ (k)

( j, j ′),t , calculated with respect to the distribution p(k)
t of I (k)

t , is just the instantaneous internal
regret of player k defined in Section 4.4. The conditional regret

∑n
t=1 r̂ (k)

( j, j ′),t expresses how
much better player k could have done had he chosen action j ′ every time he played
action j .

The next lemma shows that if each player plays such that his conditional regret remains
small, then the empirical distribution of plays will be close to a correlated equilibrium.

Lemma 7.2. Consider a K-person game and denote its set of correlated equilibria by C.
Assume that the game is played repeatedly so that for each player k = 1, . . . , K and pair
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of actions j, j ′ ∈ {1, . . . , Nk} the conditional regrets satisfy

lim sup
n→∞

1

n

n∑
t=1

r̂ (k)
( j, j ′),t ≤ 0.

Then the distance inf P∈C
∑

i |P(i)− P̂n(i)| between the empirical distribution of plays and
the set of correlated equilibria converges to 0.

Proof. Observe that the assumption on the conditional regrets may be rewritten as

lim sup
n→∞

∑
i : ik= j

P̂n(i)
(
�(k)(i)− �(k)(i−, j ′)

) ≤ 0,

where (i−, j ′) is the same as i except that its kth component is replaced by j ′. Assume
that the sequence P̂n does not converge to C. Then by the compactness of the set of all
probability distributions there is a distribution P∗ /∈ C and a subsequence P̂nk of empirical
distributions such that limk→∞ P̂nk = P∗. But since P∗ is not a correlated equilibrium, by
Lemma 7.1 there exists a player k ∈ {1, . . . , K } and a pair of actions j, j ′ ∈ {1, . . . , Nk}
such that ∑

i : ik= j

P∗(i)
(
�(k)(i)− �(k)(i−, j ′)

)
> 0,

which contradicts the assumption.

Now it is easy to show that if all players play according to an internal-regret-minimizing
strategy, such as that described in Section 4.4, a correlated equilibrium is reached asymptot-
ically. More precisely, for each player k = 1, . . . , K define the components of the internal
instantaneous regret vector by

r (k)
( j, j ′),t = p(k)

j,t

(
�(k)(It )− �(k)(I−t , j ′)

)
,

where j, j ′ ∈ {1, . . . , Nk} and (I−t , j ′) is as defined above. In Section 4.4 we saw that
player k has a simple strategy p(k)

t such that, regardless of the other players’ actions, it is
guaranteed that the internal regret satisfies

max
j, j ′

1

n

n∑
t=1

r (k)
( j, j ′),t ≤ c

√
ln Nk

n

for a universal constant c. Now, clearly, r (k)
( j, j ′),t is the conditional expectation of r̂ (k)

( j, j ′),t
given the past and the other players’ actions. Thus r (k)

( j, j ′),t − r̂ (k)
( j, j ′),t is a bounded martingale

difference sequence for any fixed j, j ′. Therefore, by the Hoeffding–Azuma inequality
(Lemma A.7) and the Borel–Cantelli lemma, we have, for each k ∈ {1, . . . , K } and j, j ′ ∈
{1, . . . , Nk},

lim
n→∞

1

n

n∑
t=1

(̂
r (k)

( j, j ′),t − r (k)
( j, j ′),t

)
= 0 almost surely,

which implies that for each k

lim sup
n→∞

max
j, j ′

1

n

n∑
t=1

r̂ (k)
( j, j ′),t ≤ 0 almost surely.

The following theorem summarizes what we have just proved.
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Theorem 7.3. Consider a K -person game and denote its set of correlated equilibria by C.
Assume that a game is played repeatedly such that each player k = 1, . . . , K plays accord-
ing to an internal-regret-minimizing strategy (such as the ones described in Section 4.4).
Then the distance inf P∈C

∑
i |P(i)− P̂n(i)| between the empirical distribution of plays and

the set of correlated equilibria converges to 0 almost surely.

Remark 7.5 (Existence of correlated equilibria). Observe that the theorem implicitly
entails the existence of a correlated equilibrium of any game. Of course, this fact follows
from the existence of Nash equilibria. However, unlike the proof of existence of Nash
equilibria, the above argument avoids the use of fixed-point theorems.

Remark 7.6 (Computation of correlated equilibria). Given a K -person game, it is a
complex and important problem to exhibit a computationally efficient procedure that finds
a Nash equilibrium (or even better, the set of all Nash equilibria) of the game. As of today,
no polynomial-time algorithm is known to approximate a Nash equilibrium. (The algorithm
is required to be polynomial in the number of players and the number of actions of each
player.) The difficulty of the problem may be understood by noting that even if every player
in a K -person game has just two actions to choose from, there are 2K possible action
profiles i = (i1, . . . , iK ), and so describing the payoff functions already takes exponential
time. Interesting polynomial-time algorithms for computing Nash equilibria are available
for important special classes of games that have a compact representation, such as symmetric
games, graphical games, and so forth. We refer the interested reader to Papadimitriou [230,
231], Kearns and Mansour [179], Papadimitriou and Roughgarden [232]. Here we point
out that the regret-based procedures described in this section may also be used to efficiently
approximate correlated equilibria in a natural computational model. For any ε > 0, a
probability distribution P over the set of all K -tuples i = (i1, . . . , iK ) of actions is called an
ε-correlated equilibrium if, for every player k ∈ {1, . . . , K } and actions j, j ′ ∈ {1, . . . , Nk},∑

i : ik= j

P(i)
(
�(k)(i)− �(k)(i−, j ′)

) ≤ ε.

Clearly, ε-correlated equilibria approximate correlated equilibria in the sense that if Cε

denotes the set of all ε-correlated equilibria, then
⋂

ε>0 Cε = C. Assume that an oracle
is available that outputs the values of the loss functions �(k)(i) for any action profile
i = (i1, . . . , iK ). Then it is easy to define an algorithm that calls the oracle polynomially
many times and outputs an ε-correlated equilibrium. One may simply simulate as if all
players played an internal-regret-minimizing procedure and calculate the joint distribution
P̂n of plays. By the results of Section 4.4, the Hoeffding–Azuma inequality and the union
bound, with probability at least 1− δ, for each k = 1, . . . , K ,

∑
i : ik= j

P̂n(i)
(
�(k)(i)− �(k)(i−, j ′)

) ≤ 2

√
ln Nk

n
+
√

ln(K/δ)

2n
.

Thus, with probability at least 1− δ, P̂n is an ε-correlated equilibrium if

n ≥ max
k=1,...,K

16

ε2
ln

Nk K

δ
.
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To compute all regrets necessary to run this algorithms, the oracle needs to be called not
more than

max
k=1,...,K

16Nk K

ε2
ln

Nk K

δ

times to find an ε-correlated equilibrium, with probability at least 1− δ. Thus, computation
of an ε-correlated equilibrium is surprisingly fast: it takes time proportional to 1/ε2 and is
polynomial (in fact, barely superlinear) in terms of the number of actions and the number
of players of the game.

7.5 Unknown Games: Game-Theoretic Bandits

In this section we mention the possibility of learning correlated equilibria in an even more
restricted model than the uncoupled model studied so far in this chapter. We assume that
the K players of a game play repeatedly, and at each time instance t , after taking an action
I (k)
t , the kth player observes his loss �(k)(It ) (where It = (I (1)

t , . . . , I (K )
t ) is the joint action

profile played by the K players) but does not know his entire loss function �(k) and cannot
observe the other players’ actions I−t . In fact, player k may not even know the number of
players participating in the game, let alone the number of actions the other players can
choose from.

It may come as a surprise that, with such limited information, the players have a way of
playing that guarantees that the game reaches an equilibrium in some sense. Here we point
out that there is a strategy such that if all players play according to it, then the joint empirical
frequencies of play converge to a correlated equilibrium. The issue of convergence to a
Nash equilibrium is addressed in Section 7.10.

The fact that convergence of the empirical frequencies of play to a correlated equilibrium
may be achieved follows directly from Theorem 7.3 and the fact that each player can
guarantee a small internal regret even if he cannot observe the actions of the other players.
Indeed, in order to achieve the desired convergence, each player’s job now is to minimize
his internal regret in the bandit problem described in Chapter 6. Exercise 6.15 shows that
such internal-regret minimizing procedures exist and therefore, if all players follow such a
strategy, the empirical frequencies of play will converge to the set of correlated equilibria
of the game.

7.6 Calibration and Correlated Equilibrium

In Section 4.5 we described the connection between calibrated and internal-regret-
minimizing forecasting strategies. According to the results of Section 7.4, internal-regret-
minimizing forecasters may be used, in a straightforward way, to achieve correlated equi-
librium in a certain sense. In the present section we close the circle and point out an
interesting connection between calibration and correlated equilibria; that is, we show that
if each player bases his decision on a calibrated forecaster in an appropriate way (where
the calibrated forecasters used by the different players may be completely different), then
the joint empirical frequencies of play converge to the set of correlated equilibria.
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The strategy we assume the players follow is quite natural: on the basis of past experience,
each player predicts the mixed strategy his opponents will use in the next round and selects
an action that would minimize his loss if the opponents indeed played according to the
predicted distribution. More precisely, each player forecasts the joint probability of each
possible outcome of the next action of his opponents and then chooses a “best response”
to the forecasted distribution. We saw in Section 4.5 that no matter how the opponents
play, each player can construct a (randomized) well-calibrated forecast of the opponents’
sequence of play. The main result of this section shows that the mild requirement that all
players use well calibrated forecasters guarantees that the joint empirical frequencies of
play converge to the set C of correlated equilibria.

To lighten the exposition, we present the results for K = 2 players, but the results trivially
extend to the general case (left as exercise). So assume that the actions It and Jt selected
by the two players at time t are determined as follows. Depending on the past sequence of
plays, for each j = 1, . . . , M the row player determines a probability forecast q̂ j,t ∈ [0, 1]
of the next play Jt of the column player where we require that

∑M
j=1 q̂ j,t = 1. Denote the

forecasted mixed strategy by q̂t = (̂q1,t , . . . , q̂M,t ) and write J t = (I{Jt=1}, . . . , I{Jt=M}).
We only require that the forecast be well calibrated. Recall from Section 4.5 that this means
that for any ε > 0, the function

ρn(A) =
∑n

t=1 J t I{q̂t∈A}∑n
t=1 I{q̂t∈A}

defined for all subsets A of the probability simplex (defined to be 0 if
∑n

t=1 I{q̂ j,t∈A} = 0)
satisfies, for all A and for all ε > 0,

lim sup
n→∞

∣∣∣∣∣ρn(Aε)−
∫

Aε
x dx

λ(Aε)

∣∣∣∣∣ < ε.

(where Aε = {x : ∃y ∈ A such that ‖x − y‖ < ε} is the ε-blowup of A and λ stands for the
uniform probability measure over the simplex.) Recall from Section 4.5 (more precisely
Exercise 4.17) that regardless of what the sequence J1, J2, . . . is, the row player can deter-
mine a randomized, well-calibrated forecaster. We assume that the row player best responds
to the forecasted probability distribution in the sense that

It = argmin
i=1,...,N

�
(1)

(i, q̂t ) = argmin
i=1,...,N

M∑
j=1

q̂ j,t �(1)(i, j).

Ties may be broken by an arbitrary but constant rule. The tie-breaking rule is described by
the sets

B̂i =
{
q : row player plays action i if q̂t = q

}
, i = 1, . . . , N .

Note that for each i , B̂i is contained in the closed and convex set Bi of q’s to which i is a
best reply defined by

Bi =
{

q : �
(1)

(i, q) = min
i ′=1,...,N

�
(1)

(i ′, q)

}
.
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Assume also that the column player proceeds similarly, that is,

Jt = argmin
j=1,...,M

�
(2)

(̂pt , j) = argmin
j=1,...,M

N∑
i=1

p̂i,t �(2)(i, j),

where for each i , the sequence p̂i,t (t = 1, 2, . . . ) is a well calibrated forecaster of I1, I2, . . ..

Theorem 7.4. Assume that in a two-person game both players play by best responding to a
calibrated forecast of the opponent’s sequence of plays, as described above. Then the joint
empirical frequencies of play

P̂n(i, j) = 1

n

n∑
t=1

I{It=i,Jt= j}

converge to the set C of correlated equilibria in the sense that

inf
P∈C

∑
(i, j)

|P(i, j)− P̂n(i, j)| → 0 almost surely.

Proof. Consider the sequence of empirical distributions P̂n . Since the simplex of all
joint distributions over {1, . . . , N } × {1, . . . , M} is a compact set, every sequence has
a convergent subsequence. Thus, it suffices to show that the limit of every convergent
subsequence of P̂n is in C. Let P̂nk be such a convergent subsequence and denote its limit
by P . We need to show that P is a correlated equilibrium.

Note that by Lemma 7.1, P is a correlated equilibrium if and only if for each
i ∈ {1, . . . , N } the conditional distribution

q(· | i) = (q(1 | i), . . . , q(M | i)
) = ( P(i, 1)∑M

j ′=1 P(i, j ′)
, . . . ,

P(i, M)∑M
j ′=1 P(i, j ′)

)
is in the set Bi and the symmetric statement for the other player holds as well. Therefore,
it suffices to show that, for each i = 1, . . . , N , the distribution

q̂nk
(· | i) =

(
P̂nk (i, 1)∑M

j ′=1 P̂nk (i, j ′)
, . . . ,

P̂nk (i, M)∑M
j ′=1 P̂nk (i, j ′)

)
approaches the set Bi . By the definition of It , for each j = 1, . . . , M

P̂nk (i, j) = 1

nk

k∑
s=1

I{q̂ns∈B̂i }I{Jns= j}

and therefore

q̂nk
(· | i) =

∑k
s=1 J ns I{q̂ns∈B̂i }∑k

s=1 I{q̂ns∈B̂i }
= ρnk (B̂i ).

Since P̂nk is convergent, the limit

x = lim
k→∞

ρnk (B̂i )
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exists. We need to show that x ∈ Bi . If (B̂i )ε denotes the ε-blowup of B̂i then well-calibration
of the forecaster q̂t implies that, for all ε > 0,

lim sup
k→∞

∣∣∣∣∣ρnk

(
(B̂i )ε

)− ∫(B̂i )ε
x dx

λ
(
(B̂i )ε

) ∣∣∣∣∣ < ε.

Define

x ′ def= lim
ε→0

∫
(B̂i )ε

x dx

λ
(
(B̂i )ε

) .

(The limit exists by the continuity of measure.) Because for all nk we have
limε→0 ρnk ((B̂i )ε) = ρnk (B̂i ), it is easy to see that x = x ′. But since B̂i ⊂ Bi and Bi is
convex, the vector

∫
(B̂i )ε

x dx/λ((B̂i )ε) lies in the ε-blowup of Bi . Therefore we indeed have
x = x ′ ∈ Bi , as desired.

7.7 Blackwell’s Approachability Theorem

We investigate a powerful generalization, introduced by Blackwell, of the problem of
playing repeated two-player zero-sum games. Consider the situation of Section 7.3 with
the only but essential difference that losses are vector valued. More precisely, the setup
is described as follows. Just as before, at each time instance the row player selects an
action i ∈ {1, . . . , N } and the column player selects an action j ∈ {1, . . . , M}. However,
the “loss” �(i, j) suffered by the row player is not a real number in [0, 1] but may take
values in a bounded subset of R

m . (We use bold characters to emphasize that losses are
vector valued.)

For the sake of concreteness we assume that all losses are in the euclidean unit ball, that
is, the entries of the loss matrix � are such that ‖�(i, j)‖ ≤ 1.

In the simpler case of scalar losses, the purpose of the row player is to minimize his
average loss regardless of the actions of the column player. Then von Neumann’s minimax
theorem (together with martingale convergence, e.g., the Hoeffding–Azuma inequality)
asserts that no matter how the column player plays, the row player can always keep the
normalized accumulated loss 1

n

∑n
t=1 �(It , Jt ) in, or very close to, the set (−∞, V ], but

not in the set (−∞, V − ε] if ε > 0 (see Exercise 7.7). In the case of vector-valued losses
the general question is to determine which subsets of R

m can the row player keep his
average loss close to. To this end, following Blackwell [28], we introduce the notion of
approachability: a subset S of the unit ball of R

m is approachable (by the row player) if the
row player has a (randomized) strategy such that no matter how the column player plays,

lim
n→∞ d

(
1

n

n∑
t=1

�(It , Jt ), S

)
= 0 almost surely,

where d(u, S) = infv∈S ‖u− v‖ denotes the euclidean distance of u from the set S. Because
any set is approachable if and only if its closure is approachable, it suffices to consider only
closed sets.

Our purpose in this section is to characterize which convex sets are approachable. In the
one-dimensional case the minimax theorem can be rephrased as follows: a closed interval
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(−∞, c] is approachable if and only if c ≥ V . In other words, (−∞, c] is approachable if
and only if the row player has a mixed strategy p such that max j=1,...,M �(p, j) ≤ c.

In the general vector-valued case it is easy to characterize approachability of halfspaces.
Consider a halfspace defined by H = {u : a · u ≤ c}, where ‖a‖ = 1. If we define an
auxiliary game with scalar losses �(i, j) = a · �(i, j), then clearly, H is approachable if
and only if the set (−∞, c] is approachable in the auxiliary game. By the above-mentioned
consequence of the minimax theorem, this happens if and only if max j=1,...,M �(p, j) =
max j=1,...,M a · �(p, j) ≤ c. (Note that, just as earlier, �(p, j) =∑i pi �(i, j).) Thus, we
have proved the following characterization of the approachability of closed halfspaces.

Lemma 7.3. A halfspace H = {u : a · u ≤ c} is approachable if and only if there exists a
probability vector p = (p1, . . . , pN ) such that

max
j=1,...,M

a · �(p, j) ≤ c.

The lemma states that the halfspace H is approachable by the row player in a repeated
play of the game if and only if in the one-shot game the row player has a mixed strategy
that keeps the expected loss in the halfspace H . This is a simple and natural fact. What is
interesting and much less obvious is that to approach any convex set S, it suffices that the
row player has a strategy for each hyperplane not intersecting S to keep the average loss on
the same side of the hyperplane as the set S. This is Blackwell’s Approachability Theorem.
stated and proved next.

Theorem 7.5 (Blackwell’s approachability theorem). A closed convex set S is approach-
able if and only if every halfspace H containing S is approachable.

It is important to point out that for approachability of S, every halfspace containing S
must be approachable. Even if S can be written as an intersection of finitely many closed
halfspaces, that is, S =⋂i Hi , the fact that all Hi are approachable does not imply that S
is approachable: see Exercise 7.21.

The proof of Theorem 7.5 is constructive and surprisingly simple. At every time instance,
if the average loss is not in the set S, then the row player projects the average loss to S
and uses the mixed strategy p corresponding to the halfspace containing S, defined by the
hyperplane passing through the projected loss vector, and perpendicular to the direction of
the projection. In the next section we generalize this “approaching” algorithm to obtain a
whole family of strategies that guarantee that the average loss approaches S almost surely.

Introduce the notation At = 1
t

∑t
s=1 �(Is, Js) for the average loss vector at time t and

denote by πS(u) = argminv∈S ‖u− v‖ the projection of u ∈ R
m onto S. (Note that πS(u)

exists and is unique if S is closed and convex.)

Proof. To prove the statement, note first that S is clearly not approachable if there exists
a halfspace H ⊃ S that is not approachable.

Thus, it remains to show that if all halfspaces H containing S are approachable, then S
is approachable as well. To this end, assume that the row player’s mixed strategy pt at time
t = 1, 2, . . . is arbitrary if At−1 ∈ S, and otherwise it is such that

max
j=1,...,M

at−1 · �(pt , j) ≤ ct−1,
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S

�(pt , Jt )

πs(At−1)

At−1

Figure 7.1. Approachability: the expected loss �(pt , Jt ) is forced to stay on the same side of the
hyperplane {u : at−1 · u = ct−1} as the target set S, opposite to the current average loss At−1.

where

at−1 = At−1 − πS(At−1)

‖At−1 − πS(At−1)‖ and ct−1 = at−1 · πS(At−1).

(Define A0 as the zero vector.) Observe that the hyperplane {u : at−1 · u = ct−1} contains
πS(At−1) and is perpendicular to the direction of projection of the average loss At−1 to S.
Since the halfspace {u : at−1 · u ≤ ct−1} contains S, such a strategy pt exists by assumption
(see Figure 7.1). The defining inequality of pt may be rewritten as

max
j=1,...,M

at−1 ·
(
�(pt , j)− πS(At−1)

) ≤ 0.

Since At = t−1
t At−1 + 1

t �(It , Jt ), we may write

d(At , S)2 = ‖At − πS(At )‖2

≤ ‖At − πS(At−1)‖2

=
∥∥∥∥ t − 1

t
At−1 + �(It , Jt )

t
− πS(At−1)

∥∥∥∥2

=
∥∥∥∥ t − 1

t

(
At−1 − πS(At−1)

)+ �(It , Jt )− πS(At−1)

t

∥∥∥∥2

=
(

t − 1

t

)2

‖At−1 − πS(At−1)‖2 + 1

t2
‖�(It , Jt )− πS(At−1)‖2

+ 2
t − 1

t2

(
At−1 − πS(At−1)

) · (�(It , Jt )− πS(At−1)
)
.

Using the assumption that all losses, as well as the set S, are in the unit ball, and therefore
‖�(It , Jt )− πS(At−1)‖ ≤ 2, and rearranging the obtained inequality, we get

t2 ‖At − πS(At )‖2 − (t − 1)2 ‖At−1 − πS(At−1)‖2

≤ 4+ 2(t − 1)
(

At−1 − πS(At−1)
) · (�(It , Jt )− πS(At−1)

)
.
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Summing both sides of the inequality for t = 1, . . . , n, the left-hand side telescopes
and becomes n2 ‖An − πS(An)‖2. Next, dividing both sides by n2, and writing Kt−1 =
t−1

n ‖At−1 − πS(At−1)‖, we have

‖An − πS(An)‖2

≤ 4

n
+ 2

n

n∑
t=1

Kt−1at−1 ·
(
�(It , Jt )− πS(At−1)

)
≤ 4

n
+ 2

n

n∑
t=1

Kt−1at−1 ·
(
�(It , Jt )− �(pt , Jt )

)
,

where at the last step we used the defining property of pt . Since the random variable
Kt−1 is bounded between 0 and 2, the second term on the right-hand side is an average of
bounded zero-mean martingale differences, and therefore the Hoeffding–Azuma inequality
(together with the Borel–Cantelli lemma) immediately implies that ‖An − πS(An)‖2 → 0
almost surely, which is precisely what we wanted to prove.

Remark 7.7 (Rates of convergence). The rate of convergence to 0 of the distance ‖An −
πS(An)‖ that one immediately obtains from the proof is of order n−1/4 (since the upper
bound for the squared distance contains a sum of bounded martingale differences that, if
bounded by the Hoeffding–Azuma inequality, gives a term that is Op(n−1/2)). However,
this bound can be improved substantially by a simple modification of the definition of
the mixed strategy pt used in the proof. Indeed, if instead of the average loss vector
At = 1

t

∑t
s=1 �(Is, Js) one uses the “expected” average loss At = 1

t

∑t
s=1 �(ps, Js), one

easily obtains a bound for ‖An − πS(An)‖ that is of order n−1/2; see Exercise 7.23.

Approachability and Regret Minimization
To demonstrate the power of Theorem 7.5 we show how it can be used to show the existence
of Hannan consistent forecasters. Recall the problem of randomized prediction described
in Section 4.1. In this case the goal of forecaster is to determine, at each round of play, a
distribution pt (i.e., a mixed strategy in the terminology of this chapter) so that regardless
of what the outcomes Yt (the opponents’ play) are, the per-round regret

1

n

(
n∑

t=1

�(It , Yt )− min
i=1,...,N

n∑
t=1

�(i, Yt )

)
has a nonpositive limsup when each It is drawn randomly according to the distribution pt .
Equivalently, the forecaster tries to keep the per-round regret vector 1

n Rn , of components
1
n Ri,n = 1

n

∑n
t=1(�(It , Yt )− �(i, Yt )), close to the nonpositive orthant

S = {u = (u1, . . . , uN ) : ∀i = 1, . . . N , ui ≤ 0
}
.

Thus, the existence of a Hannan consistent forecaster is equivalent to the approachability
of the orthant S in a two-player game in which the vector-valued losses of the row player
are defined by �(i, j) whose kth component is

�(k)(i, j) = �(i, j)− �(k, j).

(Note that with this choice the loss vectors fall in the ball, centered at the origin, of radius
2
√

N . In the formulation of Theorem 7.5 we assumed that the loss vectors take their
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a{u : a · u = 0}

0

S

Figure 7.2. The normal vector a of any hyperplane corresponding to halfspaces containing the
nonpositive orthant has nonnegative components.

values in the unit ball. The extension to the present case is a matter of trivial rescaling.)
By Theorem 7.5 and Lemma 7.3, S is approachable if for every halfspace {u : a · u ≤ c}
containing S there exists a probability vector p = (p1, . . . , pN ) such that

max
j=1,...,M

a · �(p, j) ≤ c.

Clearly, it suffices to consider halfspaces of the form

max
j=1,...,M

a · �(p, j) ≤ 0,

where the normal vector a = (a1, . . . , aN ) is such that all its components are nonnegative
(see Figure 7.2). This condition is equivalent to requiring that, for all j = 1, . . . , M ,

N∑
k=1

ak �
(k)

(p, j) =
N∑

k=1

ak
(
�(p, j)− �(k, j)

) ≤ 0,

Choosing

p = a∑N
k=1 ak

the inequality clearly holds for all j (with equality). Since a has only nonnegative compo-
nents, p is indeed a valid mixed strategy. In summary, Blackwell’s approachability theorem
indeed implies the existence of a Hannan consistent forecasting strategy. Note that the
constructive proof of Theorem 7.5 defines such a strategy. Observe that this strategy is
just the weighted average forecaster of Section 4.2 when the quadratic potential is used.
In the next section we describe a whole family of strategies that, when specialized to
the forecasting problem discussed here, reduce to weighted average forecasters with more
general potential functions. The approachability theorem may be (and has been) used to
handle more general problems. For example, it is easy to see that it implies the existence
of internal-regret-minimizing strategies (see Exercise 7.22).
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7.8 Potential-based Approachability

The constructive proof of Blackwell’s approachability theorem (Theorem 7.5) shows that
if S is an approachable convex set, then for any strategy of the row player such that

max
j=1,...,M

(
At−1 − πS(At−1)

) · �(pt , j) ≤ sup
x∈S

(
At−1 − πS(At−1)

) · x
the average loss An converges to the set S almost surely. The purpose of this section is to
introduce, as proposed by Hart and Mas-Colell [146], a whole class of strategies for the
row player that achieve the same goal. These strategies are generalizations of the strategy
appearing in the proof of Theorem 7.5.

The setup is the same as in the previous section, that is, we consider vector-valued
losses in the unit ball, and the row player’s goal is to guarantee that, no matter what
the opponent does, the average loss An = 1

n

∑n
t=1 �(It , Jt ) converges to a set S almost

surely. Theorem 7.5 shows that if S is convex, this is possible if and only if all linear
halfspaces containing S are approachable. Throughout this section we assume that S is
closed, convex, and approachable, and we define strategies for the row player guaranteeing
that d(An, S) → 0 with probability 1.

To define such a strategy, we introduce a nonnegative potential function � : R
m → R

whose role is to score the current situation of the average loss. A small value of �(At ) means
that At is “close” to the target set S. All we assume about � is that it is convex, differentiable
for all x /∈ S, and �(x) = 0 if and only if x ∈ S. Note that such a potential always exists by
convexity and closedness of S. One example is the function �(x) = infy∈S ‖x− y‖2.

The row player uses the potential function to determine, at time t , a mixed strategy pt

satisfying, whenever At−1 /∈ S,

max
j=1,...,M

at−1 · �(pt , j) ≤ ct−1,

where

at−1 = ∇�(At−1)

‖∇�(At−1)‖ and ct−1 = sup
x∈S

at−1 · x.

If At−1 ∈ S, the row player’s action can be arbitrary. Observe that the existence of such a pt

is implied by the fact that S is convex and approachable and by Theorem 7.5. Geometrically,
the hyperplane tangent to the level curve of the potential function � passing through At−1

is shifted so that it intersects S but S falls entirely on one side of the shifted hyperplane.
The distribution pt is determined so that the expected loss �(pt , j) is forced to stay on
the same side of the hyperplane as S (see Figure 7.3). Note also that, in the special case
when �(x) = infy∈S ‖x− y‖2, this strategy is identical to Blackwell’s strategy defined in
the proof of Theorem 7.5, and therefore the potential-based strategy may be thought of as
a generalization of Blackwell’s strategy.

Remark 7.8 (Bregman projection). For any x /∈ S we may define

πS(x) = argmax
y∈S

∇�(x) · y.
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S

At−1

πS(At−1)

{x : �(x) = const.}

{u : at−1 · u = ct−1}

�(pt , Jt )

Figure 7.3. Potential-based approachability. The hyperplane {u : at−1 · u = ct−1} is determined by
shifting the hyperplane tangent to the level set {x : �(x) = const.} containing At−1 to the Bregman
projection πS(At−1). The expected loss �(pt , Jt ) is guaranteed to stay on the same side of the shifted
hyperplane as S.

It is easy to see that the conditions on � imply that the maximum exists and is unique. In
fact, since �(y) = 0 for all y ∈ S, πS(x) may be rewritten as

πS(x) =
(

argmin
y∈S

�(y)−�(x)− ∇�(x) · (y− x)

)
= argmin

y∈S
D�(y, x) .

In other words, πS(x) is just the projection, under the Bregman divergence, of x onto the
set S. (For the definition and basic properties of Bregman divergences and projections, see
Section 11.2.)

This potential-based strategy has a very similar version with comparable properties. This
version simply replaces At−1 in the definition of the algorithm by At−1 where, for each
t = 1, 2, . . . , At = 1

t

∑t
s=1 �(ps, Js) is the “expected” average loss, see also Exercise 7.23.

Recall that

�(ps, Js) =
N∑

i=1

pi,s �(i, Js) = E
[
�(Is, Js)

∣∣ I s−1, J s
]
.

The main result of this section states that for any potential function, the row player’s average
loss approaches the target set S no matter how the opponent plays. The next theorem states
this fact for the modified strategy (based on At−1). The analog statement for the strategy
based on At−1 may be proved similarly, and it is left as an exercise.
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Theorem 7.6. Let S be a closed, convex, and approachable subset of the unit ball in
R

m, and let � be a convex, twice differentiable potential function that vanishes in S and
is positive outside of S. Denote the Hessian matrix of � at x ∈ R

m by H (x) and let
B = supx : ‖x‖≤1 ‖H (x)‖ <∞ be the maximal norm of the Hessian in the unit ball. For each
t = 1, 2, . . . let the potential-based strategy pt be any strategy satisfying

max
j=1,...,M

at−1 · �(pt , j) ≤ ct−1 if At−1 /∈ S if At−1 /∈ S,

where

at−1 = ∇�(At−1)

‖∇�(At−1)‖ and ct−1 = sup
x∈S

at−1 · x = at−1 · πS(At−1).

(If At−1 ∈ S, then the row player’s action can be arbitrary.) Then for any strategy of the
column player, the average “expected” loss satisfies

�(An) ≤ 2B(ln n + 1)

n
.

Also, for the average loss An = 1
n

∑n
t=1 �(It , Jt ), we have

lim
n→∞ d(An, S) = 0 with probability 1.

Proof. First note that for any x /∈ S and y ∈ S,

∇�(x) · (y− x) ≤ −�(x).

This follows simply from the fact that by convexity of �,

0 = �(y) ≥ �(x)+∇�(x) · (y− x).

The rest of the proof is based on a simple Taylor expansion of the potential �(At ) around
�(At−1). Since At = At−1 + 1

t

(
�(pt , Jt )− At−1

)
, we have

�(At ) = �(At−1)+ 1

t
∇�(At−1) · (�(pt , Jt )− At−1

)
+ 1

2t2

(
�(pt , Jt )− At−1

)�
H (ξ )

(
�(pt , Jt )− At−1

)
(where ξ is a vector between At and At−1)

≤ �(At−1)+ 1

t
∇�(At−1) · (�(pt , Jt )− At−1

)
+ 1

2t2

∥∥�(pt , Jt )− At−1

∥∥2
sup

ξ : ‖ξ‖≤1
‖H (ξ )‖

(by the Cauchy–Schwarz inequality)

≤ �(At−1)+ 1

t
∇�(At−1) · (πS(At−1)− At−1

)+ 2B

t2

(by the defining property of pt )

≤ �(At−1)− 1

t
�(At−1)+ 2B

t2

(by the property noted at the beginning of the proof).
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Multiplying both sides of the obtained inequality by t we get

t�(At ) ≤ (t − 1)�(At−1)+ 2B

t
for all t ≥ 1.

Summing this inequality for t = 1, . . . , n, we have

n�(An) ≤
n∑

t=1

2B

t
,

which proves the first statement of the theorem. The almost sure convergence of An to S
may now be obtained easily using the Hoeffding–Azuma inequality, just as in the proof of
Theorem 7.5.

7.9 Convergence to Nash Equilibria

We have seen in the previous sections that if all players follow simple strategies based on
(internal) regret minimization, then the joint empirical frequencies of play approach the
set of correlated equilibria at a remarkably fast rate. Here we investigate the considerably
more difficult problem of achieving Nash equilibria.

Just as before, we only consider uncoupled strategies; that is, each player knows his
own payoff function but not that of the rest of the players. In this section we assume
standard monitoring; that is, after taking an action, all players observe the other play-
ers’ moves. In other words, the participants of the game know what the others do, but
they do not know why they do it. In the next section we treat the more difficult case
in which the players only observe their own losses but not the actions the other players
take.

Our main concern here is to describe strategies of play that guarantee that no mat-
ter what the underlying game is, the players end up playing a mixed strategy profile
close to a Nash equilibrium. The difficulty is that players cannot optimize their play
because of the assumption of uncoupledness. The problem becomes more pronounced
in the case of an “unknown game” (i.e., when players only observe their own payoffs
but know nothing about what the other participants of the game do), treated in the next
section.

As mentioned in the introduction, in many cases, including two-person zero-sum
games and K -person games in which every player has two actions (i.e., Nk = 2 for
all k), simple fictitious play is sufficient to achieve convergence to a Nash equilibrium
(in a certain weak sense). However, the case of general games is considerably more
difficult.

To describe the first simple idea, assume that the game has a pure action Nash equi-
librium, that is, a Nash equilibrium π concentrated on a single vector i = (i1, . . . , iK ) of
actions. In this case it is easy to construct a randomized uncoupled strategy of repeated
play such that if all players follow such a strategy, the joint strategy profiles converge to
a Nash equilibrium almost surely. Perhaps the simplest such procedure is described as
follows.
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AN UNCOUPLED STRATEGY TO FIND PURE
NASH EQUILIBRIA

Strategy for player k.

For t = 1, 2, . . .

(1) if t is odd, choose an action I (k)
t randomly, according to the uniform distribution

over {1, . . . , Nk};
(2) if t is even, let

I (k)
t =

{
1 if �(k)(It−1) ≤ minik=1,...,Nk �(k)(I−t−1, ik)
2 otherwise.

(3) If t is even and all players have played action 1, then repeat forever the action
played in the last odd period.

In words, at each odd period the players choose an action randomly. At the next period
they check if their action was a best response to the other players’ actions and communicate
it to the other players by playing action 1 or 2. If all players have best responded at some
point (which they confirm by playing action 1 in the next round), then they repeat the
same action forever. This strategy clearly realizes a random exhaustive search. Because the
game is finite, eventually, almost surely, by pure chance, at some odd time period a pure
action Nash equilibrium i = (i1, . . . , iK ) will be played (whose existence is guaranteed by
assumption). The expected time it takes to find such an equilibrium is at most 2

∏K
k=1 Nk ,

a quantity exponentially large in the number K of players. By the definition of Nash
equilibrium all players best respond at the time i is played and therefore stay with this
choice forever.

Remark 7.9 (Exhaustive search). The algorithm shown above is a simple form of exhaus-
tive search. In fact, all strategies that we describe here and in the next section are variants
of the same principle. Of course, this also means that convergence is extremely slow in
the sense that the whole space (exponentially large as a function of the number of players)
needs to be explored. This is in sharp contrast to the internal-regret-minimizing strategies
of Section 7.4 that guarantee rapid convergence to the set of correlated equilibria.

Remark 7.10 (Nonstationarity). The learning strategy described above may not be very
appealing because of its nonstationarity. Exercise 7.25 describes a stationary strategy pro-
posed by Hart and Mas-Colell [149] that also achieves almost sure convergence to a pure
action Nash equilibrium whenever such an equilibrium exists.

Remark 7.11 (Multiple equilibria). The procedure always converges to a pure action Nash
equilibrium. Of course, the game may have several Nash equilibria: some pure, others
mixed. Some equilibria may be “better” than others, sometimes in quite a strong sense.
However, the procedure does not make any distinction between different equilibria, and the
one it finds is selected randomly, according to the uniform distribution over all pure action
Nash equilibria.
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Remark 7.12 (Two players). It is important to note that the case of K = 2 players is
significantly simpler. In a two-player game (under a certain genericity assumption) it
suffices to use a strategy that repeats the previous play if it was a best response and selects
an action randomly otherwise (see Exercise 7.26). However, if the game is not generic or
in the case of at least three players, this procedure may enter in a cycle and never converge
(Exercise 7.27).

Next we show how the ideas described above may be extended to general games that
may not have a pure action Nash equilibrium. The simplest version of this extension
does not quite achieve a Nash equilibrium but approximates it. To make the statement
precise, we introduce the notion of an ε-Nash equilibrium. Let ε > 0. A mixed strategy
profile π = p(1) × · · · × p(K ) is an ε-Nash equilibrium if for all k = 1, . . . , K and all mixed
strategies q(k),

π�(k) ≤ π ′k�
(k) + ε,

where π ′k = p(1) × · · · × q(k) × · · · × p(K ) denotes the mixed strategy profile obtained by
replacing p(k) by q(k) and leaving all other players’ mixed strategies unchanged. Thus,
the definition of Nash equilibrium is modified simply by allowing some slack in the
defining inequalities. Clearly, it suffices to check the inequalities for mixed strategies q(k)

concentrated on a single action ik . The set of ε-Nash equilibria of a game is denoted by Nε.
The idea in extending the procedure discussed earlier for general games is that each

player first selects a mixed strategy randomly and then checks whether it is an approximate
best response to the others’ mixed strategies. Clearly, this cannot be done in just one round
of play because players cannot observe the mixed strategies of the others. But if the same
mixed strategy is played during sufficiently many periods, then each player can simply
test the hypothesis whether his choice is an approximate best response. This procedure is
formalized as follows.

A REGRET-TESTING PROCEDURE TO FIND NASH EQUILIBRIA

Strategy for player k.

Parameters: Period length T , confidence parameter ρ > 0.

Initialization: Choose a mixed strategy π
(k)
0 randomly, according to the uniform dis-

tribution over the simplex Dk of probability distributions over {1, . . . , Nk};
For t = 1, 2, . . . ,

(1) if t = mT + s for integers m ≥ 0 and 1 ≤ s ≤ T − 1, choose I (k)
t randomly

according to the mixed strategy π (k)
m ;

(2) if t = mT for an integer m ≥ 1, then let

I (k)
t =

⎧⎪⎨⎪⎩
1 if 1

T−1

∑mT−1
s=(m−1)T+1 �(k)(Is)

≤ minik=1,...,Nk
1

T−1

∑mT−1
s=(m−1)T+1 �(k)(I−s , ik)+ ρ

2 otherwise;

(3) If t = mT and all players have played action 1, then play the mixed strat-
egy π

(k)
m−1 forever; otherwise, choose π (k)

m randomly, according to the uniform
distribution over Dk .
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In this procedure every player tests, after each period of length T , whether he has been
approximately best responding and sends a signal to the rest of the players at the end of the
period. Once every player accepts the hypothesis of almost best response, the same mixed
strategy profile is repeated forever. The next simple result summarizes the performance of
this procedure.

Theorem 7.7. Assume that every player of a game plays according to the regret-testing
procedure described above that is run with parameters T and ρ ≤ 1/2 such that (T −
1)ρ2 ≥ 2 ln

∑K
k=1 Nk. With probability 1, there is a mixed strategy profile π = p(1) × · · · ×

p(K ) such that π is played for all sufficiently large m. The probability that π is not a
2ρ-Nash equilibrium is at most

8Tρ2−d ln
(
Tρ2−d

)
e−2(T−1)ρ2

,

where d =∑K
k=1(Nk − 1) is the number of free parameters needed to specify any mixed

strategy profile.

It is clear from the bound of the theorem that for an arbitrarily small value of ρ, if T is
sufficiently large, the probability of not ending up in a 2ρ-Nash equilibrium can be made
arbitrarily small. This probability decreases with T at a remarkably fast rate. Just note that
if Tρ2 is significantly larger than d ln d, the probability may be further bounded by e−Tρ2

.
Thus, the size of the game plays a minor role in the bound of the probability. However, the
time the procedure takes to reach the near-equilibrium state depends heavily on the size of
the game. The estimates derived in the proof reveal that this stopping time is typically of
order Tρ−d , exponentially large in the number of players. However, convergence to ε-Nash
equilibria cannot be achieved with this method for an arbitrarily small value of ε, because
no matter how T and ρ are chosen, there is always a positive, though tiny, probability
that all players accept a mixed strategy profile that is not an ε-Nash equilibrium. In the
next section we describe a different procedure that may be converted into an almost surely
convergent strategy.

Proof of Theorem 7.7. Let M denote the (random) index for which every player plays
1 at time MT . We need to prove that M is finite almost surely. Consider the pro-
cess π0, π1, π2, . . . of mixed strategy profiles found at times 0, T, 2T, . . . by the players
using the procedure. For convenience, assume that players keep drawing a new random
mixed strategy πm even if m ≥ M and the mixed strategy is not used anymore. In other
words, π0, π1, π2, . . . are independent random variables uniformly distributed over the
d =∑K

k=1(Nk − 1)-dimensional set obtained by the product of the K simplices of the
mixed strategies of the K players.

For any ε ∈ (0, 1) we may write

P[M ≥ m0] =
m0−1∑
j=0

P
[
πm ∈ Nε j times

]
×P
[
πm is rejected for every m < m0

∣∣πm ∈ Nε j times
]
.

We bound the terms on the right-hand side to derive the desired estimate for P[M ≥ m0].
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First observe that since the game has at least one Nash equilibrium π = p(1) × · · · × p(K ),
any mixed strategy profile π̃ = p̃(1) × · · · × p̃(K ) such that

max
k=1,...,K

max
ik=1,...,Nk

∣∣p(k)(ik)− p̃(k)(ik)
∣∣ ≤ ε

is an ε-Nash equilibrium. Thus, for every m = 0, 1, . . . we have

P[πm ∈ Nε] ≥ εd .

This implies that

P
[
πm ∈ Nε j times

] = P
[
πm /∈ Nε m0 − j times

]
≤
(

m0

j

) (
1− εd

)m0− j ≤ m j
0 e−(m0− j)εd

.

To bound the other term in this expression of P[M ≥ m0], note that if πm ∈ Nε exactly
j times for m = 0, . . . , m0 − 1, then M ≥ m0 implies that at least one player observes a
regret at least ρ at all of these j periods. Note that at any given period m, if ε > ρ, by using
the fact that the regret estimates are sums of T − 1 independent, identically distributed
random variables, Hoeffding’s inequality and the union-of-events bound imply that

P
[
M �= m

∣∣πm ∈ Nε

] ≤ P
[∃k ≤ K : I (k)

mT = 2
∣∣πm ∈ Nε

]
≤

K∑
k=1

Nke−2(T−1)(ε−ρ)2
.

Therefore,

P
[
πm is rejected for every m < m0

∣∣πm ∈ Nε j times
]

≤
(

K∑
k=1

Nk

) j

e−2 j(T−1)(ε−ρ)2
.

Putting everything together, letting ε = 2ρ, using the assumption (T − 1)ρ2 ≥
2 ln

∑K
k=1 Nk , and fixing a j0 < m0, we have

P[M ≥ m0] ≤
∑
j≤ j0

m j
0 e−(m0− j)(2ρ)d +

∑
j> j0

(
K∑

k=1

Nk

) j

e− j(T−1)ρ2

≤ j0m j0
0 e−(m0− j0)(2ρ)d + m0 e− j0(T−1)ρ2/2.

Since we are free to choose j0, we take j0 = �m0 ρd−2/(T ln m0)�. To guarantee that
j0 < m0 we assume that m0 ≥ ρ−d

(
2 log ρ−d

)2
. This implies that m0 > ρ−d (ln m0)2, which

in turn implies the desired condition j0 < m0. Thus, using this choice of m0 and after some
simplification, we get

P[M ≥ m0] ≤ 2e−m0ρ
d/(2 ln m0). (7.2)

But then the Borel–Cantelli lemma implies that M is finite almost surely.
Now let π denote the mixed strategy profile that the process ends up repeating forever.

(This random variable is well defined with probability 1 according to the fact that M <∞
almost surely.) Then the probability that π is not a 2ρ-Nash equilibrium may be bounded
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by writing

P
[
π /∈ N2ρ

] = ∞∑
m=1

P
[
M = m, π /∈ N2ρ

]
.

For m ≥ m0 (where the value of m0 is determined later) we simply use the bound P
[
M =

m, π /∈ N2ρ

] ≤ P[M = m]. On the other hand, for any m, by Hoeffding’s inequality,

P
[
M = m, π /∈ N2ρ

] ≤ P
[
M = m

∣∣π /∈ N2ρ

] ≤ e−2(T−1)ρ2
.

Thus, for any m0, we get

P
[
π /∈ N2ρ

] ≤ m0 e−2(T−1)ρ2 + P[M ≥ m0].

Here we may use the estimate (7.2), which is valid for all m0 ≥ ρ−d
(
2 log ρ−d

)2
. A

convenient choice is to take m0 to be the greatest integer such that m0/(2 ln m0) ≤ Tρ2−d .
Then m0 ≤ 4Tρ2−d ln

(
Tρ2−d

)
, and we obtain

P
[
π /∈ N2ρ

] ≤ 8Tρ2−d ln
(
Tρ2−d

)
e−2(T−1)ρ2

as stated.

7.10 Convergence in Unknown Games

The purpose of this section is to show that even in the much more restricted framework
of “unknown” games described in Section 7.5, it is possible to achieve, asymptotically,
an approximate Nash equilibrium. Recall that in this model, as the players play a game
repeatedly, they not only do not know the other players’ loss function but they do not even
know their own, and the only information they receive is their loss suffered at each round
of the game, after taking an action.

The basic idea of the strategy we investigate in this section is somewhat reminiscent of
the regret-testing procedure described in the previous section. On a quick inspection of the
procedure it is clear that the assumption of standard monitoring (i.e., that players are able to
observe their opponents’ actions) is used twice in the definition of the procedure. On the one
hand, the players should be able to compute their estimated regret in each period of length
T . On the other hand, they need to communicate to the others whether their estimated regret
is smaller than a certain threshold or not. It turns out that it is easy to find a solution to the
first problem, because players may easily and reliably estimate their regret even if they do
not observe others’ actions. This should not come as a surprise after having seen that regret
minimization is possible in the bandit problem (see Sections 6.7, 6.8, and 7.5). In fact, the
situation here is significantly simpler. However, the lack of ability of communication with
the other players poses more serious problems because it is difficult to come up with a
stopping rule as in the procedure shown in the previous section.

The solution is a procedure in which, just as before, time is divided into periods of length
T , all players keep testing their regret in each period, and they stay with their previously
chosen mixed strategy if they have had a satisfactorily small estimated regret. Otherwise
they choose a new mixed strategy randomly, just like above. To make the ideas more
transparent, first we ignore the issue of estimating regrets in the model of unknown game
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and assume that, after every period (m − 1)T + 1, . . . , mT , each player k = 1, . . . , K can
compute the regrets

r (k)
m,ik

= 1

T

mT∑
s=(m−1)T+1

�(k)(Is)− 1

T

mT∑
s=(m−1)T+1

�(k)(I−s , ik)

for all ik = 1, . . . , Nk . Now we may define a regret-testing procedure as follows.

EXPERIMENTAL REGRET TESTING

Strategy for player k.

Parameters: Period length T , confidence parameter ρ > 0, exploration parameter
λ > 0.

Initialization: Choose a mixed strategy π
(k)
0 randomly, according to the uniform dis-

tribution over the simplex Dk of probability distributions over {1, . . . , Nk};
For t = 1, 2, . . .

(1) if t = mT + s for integers m ≥ 0 and 1 ≤ s < T , choose I (k)
t randomly accord-

ing to the mixed strategy π (k)
m ;

(2) if t = mT for an integer m ≥ 1, then
• if

max
ik=1,...,Nk

r (k)
m,ik

> ρ

then choose π (k)
m randomly according to the uniform distribution over Dk ;

• otherwise, with probability 1− λ let π (k)
m = π

(k)
m−1, and with probability λ

choose π (k)
m randomly according to the uniform distribution over Dk .

The parameters ρ and T play a similar role to that played in the previous section. The
introduction of the exploration parameter λ > 0 is technical; it is needed for the proofs
given below but it is unclear whether the natural choice λ = 0 would give similar results.
With λ > 0, even if a player has all regrets below the threshold ρ, the player will reserve
a positive probability of exploration. A strictly positive value of λ guarantees that the
sequence {πm} of mixed strategy profiles forms a rapidly mixing Markov process. In fact,
the first basic lemma establishes this property. For convenience we denote the set

∏K
k=1 Dk

of all mixed strategy profiles (i.e., product distributions) by �. Also, we introduce the
notation N =∑K

k=1 Nk .

Lemma 7.4. The stochastic process {πm}, m = 0, 1, 2, . . . , defined by experimental regret
testing with 0 < λ < 1, is a homogeneous, recurrent, and irreducible Markov chain satis-
fying Doeblin’s condition. In particular, for any measurable set A ⊂ �,

P(π → A) ≥ λN µ(A)

for every π ∈ �, where P(π → A) = P[πm+1 ∈ A | πm = π ] denotes the transition prob-
abilities of the Markov chain, µ denotes the uniform distribution on �, and m is any
nonnegative integer.
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Proof. To see that the process is a Markov chain, note that at each m = 0, 1, 2, . . . ,

πm depends only on πm−1 and the regrets r (k)
m,ik

(ik = 1, . . . , Nk , k = 1, . . . , K ). It is irre-
ducible since at each 0, T, 2T, . . . , the probability of reaching some π ′m ∈ A for any open
set A ⊂ � from any πm−1 ∈ � is strictly positive when λ > 0, and it is recurrent since
E
[∑∞

m=0 I{πm∈A}
∣∣π0 ∈ A

] = ∞ for all π0 ∈ A. Doeblin’s condition follows simply from
the presence of the exploration parameter λ in the definition of experimental regret testing.
In particular, with probability λN every player chooses a mixed strategy randomly, and
conditioned on this event the distribution of πm is uniform.

The lemma implies that {πm} is a rapidly mixing Markov chain. The behavior of such
Markov processes is well understood (see, e.g., the monograph of Meyn and Tweedie [217]
for an excellent coverage). The properties we use subsequently are summarized in the
following corollary.

Corollary 7.2. For m = 0, 1, 2, . . . let Pm denote the distribution of the mixed strategy
profile πm = (π (1)

m , . . . , π (K )
m ) chosen by the players at time mT , that is, Pm(A) = P[πm ∈

A]. Then there exists a unique probability distribution Q over � (the stationary distribution
of the Markov process) such that

sup
A
|Pm(A)− Q(A)| ≤ (1− λN

)m
,

where the supremum is taken over all measurable sets A ⊂ � (see [217, Theorem 16.2.4]).
Also, the ergodic theorem for Markov chains implies that

lim
M→∞

1

M

M∑
m=1

πm =
∫

�

π dQ(π ) almost surely.

The main idea behind the regret-testing heuristics is that, after a not very long search period,
by pure chance, the mixed strategy profile πm will be an ε-Nash equilibrium, and then,
since all players have a small expected regret, the process gets stuck with this value for
a much longer time than the search period. The main technical result needed to justify
such a statement is summarized in Lemma 7.5. This implies that if the parameters of the
procedure are set appropriately, the length of the search period is negligible compared with
the length of time the process spends in an ε-Nash equilibrium. The proof of Lemma 7.5 is
quite technical and is beyond the scope of this book. See the bibliographic remarks for the
appropriate pointers. In addition, the proof requires certain properties of the game that are
not satisfied by all games. However, the necessary conditions hold for almost all games, in
the sense that the Lebesgue measure of all those games that do not satisfy these conditions
is 0. (Here we consider the representation of a game as the K

∏K
k=1 Nk-dimensional vector of

all losses �(k)(i).) Let N ε = � \Nε denote the complement of the set of ε-Nash equilibria.

Lemma 7.5. For almost all K -person games there exist positive constants c1, c2 such that,
for all sufficiently small ρ > 0, the K –step transition probabilities of experimental regret
testing satisfy

P (K )
(N ρ → Nρ

) ≥ c1ρ
c2 ,
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where we use the notation P (K )(A → B) = P
[
πm+K ∈ B

∣∣πm ∈ A
]

for the K -step transi-
tion probabilities.

On the basis of this lemma, we can now state one of the basic properties of the experimental
regret-testing procedure. The result states that, in the long run, the played mixed strategy
profile is not an approximate Nash equilibrium at a tiny fraction of time.

Theorem 7.8. Almost all games are such that there exists a positive number ε0 and positive
constants c1, . . . , c4 such that for all ε < ε0 if the experimental regret-testing procedure is
used with parameters

ρ ∈ (ε, ε + εc1 ), λ ≤ c2ε
c3 , and T ≥ − 1

2(ρ − ε)2
log
(
c4ε

c3
)
,

then for all M ≥ log(ε/2)/ log(1− λN ),

PM (N ε) = P
[
σMT /∈ Nε

] ≤ ε.

Proof. First note that by Corollary 7.2,

PM (N ε) ≤ Q(N ε)+ (1− λN )M ,

so that it suffices to bound the measure of N ε under the stationary probability Q. To this
end, first observe that, by the defining property of the stationary distribution,

Q(Nρ) = Q(N ρ)P (K )(N ρ → Nρ)+ Q(Nρ)P (K )(Nρ → Nρ).

Solving for Q(Nρ) gives

Q(Nρ) = P (K )(N ρ → Nρ)

1− P (K )(Nρ → Nρ)+ P (K )(N ρ → Nρ)
. (7.3)

To derive a lower bound for the expression on the right-hand side, we write the elementary
inequality

P (K )(Nρ → Nρ) = Q(Nε)P (K )(Nε → Nρ)

Q(Nρ)

+ Q(Nρ \Nε)P (K )(Nρ \Nε → Nρ)

Q(Nρ)

≥ Q(Nε)P (K )(Nε → Nρ)

Q(Nρ)
. (7.4)

To bound P (K )(Nε → Nρ), note that if πm ∈ Nε, then the expected regret of all players
is at most ε. Since the regret estimates r (k)

m,ik
are sums of T independent random variables

taking values between 0 and 1 with mean at most ε, Hoeffding’s inequality implies that

P
[
r (k)

m,ik
≥ ρ

] ≤ e−2T (ρ−ε)2
, ik = 1, . . . , Nk, k = 1, . . . , K .

Then the probability that there is at least one player k and a strategy ik ≤ Nk such that
r (k)

m,ik
≥ ρ is bounded by

∑K
k=1 Nke−2T (ρ−ε)2 = Ne−2T (ρ−ε)2

. Thus, with probability at least
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(1− λ)K
(
1− Ne−2T (ρ−ε)2)

, all players keep playing the same mixed strategy, and therefore

P(Nε → Nε) ≥ (1− λ)K
(
1− Ne−2T (ρ−ε)2)

.

Consequently, since ρ > ε, we have P (K )(Nε → Nρ) ≥ P (K )(Nε → Nε) and hence

P (K )(Nε → Nρ) ≥ P (K )(Nε → Nε) ≥ P(Nε → Nε)K

≥ (1− λ)K 2(
1− Ne−2T (ρ−ε)2)K ≥ 1− K 2λ− N K e−2T (ρ−ε)2

(where we assumed that λ ≤ 1 and Ne−2T (ρ−ε)2 ≤ 1). Thus, using (7.4) and the obtained
estimate, we have

P (K )(Nρ → Nρ) ≥ Q(Nε)

Q(Nρ)

(
1− K 2λ− N K e−2T (ρ−ε)2)

.

Next we need to show that, for proper choice of the parameters, P (K )(N ρ → Nρ) is
sufficiently large. For almost all of K -person games, this follows from Lemma 7.5, which
asserts that

P (K )(N ρ → Nρ) ≥ C1ρ
C2

for some positive constants C1 and C2 that depend on the game. Hence, from (7.3) we
obtain

Q(Nρ) ≥ C1ρ
C2

1− (1− K 2λ− N K e−2T (ρ−ε)2
) Q(Nε)

Q(Nρ ) + C1ρC2
.

It remains to estimate the measure Q(Nε)/Q(Nρ). We need to show that the ratio is close
to 1 whenever ρ − ε � ε. It turns out that one can show that, in fact, for almost every game
there exists a constant C5 such that

Q(Nε)

Q(Nρ)
≥ 1− C3(ρ − ε)C4

ρC5
,

where C3 and C4 are positive constants depending on the game. This inequality is not
surprising, but the rigorous proof of this statement is somewhat technical and is skipped
here. It may be found in [126]. Summarizing,

Q(Nε) ≥ Q(Nρ)

(
1− C3(ρ − ε)C4

ρC5

)
≥
(

1− C3(ρ − ε)C4

ρC5

)
× C1ρ

C2

1− (1− K 2λ− N K e−2T (ρ−ε)2
) (

1− C3(ρ−ε)C4

ρC5

)
+ C1ρC2

for some positive constants C1, . . . , C5. Choosing the parameters ρ, λ, T with appropriate
constants c1, . . . , c4, we have

Q(N ε) ≤ ε/2.

If M is so large that (1− λK )M ≤ ε/2, we have PM (N ε) ≤ ε, as desired.
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Theorem 7.8 states that if the parameters of the experimental regret-testing procedure are
set in an appropriate way, the mixed strategy profiles will be in an approximate equilibrium
most of the time. However, it is important to realize that the theorem does not claim
convergence in any way. In fact, if the parameters T, ρ, and λ are kept fixed forever, the
process will periodically abandon the set of ε-Nash equilibria and wander around for a
long time before it gets stuck in a (possibly different) ε-Nash equilibrium. Then the process
stays there for an even much longer time before leaving again. However, since the process
{πm} forms an ergodic Markov chain, it is easy to deduce convergence of the empirical
frequencies of play. Specifically, we show next that if all players play according to the
experimental regret-testing procedure, then the joint empirical frequencies of play converge
almost surely to a joint distribution P that is in the convex hull of ε-Nash equilibria. The
precise statement is given in Theorem 7.9.

Recall that for each t = 1, 2, . . . we denote by I (k)
t the pure strategy played by the

kth player. I (k)
t is drawn randomly according to the mixed strategy π (k)

m whenever t ∈
{mT + 1, . . . , (m + 1)T }. Consider the joint empirical distribution of plays P̂t defined by

P̂t (i) = 1

t

t∑
s=1

I{It=i}, i ∈
K∏

k=1

{1, . . . , Nk}.

Denote the convex hull of a set A by co(A).

Remark 7.13. Recall that Nash equilibria and ε-Nash equilibria π are mixed strategy
profiles, that is, product distributions, and have been considered, up to this point, as elements
of the set � of product distributions. However, a product distribution is a special joint
distribution over the set

∏K
k=1{1, . . . , Nk} of pure strategy profiles, and it is this “larger”

space in which the convex hull of ε-Nash equilibria is defined. Thus, elements of the convex
hull are typically not product distributions. (Recall that the convex hull of Nash equilibria
is a subset of the set of correlated equilibria.)

Theorem 7.9. For almost every game and for every sufficiently small ε > 0, there exists a
choice of the parameters (T, ρ, λ) such that the following holds: there is a joint distribution
P over the set of K -tuples i = (i1, . . . , iK ) of actions in the convex hull co(Nε) of the set of
ε-Nash equilibria such that the joint empirical frequencies of play of experimental regret
testing satisfy

lim
t→∞ P̂t → P almost surely.

Proof. If π = (π (1) × · · · × π (K )) ∈ � is a product distribution, introduce notation

P(π, i) =
K∏

k=1

π (k)(ik),

where i = (i1, . . . , iK ). In other words, P(π, ·) is a joint distribution over the set of action
profiles i, induced by π .
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First observe that, since at time t the vector It of actions is chosen according to the
mixed strategy profile π�t/T �, by martingale convergence, for every i,

P̂t (i)− 1

t

t∑
s=1

P(π�s/T �, i) → 0 almost surely,

Therefore, it suffices to prove convergence of 1
t

∑t
s=1 P(π�s/T �, i). Since π�s/T � is

unchanged during periods of length T , we obviously have

lim
t→∞

1

t

t∑
τ=1

P(π�t/T �, i) = lim
M→∞

1

M

M∑
m=1

P(πm, i).

By Corollary 7.2,

lim
M→∞

1

M

M∑
m=1

πm = π almost surely,

where π = ∫
�

π dQ(π ). (Recall that Q is the unique stationary distribution of the Markov
process.) This, in turn, implies by continuity of P(π, i) in π that there exists a joint
distribution P(i) = ∫

�
P(π, i) dQ(π ) such that, for all i,

lim
M→∞

1

M

M∑
m=1

P(πm, i) = P(i) almost surely.

It remains to show that P ∈ co(Nε).
Let ε′ < ε be a positive number such that the ε′ blowup of co(Nε′) is contained in co(Nε),

that is, {
P ∈ � : ∃ P ′ ∈ co(Nε′) such that ‖P − P ′‖1 < ε′

} ⊂ co(Nε).

Such an ε′ always exists for almost all games by Exercise 7.28. In fact, one may choose
ε′ = ε/c3 for a sufficiently large positive constant c3 (whose value depends on the game).

Now choose the parameters (T, ρ, λ) such that Q(N ε′ ) < ε′. Theorem 7.8 guarantees
the existence of such a choice.

Clearly,

P(π, i) =
∫

�

P(π, i) dQ(π ) =
∫
Nε′

P(π, i) dQ(π )+
∫
N ε′

P(π, i) dQ(π ).

Since
∫
Nε′

P(π ) dQ(π ) ∈ co(Nε′), we find that the L1 distance of P and co(Nε′ ) satisfies

d1
(
P, co(Nε′ )

) ≤ ∥∥∥∥∫N ε′
P(π ) dQ(π )

∥∥∥∥
1

≤
∫
N ε′

dQ(π ) = Q(N ε′) < ε′.

By the choice of ε′ we indeed have P ∈ co(Nε).

Remark 7.14 (Convergence of the mixed strategy profiles). We only mention briefly that
the experimental regret testing procedure can be extended to obtain an uncoupled strategy
such that the mixed strategy profiles converge, with probability 1, to the set of Nash
equilibria for almost all games. Note that we claim convergence not only of the empirical
frequencies of plays but also of the actual mixed strategy profiles. Moreover, we claim
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convergence to N and to the convex hull co(Nε) of all ε-Nash equilibria for a fixed ε. The
basic idea is to “anneal” experimental regret testing such that first it is used with some
parameters (T1, ρ1, λ1) for a number M1 of periods of length T1 and then the parameters are
changed to (T2, ρ2, λ2) (by increasing T and decreasing ρ and λ properly) and experimental
regret testing is used for a number M2 ! M1 of periods (of length T2), and so on. However,
this is not sufficient to guarantee almost sure convergence, because at each change of
parameters the process is reinitialized and therefore there is an infinite set of indices t such
that σt is far away from any Nash equilibrium. A possible solution is based on “localizing”
the search after each change of parameters such that each player limits its choice to a small
neighborhood of the mixed strategy played right before the change of parameters (unless a
player experiences a large regret in which case the search is extended again to the whole
simplex). Another challenge one must face in designing a genuinely uncoupled procedure
is that the values of the parameters of the procedure (i.e., T�, ρ�, λ�, and M�, � = 1, 2, . . .)
cannot depend on the parameters of the game, because by requiring uncoupledness we must
assume that the players only know their payoff function but not those of the other players.
We leave the details as an exercise.

Remark 7.15 (Nongeneric games). All results of this section up to this point hold for
almost every game. The reason for this restriction is that our proofs require an assumption
of genericity of the game. We do not know whether Theorems 7.8 and 7.9 extend to all
games. However, by a simple trick one can modify experimental regret testing such that
the results of these two theorems hold for all games. The idea is that before starting to
play, each player slightly perturbes the values of his loss function and then plays as if his
losses were the perturbed values. For example, define, for each player k and pure strategy
profile i,

�̃(k)(i) = �(k)(i)+ Zi,s,

where the Zi,s are i.i.d. random variables uniformly distributed in the interval [−ε, ε].
Clearly, the perturbed game is generic with probability 1. Therefore, if all players play
according to experimental regret testing but on the basis of the perturbed losses, then
Theorems 7.8 and 7.9 are valid for this newly generated game. However, because for all k
and i we have

∣∣�̃(k)(i)− �(k)(i)
∣∣ < ε, every ε-Nash equilibrium of the perturbed game is a

2ε-Nash equilibrium of the original game.

Finally, we show how experimental regret testing can be modified so that it can be played
in the model of unknown games with similar performance guarantees. In order to adjust
the procedure, recall that the only place in which the players look at the past is when they
calculate the regrets

r (k)
m,ik

= 1

T

mT∑
s=(m−1)T+1

�(k)(Is)− 1

T

mT∑
s=(m−1)T+1

�(k)(I−s , ik).

However, each player may estimate his regret in a simple way. Observe that the first term in
the definition of r (k)

m,ik
is just the average loss player k over the mth period, which is available

to the player, and does not need to be estimated. However, the second term is the average
loss suffered by the player if he had chosen to play action ik all the time during this period.
This can be estimated by random sampling. The idea is that, at each time instant, player
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k flips a biased coin and, if the outcome is head (the probability of which is very small),
then instead of choosing an action according to the mixed strategy π (k)

m the player chooses
one uniformly at random. At these time instants, the player collects sufficient information
to estimate the regret with respect to each fixed action ik .

To formalize this idea, consider a period between times (m − 1)T + 1 and mT . During
this period, player k draws nk samples for each ik = 1, . . . , Nk actions, where nk � T
is to be determined later. Formally, define the random variables Uk,s ∈ {0, 1, . . . , Nk},
where, for s between (m − 1)T + 1, and mT , for each ik = 1, . . . , Nk , there are exactly
nk values of s such that Uk,s = ik , and all such configurations are equally probable; for
the remaining s, Uk,s = 0. (In other words, for each ik = 1, . . . , Nk , nk values of s are
chosen randomly, without replacement, such that these values are disjoint for different
ik’s.) Then, at time s, player k draws an action I (k)

s as follows: conditionally on the past up
to time s − 1,

I (k)
s

{
is distributed as π i

m−1 if Uk,s = 0
equals ik if Uk,s = ik .

The regret r (k)
m,ik

may be estimated by

r̂ (k)
m,ik

= 1

T − Nknk

mT∑
s=(m−1)T+1

�(k)(Is)I{Uk,s=0} − 1

nk

mT∑
s=(m−1)T+1

�(k)(I−s , ik)I{Uk,s=ik }

k = 1, . . . , Nk . The first term of the definition of r̂ (k)
m,ik

is just the average of the losses
of player k over those periods in which the player does not “experiment,” that is, when
Uk,s = 0. (Note that there are exactly T − Nknk such periods.) Since Nknk � T , this
average should be close to the first term in the definition of the average regret r (k)

m,ik
. The

second term is the average over those time periods in which player k experiments, and
he plays action ik (i.e., when Uk,s = ik). This may be considered as an estimate, obtained
by sampling without replacement, of the second term in the definition of r (k)

m,ik
. Observe

that r̂ (k)
m,ik

only depends on the past payoffs experienced by player k, and therefore these
estimates are feasible in the unknown game model.

In order to show that the estimated regrets work in this case, we only need to establish
that the probability that the estimated regret exceeds ρ is small if the expected regret is not
more than ε (whenever ε < ρ). This is done in the following lemma. It guarantees that if
the experimental regret-testing procedure is run using the regret estimates described above,
then results analogous to Theorems 7.8 and 7.9 may be obtained, in a straightforward way,
in the unknown-game model.

Lemma 7.6. Assume that in a certain period of length T , the expected regret
E
[
r (k)

m,ik

∣∣ I1, . . . , ImT
]

of player k is at most ε. Then, for a sufficiently small ε, with the
choice of parameters of Theorem 7.8,

P
[̂
r (k)

m,ik
≥ ρ

] ≤ cT−1/3 + exp
(−T 1/3 (ρ − ε)2

)
.

Proof. We show that, with large probability, r̂ (k)
m,ik

is close to r (k)
m,ik

. To this end, first we
compare the first terms in the expression of both. Observe that at those periods s of time
when none of the players experiments (i.e., when Uk,s = 0 for all k = 1, . . . , K ), the



7.11 Playing Against Opponents That React 219

corresponding terms of both estimates are equal. Thus, by a simple algebra it is easy to see
that the first terms differ by at most 2

T

∑K
k=1 Nknk .

It remains to compare the second terms in the expressions of r̂ (k)
m,ik

and r (k)
m,ik

. Observe
that if there is no time instant s for which Uk,s = 1 and Uk ′,s = 1 for some k ′ �= k, then

1

nk

t+T∑
s=t+1

�(k)(I−s , ik)I{Uk,s=ik }

is an unbiased estimate of

1

T

t+T∑
s=t+1

�(k)(I−s , ik)

obtained by random sampling. The probability that no two players sample at the same time
is at most

T K 2 max
k,k ′≤K

Nknk

T

Nk ′nk ′

T
,

where we used the union-of-events bound over all pairs of players and all T time instants. By
Hoeffding’s inequality for an average of a sample taken without replacement (see Lemma
A.2), we have

P̂

[ ∣∣∣∣∣ 1

nk

t+T∑
s=t+1

�(k)(I−s , ik)I{Uk,s=ik } −
1

T

t+T∑
s=t+1

�(k)(I−s , ik)

∣∣∣∣∣ > α

]
≤ e−2nkα

2
,

where P̂ denotes the distribution induced by the random variables Uk,s . Putting everything
together,

P
[̂
r (k)

m,ik
≥ ρ

]
≤ TK 2 max

k,k ′≤K

Nknk

T

Nk ′nk ′

T
+ exp

⎛⎝−2nk

(
ρ − ε − 2

∑K
k=1 Nknk

T

)2
⎞⎠ .

Choosing nk ∼ T 1/3, the first term on the right-hand side is of order T−1/3 and
1
T

∑K
k=1 Nknk = O(T−2/3) becomes negligible compared with ρ − ε.

7.11 Playing Against Opponents That React

Regret-minimizing strategies, such as those discussed in Sections 4.2 and 4.3, set up the
goal of predicting as well as the best constant strategy in hindsight, assuming that the
actions of the opponents would have been the same had the forecaster been following that
constant strategy. However, when a forecasting strategy is used to play a repeated game,
the actions prescribed by the forecasting strategy may have an effect on the behavior of the
opponents, and so measuring regret as the difference of the suffered cumulative loss and
that of the best constant action in hindsight may be very misleading.
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To simplify the setup of the problem, we consider playing a two-player game such that,
at time t , the row player takes an action It ∈ {1, . . . , N } and the column player takes action
Jt ∈ {1, . . . , M}. The loss suffered by the row player at time t is �(It , Jt ). (The loss of the
column player is immaterial in this section. Note also that since we are only concerned with
the loss of the first player, there is no loss of generality in assuming that there are only two
players, since otherwise Jt can represent the joint play of all other players.) In the language
of Chapter 4, we consider the case of a nonoblivious opponent; that is, the actions of the
column player (the opponent) may depend on the history I1, . . . , It−1 of past moves of the
row player.

To illustrate why regret-minimizing strategies may fail miserably in such a scenario,
consider the repeated play of a prisoners’ dilemma, that is, a 2× 2 game in which the loss
matrix of the row player is given by

R\C c d
c 1/3 1
d 0 2/3

In the usual definition of the prisoners’ dilemma, the column player has the same loss
matrix as the row player. In this game both players can either cooperate (“c”) or defect
(“d”). Regardless of what the column player does, the row player is better off defecting
(and the same goes for the column player). However, it is better for the players if they both
cooperate than if they both defect.

Now assume that the game is played repeatedly and the row player plays according
to a Hannan-consistent strategy; that is, the normalized cumulative loss 1

n

∑n
t=1 �(It , Jt )

approaches mini=c,d
1
n

∑n
t=1 �(i, Jt ). Clearly, the minimum is achieved by action “d” and

therefore the row player will defect basically all the time. In a certain worst-case sense
this may be the best one can hope for. However, in many realistic situations, depending
on the behavior of the adversary, significantly smaller losses can be achieved. For example,
the column player may be willing to try cooperation. Perhaps the simplest such strategy
of the opponent is “tit for tat,” in which the opponent repeats the row player’s previous
action. In such a case, by playing a Hannan consistent strategy, the row player’s performance
is much worse than what he could have achieved by following the expert “c” (which is the
worse action in the sense of the notions of regret we have used so far).

The purpose of this section is to introduce forecasting strategies that avoid falling in traps
similar to the one described above under certain assumptions on the opponent’s behavior.

To this end, consider the scenario where, rather than requiring Hannan consistency,
the goal of the forecaster is to achieve a cumulative loss (almost) as small as that of the
best action, where the cumulative loss of each action is calculated by looking at what
would have happened if that action had been followed throughout the whole repeated
game.

It is obvious that a completely malicious adversary can make it impossible to estimate
what would have happened if a certain action had been played all the time (unless that
action is played all the time). But under certain natural assumptions on the behavior of
the adversary, such an inference is possible. The assumptions under which our goal can
be reached require a kind of “stationarity” and bounded memory of the opponent and are
certainly satisfied for simple strategies such as tit for tat.
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Remark 7.16 (Hannan consistent strategies are sometimes better). We have argued that in
some cases it makes more sense to look for strategies that perform as well as the best action
if that action had been played all the time rather than playing Hannan consistent strategies.
The repeated prisoners’ dilemma with the adversary playing tit for tat is a clear example.
However, in some other cases Hannan consistent strategies may perform much better than
the best action in this new sense. The following example describes such a situation: assume
that the row player has N = 2 actions, and let n be even such that n/2 is odd. Assume
that in the first n/2 time periods the losses of both actions are 1 in each period. After n/2
periods the adversary decides to assign losses 00 . . . 000 (n/2 times) to the action that was
played less times during the first n/2 rounds and 11...111 to the other action. Clearly, a
Hannan consistent strategy has a cumulative loss of about n/2 during the n periods of the
game. On the other hand, if any of the two actions is played constantly, its cumulative
loss is n.

The goal of this section is to design strategies that guarantee, under certain assumptions on
the behavior of the column player, that the average loss 1

n

∑n
t=1 �(It , Jt ) is not much larger

than mini=1,...,N µi,n , where µi,n is the average loss of a hypothetical player who plays the
same action It = i in each round of the game.

A key ingredient of the argument is a different way of measuring regret. The goal of
the forecaster in this new setup is to achieve, during the n periods of play, an average loss
almost as small as the average loss of the best action, where the average is computed over
only those periods in which the action was chosen by the forecaster. To make the definition
formal, denote by

µ̂t = 1

t

t∑
s=1

�(Is, Js)

the averaged cumulative loss of the forecaster at time t and by

µi,t =
∑t

s=1 �(Is, Js)I{Is=i}∑t
s=1 I{Is=i}

the averaged cumulative loss of action i , averaged over the time periods in which the action
was played by the forecaster. If

∑t
s=1 I{Is=i} = 0, let µi,t take the maximal value 1. At this

point it may not be entirely clear how the averaged losses µi,t are related to the average
loss of a player who plays the same action i all the time. However, shortly it will become
clear that these quantities can be related under some assumptions of the behavior of the
opponent and certain restrictions on the forecasting strategy.

The property that the forecaster needs to satisfy for our purposes is that, asymptotically,
the average loss µ̂n is not larger than the smallest asymptotic average loss µi,t . More
precisely, we need to construct a forecaster that achieves

lim sup
n→∞

µ̂n ≤ min
i=1,...,N

lim sup
n→∞

µi,n.

Surprisingly, there exists a deterministic forecaster that satisfies this asymptotic inequality
regardless of the opponent’s behavior. Here we describe such a strategy for the case of
N = 2 actions. The simple extension to the general case of more than two actions is left as
an exercise (Exercise 7.30). Consider the following simple deterministic forecaster.
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DETERMINISTIC EXPLORATION–EXPLOITATION

For each round t = 1, 2, . . .

(1) (Exploration) if t = k2 for an integer k, then set It = 1;
if t = k2 + 1 for an integer k, then set It = 2;

(2) (Exploitation) otherwise, let It = argmini=1,2 µi,t−1 (in case of a tie, break it,
say, in favor of action 1).

This simple forecaster is a version of fictitious play, based on the averaged losses,
in which the exploration step simply guarantees that every action is sampled infinitely
often. There is nothing special about the time instances of the form t = k2, k2 + 1; any
sparse infinite sequence would do the job. In fact, the original algorithm of de Farias and
Megiddo [85] chooses the exploration steps randomly.

Observe, in passing, that this is a “bandit”-type predictor in the sense that it only needs
to observe the losses of the played actions.

Theorem 7.10. Regardless of the sequence of outcomes J1, J2, . . . the deterministic fore-
caster defined above satisfies

lim sup
n→∞

µ̂n ≤ min
i=1,2

lim sup
n→∞

µi,n.

Proof. For each t = 1, 2, . . . , let i∗t = argmini=1,2 µi,t and let t1, t2, . . . be the time
instances such that i∗t �= i∗t−1, that is, the “leader” is switched. If there is only a finite
number of such tk’s, then, obviously,

µ̂n − min
i=1,2

µi,n → 0,

which implies the stated inequality. Thus, we may assume that there is an infinite number
of switches and it suffices to show that whenever T = max{tk : tk ≤ n}, then either

µ̂n − min
i=1,2

µi,T ≤ const.

T 1/4
(7.5)

or

µ̂n − min
i=1,2

µi,n ≤ const.

T 1/4
, (7.6)

which implies the statement.
First observe that, due to the exploration step, for any t ≥ 3 and i = 1, 2,

t∑
s=1

I{Is=i} ≥
⌊√

t − 1
⌋ ≥ √t/2.

But then

|µ1,T − µ2,T | ≤ 2√
T

.

This inequality holds because by the boundedness of the loss, at time T, the averaged loss
of action i can change by at most 1/

∑T
s=1 I{Is=i} < 2/

√
T , and the definition of the switch

is that the one that was larger in the previous step becomes smaller, which is only possible
if the averaged losses of the two actions were already 2/

√
T close to each other. But then
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the averaged loss of the forecaster at the time T (the last switch before time n) may be
bounded by

µ̂T = 1

T

(
T∑

s=1

�(Is, Js)I{Is=1} +
T∑

s=1

�(Is, Js)I{Is=2}

)

= 1

T

(
µ1,T

T∑
s=1

I{Is=1} + µ2,T

T∑
s=1

I{Is=2}

)

≤ min
i=1,2

µi,T + 2√
T

.

Now assume that T is so large that n − T ≤ T 3/4. Then clearly, |µ̂n − µ̂T | ≤ T 3/4/n ≤
T−1/4 and (7.5) holds.

Thus, in the rest of the proof we assume that n − T ≥ T 3/4. It remains to show that µ̂n

cannot be much larger than mini=1,2 µi,n . Introduce the notation

δ = µ̂n − min
i=1,2

µi,T .

Since

µ̂n = 1

n

(
T∑

t=1

�(It , Jt )+
n∑

t=T+1

�(It , Jt )

)

≤ 1

n

(
T min

i=1,2
µi,T + 2

√
T +

n∑
t=T+1

�(It , Jt )

)
we have

n∑
t=T+1

�(It , Jt ) ≥ (n − T ) min
i=1,2

µi,T + δn − 2
√

T .

Since, apart from at most
√

n − T exploration steps, the same action is played between
times T + 1 and n, we have

min
i=1,2

µi,n ≥
µi∗n ,T

∑T
s=1 I{Is=i∗n } +

∑n
t=T+1 �(It , Jt )−

√
n − T∑T

s=1 I{Is=i∗n } + (n − T )

≥ µi∗T ,T
∑T

s=1 I{Is=i∗n } +
∑n

t=T+1 �(It , Jt )−
√

n − T∑T
s=1 I{Is=i∗n } + (n − T )

≥ µi∗T ,T
∑T

s=1 I{Is=i∗n } + (n − T ) mini=1,2 µi,T + δn − 2
√

T −√n − T∑T
s=1 I{Is=i∗n } + (n − T )

=
µi∗T ,T

(∑T
s=1 I{Is=i∗n } + (n − T )

)
+ δn − 2

√
T −√n − T∑T

s=1 I{Is=i∗n } + (n − T )

≥ µi∗T ,T + δ − 2

√
T

n − T
− 1√

n − T

≥ µi∗T ,T + δ − 3T−1/4

= µ̂n − 3T−1/4,

where at the last inequality we used n − T ≥ T 3/4. Thus, (7.6) holds in this case.
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There is one more ingredient we need in order to establish strategies of the desired
behavior. As we have mentioned before, our aim is to design strategies that perform well
if the behavior of the opponent is such that the row player can estimate, for each action,
the average loss suffered by playing that action all the time. In order to do this, we modify
the forecaster studied above such that whenever an action is chosen, it is played repeatedly
sufficiently many times in a row so that the forecaster gets a good picture of the behavior
of the opponent when that action is played. This modification is done trivially by simply
repeating each action τ times, where the positive integer τ is a parameter of the strategy.

REPEATED DETERMINISTIC EXPLORATION–EXPLOITATION

Parameter: Number of repetitions τ .

For each round t = 1, 2, . . .

(1) (Exploration) if t = k2τ + s for integers k and s = 0, 1, . . . , τ − 1, then set
It = 1;
if t = (k2 + 1)τ + s for integers k and s = 0, 1, . . . , τ − 1, then set It = 2;

(2) (Exploitation) otherwise, let It = argmini=1,2 µi,τ�t/τ�−1 (in case of a tie, break
it, say, in favor of action 1).

Theorem 7.10 (as well as Exercise 7.30) trivially extends to this case and the strategy
defined above obviously satisfies

lim sup
n→∞

µ̂n ≤ min
i=1,2

lim sup
n→∞

µi,n

regardless of the opponent’s actions and the parameter τ .
Our main assumption on the opponent’s behavior is that, for every action i , there exists

a number µi ∈ [0, 1] such that for any time instance t and past plays I1, . . . , It ,

1

τ

t+τ∑
s=t+1

�(i, Js)− µi ≤ ετ ,

where ετ is a sequence of nonnegative numbers converging to 0 as τ →∞. (Here the
average loss is computed by assuming that the row player’s moves are I1, . . . , It , i, i, . . . , i .)
After de Farias and Megiddo [86], we call an opponent satisfying this condition flexible.
Clearly, if the opponent is flexible, then for any action i the average loss of playing the
action forever is at most µi . Moreover, the performance bound for the repeated deterministic
exploration–exploitation immediately implies the following.

Corollary 7.3. Assume that the row player plays according to the repeated deterministic
exploration–exploitation strategy with parameter τ against a flexible opponent. Then the
asymptotic average cumulative loss of the row player satisfies

lim sup
n→∞

1

n

n∑
t=1

�(It , Jt ) ≤ min
i=1,...,N

µi + ετ .
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The assumption of flexibility is satisfied in many cases when the opponent’s long-term
behavior against any fixed action can be estimated by playing the action repeatedly for a
stretch of time of length τ . This is satisfied, for example, when the opponent is modeled
by a finite automata. In the example of the opponent playing tit for tat in the prisoners’
dilemma described at the beginning of this section, the opponent is clearly flexible with
ετ = 1/τ . Note that in these cases one actually has∣∣∣∣∣1τ

t+τ∑
s=t+1

�(i, Js)− µi

∣∣∣∣∣ ≤ ετ

(with µ1 = 1/3 and µ2 = 2/3); that is, the estimated average losses are actually close to the
asymptotic performance of the corresponding action. However, for Corollary 7.3 it suffices
to require the one-sided inequality.

Corollary 7.3 states the existence of a strategy of playing repeated games such that,
against any flexible opponent, the average loss is at most that of the best action (calculated
by assuming that the action is played constantly) plus the quantity ετ that can be made
arbitrarily small by choosing the parameter τ of the algorithm sufficiently large. However,
sequence ετ depends on the opponent and may not be known to the forecaster. Thus,
it is desirable to find a forecaster whose average loss actually achieves mini=1,...,N µi

asymptotically. Such a method may now easily be constructed.

Corollary 7.4. There exists a forecaster such that whenever the opponent is flexible,

lim sup
n→∞

1

n

n∑
t=1

�(It , Jt ) ≤ min
i=1,...,N

µi .

We leave the details as a routine exercise (Exercise 7.32).

Remark 7.17 (Randomized opponents). In some cases it may be meaningful to consider
strategies for the adversary that use randomization. In such cases our definition of flexibility,
which poses a deterministic condition on the opponent, is not realistic. However, the
definition may be easily modified to accommodate a possibly randomized behavior. In fact,
the original definition of de Farias and Megiddo [86] involves a probabilistic assumption.

7.12 Bibliographic Remarks

Playing and learning in repeated games is an important branch of game theory with an exten-
sive literature. In this chapter we addressed only a tiny corner of this immense subject. The
interested reader may consult the monographs of Fudenberg and Levine [119], Sorin [276],
and Young [316]. Hart [144] gives an excellent survey of regret-based uncoupled learning
dynamics.

von Neumann’s minimax theorem is the classic result of game theory (see von Neumann
and Morgenstern [296]), and most standard textbooks on game theory provide a proof.
Various generalizations, including stronger versions of Theorem 7.1, are due to Fan [93]
and Sion [271] (see also the references therein). The proof of Theorem 7.1 shown here is a
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generalization of ideas of Freund and Schapire [114], who prove von Neumann’s minimax
theorem using the strategy described in Exercise 7.9.

The notion and the proof of existence of Nash equilibria appears in the celebrated
paper of Nash [222]. For the basic results on the Nash convergence of fictitious play, see
Robinson [246], Miyasawa [218], Shapley [265], Monderer and Shapley [220]. Hofbauer
and Sandholm [163] consider stochastic fictitious play, similar, in spirit, to the follow-
the-perturbed-leader forecaster considered in Chapter 4, and prove its convergence for a
class of games. See the references within [163] for various related results. Singh, Kearns,
and Mansour [270] show that a simple dynamics based on gradient-descent yields average
payoffs asymptotically equivalent of those of a Nash equilibrium in the special case of
two-player games in which both players have two actions.

The notion of correlated equilibrium was first introduced by Aumann [16, 17]. A direct
proof of the existence of correlated equilibria, using just von Neumann’s minimax theorem
(as opposed to the fixed point theorem needed to prove the existence of Nash equilibria)
was given by Hart and Schmeidler [150]. The existence of adaptive procedures leading to
a correlated equilibrium was shown by Foster and Vohra [105]; see also Fudenberg and
Levine [118, 121] and Hart and Mas-Colell [145, 146]. Stoltz and Lugosi [278] generalize
this to games with an infinite, but compact, set of actions. The connection of calibration and
correlated equilibria, described in Section 7.6, was pointed out by Foster and Vohra [105].
Kakade and Foster [171] take these ideas further and show that if all players play according
to a best response to a certain common, “almost deterministic,” well-calibrated forecaster,
then the joint empirical frequencies of play converge not only to the set of correlated
equilibria but, in fact, to the convex hull of the set of Nash equilibria. Hart and Mas-
Colell [145] introduce a strategy, the so-called regret matching, conceptually much simpler
than the internal regret minimization procedures described in Section 4.4, which has the
property that if all players follow this strategy, the joint empirical frequencies converge
to the set of correlated equilibria; see also Cahn [44]. Kakade, Kearns, Langford, and
Ortiz [172] consider efficient algorithms for computing correlated equilibria in graphical
games. The result of Section 7.5 appears in Hart and Mas-Colell [147].

Blackwell’s approachability theory dates back to [28], where Theorem 7.5 is proved. It
was also Blackwell [29] who pointed out that the approachability theorem may be used to
construct Hannan-consistent forecasting strategies. Various generalizations of this theorem
may be found in Vielle [295] and Lehrer [193]. Fabian and Hannan [92] studied rates of
convergence in an extended setting in which payoffs may be random and not necessarily
bounded. The potential-based strategies of Section 7.8 were introduced by Hart and Mas-
Colell [146] and Theorem 7.6 is due to them. In [146] the result is stated under a weaker
assumption than convexity of the potential function.

The problem of learning Nash equilibria by uncoupled strategies has been pursued by
Foster and Young [108,109]. They introduce the idea of regret testing, which the procedures
studied in Section 7.10 are based on. Their procedures guarantee that, asymptotically, the
mixed strategy profiles are within distance ε of the set of Nash equilibria in a fraction of
at least 1− ε of time. On the negative side, Hart and Mas-Colell [148, 149] show that it
is impossible to achieve convergence to Nash equilibrium for all games if one is restricted
to use stationary strategies that have bounded memory. By “bounded memory” they mean
that there is a finite integer T such that each player bases his play only on the last T rounds
of play. On the other hand, for every ε > 0 they show a randomized bounded-memory
stationary uncoupled procedure, different from those presented in Sections 7.9 and 7.10,
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for which the joint empirical frequencies of play converge almost surely to an ε-Nash
equilibrium. Germano and Lugosi [126] modify the regret testing procedure of Foster and
Young to achieve almost sure convergence to the set of ε-Nash equilibria for all games.
The analysis of Section 7.10 is based on [126]. In particular, the proof of Lemma 7.5 is
found in [126], though the somewhat simpler case of two players is shown in Foster and
Young [109].

A closely related branch of literature that is not discussed in this chapter is based on
learning rules that are based on players updating their beliefs using Bayes’ rule. Kalai and
Lehrer [176] show that if the priors “contain a grain of truth,” the play converges to a Nash
equilibrium of the game. See also Jordan [169, 170], Dekel, Fudenberg, and Levine [87],
Fudenberg and Levine [117, 119], and Nachbar [221].

Kalai, Lehrer, and Smorodinsky [177] show that this type of learning is closely related
to stronger notions of calibration and merging. See also Lehrer, and Smorodinsky [196],
Sandroni and Smorodinsky [258].

The material presented in Section 7.11 is based on the work of de Farias and Megiddo [85,
86], though the analysis shown here is different. In particular, the forecaster of de Farias
and Megiddo is randomized and conceptually simpler than the deterministic predictor used
here.

7.13 Exercises

7.1 Show that the set of all Nash equilibria of a two-person zero-sum game is closed and convex.

7.2 (Shapley’s game) Consider the two-person game described by the loss matrices of the two
players (“R” and “C”), known as Shapley’s game:

R\C 1 2 3
1 0 1 1
2 1 0 1
3 1 1 0

R\C 1 2 3
1 1 0 1
2 1 1 0
3 0 1 1

Show that if both players use fictitious play, the empirical frequencies of play do not converge
to the set of correlated equilibria (Foster and Vohra [105]).

7.3 Prove Lemma 7.1.

7.4 Consider the two-person game given by the losses

R\C 1 2
1 1 5
2 0 7

R\C 1 2
1 1 0
2 5 7

Find all three Nash equilibria of the game. Show that the distribution given by P(1, 1) = 1/3,
P(1, 2) = 1/3, P(2, 1) = 1/3, P(2, 2) = 0 is a correlated equilibrium that lies outside of the
convex hull of the Nash equilibria. (Aumann [17]).

7.5 Show that a probability distribution P over
⊗K

k=1{1, . . . , Nk} is a correlated equilibrium if and
only if for all k = 1, . . . , K ,

E �(k)(I) ≤ E �(k)(I−, Ĩ (k)),

where I = (I (1), . . . , I (k)) is distributed according to P and the random variable Ĩ (k) is any
function of I (k) and of a random variable U independent of I−.

7.6 Consider the repeated time-varying game described in Remark 7.3, with N = M = 2. Assume
that there exist positive numbers ε, δ such that, for every sufficiently large n, at least for nδ time
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steps t between time 1 and n,

max
j=1,2

|�t (1, j)− �t (2, j)| > ε.

Show that then for any sequence of mixed strategies p1, p2, . . . of the row player, the column
player can choose his mixed strategies q1, q2, . . . such that the row player’s cumulative loss
satisfies

n∑
t=1

�t (It , Jt )−
n∑

t=1

min
i=1,2

�t (i, Jt ) > γ n

for all sufficiently large n with probability 1, where γ is positive.

7.7 Assume that in a two-person zero-sum game, for all t , the row player plays according to the
constant mixed strategy pt = p, where p is any mixed strategy for which there exists a mixed
strategy of the column player such that �(p, q) = V . Show that

lim sup
n→∞

1

n

n∑
t=1

�(It , Jt ) ≤ V .

Show also that, for any ε > 0, the row player, regardless of how he plays, cannot guarantee that

lim sup
n→∞

1

n

n∑
t=1

�(It , Jt ) ≤ V − ε.

7.8 Consider a two-person zero-sum game and assume that the row player plays according to the
exponentially weighted average mixed strategy

pi,t =
exp

(−η
∑t

s=1 �(i, Js)
)∑N

k=1 exp
(−η

∑t
s=1 �(k, Js)

) , i = 1, . . . , N .

Show that, with probability at least 1− δ, the average loss of the row player satisfies

1

n

n∑
t=1

�(It , Jt ) ≤ V + ln N

nη
+ η

8
+
√

2

n
ln

2N

δ
.

7.9 Freund and Schapire [113] investigate the weighted average forecaster in the simplified version
of the setup of Section 7.3, in which the row player gets to see the distribution qt−1 chosen by
the column player before making the play at time t . Then the following version of the weighted
average strategy for the row player is feasible:

pi,t =
exp

(
−η
∑t−1

s=1 �(i, qs)
)

∑m
k=1 exp

(
−η
∑t−1

s=1 �(k, qs)
) , i = 1, . . . , N ,

with pi,1 set to 1/N , where η > 0 is an appropriately chosen constant. Show that this strategy
is an instance of the weighted average forecaster (see Section 4.2), which implies that

n∑
t=1

�(pt , qt ) ≤ min
p

n∑
t=1

�(p, qt )+
ln N

η
+ nη

8
,

where

�(pt , qt ) =
N∑

i=1

M∑
j=1

pi,t q j,t �(i, j).
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Show that if It denotes the actual randomized play of the row player, then with an appropriately
chosen η = ηt ,

lim
n→∞

1

n

(
n∑

t=1

�(It , qt )− min
i=1,...,N

n∑
t=1

�(i, qt )

)
= 0 almost surely

(Freund and Schapire [113]).

7.10 Improve the bound of the previous exercise to

n∑
t=1

�(pt , qt ) ≤ min
p

(
n∑

t=1

�(p, qt )−
H (p)

η

)
+ ln N

η
+ nη

8
,

where H (p) = −∑N
i=1 pi ln pi denotes the entropy of the probability vector p =

(p1, . . . , pN ). Hint: Improve the crude bound 1
η

ln
(∑

i eηRi,n
) ≥ maxi Ri,n to 1

η
ln
(∑

i eηRi,n
) ≥

maxp (Rt · p+ H (p)/η).

7.11 Consider repeated play in a two-person zero-sum game in which both players play such that

lim
n→∞

1

n

n∑
t=1

�(It , Jt ) = V almost surely.

Show that the product distribution p̂n × q̂n with

p̂i,n = 1

n

n∑
t=1

I{It=i} and q̂ j,n = 1

n

n∑
t=1

I{Jt= j}

converges, almost surely, to the set of Nash equilibria. Hint: Check the proof of Theorem 7.2.

7.12 Robinson [246] showed that if in repeated playing of a two-person zero-sum game both play-
ers play according to fictitious play (i.e., choose the best pure strategy against the average
mixed strategy of their opponent), then the product of the marginal empirical frequencies
of play converges to a solution of the game. Show, however, that fictitious play does not
have the following robustness property similar to the exponentially weighted average strat-
egy deduced in Theorem 7.2: if a player uses fictitious play but his opponent does not,
then the player’s normalized cumulative loss may be significantly larger than the value of
the game.

7.13 (Fictitious conditional regret minimization) Consider a two-person game in which the loss
matrix of both players is given by

1\2 1 2
1 0 1
2 1 0

Show that if both players play according to fictitious play (breaking ties randomly if necessary),
then Nash equilibrium is achieved in a strong sense.

Consider now the “conditional” (or “internal”) version of fictitious play in which both players
k = 1, 2 select

I (k)
t = argmin

ik∈{1,2}

1

t − 1

t−1∑
s=1

I{I (k)
s =I (k)

t−1}
�(k)(I−s , ik).

Show that if the play starts with, say, (1, 2), then both players will have maximal loss in every
round of the game.

7.14 Show that if in a repeated play of a K -person game all players play according to some Hannan
consistent strategy, then the joint empirical frequencies of play converge to the Hannan set of
the game.



230 Prediction and Playing Games

7.15 Consider the two-person zero-sum game given by the loss matrix

0 0 −1
0 0 1
1 −1 0

Show that the joint distribution

1/3 1/3 0
1/3 0 0
0 0 0

is a correlated equilibrium of the game. This example shows that even in zero-sum games the
set of correlated equilibria may be strictly larger than the set of Nash equilibria (Forges [101]).

7.16 Describe a game for which H \ C �= ∅, that is, the Hannan set contains some distributions that
are not correlated equilibria.

7.17 Show that if P ∈ H is a product measure, then P ∈ N . In other words, the product measures
in the Hannan set are precisely the Nash equilibria.

7.18 Show that in a K -person game with Nk = 2, for all k = 1, . . . , K (i.e., each player has two
actions to choose from), H = C.

7.19 Extend the procedure and the proof of Theorem 7.4 to the general case of K -person games.

7.20 Construct a game with two-dimensional vector-valued losses and a (nonconvex) set S ⊂ R
2

such that all halfspaces containing S are approachable but S is not.

7.21 Construct a game with vector-valued losses and a closed and convex polytope such that if the
polytope is written as a finite intersection of closed halfspaces, where the hyperplanes defining
the halfspaces correspond to the faces of the polytope, then all these closed halfspaces are
approachable but the polytope is not.

7.22 Use Theorem 7.5 to show that, in the setup of Section 7.4, each player has a strategy such that
the limsup of the conditional regrets is nonpositive regardless of the other players’ actions.

7.23 This exercise presents a strategy that achieves a significantly faster rate of convergence in
Blackwell’s approachability theorem than that obtained in the proof of the theorem in the
text. Let S be a closed and convex set, and assume that all halfspaces H containing S are
approachable. Define A0 = 0 and At = 1

t

∑t
s=1 �(ps, Js) for t ≥ 1. Define the row player’s

mixed strategy pt at time t = 1, 2, . . . as arbitrary if At−1 ∈ S and by

max
j=1,...,M

at−1 · �(pt , j) ≤ ct−1

otherwise, where

at−1 = At−1 − πS(At−1)

‖At−1 − πS(At−1)‖ and ct−1 = at−1 · πS(At−1).

Prove that there exists a universal constant C (independent of n and d) such that, with probability
at least 1− δ,

‖An − πS(An)‖ ≤ 2√
n
+ C

√
ln(1/δ)

n
.

Hint: Proceed as in the proof of Theorem 7.5 to show that ‖An − πS(An‖ ≤ 2/
√

n. To
obtain a dimension-free constant when bounding ‖An − An‖, you will need an extension of
the Hoeffding–Azuma inequality to vector-valued martingales; see, for example, Chen and
White [58].
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7.24 Consider the potential-based strategy, based on the average loss At−1, described at the beginning
of Section 7.8. Show that, under the same conditions on S and � as in Theorem 7.6, the average
loss satisfies limn→∞ d(An, S) = 0 with probability 1. Hint: Mimic the proof of Theorem 7.6.

7.25 (A stationary strategy to find pure Nash equilibria) Assume that a K -person game has a pure
action Nash equilibrium and consider the following strategy for player k: If t = 1, 2, choose
I (k)

t randomly. If t > 2, if all players have played the same action in the last two periods (i.e.,
It−1 = It−2) and I (k)

t−1 was a best response to I−t−1, then repeat the same play, that is, define
I (k)

t = I (k)
t−1. Otherwise, choose I (k)

t uniformly at random.
Prove that if all players play according to this strategy, then a pure action Nash equilibrium

is eventually achieved, almost surely. (Hart and Mas-Colell [149].)

7.26 (Generic two-player game with a pure Nash equilibrium) Consider a two-player game with a
pure action Nash equilibrium. Assume also that the player is generic in the sense that the best
reply is always unique. Suppose at time t each player repeats the play of time t − 1 if it was a best
response and selects an action randomly otherwise. Prove that a pure action Nash equilibrium
is eventually achieved, almost surely [149]. Hint: The process I1, I2, . . . is a Markov chain
with state space {1, . . . , N1} × {1, . . . , N2}. Show that given any state i = (i1, i2), which is not
a Nash equilibrium, the two-step transition probability satisfies

P
[
It is a Nash equilibrium

∣∣ It−2 = (i1, i2)
] ≥ c

for a constant c > 0.

7.27 (A nongeneric game) Consider a two-player game (played by “R” and “C”) whose loss matrices
are given by

R\C 1 2 3
1 0 1 0
2 1 0 0
3 1 1 0

R\C 1 2 3
1 1 0 1
2 0 1 1
3 0 0 0

Suppose both players play according to the strategy described in Exercise 7.26. Show that there
is a positive probability that the unique pure Nash equilibrium is never achieved. (This example
appears in Hart and Mas-Colell [149].)

7.28 Show that almost all games (with respect to the Lebesgue measure) are such that there exist
constants c1, c2 > 0 such that for all sufficiently small ε > 0, the set Nε of approximate Nash
equilibria satisfies

D∞(N , c1ε) ⊂ Nε ⊂ D∞(N , c2ε),

where D∞(N , ε) = {π ∈ � : ‖π − π ′‖∞ ≤ ε, π ′ ∈ N } is the L∞ neighborhood of the set of
Nash equilibria, of radius ε. (See, e.g., Germano and Lugosi [126].)

7.29 Use the procedure of experimental regret testing as a building block to design an uncoupled
strategy such that if all players follow the strategy, the mixed strategy profiles converge almost
surely to a Nash equilibrium of the game for almost all games. Hint: Follow the ideas described
in Remark 7.14 and the Borel–Cantelli lemma. (Germano and Lugosi [126].)

7.30 Extend the forecasting strategy defined in Section 7.11 to the case of N > 2 actions such that,
regardless of the sequence of outcomes,

lim sup
n→∞

µ̂n ≤ min
i=1,...,N

lim sup
n→∞

µi,n .

Hint: Place the N actions in the leaves of a rooted binary tree and use the original algorithm
recursively in every internal node of the tree. The strategy assigned to the root is the desired
forecasting strategy.
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7.31 Assume that both players follow the deterministic exploration–exploitation strategy while play-
ing the prisoners’ dilemma. Show that the players will end up cooperating. However, if their
play is not synchronized (e.g., if the column player starts following the strategy at time t = 3),
both players will defect most of the time.

7.32 Prove Corollary 7.4. Hint: Modify the repeated deterministic exploration–exploitation forecaster
properly either by letting the parameter τ grow with time or by using an appropriate doubling
trick.
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Absolute Loss

8.1 Simulatable Experts

In this chapter we take a closer look at the sequential prediction problem of Chapter 2 in the
special case when the outcome space is Y = {0, 1}, the decision space is D = [0, 1], and
the loss function is the “absolute loss” �( p̂, y) = |̂p − y|. We have already encountered this
loss function in Chapter 3, where it was shown that, for general experts, the absolute loss is
in some sense the “hardest” among all bounded convex losses. We now turn our attention to
a different problem: the characterization of the minimax regret Vn(F) for the absolute loss
and for a given class F of simulatable experts (recall the definition of simulatable experts
from Section 2.9).

In the entire chapter, an expert f means a sequence f1, f2 . . . of functions ft :
{0, 1}t−1 → [0, 1], mapping sequences of past outcomes yt−1 into elements of the deci-
sion space. We use F to denote a class of (simulatable) experts f . Recall from Sec-
tion 2.10 that a forecasting strategy P based on a class of simulatable experts is a
sequence p̂1, p̂2, . . . of functions p̂t : Y t−1 → D (to simplify notation, we often write p̂t

instead of p̂t (yt−1)). Recall also that the minimax regret Vn(F) is defined for the absolute
loss by

Vn(F) = inf
P

sup
yn∈Yn

(
L̂(yn)−min

f ∈F
L f (yn)

)
,

where L̂(yn) =∑n
t=1 |̂pt (yt−1)− yt | is the cumulative absolute loss of the forecaster P

and L f (yn) =∑n
t=1 | ft (yt−1)− yt | denotes the cumulative absolute loss of expert f . The

infimum is taken over all forecasters P . (In this chapter, and similarly in Chapter 9, we
find it convenient to make the dependence of the cumulative loss on the outcome sequence
explicit; this is why we write L̂(yn) for L̂n .)

Clearly, if the cardinality of F is |F | = N , then Vn(F) ≤ V (N )
n , where V (N )

n is the
minimax regret with N general experts defined in Section 2.10. As seen in Section 2.2, for all
n and N , V (N )

n ≤ √(n/2) ln N . Also, by the results of Section 3.7, supn,N V (N )
n /

√
n ln N ≥

1/
√

2.
On the other hand, the behavior of Vn(F) is significantly more complex as it depends

on the structure of the class F . To understand the phenomenon, just consider a class of
N = 2 experts that always predict the same except for t = n, when one of the experts
predicts 0 and the other one predicts 1. In this case, since the experts are simulat-
able, the forecaster may simply predict as both experts if t < n and set p̂n = 1/2. It is
easy to see that this forecaster is minimax optimal, and therefore Vn(F) = 1/2, which is

233
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significantly smaller than the worst-case bound
√

(n/2) ln 2. In general, intuitively, Vn(F)
is small if the experts are “close” to each other in some sense and large if the experts are
“spread out.”

The primary goal of this chapter is to investigate what geometrical properties of F
determine the size of Vn(F). In Section 8.2 we describe a forecaster that is optimal in the
minimax sense, that is, it achieves a worst-case regret equal to Vn(F). The minimax optimal
forecaster also suggests a way of calculating Vn(F) for any given class of experts, and this
calculation becomes especially simple in the case of static experts (see Section 2.9 for
the definition of a static expert). In Section 8.3 the minimax regret Vn(F) is characterized
for static experts in terms of a so-called Rademacher average. Section 8.4 describes the
possibly simplest nontrivial example that illustrates the use of this characterization. In
Section 8.5 we derive general upper and lower bounds for classes of static experts in terms
of the geometric structure of the class F . Section 8.6 is devoted to general (not necessarily
static) classes of simulatable experts. This case is somewhat more difficult to handle as
there is no elegant characterization of the minimax regret. Nevertheless, using simple
structural properties, we are able to derive matching upper and lower bounds for some
interesting classes of experts, such as the class of linear forecasters or the class of Markov
forecasters.

8.2 Optimal Algorithm for Simulatable Experts

The purpose of this section is to present, in the case of simulatable experts, a forecaster that
is optimal in the sense that it minimizes, among all forecasters, the worst-case regret

sup
yn∈{0,1}n

(
L̂(yn)−min

f ∈F
L f (yn)

)
;

that is,

sup
yn∈{0,1}n

(
L̂(yn)−min

f ∈F
L f (yn)

)
= Vn(F),

where all losses – we recall it once more – are measured using the absolute loss.
Before describing the optimal forecaster, we note that, since the experts are simulatable,

the forecaster may calculate the loss of each expert for any particular outcome sequence.
In particular, for all yn ∈ {0, 1}n , the forecaster may compute inf f ∈F L f (yn).

We determine the optimal forecaster “backwards,” starting with p̂n , and the prediction
at time n. Assume that the first n − 1 outcomes yn−1 have been revealed and we want
to determine, optimally, the prediction p̂n = p̂n(yn−1). Since our goal is to minimize the
worst-case regret, we need to determine p̂n to minimize

max

{
L̂(yn−1)+ �( p̂n, 0)− inf

f ∈F
L f (yn−10),

L̂(yn−1)+ �( p̂n, 1)− inf
f ∈F

L f (yn−11)

}
,

where yn−10 denotes the string of n bits whose first n − 1 bits are yn−1 and the last bit
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is 0. Minimizing this quantity is equivalent to minimizing

max

{
p̂n − inf

f ∈F
L f (yn−10), 1− p̂n − inf

f ∈F
L f (yn−11)

}
.

Clearly, if we write An(yn) = − inf f ∈F L f (yn), then this is achieved by

p̂n =

⎧⎪⎪⎨⎪⎪⎩
0 if An(yn−10) > An(yn−11)+ 1
1 if An(yn−10)+ 1 < An(yn−11)

An(yn−11)− An(yn−10)+ 1

2
otherwise.

A crucial observation is that this expression of p̂n does not depend on the previous predic-
tions p̂1, . . . , p̂n−1. Define

An−1(yn−1)
def= min

pn∈[0,1]
max

{
pn − inf

f ∈F
L f (yn−10), 1− pn − inf

f ∈F
L f (yn−11)

}
.

This may be rewritten as

An−1(yn−1) = min
pn∈[0,1]

max
{

pn + An(yn−10), 1− pn + An(yn−11)
}
.

So far we have calculated the optimal prediction at the last time instance p̂n . Next we deter-
mine optimally p̂n−1, assuming that at time n the optimal prediction is used. Determining
p̂n−1 is clearly equivalent to minimizing

max
{

L̂(yn−2)+ �( p̂n−1, 0)+ An−1(yn−20),

L̂(yn−2)+ �( p̂n−1, 1)+ An−1(yn−21)
}

or, equivalently, to minimizing

max
{

p̂n−1 + An−1(yn−20), 1− p̂n−1 + An−1(yn−21)
}
.

The solution is, as before,

p̂n−1 =

⎧⎪⎪⎨⎪⎪⎩
0 if An−1(yn−20) > An−1(yn−21)+ 1
1 if An−1(yn−20)+ 1 < An−1(yn−21)

An−1(yn−21)− An−1(yn−20)+ 1

2
otherwise.

The procedure may be continued in the same way until we determine p̂1.
Formally, given a class F of experts and a positive integer n, a forecaster whose worst-

case regret equals Vn(F) is determined by the following recursion.
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MINIMAX OPTIMAL FORECASTER
FOR THE ABSOLUTE LOSS

Parameters: Class F of simulatable experts.

1. (Initialization) An(yn) = − inf f ∈F L f (yn).
2. (Recurrence) For t = n, n − 1, . . . , 1.

At−1(yt−1) = min
p∈[0,1]

max
{

p + At (yt−10), 1− p + At (yt−11)
}

and

p̂t =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if At (yt−10)
> At (yt−11)+ 1

1 if At (yt−10)+ 1
< At (yt−11)

At (yt−11)− At (yt−10)+ 1

2
otherwise.

Note that the recurrence for At may also be written as

At−1(yt−1) =

⎧⎪⎪⎨⎪⎪⎩
At (yt−10) if At (yt−10) > At (yt−11)+ 1
At (yt−11) if At (yt−10)+ 1 < At (yt−11)

At (yt−11)+ At (yt−10)+ 1

2
otherwise.

(8.1)

The algorithm for calculating the optimal forecaster has an important by-product: the value
A0 of the quantity At−1(yt−1) at the last step (t = 1) of the recurrence clearly gives

A0 = max
yn

{
n∑

t=1

�( p̂t , yt )+ An(yn)

}
= Vn(F).

Thus, the same algorithm also calculates the minimal worst-case regret. In the next section
we will see some useful consequences of this fact.

8.3 Static Experts

In this section we focus our attention on static experts. Recall that an expert f is called
static if for all t = 1, 2, . . . and yt−1 ∈ {0, 1}t−1, ft (yt−1) = ft ∈ [0, 1]. In other words,
static experts’ predictions do not depend on the past outcomes: they are fixed in advance.
For example, the expert that always predicts 0 regardless of the past outcomes is static, but
the expert whose prediction is the average of all previously seen outcomes is not static.

The following simple technical result has some surprising consequences. The simple
inductive proof is left as an exercise.

Lemma 8.1. Let F be an arbitrary class of static experts. Then for all t = 1, . . . , n and
yt−1 ∈ {0, 1}t−1, ∣∣At (yt−11)− At (yt−10)

∣∣ ≤ 1.

This lemma implies the following result.
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Theorem 8.1. If F is a class of static experts, then

Vn(F) = n

2
− 1

2n

∑
yn∈{0,1}n

inf
f ∈F

L f (yn).

Proof. Lemma 8.1 and (8.1) imply that for all t = 1, . . . , n,

At−1(yt−1) = At (yt−11)+ At (yt−10)+ 1

2
.

Applying this equation recursively, we obtain

A0 = 1

2n

∑
yn∈{0,1}n

An(yn)+ n

2
.

Recalling that Vn(F) = A0 and An(yn) = − inf f ∈F L f (yn), we conclude the proof.

To understand better the behavior of the value Vn(F), it is advantageous to reformulate
the obtained expression. Recall that, because experts are static, each expert f is represented
by a vector ( f1, . . . , fn) ∈ [0, 1]n , where ft is the prediction of expert f at time t . Since
�( ft , y) = | ft − y|, L f (yn) =∑n

t=1 | ft − yt |. Also, the average over all possible outcome
sequences appearing in the expression of Vn(F) may be treated as an expected value. To
this end, introduce i.i.d. symmetric Bernoulli random variables Y1, . . . , Yn (i.e., P[Yt =
0] = P[Yt = 1] = 1/2). Then, by Theorem 8.1,

Vn(F ) = n

2
− E

[
inf
f ∈F

n∑
t=1

| ft − Yt |
]

= E

[
sup
f ∈F

n∑
t=1

(
1

2
− | ft − Yt |

)]

= E

[
sup
f ∈F

n∑
t=1

(
1

2
− ft

)
σt

]
, (8.2)

where σt = 1− 2Yt are i.i.d. Rademacher random variables (i.e., with P[σt = 1] =
P[σt = −1] = 1/2). Thus, Vn(F) equals n times the Rademacher average

Rn(A) = E

[
sup
a∈A

1

n

n∑
i=1

σi ai

]

associated with the set A of vectors of the form

a = (a1, . . . , an) = (1/2− f1, . . . , 1/2− fn), f ∈ F .

Rademacher averages are thoroughly studied objects in probability theory, and this will help
us establish tight upper and lower bounds on Vn(F) for various classes of static experts in
Section 8.5. Some basic structural properties of Rademacher averages are summarized in
Section A.1.8.
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8.4 A Simple Example

We consider a simple example to illustrate the usage of the formula (8.2). In Section 8.5
we obtain general upper and lower bounds for Vn(F) based on the same characterization
in terms of Rademacher averages.

Consider the case when F is the class of all “constant” experts, that is, the class of
all static experts, parameterized by q ∈ [0, 1], of the form f q = (q, . . . , q). Thus each
expert predicts the same number throughout the n rounds. The first thing we notice is that
the class F is the convex hull of the two “extreme” static experts f (1) ≡ 0 and f (2) ≡ 1.
Since the Rademacher average of the convex hull of a set equals that of the set itself (see
Section A.1.8 for the basic properties of Rademacher averages), the identity (8.2) implies
that Vn(F) = Vn(F0), where F0 contains the two extreme experts. (One may also easily
see that for any sequence yn of outcomes the expert minimizing the cumulative loss L f (yn)
over the class F is one of the two extreme experts.) Thus, it suffices to find bounds for
Vn(F0). To this end recall that, by Theorem 2.2,

Vn(F0) ≤ V (2)
n ≤

√
n ln 2

2
≈ 0.5887

√
n.

Next we contrast this bound with bounds obtained directly using (8.2). Since f (1)
t = 0 and

f (2)
t = 1 for all t ,

Vn(F0) = 1

2
E

[
max

{
n∑

t=1

σt ,

n∑
t=1

−σt

}]
= 1

2
E

∣∣∣∣∣
n∑

t=1

σt

∣∣∣∣∣ .
Using the Cauchy–Schwarz inequality, we may easily bound this quantity from above as
follows:

Vn(F0) = 1

2
E

∣∣∣∣∣
n∑

t=1

σt

∣∣∣∣∣ ≤ 1

2

√√√√
E

(
n∑

t=1

σt

)2

=
√

n

2
.

Observe that this bound has the same order of magnitude as the bound obtained by Theo-
rem 2.2, but it has a slightly better constant.

We may obtain a similar lower bound as an easy consequence of Khinchine’s inequality,
which we recall here (see the Appendix for a proof).

Lemma 8.2 (Khinchine’s inequality). Let a1, . . . , an be real numbers, and let σ1, . . . , σn

be i.i.d. Rademacher random variables. Then

E

∣∣∣∣∣
n∑

i=1

aiσi

∣∣∣∣∣ ≥ 1√
2

√√√√ n∑
i=1

a2
i .

Applying Lemma 8.2 to our problem, we obtain the lower bound

Vn(F0) ≥
√

n

8
.

Summarizing the upper and lower bounds, for every n we have

0.3535 ≤ Vn(F0)√
n

≤ 0.5.
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For example, for n = 100 there exists a prediction strategy such that for any sequence
y1, . . . , y100 the total loss is not more than that of the best expert plus 5, but for any
prediction strategy there exists a sequence y1, . . . , y100 such that the regret is at least 3.5.
The exact asymptotic value is also easy to calculate: Vn(F0)/

√
n → 1/

√
2π ≈ 0.3989 (see

the exercises).

8.5 Bounds for Classes of Static Experts

In this section we use Theorem 8.1 and some results from the rich theory of empirical
processes to obtain upper and lower bounds for Vn(F) for general classes F of static
experts.

Theorem 8.1 characterizes the minimax regret as the Rademacher average Rn(A) of
the set A = 1/2− F , where 1/2 = (1/2, . . . , 1/2), and the class F of static experts is
now regarded as a subset of R

n (by associating, with each static expert f , the vector
( f1, . . . , fn) ∈ [0, 1]n). There are various ways of bounding Rademacher averages. One is
by using the structural properties summarized in Section A.1.8, another is in terms of the
geometrical structure of the set A. To illustrate the first method, we consider the following
example.

Example 8.1. Consider the class F of static experts f = ( f1, . . . , fn) such that ft = (1+
σ (bt ))/2 for any vector b = (b1, . . . , bn) satisfying ‖b‖2 =∑n

t=1 b2
t ≤ λ2 for a constant

λ > 0 and

σ (x) = ex − e−x

ex + e−x

is the standard “sigmoid” function. In other words, F contains all experts obtained by
“squashing” the elements of the unit ball of radius λ into the cube [0, 1]n . Intuitively, the
larger the λ, the more complexF is, which should be reflected in the value of Vn(F). Next we
derive an upper bound that reflects this behavior. By Theorem 8.1, Vn(F) = n Rn(A), where
A is the set of vectors of the form a = (a1, . . . , an), with ai = σ (bi )/2 with

∑
i b2

i ≤ λ2.
By the contraction principle (see Section A.1.8),

Rn(A) ≤ 1

2n
E

[
sup

b : ‖b‖≤λ

n∑
i=1

σi bi

]
= λ

2n
E

[
sup

b : ‖b‖≤1

n∑
i=1

σi bi

]
,

where we used the fact that σ is Lipschitz with constant 1. Now by the Cauchy–Schwarz
inequality, we have

E

[
sup

b : ‖b‖≤1

n∑
i=1

σi bi

]
= E

√√√√ n∑
i=1

σ 2
i =

√
n.

We have thus shown that Vn(F) ≤ λ
√

n/2, and this bound may be shown to be essentially
tight (see Exercise 8.11). �

A way to capture the geometric structure of the class of experts F is to consider its
covering numbers. The covering numbers suitable for our analysis are defined as follows.
For any class F of static experts let N2(F , r ) be the minimum cardinality of a set Fr of
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static experts (possibly not all belonging to F) such that for all f ∈ F there exists a g ∈ Fr

such that √√√√ n∑
t=1

( ft − gt )2 ≤ r.

The following bound shows how Vn(F) may be bounded from above in terms of these
covering numbers.

Theorem 8.2. For any class F of static experts,

Vn(F) ≤ 12
∫ √

n/2

0

√
ln N2(F , r ) dr.

The result is a straightforward corollary of Theorem 8.1, Hoeffding’s inequality
(Lemma 2.2), and the following classical result of empirical process theory. To state the
result in a general form, consider a family

{
T f : f ∈ F} of zero mean random variables

indexed by a metric space (F , ρ). Let Nρ(F , r ) denote the covering number of the metric
space F with respect to the metric ρ. The family is called subgaussian in the metric ρ

whenever

E
[
eλ(T f−Tg)

] ≤ eλ2ρ( f,g)2/2

holds for any f, g ∈ F and λ > 0. The family is called sample continuous if for any
sequence f (1), f (2), . . . ∈ F converging to some f ∈ F , we have T f (n) − T f → 0 almost
surely. The proof of the following result is given in the Appendix.

Theorem 8.3. If
{
T f : f ∈ F} is subgaussian and sample continuous in the metric ρ, then

E

[
sup
f ∈F

T f

]
≤ 12

∫ D/2

0

√
ln Nρ(F , ε) dε,

where D is the diameter of F .

For completeness, and without proof, we mention a lower bound corresponding to The-
orem 8.2. Once again, the inequality is a straightforward corollary of Theorem 8.1 and
known lower bounds for the expected maximum of Rademacher averages.

Theorem 8.4. Let F be an arbitrary class of static experts containing f and g such that
ft = 0 and gt = 1 for all t = 1, . . . , n. Then there exists a universal constant K > 0 such
that

Vn(F) ≥ K sup
r≥0

r
√

ln N2(F , r ).

The bound of Theorem 8.4 is often of the same order of magnitude as that of Theorem 8.2.
For examples we refer to the exercises.

The minimax regret Vn(F) for static experts is expressed as the expected value of the
supremum of a Rademacher process. Such expected values have been studied and well
understood in empirical process theory. In fact, Theorems 8.3 and 8.4 are simple versions
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of classical general results (known as “Dudley’s metric entropy bound” and “Sudakov’s
minoration”) of empirical process theory. There exist more modern tools for establishing
sharp bounds for expectations of maxima of random processes, such as “majorizing mea-
sures” and “generic chaining.” In the bibliographic comments we point the interested reader
to some of the references.

8.6 Bounds for General Classes

All bounds of the previous sections are based on Theorem 8.1, a characterization of Vn(F)
in terms of expected suprema of Rademacher processes. Unfortunately, no such tool is
available in the general case when the experts in the class F are not static. This section
discusses some techniques that may come to rescue.

We begin with a simple but very useful bound for expert classes that are subsets of
“convex hulls” of just finitely many experts.

Theorem 8.5. Assume that the class of experts F satisfies the following: there exist N
experts f (1), . . . , f (N ) (not necessarily in F) such that for all f ∈ F there exist convex
coefficients q1, . . . , qN ≥ 0, with

∑N
j=1 q j = 1, such that ft (yt−1) =∑N

j=1 q j f ( j)
t (yt−1)

for all t = 1, . . . , n and yt−1 ∈ {0, 1}t−1. Then

Vn(F) ≤
√

(n/2) ln N .

Proof. The key property is that for any bit sequence yn ∈ {0, 1}n and expert f =∑N
j=1 q j f ( j) ∈ F there exists an expert among f (1), . . . , f (N ) whose loss on yn is not

larger than that of f . To see this, note that

L f (yn) =
n∑

t=1

| ft (yt−1)− yt |

=
n∑

t=1

∣∣∣∣∣∣
N∑

j=1

q j f ( j)
t (yt−1)− yt

∣∣∣∣∣∣
=

n∑
t=1

N∑
j=1

q j

∣∣∣ f ( j)
t (yt−1)− yt

∣∣∣
=

N∑
j=1

q j

n∑
t=1

∣∣∣ f ( j)
t (yt−1)− yt

∣∣∣
=

N∑
j=1

q j L f ( j) (yn)

≥ min
j=1,...,N

L f ( j) (yn).

Thus, for all yn ∈ {0, 1}n , inf f ∈F L f (yn) ≥ min j=1,...,N L f ( j) (yn). This implies that if p̂ is
the exponentially weighted average forecaster based on the finite class f (1), . . . , f (N ), then,
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by Theorem 2.2,

L̂(yn)− inf
f ∈F

L f (yy) ≤ L̂(yn)− min
j=1,...,N

L f ( j) (yn) ≤
√

n ln N

2
,

which completes the proof.

We now review two basic examples.

Example 8.2 (Linear experts). As a first example, consider the class Lk of kth-order
autoregressive linear experts, where k ≥ 2 is a fixed positive integer. Because each pre-
diction of an expert f ∈ Lk is determined by the last k bits observed, we add an arbitrary
prefix y−k+1, . . . , y0 to the sequence yn to be predicted. We use yn

1−k to denote the resulting
sequence of n + k bits. The class Lk contains all experts f such that

ft (yt−1
1−k) =

k∑
i=1

qi yt−i

for some q1, . . . , qk ≥ 0, with
∑k

i=1 qi = 1. In other words, an expert inLk predicts accord-
ing to a convex combination of the k most recent outcomes in the sequence. Convexity of
the coefficients qi assures that ft (yt−1

1−k) ∈ [0, 1]. Accordingly, for such experts the value
Vn(F) is redefined by

Vn(F) = inf max
yn

1−k∈{0,1}n+k

(
L̂(yn

1−k)− inf
f ∈F

L f (yn
1−k)

)
,

where

L̂(yn
1−k) =

n∑
t=1

∣∣ p̂t (yt−1
1−k)− yt

∣∣ ,
and L f (yn

1−k) is defined similarly. �

Corollary 8.1. For all positive integers n and k ≥ 2,

Vn(Lk) ≤
√

n ln k

2
.

Proof. The statement is a direct consequence of Theorem 8.5 if we observe that Lk is the
convex hull of the k experts f (1), . . . , f (k) defined by f (i)

t (yt−1) = yt−i , i = 1, . . . , k.

Example 8.3 (Markov forecasters). For an arbitrary k ≥ 1, we consider the class Mk

of kth order Markov experts defined as follows. The class Mk is indexed by the set
[0, 1]2k

so that the index of any f ∈Mk is the vector α = (α0, α1, . . . , α2k−1), with αs ∈
[0, 1] for 0 ≤ s < 2k . If f has index α, then ft (yt−1

−k+1) = αs for all 1 ≤ t ≤ n and for all
yt−1
−k+1 ∈ {0, 1}t+k−1, where s has binary expansion yt−k, . . . , yt−1. Because each prediction

of a kth-order Markov expert is determined by the last k bits observed, we add a prefix
y−k+1, . . . , y0 to the sequence to predict in the same way we did in the previous example
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for the autoregressive experts. Thus, the function ft is now defined over the set {0, 1}t+k−1.
Once more, Theorem 8.5 immediately implies a bound for Vn(Mk). �

Corollary 8.2. For any positive integers n and k ≥ 2,

Vn(Mk) ≤
√

2kn ln 2

2
.

Next we study how one can derive lower bounds for Vn(F) for general classes of experts.
Even though Theorem 8.1 cannot be generalized to arbitrary classes of experts, its analog
remains true as an inequality.

Theorem 8.6. For any class of experts F ,

Vn(F) ≥ E

[
sup
f ∈F

n∑
t=1

(
1

2
− ft (Y

t−1)

)
(1− 2Yt )

]
,

where Y1, . . . , Yn are independent Bernoulli (1/2) random variables.

Proof. For any prediction strategy, if Yt is a Bernoulli (1/2) random variable, then
E |̂pt (yt−1)− Yt | = 1/2 for each yt−1. Hence,

Vn(F) ≥ max
yn∈{0,1}n

(
L̂(yn)− inf

f ∈F
L f (yn)

)
≥ E

[
L̂(Y n)− inf

f ∈F
L f (Y n)

]
= n

2
− E

[
inf
f ∈F

L f (Y n)

]
= E

[
sup
f ∈F

n∑
t=1

(
1

2
− ft (Y

t−1)

)
(1− 2Yt )

]
.

We demonstrate how to use this inequality for the example of the class of linear forecasters
described earlier. In fact, the following result shows that the bound of Corollary 8.3 is
asymptotically optimal.

Corollary 8.3.

lim inf
k→∞

lim inf
n→∞

Vn(Lk)√
n ln k

= 1√
2
.

Proof. We only sketch the proof, the details are left to the reader as an easy exercise. By
Theorem 8.6, if we write Zt = 1− 2Yt for t = −k + 1, . . . , n, then

Vn(Lk) ≥ 1

2
E

[
sup
f ∈Lk

n∑
t=1

(
1− 2 ft (Y

t−1)
)
Zt

]
≥ 1

2
E

[
max

i=1,...,k

n∑
t=1

Zt Zt−i

]
.
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The proof is now similar to the proof of Theorem 3.7 with the exception that instead of the
ordinary central limit theorem, we use a generalization of it to martingales.

Consider the k-vector Xn = (Xn,1, . . . , Xn,k) of components

Xn,i
def= 1√

n

n∑
t=1

Zt Zt−i , i = 1, . . . , k.

By the Cramér–Wold device (see Lemma 13.11 in the Appendix) the sequence of vec-
tors {Xn} converges in distribution to a vector random variable N = (N1, . . . , Nk) if and
only if

∑k
i=1 ai Xn,i converges in distribution to

∑k
i=1 ai Ni for all possible choices of the

coefficients a1, . . . , ak . Thus consider

k∑
i=1

ai Xn,i = 1√
n

n∑
t=1

Zt

k∑
i=1

ai Zt−i .

It is easy to see that the sequence of random variables
√

n Xn,i , n = 1, 2, . . . , forms a
martingale with respect to the sequence of σ -algebras Gt generated by Z−k+1, . . . , Zt . Fur-
thermore, by the martingale central limit theorem (see, e.g., Hall and Heyde [140, Theorem
3.2]),

∑k
i=1 ai Xn,i converges in distribution, as n →∞, to a zero-mean normal random

variable with variance
∑k

i=1 a2
i . Then, by the Cramér–Wold device, as n →∞, the vec-

tor Xn converges in distribution to N = (N1, . . . , Nk), where N1, . . . , Nk are independent
standard normal random variables. The rest of the proof is identical to that of Lemma 13.11
in the Appendix, except that Hoeffding’s inequality needs to be replaced by its analog for
bounded martingale differences (see Theorem A.7).

8.7 Bibliographic Remarks

The forecaster presented in Section 8.2 appears in Chung [60], which also gives an optimal
algorithm for nonsimulatable experts (see the exercises). See Chung [61] for many related
results. The form of Khinchine’s inequality cited here is due to Szarek [281]. The proof
given in the Appendix is due to Littlewood [204]. The example described in Section 8.4 was
first studied in detail by Cover [68], and then generalized substantially by Feder, Merhav,
and Gutman [95].

Theorem 8.3 is a simple version of Dudley’s metric entropy bound [91]. Theorem 8.4
follows from a result of Sudakov [280]; see Ledoux and Talagrand [192]. Understanding
the behavior of the expected maximum of random processes, such as the Rademacher
process characterizing the minimax regret for classes of static experts, has been an active
topic of probability theory, and the first important results go back to Kolmogorov. Some of
the key contributions are due to Fernique [97, 98], Pisier [235], and Talagrand [287]. We
recommend that the interested reader consult the recent beautiful book of Talagrand [288]
for the latest advances.

The Markov experts appearing in Section 8.6 were first considered by Feder, Merhav,
and Gutman [95]. See also Cesa-Bianchi and Lugosi [51], where the lower bounds of
Section 8.6 appear. We refer to [51] for more information on upper and lower bounds for
general classes of experts.
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8.8 Exercises

8.1 Calculate V (1)
n , V (2)

1 , V (2)
2 , and V (2)

3 . Calculate V1(F), V2(F), and V3(F) when F contains two
experts f1,t = 0 and f2,t = 1 for all t .

8.2 Prove or disprove

sup
F : |F |=N

Vn(F) = V (N )
n .

8.3 Prove Lemma 8.1. Hint: Proceed with a backward induction, starting with t = n. Visualizing
the possible sequences of outcomes in a rooted binary tree may help.

8.4 Use Lemma 8.1 to show that if F is a class of static experts, then the optimal forecaster of
Section 8.3 may be written as

p̂t (yt−1) = 1

2
+ E

[
inf f ∈F L f (yt−10Y n−t )− inf f ∈F L f (yt−11Y n−t )

2

]
,

where Y1, . . . , Yn are i.i.d. Bernoulli (1/2) random variables (Chung [60]).

8.5 Give an appropriate modification of the optimal prediction algorithm of Section 8.2 for the case
of general “non-simulatable” experts; that is, give a prediction algorithm that achieves the worst-
case regret V (N )

n . (See Cesa-Bianchi, Freund, Haussler, Helmbold, Schapire, and Warmuth [48]
and Chung [60].) Warning: This exercise requires work.

8.6 Show that Lemma 8.1 and Theorem 8.1 are not necessarily true if the experts in F are not static.

8.7 Show that for the class of experts discussed in Section 8.4

lim
n→∞

Vn(F)√
n
= 1√

2π
.

8.8 Consider the simple class of experts described in Section 8.4. Feder, Merhav, and Gutman [95]
proposed the following forecaster. Let pt denote the fraction of times outcome 1 appeared in
the sequence y1, . . . , yt−1. Then the forecaster is defined by p̂t = ψt (pt ), where for x ∈ [0, 1],

ψt (x) =
⎧⎨⎩

0 if x < 1/2− εt

1 if x > 1/2+ εt

1/2+ (x − 1/2)/(2εt ) otherwise

and εt > 0 is some positive number. Show that if εt = 1/(2
√

t + 2), then for all n > 1 and
yn ∈ {0, 1}n ,

L̂(yn)− min
i=1,2

Li (yn) ≤ √n + 1+ 1

2
.

(See [95].) Hint: Show first that among all sequences containing n1 < n/2 1’s the forecaster
performs worst for the sequence which starts alternating 0’s and 1’s n1 times and ends with
n − 2n1 0’s.

8.9 After reading the previous exercise you may wonder whether the simpler forecaster defined by

ψ ′(x) =
⎧⎨⎩

0 if x < 1/2
1 if x > 1/2

1/2 if x = 1/2

also does the job. Show that this is not true. More precisely, show that there exists a sequence
yn such that L̂(yn)−mini=1,2 Li (yn) ≈ n/4 for large n. (See [95].)

8.10 Let F be the class of all static experts of the form ft = p regardless of t . The class contains all
such experts with p ∈ [0, 1]. Estimate the covering numbers N2(F, r ) and compare the upper
and lower bounds of Theorems 8.2 and 8.4 for this case.
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8.11 Use Theorem 8.4 to show that the upper bound derived for Vn(F) in Example 8.1 is tight up to
a constant.

8.12 Consider the class F of all static experts that predict in a monotonic way; that is, for each
f ∈ F , either ft ≤ ft+1 for all t ≥ 1 or ft ≥ ft+1 for all t ≥ 1. Apply Theorem 8.2 to conclude
that

Vn(F) = O
(√

n log n
)

.

What do you obtain using Theorem 8.4? Can you apply Theorem 8.5 in this case?

8.13 Construct a forecaster such that for all k = 1, 2, . . . and all sequences y1, y2, . . .,

lim sup
n→∞

1

n

(
L̂(yn)− inf

f ∈Mk
L f (yn)

)
= 0.

In other words, the forecaster predicts asymptotically as well as any Markov forecaster of any
order. (The existence of such a forecaster was shown by Feder, Merhav, and Gutman [95].)
Hint: For an easy construction use the doubling trick.

8.14 Show that

lim inf
k→∞

lim inf
n→∞

Vn(Mk)√
2kn ln 2

= 1√
2
.

Hint: Mimic the proof of Corollary 8.3.
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Logarithmic Loss

9.1 Sequential Probability Assignment

This chapter is entirely devoted to the investigation of a special loss function, the loga-
rithmic loss, sometimes also called self-information loss. The reason for this distinguished
attention is that this loss function has a meaningful interpretation in various sequential
decision problems, including repeated gambling and data compression. These problems are
briefly described later. Sequential prediction aimed at minimizing logarithmic loss is also
intimately related to maximizing benefits by repeated investment in the stock market. This
application is studied in Chapter 10.

Now we describe the setup for the whole chapter. Let m > 1 be a fixed positive integer
and let the outcome space be Y = {1, 2, . . . , m}. The decision space is the probability
simplex

D =
⎧⎨⎩p = (p(1), . . . , p(m)

)
:

m∑
j=1

p( j) = 1, p( j) ≥ 0, j = 1, . . . , m

⎫⎬⎭ ⊂ R
m .

A vector p ∈ D is often interpreted as a probability distribution over the set Y . Indeed,
in some cases, the forecaster is required to assign a probability to each possible outcome,
representing the forecaster’s belief. For example, weather forecasts often take the form “the
possibility of rain is 40%.”

In the entire chapter we consider the model of simulatable experts introduced in Sec-
tion 2.9. Thus, an expert f is a sequence (f1, f2, . . .) of functions ft : Y t−1 → D, so that after
having seen the past outcomes yt−1, expert f outputs the probability vector ft (· | yt−1) ∈ D.
(If t = 1, f1 = ( f1(1), . . . , f1(m)) is simply an element of D.) For the components of this
vector we write

ft (1 | yt−1), . . . , ft (m | yt−1).

This notation emphasizes the analogy between an expert and a probability distribution.
Indeed, the j th component of the vector ft ( j | yt−1) may be interpreted as the conditional
probability f assigns to the j th element of Y given the past yt−1.

Similarly, at each time instant the forecaster chooses a probability vector

p̂t (· | yt−1) = ( p̂t (1 | yt−1), . . . , p̂t (m | yt−1)
)
.

247
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Once again, using the analogy with probability distributions, we may introduce, for all
n ≥ 1 and yn ∈ Yn , the notation

fn(yn) =
n∏

t=1

ft (yt | yt−1), p̂n(yn) =
n∏

t=1

p̂t (yt | yt−1).

Observe that ∑
yn∈Yn

fn(yn) =
∑

yn∈Yn

p̂n(yn) = 1

and therefore expert f , as well as the forecaster, define probability distributions over the
set of all sequences of length n. Conversely, any probability distribution p̂n(yn) over the
set Yn defines a forecaster by the induced conditional distributions

p̂t (yt | yt−1) = p̂t (yt )

p̂t−1(yt−1)
,

where p̂t (yt ) =∑yn
t+1∈Yn−t p̂n(yn).

The loss function we consider throughout this chapter is defined by

�(p, y) =
m∑

j=1

I{y= j} ln
1

p( j)
= ln

1

p(y)
, y ∈ Y, p ∈ D.

It is clear from the definition of the loss function that the goal of the forecaster is to assign
a large probability to the outcomes in the sequence. For an outcome sequence y1, . . . , yn

the cumulative loss of expert f and the forecaster are, respectively,

L f (yn) =
n∑

t=1

ln
1

ft (yt | yt−1)
and L̂(yn) =

n∑
t=1

ln
1

p̂t (yt | yt−1)
.

The cumulative loss of an expert f may also be written as L f (yn) = − ln fn(yn). (Similarly,
L̂(yn) = − ln p̂n(yn).) In other words, the cumulative loss is just the negative log likelihood
assigned to the outcome sequence by the expert f . Given a classF of experts, the difference
between the cumulative loss of the forecaster and that of the best expert, that is, the regret,
may now be written as

L̂(yn)− inf
f ∈F

L f (yn) =
n∑

t=1

ln
1

p̂t (yt | yt−1)
− inf

f ∈F

n∑
t=1

ln
1

ft (yt | yt−1)

= sup
f ∈F

ln
fn(yn)

p̂n(yn)
.

The regret may be interpreted as the logarithm of the ratio of the total probabilities that are
sequentially assigned to the outcome sequence by the forecaster and the experts.

Remark 9.1 (Infinite alphabets). We restrict the discussion to the case when the out-
come space is a finite set. Note, however, that most results can be extended easily to the
more general case when Y is a measurable space. In such cases the decision space becomes
the set of all densities over Y with respect to some fixed common dominating measure, and
the loss is the negative logarithm of the density evaluated at the outcome.
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We begin the study of prediction under the logarithmic loss by considering mixture
forecasters, the most natural predictors for this case. In Section 9.3 we briefly describe
two applications, gambling and sequential data compression, in which the logarithmic loss
function appears in a natural way. These applications have served as a main motivation for
the large body of work done on prediction using this loss function. A special property of
the logarithmic loss is that the minimax optimal predictor can be explicitly determined for
any class F of experts. This is done in Section 9.4. In Sections 9.6 and 9.7 we discuss, in
detail, the special case when F contains all constant predictors. Two versions of mixture
forecasters are described and it is shown that their performance approximates that of
the minimax optimal predictor. Section 9.8 describes another phenomenon specific to the
logarithmic loss. We obtain lower bounds conceptually stronger than minimax lower bounds
for some special yet important classes of experts. In Section 9.9 we extend the setup by
allowing side information taking values in a finite set. In Section 9.10 a general upper
bound for the minimax regret is derived in terms of the geometrical structure of the class
of experts. The examples of Section 9.11 show how this general result can be applied to
various special cases.

9.2 Mixture Forecasters

Recall from Section 3.3 that the logarithmic loss function is exp-concave for η ≤ 1 and
Theorem 3.2 applies. Thus, if the class F of experts is finite and |F | = N , then the
exponentially weighted average forecaster with parameter η = 1 satisfies

L̂(yn)− inf
f ∈F

L f (yn) ≤ ln N

or, equivalently,

p̂n(yn) ≥ 1

N
sup
f ∈F

fn(yn).

It is worth noting that the exponentially weighted average forecaster has an interesting
interpretation in this special case. Observe that the definition

p̂t (yt | yt−1) =
∑

f ∈F ft (yt | yt−1)e−ηL f (yt−1)∑
f ∈F e−ηL f (yt−1)

of the exponentially weighted average forecaster, with parameter η = 1, reduces to

p̂t (yt | yt−1) =
∑

f ∈F ft (yt | yt−1) ft−1(yt−1)∑
f ∈F ft−1(yt−1)

=
∑

f ∈F ft (yt )∑
f ∈F ft−1(yt−1)

.

Thus, the total probability the forecaster assigns to a sequence yn is just

p̂n(yn) =
n∏

t=1

∑
f ∈F ft (yt )∑

f ∈F ft−1(yt−1)
=
∑

f ∈F fn(yn)

N

(recall that f (y0) is defined to be equal to 1). In other words, the probability distribution
the exponentially weighted average forecaster p̂ defines over the set Yn of all strings of
length n is just the uniform mixture of the distributions defined by the experts. This is
why we sometimes call the exponentially weighted average forecaster mixture forecaster.
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Interestingly, for the logarithmic loss, with η = 1, the mixture forecaster coincides with
the greedy forecaster, and it is also an aggregating forecaster, as we show in Sections 3.4
and 3.5.

Recalling that the aggregating forecaster may be generalized for a countable number
of experts, we may consider the following extension. Let f (1), f (2), . . . be the experts of
a countable family F . To define the mixture forecaster, we assign a nonnegative number
πi ≥ 0 to each expert f (i) ∈ F such that

∑∞
i=1 πi = 1. Then the aggregating forecaster

becomes

p̂t (yt | yt−1) =
∑∞

i=1 πi f (i)
t (yt | yt−1) f (i)

t−1(yt−1)∑∞
j=1 π j f ( j)

t−1(yt−1)

=
∑∞

i=1 πi f (i)
t (yt | yt−1)e−ηL f (i) (yt−1)∑∞

j=1 π j e−ηL f ( j) (yt−1)
.

Now it is obvious that the joint probability the forecaster p̂ assigns to each sequence yn is

p̂n(yn) =
∞∑

i=1

πi f (i)(yn).

Note that p̂ indeed defines a valid probability distribution over Yn . Using the trivial bound
p̂n(yn) =∑∞

i=1 πi f (i)(yn) ≥ πk f (k)(yn) for all k, we obtain, for all yn ∈ Yn ,

L̂(yn) ≤ inf
i=1,2,...

(
L f (i) (yn)+ ln

1

πi

)
.

This inequality is a special case of the “oracle inequality” derived in Section 3.5.
Because of their analogy with mixture estimators emerging in bayesian statistics, the

mixture forecaster is sometimes called bayesian mixture or bayesian model averaging, and
the “initial” weights πi prior probabilities. Because our setup is not bayesian, we avoid
this terminology.

Later in this chapter we extend the idea of a mixture forecaster to certain uncountably
infinite classes of experts (see also Section 3.3).

9.3 Gambling and Data Compression

Imagine that we gamble in a horse race in which m horses run repeatedly many times. In the
t th race we bet our entire fortune on the m horses according to proportions p̂t (1), . . . , p̂t (m),
where the p̂t ( j) are nonnegative numbers with

∑m
j=1 p̂t ( j) = 1. If horse j wins the t th race,

we multiply our money bet on this horse by a factor of ot ( j) and we lose it otherwise. The
odds ot ( j) are arbitrary positive numbers. In other words, if yt denotes the index of the
winning horse of the t th race, after the t th race we multiply our capital by a factor of

m∑
j=1

I{yt= j} p̂t ( j)ot ( j) = p̂t (yt )ot (yt ).

To make it explicit that the proportions p̂t ( j) according to which we bet may depend on
the results of previous races, we write p̂t ( j | yt−1). If we start with an initial capital of C
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units, our capital after n races is

C
n∏

t=1

p̂t (yt | yt−1)ot (yt ).

Now assume that before each race we ask the advice of a class of experts and our goal is
to win almost as much as the best of these experts. If expert f divides his capital in the t th
race according to proportions ft ( j | yt−1), j = 1, . . . , m, and starts with the same initial
capital C , then his capital after n races becomes

C
n∏

t=1

ft (yt | yt−1)ot (yt ).

The ratio between the best expert’s money and ours is thus

sup f ∈F C
∏n

t=1 ft (yt | yt−1)ot (yt )

C
∏n

t=1 p̂t (yt | yt−1)ot (yt )
= sup

f ∈F

fn(yn)

p̂n(yn)

independently of the odds. The logarithm of this quantity is just the difference of the
cumulative logarithmic loss of the forecaster p̂ and that of the best expert described in
the previous section. In Chapter 10 we discuss in great detail a model of gambling (i.e.,
sequential investment) that is more general than the one described here. We will see that
sequential probability assignment under the logarithmic loss function is the key in the more
general model as well.

Another important motivation for the study of the logarithmic loss function has its roots
in information theory, more concretely in lossless source coding. Instead of describing the
sequential data compression problem in detail, we briefly mention that it is well known
that any probability distribution fn over the set Yn defines a code (the so-called Shannon–
Fano code), which assigns, to each string yn ∈ Yn , a codeword, that is, a string of bits
of length n(yn) = �− log2 fn(yn)�. Conversely, any code with codeword lengths n(yn),
satisfying a natural condition (i.e., unique decodability), defines a probability distribution
by fn(yn) = 2−n (yn )/

∑
xn∈Yn 2−n (xn ). Given a class of codes, or equivalently, a class F

of experts, the best compression of a string yn is achieved by the code that minimizes the
length �− log2 fn(yn)�, which is approximately equivalent to minimizing the logarithmic
cumulative loss L f (yn). Now assume that the symbols of the string yn are revealed one by
one and the goal is to compress it almost as well as the best code in the class. It turns out
that for any forecaster p̂n (i.e., sequential probability assignment) it is possible to construct,
sequentially, a codeword of length about − log2 p̂n(yn) using a method called arithmetic
coding. The regret

− log2 p̂n(yn)− inf
f ∈F
(− log2 fn(yn)

) = 1

ln 2

(
L̂(yn)− inf

f ∈F
L f (yn)

)
is often called the (pointwise) redundancy of the code with respect to the class of codes
F . In this respect, the problem of sequential lossless data compression is equivalent to
sequential prediction under the logarithmic loss.
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9.4 The Minimax Optimal Forecaster

In this section we investigate the minimax regret, defined in Section 2.10 for the logarithmic
loss. An important distinguishing feature of the logarithmic loss function is that the minimax
optimal forecaster can be determined explicitly. This fact facilitates the investigation of the
minimax regret, which, in turn, serves as a standard to which the performance of any
forecaster should be compared. Recall that for a given class F of experts, and integer
n > 0, the minimax regret is defined by

Vn(F) = inf
p̂

sup
yn∈Yn

(
L̂(yn)− inf

f ∈F
L f (yn)

)
= inf

p̂
sup

yn∈Yn
ln

sup f ∈F fn(yn)

p̂n(yn)
.

If for a given forecaster p̂ we define the worst-case regret by

Vn( p̂,F) = sup
yn∈Yn

(
L̂(yn)− inf

f ∈F
L f (yn)

)
,

then Vn(F) = inf p̂ Vn( p̂,F). Interestingly, in the case of the logarithmic loss it is possible
to identify explicitly the unique forecaster achieving the minimax regret. Theorem 9.1
shows that the forecaster p∗ defined by the normalized maximum likelihood probability
distribution

p∗n(yn) = sup f ∈F fn(yn)∑
xn∈Yn sup f ∈F fn(xn)

has this property. Note that p∗n is indeed a probability distribution over the set Yn , and recall
that this probability distribution defines a forecaster by the corresponding conditional
probabilities p∗t (yt | yt−1).

Theorem 9.1. For any class F of experts and integer n > 0, the normalized maximum
likelihood forecaster p∗ is the unique forecaster such that

sup
yn∈Yn

(
L̂(yn)− inf

f ∈F
L f (yn)

)
= Vn(F).

Moreover, p∗ is an equalizer; that is, for all yn ∈ Yn,

ln
sup f ∈F fn(yn)

p∗n(yn)
= ln

∑
xn∈Yn

sup
f ∈F

fn(xn) = Vn(F).

Proof. First we show the second part of the statement. Note that by the definition of p∗,
its cumulative loss satisfies

L̂(yn)− inf
f ∈F

L f (yn) = ln
sup f ∈F fn(yn)

p∗n(yn)

= ln
∑

xn∈Yn

sup
f ∈F

fn(xn),

which is independent of yn , so p∗ is indeed an equalizer.
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To show that p∗ is minimax optimal, let p �= p∗ be an arbitrary forecaster. Then since∑
yn∈Yn pn(yn) =∑yn∈Yn p∗n(yn) = 1, for some yn ∈ Yn we must have pn(yn) < p∗n(yn).

But then, for this yn ,

ln
sup f ∈F fn(yn)

pn(yn)
> ln

sup f ∈F fn(yn)

p∗n(yn)
= const. = Vn(p∗,F)

by the equalizer property. Hence,

Vn(p,F) = sup
yn∈Yn

ln
sup f ∈F fn(yn)

pn(yn)
> Vn(p∗,F),

which proves the theorem.

In Section 2.10 we show that, under general conditions satisfied here, the maximin regret

Un(F) = sup
q

inf
p̂

∑
yn∈Yn

q(yn) ln
sup f ∈F fn(yn)

p̂n(yn)

equals the minimax regret Vn(F). It is evident that the normalized maximum likelihood
forecaster p∗ achieves the maximin regret as well, in the sense that for any probability
distribution q over Yn ,

Un(F) = sup
q

∑
yn∈Yn

q(yn) ln
sup f ∈F fn(yn)

p∗n(yn)
.

Even though we have been able to determine the minimax optimal forecaster explicitly,
note that the practical implementation of the forecaster may be problematic. First of all,
we determined the forecaster via the joint probabilities it assigns to all strings of length n,
and calculation of the actual predictions p∗t (yt | yt−1) involves sums of exponentially many
terms.

It is important to point out that previous knowledge of the total length n of the sequence
to be predicted is necessary to determine the minimax optimal forecaster p∗. Indeed, it is
easy to see that if the minimax optimal forecaster is determined for a certain horizon n,
then the forecaster is not the extension of the minimax optimal forecaster for horizon n − 1,
even for nicely structured classes of experts. (See Exercise 9.4.)

Theorem 9.1 not only describes the minimax optimal forecaster but also gives a use-
ful formula for the minimax regret Vn(F), which we study in detail in the subsequent
sections.

9.5 Examples

Next we work out a few simple examples to understand better the behavior of the minimax
regret Vn(F).
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Finite Classes
To start with the simplest possible case, consider a finite class of experts with |F | = N .
Then clearly,

Vn(F) = ln
∑

yn∈Yn

sup
f ∈F

fn(yn)

≤ ln
∑

yn∈Yn

∑
f ∈F

f (yn)

= ln
∑
f ∈F

∑
yn∈Yn

f (yn)

= ln N .

Of course, we already know this. In fact, the mixture forecaster described in Section 9.1
achieves the same bound. In Exercise 9.3 we point out that this upper bound cannot be
improved in the sense that there exist classes of N experts such that the minimax regret
equals ln N . With the notation introduced in Section 2.10, V (N )

n = ln N (if n ≥ log2 N ).
The mixture forecaster has obvious computational advantages over the normalized max-

imum likelihood forecaster and does not suffer from the “horizon-dependence” of the latter
mentioned earlier. These bounds suggest that one does not lose much by using the simple
uniform mixture forecaster instead of the optimal but horizon-dependent forecaster. We
will see later that this fact remains true in more general settings, even for certain infinite
classes of experts. However, as it is pointed out in Exercise 9.7, even if F is finite, in
some cases Vn(F) may be significantly smaller than the worst-case loss achievable by any
mixture forecaster.

Constant Experts
Next we consider the class F of all experts such that ft ( j | yt−1) = f ( j) (with f ( j) ≥ 0,∑m

j=1 f ( j) = 1) for each f ∈ F and independently of t and yt−1. In other words, F
contains all forecasters fn so that the associated probability distribution overYn is a product
distribution with identical components. Here we only consider the case when m = 2.
This simplifies the notation and the calculations while all the main ideas remain present.
Generalization to m > 2 is straightforward, and we leave the calculations as exercises.

If m = 2, (i.e., Y = {1, 2} and D = {(q, 1− q) ∈ R
2 : q ∈ [0, 1]

}
), each expert in

F may be identified with a number q ∈ [0, 1] representing q = f (1). Thus, this expert
predicts, at each time t , according to the vector (q, 1− q) ∈ D, regardless of t and the past
outcomes y1, . . . , yt−1. We call this class the class of constant experts. Next we determine
the asymptotic value of the minimax regret Vn(F) for this class.

Theorem 9.2. The minimax regret Vn(F) of the class F of all constant experts over the
alphabet Y = {1, 2} defined above satisfies

Vn(F) = 1

2
ln n + 1

2
ln

π

2
+ εn,

where εn → 0 as n →∞.
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Proof. Recall that by Theorem 9.1,

Vn(F) = ln
∑

yn∈Yn

sup
f ∈F

fn(yn).

Now assume that the number of 1’s in the sequence yn ∈ {1, 2}n is n1 and the number of
2’s is n2 = n − n1. Then for the expert f that predicts according to (q, 1− q), we have
fn(yn) = qn1 (1− q)n2 .

Then it is easy to see, for example, by differentiating the logarithm of the above expres-
sion, that this is maximized for q = n1/n, and therefore

Vn(F) = ln
∑

yn∈Yn

(n1

n

)n1
(n2

n

)n2

.

Since there are
( n

n1

)
sequences containing exactly n1 1’s, we have

Vn(F) = ln
n−1∑
n1=1

(
n

n1

)(n1

n

)n1
(n2

n

)n2

.

We show the proof of the upper bound Vn(F) ≤ 1
2 ln n + 1

2 ln π
2 + o(1), whereas the similar

proof of the lower bound is left as an exercise. Recall Stirling’s formula

√
2πn

(n

e

)n
e1/(12n) ≤ n! ≤

√
2πn

(n

e

)n
e1/(12n+1)

(see, e.g., Feller [96]). Using this to approximate the binomial coefficients, each term of
the sum may be bounded as(

n

n1

)(n1

n

)n1
(n2

n

)n2 ≤ 1√
2π

√
n

n1n2
e1/(12n+1).

Thus,

Vn(F) ≤ ln

(√
n

2π
e1/(12n+1)

n−1∑
n1=1

1√
n1n2

)
.

Writing the last sum in the expression as

n−1∑
n1=1

1√
n1n2

=
n−1∑
n1=1

1

n

1√
n1
n

(
1− n1

n

) ,
we notice that it is just a Riemann approximation of the integral∫ 1

0

1√
x(1− x)

dx = π

(see the exercises). This implies that limn→∞
∑n−1

n1=1 1
/√

n1n2 = π , and so

Vn(F) ≤ ln

(
(1+ o(1))

√
nπ

2

)
as desired.
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Remark 9.2. (m-ary alphabet). In the general case, when m ≥ 2 is a positive integer,
Theorem 9.2 becomes

Vn(F) = m − 1

2
ln

n

2π
+ ln

�(1/2)m

�(m/2)
+ o(1),

where � denotes the Gamma function (see Exercise 9.8). The fact that the minimax regret
grows as a constant times ln n, the constant being the half of the number of “free param-
eters,” is a general phenomenon. In Section 9.9 we discuss the class of Markov experts, a
generalization of the class of constant experts discussed here, that also obeys this formula.
We study Vn(F) in a much more general setting in Section 9.10. In particular, Corollary 9.1
in Section 9.11 establishes a result showing that, under general conditions, Vn(F) behaves
like k

2 ln n, where k is the “dimension” of class F .

9.6 The Laplace Mixture

The purpose of this section is to introduce the idea of mixture forecasters discussed in
Section 9.2 to certain uncountably infinite classes of experts. In Section 3.3 we have
already extended the exponentially weighted average forecaster over the convex hull of
a finite set of experts for general exp-concave loss functions. Special properties of the
logarithmic loss allow us to derive sharp bounds and to bring the mixture forecaster into a
particularly simple form.

For simplicity we show the idea for the class of all constant experts introduced in
Section 9.5. Once again, we gain simplicity by considering only the case of m = 2.
That is, the outcome space is Y = {1, 2} and D = {(q, 1− q) ∈ R

2 : q ∈ [0, 1]
}
, so that

each expert in F predicts, at each time t , according to the vector (q, 1− q) ∈ D regard-
less of t and the past outcomes y1, . . . , yt−1. Theorem 9.2 shows that Vn(F) ≈ 1

2 ln n +
1
2 ln π

2 .
In Section 9.5 we pointed out that, for finite classes of experts, the exponentially weighted

average forecaster assigns, to each sequence yn , the average of the probabilities assigned
by each expert; that is, p̂n(yn) = 1

N

∑N
i=1 f (i)

n (yn).
This idea may be generalized in a natural way to the class of constant experts. As before,

let n1 and n2 denote the number of 1’s and 2’s in a sequence yn . Then the probability
assigned to such a sequence by any expert in the class has the form qn1 (1− q)n2 . The
Laplace mixture of these experts is defined as the forecaster that assigns, to any yn ∈ {1, 2}n ,
the average of all these probabilities according to the uniform distribution over the class F ;
that is,

p̂n(yn) =
∫ 1

0
qn1 (1− q)n2 dq.

After calculating this integral, it will be easy to understand the behavior of the forecaster.

Lemma 9.1. ∫ 1

0
qn1 (1− q)n2 dq = 1

(n + 1)
( n

n1

) .
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Proof. We may prove the equality by a backward induction with respect to n1. If n1 = n,
we clearly have

∫ 1
0 qndq = 1/(n + 1). On the other hand, assuming∫ 1

0
qn1+1(1− q)n2−1dq = 1

(n + 1)
( n

n1+1

)
and integrating by parts, we obtain∫ 1

0
qn1 (1− q)n2 dq = n − n1

n1 + 1

∫ 1

0
qn1+1(1− q)n2−1dq

= n − n1

n1 + 1
× 1

(n + 1)
( n

n1+1

)
= 1

(n + 1)
( n

n1

) .
The first thing we observe is that the actual predictions of the Laplace mixture forecaster
can be calculated very easily and have a natural interpretation. Assume that the number of
1’s and 2’s in the past outcome sequence yt−1 are t1 and t2. Then the probability the Laplace
forecaster assigns to the next outcome being 1 is, by Lemma 9.1,

p̂t (1 | yt−1) = p̂t (yt−11)

p̂t−1(yt−1)
=

1
(t+1)( t

t1+1)
1

t(t−1
t1

)
= t1 + 1

t + 1
.

Similarly, p̂t (2 | yt−1) = (t2 + 1)/(t + 1). We may interpret p̂t (1 | yt−1) as a slight modifi-
cation of the relative frequency t1/(t − 1). In fact, the Laplace forecaster may be interpreted
as a “smoothed” version of the empirical frequencies. By smoothing, one prevents infinite
losses that may occur if t1 = 0 or t2 = 0. All we need to analyze the cumulative loss of the
Laplace mixture is a simple property of binomial coefficients.

Lemma 9.2. For all 1 ≤ k ≤ n, (
n

k

)
≤ 1(

k
n

)k ( n−k
n

)n−k .

Proof. If the random variables Y1, . . . , Yn are drawn i.i.d. according to the distribution
P[Yi = 1] = 1− P[Yi = 2] = k/n, then the probability that exactly k of them equals 1
is
(n

k

) (
k
n

)k ( n−k
n

)n−k
and therefore this last expression cannot be larger than 1.

Theorem 9.3. The regret of the Laplace mixture forecaster satisfies

sup
yn∈{1,2}n

(
L̂(yn)− inf

f ∈F
L f (yn)

)
= ln(n + 1).

Proof. Let n1 and n2 denote the number of 1’s and 2’s in the sequence yn . We have already
observed in the proof of Theorem 9.2 that

sup
q∈[0,1]

qn1 (1− q)n2 =
(n1

n

)n1
(n2

n

)n2

.
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Thus, the regret of the forecaster for such a sequence is

L̂(yn)− inf
f ∈F

L f (yn) = ln
supq∈[0,1] qn1 (1− q)n2∫ 1

0 qn1 (1− q)n2 dq

= ln

( n1
n

)n1
( n2

n

)n2

1
(n+1)( n

n1
)

(by Lemma 9.1)

≤ ln(n + 1) (by Lemma 9.2).

Equality is achieved for the sequence yn = (1, 1, . . . , 1).

Thus, the extremely simple Laplace mixture forecaster achieves an excess cumulative
loss that is of the same order of magnitude as that of the minimax optimal forecaster,
though the leading constant is 1 instead of 1/2. In the next section we show that a slight
modification of the forecaster achieves this optimal leading constant as well.

Remark 9.3. Theorem 9.3 can be extended, in a straightforward way, to the general case
of alphabet size m ≥ 2. In this case,

sup
yn∈Yn

(
L̂(yn)− inf

f ∈F
L f (yn)

)
= ln

(
n + m − 1

m − 1

)
≤ (m − 1) ln(n + 1)

(see Exercise 9.10).

9.7 A Refined Mixture Forecaster

With a small modification of the Laplace forecaster, we may obtain a mixture forecaster
that achieves a worst-case regret comparable to that of the minimax optimal normalized
maximum likelihood forecaster. The proof of Theorem 9.3 reveals that the Laplace mixture
achieves the largest regret for sequences containing either very few 1’s or very few 0’s.
Because the optimal forecaster is an equalizer (recall Theorem 9.1), a good forecaster should
attempt to achieve a nearly equal regret for all sequences. This may be done by modifying
the mixture so that it gives a slightly larger weight to those experts that predict well on these
critical sequences. The idea, first suggested by Krichevsky and Trofimov, is to use, instead
of the uniform weighting distribution, the Beta (1/2, 1/2) density 1

/ (
π
√

q(1− q)
)
. (See

Section A.1.9 for some basic properties of the Beta family of densities.) Thus, we define
the Krichevsky–Trofimov mixture forecaster by

p̂n(yn) =
∫ 1

0

qn1 (1− q)n2

π
√

q(1− q)
dq,

where we use the notation of the previous section. It is easy to see, by a recursive argument
similar to the one seen in the proof of Lemma 9.1, that the predictions of the Krichevsky–
Trofimov mixture may be calculated by

p̂t (1 | yt−1) = t1 + 1/2

t
,

a formula very similar to that obtained in the case of the Laplace forecaster.
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The performance of the forecaster is easily bounded once the following lemma is
established.

Lemma 9.3. For all q ∈ [0, 1],∫ 1

0

qn1 (1− q)n2

π
√

q(1− q)
dq ≥ 1

2
√

n

(n1

n

)n1
(n2

n

)n2

.

The proof is left as an exercise. On the basis of this lemma we immediately derive the
following performance bound.

Theorem 9.4. The regret of the Krichevsky–Trofimov mixture forecaster satisfies

sup
yn∈{1,2}n

(
L̂(yn)− inf

f ∈F
L f (yn)

)
≤ 1

2
ln n + ln 2.

Proof.

L̂(yn)− inf
f ∈F

L f (yn) = ln
supq∈[0,1] qn1 (1− q)n2∫ 1

0

qn1 (1− q)n2

π
√

q(1− q)
dq

= ln

(n1

n

)n1
(n2

n

)n2

∫ 1

0

qn1 (1− q)n2

π
√

q(1− q)
dq

≤ ln
(
2
√

n
)

(by Lemma 9.3)

as desired.

Remark 9.4. The Krichevsky–Trofimov mixture estimate may be generalized to the class
of all constant experts when the outcome space is Y = {1, . . . , m}, where m ≥ 2 is an
arbitrary integer. In this case the mixture is calculated with respect to the so-called
Dirichlet(1/2, · · · , 1/2) density

φ(p) = �(m/2)

�(1/2)m

m∏
j=1

1√
p( j)

over the probability simplex D, containing all vectors p = (p(1), . . . , p(m)
) ∈ R

m with
nonnegative components and adding up to 1. As for the bound of Theorem 9.4, one may
show that the worst-case regret of the obtained forecaster

p̂n(yn) =
∫
D

m∏
j=1

p( j)n j φ(p) dp

(where n1, . . . , nm denote the number of occurrences of each symbol in the string yn) is
upper bounded by

m − 1

2
ln n + ln

�(1/2)m

�(m/2)
+ m − 1

2
ln 2+ o(1).
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This upper bound exceeds the minimax regret by just a constant m−1
2 ln 2. Moreover, the

forecaster may easily be calculated by the simple formula

p̂t (i | yt−1) = ti + 1/2

t − 1+ m/2
, i = 1, . . . , m,

where ti denotes the number of occurrences of i in yt−1.

To understand the behavior of the Krichevsky–Trofimov forecaster, we derive a lower
bound for its regret that holds for every sequence yn of outcomes. The following result
shows that this mixture forecaster is indeed an approximate equalizer, since no matter what
the sequence yn is, its regret differs from 1

2 ln n by at most a constant. (Recall that the
minimax optimal forecaster is an exact equalizer.)

Theorem 9.5. For all outcome sequences yn ∈ {0, 1}n, the regret of the Krichevsky–
Trofimov mixture forecaster satisfies

L̂(yn)− inf
f ∈F

L f (yn) = 1

2
ln n +�(1).

Proof. Fix an outcome sequence yn . As before, let n1 and n2 denote the number of
occurrences of 1’s and 2’s in yn . It suffices to derive a lower bound for the ratio of
maxq∈[0,1] qn1 (1− q)n2 = (n1/n)n1 (n2/n)n2 and the Krichevsky–Trofimov mixture proba-
bility p̂n(yn). To this end, observe that this probability may be expressed in terms of the
gamma function as

p̂n(yn) = �
(
n1 + 1

2

)
�
(
n2 + 1

2

)
π n!

(see Section A.1.9). Thus,

L̂(yn)− inf
f ∈F

L f (yn)− 1

2
ln n = ln

π n! n1
n1 n2

n2

�
(
n1 + 1

2

)
�
(
n2 + 1

2

)
nn
√

n
.

In order to investigate this quantity, introduce the function

F(n1, n2) = π (n1 + n2)! n1
n1 n2

n2

�
(
n1 + 1

2

)
�
(
n2 + 1

2

)
(n1 + n2)n1+n2

√
n1 + n2

(9.1)

defined for all pairs of positive integers n1, n2. A straightforward calculation, left as an
exercise, shows that F is decreasing in both of its arguments. Hence, F(n1, n2) ≥ F(n, n),
and therefore

L̂(yn)− inf
f ∈F

L f (yn)− 1

2
ln n ≥ ln

π (2n)! n2n

�
(
n + 1

2

)2
(2n)2n

√
2n

.

Using Stirling’s approximation �(x) = √2π (x/e)x
/√

x(1+ o(1)) as x →∞, it is easy
to see that the right-hand side converges to a positive constant as n →∞.
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9.8 Lower Bounds for Most Sequences

In Section 9.4 we determined the minimax regret Vn(F) exactly for any arbitrary class F of
experts. The definition of Vn(F) implies that for any forecaster p̂n there exists a sequence
yn ∈ Yn such that the regret L̂(yn)− inf f ∈F L f (yn) is at least as large as Vn(F). In this
section we point out that in some cases one may obtain much stronger lower bounds. In
fact, we show that for some classes F , no matter what the forecaster p̂n is, the regret cannot
be much smaller than Vn(F) for “most” sequences of outcomes yn . This indicates that the
minimax value is achieved not only for an exceptional unfortunate sequence of outcomes,
but in fact for “most” of them. (Of course, since the minimax optimal forecaster is an
equalizer, we already knew this for p∗n . The result shown in this section indicates that all
forecasters share this property.) What we mean by “most” will be made clear later. We just
note here that the word “most” does not directly refer to cardinality.

In this section, just like in the previous ones, we focus on the special case of binary
alphabet Y = {1, 2} and the class F of constant experts. This is the simplest case for which
the basic ideas may be seen in a transparent way. The result obtained for this simple class
may be generalized to more complex cases such as constant experts over an m-ary alphabet,
Markov experts, and classes of experts based on finite state machines. Some of these cases
are left to the reader as exercises.

Thus, the class we considerF contains all probability distributions on {1, 2}n that assign,
to any sequence yn ∈ {1, 2}n , probability q j (1− q)n− j , where j is the number of 1’s in
the sequence and q ∈ [0, 1] is the parameter determining the expert. Recall that for such a
sequence the best expert assigns probability

max
q∈[0,1]

q j (1− q)n− j =
(

j

n

) j (n − j

n

)n− j

and therefore inf f ∈F L f (yn) = − j ln j
n − (n − j) ln n− j

n .
Next we formulate the result. To this end, we partition the set {1, 2}n into n + 1 classes

of types according to the number of 1’s contained in the sequence. To this purpose, define
the sets

Tj =
{

yn ∈ {1, 2}n : the number of 1’s in yn is exactly j
}
, j = 0, 1, . . . , n.

In Theorem 9.6 think of δn as a small positive number, and εn � δn even smaller but
still not too small. For example, one may consider δn ∼ 1/ ln ln n and εn ∼ 1/ ln n or
δn ∼ 1/

√
ln ln n and εn ∼ 1/ ln ln n to get a meaningful result.

Theorem 9.6. Consider the classF of constant experts over the binary alphabetY = {1, 2}.
Let εn be a positive number, and consider an arbitrary forecaster p̂n. Define the set

A =
{

yn ∈ {1, 2}n : L̂(yn) ≤ inf
f ∈F

L f (yn)+ 1

2
ln n − ln

C

εn

}
,

where C = √π e1/6/
√

2 ≈ 1.4806. Then, for any δn > 0,∣∣∣∣{ j :
|A ∩ Tj |
|Tj | > δn

}∣∣∣∣ ≤ nεn

δn
.

If εn is small, the set A contains all sequences for which the regret of the forecaster
p̂n is significantly smaller than the minimax value Vn(F) ≈ 1

2 ln n (see Theorem 9.2).
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Theorem 9.6 states that if εn � δn , the vast majority of types Tj are such that the proportion
of sequences in Tj falling in A is smaller than δn .

Remark 9.5. The interpretation we have given to Theorem 9.6 is that for any forecaster, the
regret cannot be significantly smaller than the minimax value for “most” sequences. What
the theorem really means is that for the majority of classes Tj the subset of sequences of Tj

for which the regret is small is tiny. However, the theorem does not imply that there exist few
sequences in {1, 2}n for which the regret is small. Just note that a relatively small number
of classes of types (say, those with j between n/2− 10

√
n and n/2+ 10

√
n) contain the

vast majority of sequences. Indeed, the forecaster that assigns the uniform probability 2−n

to all sequences will work reasonably well for a huge number of sequences. This example
shows that the notion of “most” considered in Theorem 9.6 may be more adequate than just
counting sequences.

Proof. First observe that the logarithm of the cardinality of each class Tj may be bounded,
using Stirling’s formula, by

ln |Tj | = ln

(
n

j

)
≥ ln

(
n

j

) j ( n

n − j

)n− j

+ ln

√
n√

2π j(n − j) e1/6

≥ ln

(
n

j

) j ( n

n − j

)n− j

− 1

2
ln n − ln C,

where at the last step we used the inequality
√

j(n − j) ≤ n/2. Therefore, for any sequence
yn ∈ Tj , we have

inf
f ∈F

L f (yn) ≤ ln |Tj | + 1

2
ln n + ln C.

This implies that if yn ∈ A ∩ Tj , then

L̂(yn) ≤ ln |Tj | + ln n − ln
1

εn

or, in other words,

p̂n(yn) ≥ 1

|Tj |nεn
.

To finish the proof, note that∣∣∣∣{ j :
|A ∩ Tj |
|Tj | > δn

}∣∣∣∣ ≤ 1

δn

n∑
j=0

|A ∩ Tj |
|Tj |

= 1

δn

∑
yn∈A

1

|T (yn)|
(where T (yn) denotes the set Tj containing yn)

≤ nεn

δn

∑
yn∈A

p̂n(yn)

≤ nεn

δn
.
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9.9 Prediction with Side Information

The purpose of this section is to extend the framework of prediction when the forecaster
has access to certain “side information.” At each time instant, before making a prediction,
a side information symbol is revealed to the forecaster. In our setup this side information
is completely arbitrary, it may contain any external information and it may even depend
on the sequence to be predicted. In this section we restrict our attention to the case when
side information comes from a finite set. In Chapter 11 we develop a general framework of
prediction with side information when the side information is a finite-dimensional vector,
and the class of experts contains linear functions of the side information. The formal setup
is the following.

We consider prediction of sequences taking values in a finite alphabet Y = {1, . . . , m}.
Let K be a positive integer, and let G1, . . . ,GK be “base” classes of static forecasters. (We
assume the static property to lighten notation, the definitions and the results that follow can
be generalized easily.) The class G j contains forecasters of the form

g( j)(yn) =
n∏

t=1

g( j)
t (yt ),

where for each t = 1, . . . , n the vector
(
g( j)

t (1), . . . , g( j)
t (m)

)
is an element of the probability

simplex D in R
m . At each time t , a side information symbol zt ∈ Z = {1, . . . , K } becomes

available to the forecaster. The class F of forecasters against which our predictor competes
contains all forecasters f of the form

ft (y | yt−1, zt ) = ft (y | zt ) = g(zt )
t zt

(y),

where for each j , t j is the length of the sequence of times s < t such that zs = j . In other
words, each f ignores the past and uses the side information symbol zt to pick a class Gzt .
In this class a forecaster is determined on the basis of the subsequence of the past defined
by the time instances when the side information coincided with the actual side information
zt . Note that in some sense f is static, but zt may depend in an arbitrary manner on the
sequence of past (or even future) outcomes.

The loss of f ∈ F for a given sequence of outcomes yn ∈ Yn and side information
zn ∈ Zn is

−
n∑

t=1

ln ft (yt | yt−1, zt ) = −
n∑

t=1

ln g(zt )
t zt

(yt ).

Our goal is to define forecasters p̂t whose cumulative loss

−
n∑

t=1

ln p̂t (yt | yt−1, zt )

is close to that of the best expert inf f ∈F −
∑n

t=1 ln ft (yt | yt−1, zt ) for all outcome sequences
yn ∈ Yn and side-information sequences zn ∈ Zn . Assume that for each static expert class
G j we have a forecaster q ( j) with worst-case regret

Vn(q ( j),G j ) = sup
yn∈Yn

sup
g( j)∈G j

n∑
t=1

ln
g( j)

t (yt )

q ( j)
t (yt | yt−1)

.
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On the basis of these “elementary” forecasters, we may define, in a natural way, the
following forecaster p with side information

pt (y | yt−1, zt ) = q (zt )
t zt

(y | yt
zt

),

where for each j , yt
j denotes the sequence of ys’s (s < t) such that zs = j . In other words,

the forecaster p looks back at the past sequence y1, . . . , yt−1 and considers only those
time instants at which the side-information symbol agreed with the current symbol zt . The
prediction of p is just that of q (zt ) based on these past symbols. The performance of p may
be bounded easily as follows.

Theorem 9.7. For any outcome sequence yn ∈ Yn and side information sequence zn ∈ Zn,
the regret of forecaster p with respect to all forecasters in class F satisfies

sup
f ∈F

n∑
t=1

ln
ft (yt | yt−1, zt )

pt (yt | yt−1, yt
zt

)
≤

K∑
j=1

Vn j (q
( j),G j ),

where n j =
∑n

t=1 I{zt= j} is the number of occurrences of symbol j in the side-information
sequence.

Proof.

sup
f ∈F

n∑
t=1

ln
ft (yt | yt−1, zt )

pt (yt | yt−1, zt )

= sup
f ∈F

n∑
t=1

ln
g(zt )

t zt
(yt )

q (zt )
t zt

(yt | yt
zt

)
(by definition of p)

= sup
f ∈F

K∑
j=1

⎛⎝ n∑
t=1

I{zt= j} ln
g( j)

t j
(yt )

q ( j)
t j

(yt | yt
j )

⎞⎠
=

K∑
j=1

sup
g( j)∈G j

n∑
t=1

I{zt= j} ln
g( j)

t j
(yt )

q ( j)
t j

(yt | yt
j )

(because the expression within the parentheses depends only on g( j))

≤
K∑

j=1

Vn j (q
( j),G j ).

The next simple example sheds some light on the power of this simple result.

Example 9.1 (Markov forecasters). Let k ≥ 1 and consider the class Mk of all kth order
stationary Markov experts defined over the binary alphabet Y = {1, 2}. More precisely,
Mk contains all forecasters f for which the prediction at time t is a function of the last
k outcomes (yt−k, . . . , yt−1) (independent of t and outcomes ys for s < t − k). In other
words, for a Markov forecaster one may write ft (y | yt−1) = ft (y | yt−1

t−k ). Such forecasters
are also considered in Section 8.6 for different loss functions. As each prediction of a kth
order Markov expert is determined by the last k bits observed, we add a prefix y−k+1, . . . , y0

to the sequence to predict in the same way as we did in Section 8.6.
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To obtain an upper bound for the minimax regret Vn(Mk), we may use Theorem 9.7
in a simple way. The side information zt is now defined as (yt−k, . . . , yt−1), that is, zt

takes one of K = 2k values. If we define G1 = · · · = GK as the class G of all constant
experts over the alphabet Y = {1, 2} defined in the previous sections, then it is easy to
see that class F of all forecasters using the side information (yt−k, . . . , yt−1) is just class
Mk . Let q (1) = · · · = q (k) be the Krichevsky–Trofimov forecaster for class G, and define
the forecaster f as in Theorem 9.7. Then, according to Theorem 9.7, for any sequence of
outcomes yn

−k+1 the loss of f may be bounded as

L̂(yn)− inf
f ∈Mk

L f (yn) ≤
2k∑

j=1

Vn j (G).

According to Theorem 9.4,

Vn(G) ≤ 1

2
ln n + ln 2.

Using this bound, we obtain

L̂(yn)− inf
f ∈Mk

L f (yn) ≤
2k∑

j=1

1

2
ln n j + 2k ln 2

≤ 1

2
ln

⎛⎝ 1

2k

2k∑
j=1

n j

⎞⎠2k

+ 2k ln 2

= 2k

2
ln

n

2k
+ 2k ln 2,

where we used the arithmetic–geometric mean inequality.
The upper bound obtained this way can be shown to be quite sharp. Indeed, the minimax

regret Vn(Mk) may be seen to behave like 2k−1 ln(n/2k) (see Exercise 9.13). �

9.10 A General Upper Bound

Next we investigate the minimax regret Vn(F) for general classes of experts. We derive a
general bound that shows how the “size” of the class F affects the cumulative regret.

To any class F of experts, we associate the metric d defined as

d( f, g) =
√√√√ n∑

t=1

sup
yt

(
ln f (yt | yt−1)− ln g(yt | yt−1)

)2
.

Denote by N (F , ε) the ε-covering number of F under the metric d. Recall that for any
ε > 0, the ε-covering number is the cardinality of the smallest subset F ′ ⊂ F such that for
all f ∈ F there exists a g ∈ F ′ such that d( f, g) ≤ ε. The main result of this section is the
following upper bound.
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Theorem 9.8. For any class F of experts,

Vn(F) ≤ inf
ε>0

(
ln N (F , ε)+ 24

∫ ε

0

√
ln N (F , δ) dδ

)
.

Note that if F is a finite class, then the right-hand side converges to ln |F | as ε → 0,
and therefore we recover our earlier general bound. However, even for finite classes, the
right-hand side may be significantly smaller than ln |F |. Also, this result allows us to derive
upper bounds for very general classes of experts.

As a first step in the proof of Theorem 9.8, we obtain a weak bound for Vn(F). This will
be later refined to prove the stronger bound of Theorem 9.8.

Lemma 9.4. For any class F of experts,

Vn(F) ≤ 24
∫ D/2

0

√
ln N (F , ε) dε,

where D = sup f,g∈F d( f, g) is the diameter of F .

Proof. Recall that, by the equalizer property of the normalized maximum likelihood fore-
caster p∗ established in Theorem 9.1, for all yn ∈ Yn , Vn(F) = sup f ∈F ln fn (yn )

p∗n (yn ) . Because
the right-hand side is a constant function of yn , we may take any weighted average of it
without changing its value. The trick is to weight the average according to the probability
distribution defined by p∗. Thus, we may write

Vn(F) =
∑

yn∈Yn

(
sup
f ∈F

ln
fn(yn)

p∗n(yn)

)
p∗n(yn).

If we introduce a vector Y n = (Y1, . . . , Yn) of random variables distributed according to
p∗n , we obtain

Vn(F) = E

[
sup
f ∈F

ln
fn(Y n)

p∗n(Y n)

]

= E

[
sup
f ∈F

n∑
t=1

ln
ft (Yt | Y t−1)

p∗t (Yt | Y t−1)

]

≤ E

[
sup
f ∈F

n∑
t=1

(
ln

f (Yt | Y t−1)

p∗(Yt | Y t−1)
− E

[
ln

f (Yt | Y t−1)

p∗(Yt | Y t−1)

∣∣∣ Y t−1

])]
,

where the last step follows from the nonnegativity of the Kullback–Leibler divergence of
the conditional densities, that is, from the fact that

E

[
ln

p∗(Yt | Y t−1 = yt−1)

f (Yt | Y t−1 = yt−1)

]
≥ 0

(see Section A.2). Now, for each f ∈ F let

T f (yn) = 1

2

n∑
t=1

(
ln

f (yt | yt−1)

p∗(yt | yt−1)
− E

[
ln

f (Yt | Y t−1)

p∗(Yt | Y t−1)

∣∣∣Y t−1

])
so we have Vn(F) ≤ 2 E

[
sup f ∈F T f

]
, where we write T f = T f (Y n).
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To obtain a suitable upper bound for this quantity, we apply Theorem 8.3. To do this,
we need to show that the process

{
T f : f ∈ F} is indeed a subgaussian family under

the metric d. (Sample continuity of the process is obvious.) To this end, note that for any
f, g ∈ F ,

T f (yn)− Tg(yn) =
n∑

t=1

Zt (yt ),

where

Zt (yt ) = 1

2

(
ln

f (yt | yt−1)

g(yt | yt−1)
− E

[
ln

f (Yt | Y t−1 = yt−1)

g(Yt | Y t−1 = yt−1)

])
.

Now it is easy to see that T f − Tg = T f (Y n)− Tg(Y n) is a sum of bounded martingale
differences with respect to the sequence Y1, Y2, . . . , Yn; that is, each term Zt has zero
conditional mean and range bounded by 2dt ( f, g). Then Lemma A.6 implies that, for all
λ > 0,

E
[
eλ(T f−Tg)

] ≤ exp

(
λ2

2
d( f, g)2

)
.

Thus, the family {T f : f ∈ F} is indeed subgaussian. Hence, using Vn(F) ≤
2E
[
sup f ∈F T f

]
and applying Theorem 8.3 we obtain the statement of the lemma.

Proof of Theorem 9.8. To prove the main inequality, we partition F into small subclasses
and calculate the minimax forecaster for each subclass. Lemma 9.4 is then applied in each
subclass. Finally, the optimal forecasters for these subclasses are combined by a simple
finite mixture.

Fix an arbitrary ε > 0 and let G = {g1, . . . , gN } be an ε-covering of F of minimal size
N = N (F , ε). Determine the subsets F1, . . . ,FN of F by

Fi =
{

f ∈ F : d( f, gi ) ≤ d( f, g j ) for all j = 1, . . . , N
}
;

that is, Fi contains all experts that are closest to gi in the covering. Clearly, the union
of F1, . . . ,FN is F . For each i = 1, . . . , N , let g(i) denote the normalized maximum
likelihood forecaster for Fi

g(i)
n (yn) = sup f ∈Fi

fn(yn)∑
xn∈Yn sup f ∈Fi

fn(xn)
.

Now let the forecaster pε be the uniform mixture of “experts” g(1), . . . , g(N ). Clearly,
Vn(F) ≤ infε>0 Vn(pε,F). Thus, all we have to do is to bound the regret of pε. To this end,
fix any yn ∈ Yn and let k = k(yn) be the index of the subset Fk containing the best expert
for sequence yn; that is,

ln sup
f ∈F

f (yn) = ln sup
f ∈Fk

f (yn).
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Then

ln
sup f ∈F f (yn)

pε(yn)
= ln

g(k)(yn)

pε(yn)
+ ln

supFk
f (yn)

g(k)(yn)
.

On the one hand, by the upper bound for the loss of the mixture forecaster,

sup
yn

ln
g(k)(yn)

pε(yn)
≤ ln N .

On the other hand,

sup
yn

ln
supFk

f (yn)

g(k)(yn)
≤ max

i=1...,N
sup

yn
ln

supFi
f (yn)

g(i)(yn)
= max

i=1,...,N
Vn(Fi ).

Hence, we get

Vn(pε,F) ≤ ln N + max
i=1,...,N

Vn(Fi ).

Now note that the diameter of each element of partition F1, . . . ,FN is at most 2ε. Hence,
applying Lemma 9.4 to each Fi , we find that

Vn(pε,F) ≤ ln N + max
i=1,...,N

24
∫ ε

0

√
ln N (Fi , δ) dδ,

≤ ln N (F , ε)+ 24
∫ ε

0

√
ln N (F , δ) dδ,

which concludes the proof.

Theorem 9.8 requires the existence of finite coverings of F in the metric d. But since
the definition of d involves the logarithm of the experts’ predictions, this is only possible
if all ft ( j | yt−1) are bounded away from 0. If the class of experts F does not satisfy this
property, one may appeal to the following simple property. For simplicity, we state the
lemma for the binary-alphabet case m = 2. Its extension to m > 2 is obvious.

Lemma 9.5. Let m = 2, and let F be a class of experts. Define the class F (δ) as the set of
all experts f (δ) of the form

f (δ)
t (1 | yt−1) = τδ

(
ft (1 | yt−1)

)
,

where

τδ(x) =
⎧⎨⎩

δ if x < δ

x if x ∈ [δ, 1− δ]
1− δ if x > 1− δ

for some fixed 0 < δ < 1/2. Then Vn(F) ≤ Vn(F (δ))+ 2nδ.

Thus, to obtain bounds for Vn(F), we may first calculate a bound for the truncated class
F (δ) using Theorem 9.8 and then choose δ to optimize the right-hand side of the inequality
of Lemma 9.5. The bound of the lemma is convenient but quite crude, and the resulting
bounds are not always optimal.
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Proof. Simply observe that for any sequence yn , and any f ∈ F ,

ln fn(yn)

=
n∑

t=1

ln ft (yt | yt−1)

≤
∑

t : f (δ)
t (yt |yt−1)<1−δ

ln f (δ)
t (yt | yt−1)+

∑
t : f (δ)

t (yt |yt−1)=1−δ

ln 1

≤
∑

t : f (δ)
t (yt |yt−1)<1−δ

ln f (δ)
t (yt | yt−1)

∑
t : f (δ)

t (yt |yt−1)=1−δ

(
ln(1− δ)+ 2δ

)
(since ln 1 ≤ ln(1− δ)+ δ/(1− δ) by concavity, and using 0 < δ < 1/2)

≤
n∑

t=1

(
ln f (δ)

t (yt | yt−1)+ 2δ
)

= ln f (δ)
n (yn)+ 2nδ.

Thus, for any forecaster p̂,

L̂(yn)− inf
f ∈F

L f (yn) = − ln p̂n(yn)+ sup
f ∈F

ln fn(yn)

≤ − ln p̂n(yn)+ sup
f (δ)∈F (δ)

ln f (δ)
n (yn)+ 2nδ

= L̂(yn)− inf
f (δ)∈F (δ)

L f (δ) (yn)+ 2nδ.

9.11 Further Examples

Parametric Classes
Consider first classes F such that there exist positive constants k and c satisfying, for
all ε > 0,

ln N (F , ε) ≤ k ln
c
√

n

ε
.

This is the case for most “parametric” classes, that is, classes that can be parameterized by
a bounded subset of R

k in some “smooth” way provided that all experts’ predictions are
bounded away from 0.

Corollary 9.1. Assume that the covering numbers of the class F satisfy the inequality
above. Then

Vn(F) ≤ k

2
ln n + o(ln n).

The main term k
2 ln n is the same as the one we have seen in the case of the class of all

constant and Markov experts. In those cases we could derive much sharper expressions for
Vn(F) even without requiring that the experts’ predictions be bounded away from 0. On
the other hand, this corollary allows us to handle, in a simple way, much more complicated
classes of experts. An example is provided in Exercise 9.18.
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Proof of Corollary 9.1. Substituting the condition on covering numbers in the upper bound
of Theorem 9.8, the first term of the expression is bounded by k

2 ln n + k ln c − k ln ε. Then
the second term may be bounded as follows:

24
∫ ε

0

√
ln N (F , δ) dδ ≤ 48c

√
kn
∫ ∞

an

x2e−x2
dx

(by substituting x =
√

ln(c
√

n/δ)

and writing an =
√

ln(c
√

n/ε))

= 48c
√

kn

[
an

2c
√

n/ε
+ 1

2

∫ ∞

an

e−x2
dx

]
(by integrating by parts)

≤ 48c
√

kn

[
an

2c
√

n/ε
+ 1

2anc
√

n/ε

]
(by using the gaussian tail estimate∫∞

t e−x2
dx ≤ e−t2

/(2t))

≤ 48
√

kanε (whenever eε ≤ c
√

n)

≤ 48
√

2ε

√
k ln(c

√
n) (whenever ε ≥ 1/(c

√
n).)

The obtained upper bound is minimized for

ε = 1

48
√

2

√
k

ln(c
√

n)
.

So, for every n so large that

c
√

n ≥ 48
√

2

√
ln(c

√
n)

k
,

we have

Vn(F) ≤ k

2
ln n + k

2
ln

ln(c
√

n)

k
+ k ln c + 6k,

which proves the statement.

Nonparametric Classes
Theorem 9.8 may also be used to handle much larger, “nonparametric” classes. In such
cases the minimax regret Vn(F) may be of a significantly larger order of magnitude than the
logarithmic bounds characteristic of parametric classes. We work out one simple example
here.

Let Y = {1, 2} be a binary alphabet, and consider the class F (δ) of all experts f such that
f (1 | yt−1) = ft (1) ∈ [δ, 1− δ], where δ ∈ (0, 1/2) is some fixed constant, and for each
t = 2, 3, . . . , n, ft (1) ≥ ft−1(1). (The case when δ = 0 may be treated by Lemma 9.5.)
In other words, F (δ) contains all static experts that assign a probability to outcome 1 in a
monotonically increasing manner. To estimate the covering numbers of F (δ), consider the
finite subclass G of F (δ) containing only those monotone experts g that take values of the
form gt (1) = δ + (i/k)(1− 2δ), i = 0, . . . , k, where k is a positive integer to be specified
later. It is easy to see that |G| = (n+k

k

) ≤ (2n)k if k ≤ n, and |G| ≤ 2k otherwise. On the
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other hand, for any f ∈ F (δ), if g is the expert in G closest to f , then for each t ≤ n,

max
y∈{1,2}

| ln ft (y)− ln gt (y)| ≤ 1

δ
max

y∈{1,2}
| ft (y)− gt (y)|

= 1

δ
| ft (1)− gt (1)|

≤ 1

δk
.

Thus, d( f, g) ≤ √n/(δk). By taking k = √n/(δε), it follows that the covering number of
F (δ) is bounded as

N (F (δ), ε) ≤
{

(2n)
√

n/(δε) if ε ≥ 1
δ
√

n

2
√

n/(δε) otherwise.

Substituting this bound into Theorem 9.8, it is a matter of straightforward calculation to
obtain

Vn(F (δ)) = O
(
n1/3δ−2/3 ln2/3 n

)
.

Note that the radius optimizing the bound of Theorem 9.8 is ε ≈ n1/6δ−1/3 ln1/3 n. Finally,
by Lemma 9.5, if F is the class of all monotonically predicting experts, without restricting
predictions in [δ, 1− δ], then by Lemma 9.5, Vn(F) ≤ Vn(F (δ))+ 2nδ. By optimizing the
value of δ in the upper bound obtained, we get Vn(F) = O

(
n3/5 ln2/5 n

)
.

9.12 Bibliographic Remarks

The literature about predicting “individual sequences” under the logarithmic loss function
has been intimately tied with a closely related “probabilistic” setup in which one assumes
that the sequence of outcomes is generated randomly by one of the distributions in the
class of experts. Even though in this chapter we do not consider the probabilistic setup
at all, often one cannot separate the literature on the two problems, sometimes commonly
known as the problem of universal prediction. The related literature is huge, and here we
only mention a small selection of references. A survey summarizing a large body of the
literature on prediction under the logarithmic loss is offered by Merhav and Feder [214].
The tight connection of sequential probability assignment and universal (lossless) source
coding goes back to Kolmogorov [185] and Solomonoff [274, 275]. Fitingof [99, 100] and
Davisson [79] were also among the pioneers of the field.

The connection of sequential probability assignment and data compression with arith-
metic coding was first revealed by Rissanen [236] and Rissanen and Langdon [243]. One
of the most successful sequential coding methods, also applicable to prediction, is the
Lempel–Ziv algorithm (see [197, 319] and also Feder, Merhav, and Gutman [95]).

The equivalence of sequential gambling and forecasting under the logarithmic loss
function was noted by Kelly [180]; see also Cover [69] and Feder [94].

De Santis, Markowski, and Wegman [260] consider the logarithmic loss in the context
of online learning. Theorem 9.1 is due to Shtarkov [267] just like Theorem 9.2; see also
Freund [111], Xie and Barron [312]. The Laplace mixture forecaster was introduced, in
the context of universal coding, by Davisson [79], and also investigated by Rissanen [239].
The refined mixture forecaster presented in Section 9.7 was suggested by Krichevsky and
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Trofimov [186]. Lemma 9.3 appears in Willems, Shtarkov, and Tjalkens [311]. It is shown
in Xie and Barron [312] and Freund [111] that the Krichevsky–Trofimov mixture, in fact,
achieves a regret 1

2 ln n + 1
2 ln π

2 + o(1). This is optimal even in the additive constant for all
sequences except for those containing very few 1’s or 2’s. Xie and Barron [312] refine the
mixture further so that it achieves a worst-case cumulative regret of 1

2 ln n + 1
2 ln π

2 + o(1),
matching the performance of the minimax optimal forecaster. Xie and Barron [312] also
derive the analog of all these results in the general case m ≥ 2. Theorem 9.5 also appears
in [312], where the case of m-ary alphabet is also treated and the asymptotic constant is
determined. Szpankowski [282] develops analytical tools to determine Vn(F) to arbitrary
precision for the class of constant experts; see also Drmota and Szpankowski [90].

The material of Section 9.6 is based on the work of Weinberger, Merhav, and Feder [307],
who prove a similar result in a significantly more general setup. In [307] an analog lower
bound is shown for classes of experts defined by a finite-state machine with a strongly
connected state transition graph. The work of Weinberger, Merhav, and Feder was inspired
by a similar result of Rissanen [238] in the model of probabilistic prediction.

Lower bounds for the minimax regret under general metric entropy assumptions may be
obtained by noting that lower bounds for the probabilistic counterpart work in the setup of
individual sequences as well. We mention the important work of Haussler and Opper [152].

Theorem 9.8 is due to Cesa-Bianchi and Lugosi [53], who improve an earlier result
of Opper and Haussler [228] for classes of static experts. A general expression for the
minimax regret, not described in this chapter, for certain regular parametric classes has
been derived by Rissanen [242]. More specifically, Rissanen considers classes F of experts
fn,θ parameterized by an open and bounded set of parameters � ⊂ R

k . It is shown in [242]
that under certain regularity assumptions,

Vn(F) = k

2
ln

n

2π
+ ln

∫
�

√
det(I (θ )) dθ + o(1),

where the k × k matrix I (θ ) is the so-called Fisher information matrix, whose entry in
position (i, j) is defined by

−1

n

∑
yn

fn,θ (yn)
∂2 ln fn,θ (yn)

∂θi∂θ j
,

where θi is the i th component of vector θ . Yamanishi [313] generalizes Rissanen’s results
to a wider class of loss functions. The expressions of the minimax regret for the class of
Markov experts were determined by Rissanen [242] and Jacquet and Szpankowski [168].

Finally, we mention that the problem of prediction under the logarithmic loss has
applications in the study of the general principle of minimum description length (MDL), first
proposed by Rissanen [237, 238, 241]. For quite exhaustive surveys see Barron, Rissanen,
Yu [22], Grünwald [134], and Hansen and Yu [143].

9.13 Exercises

9.1 Let F be the class of all experts such that for each f ∈ F , ft ( j | yt−1) = f ( j) (with f ( j) ≥ 0,∑m
j=1 f ( j) = 1) independently of t and yt−1. For a particular sequence yn ∈ Yn , determine the

best expert and its cumulative loss.
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9.2 Assume that you want to bet in the horse race only once and that you know that the j th horse
wins with probability p j and the odds are o1, . . . , om . How would you distribute your money to
maximize your expected winnings? Contrast your result with the setup described in Section 9.3,
where the optimal betting strategy is independent of the odds.

9.3 Show that there exists a classF of experts with cardinality |F | = N such that for all n ≥ log2 N ,
Vn(F) ≥ ln N . This exercise shows that the bound ln N achieved by the uniform mixture
forecaster is not improvable for some classes.

9.4 Consider class F of all constant experts. Show that the normalized maximum likelihood fore-
caster p∗n is horizon dependent in the sense that if p′t denotes the normalized maximum likelihood
forecaster for some t < n (i.e., p′t achieves the minimax regret Vt (F)), then it is not true that∑

yn
t+1∈Yn−t

p∗n (yn) = p′t (yt ).

9.5 Let F be a class of experts and let q and p̂ be arbitrary forecasters (i.e., probability distributions
over Yn). Show that∑

yn∈Yn

q(yn) ln
sup f ∈F fn(yn)

p̂n(yn)
≥
∑

yn∈Yn

q(yn) ln
sup f ∈F fn(yn)

q(yn)

and that ∑
yn∈Yn

q(yn) ln
sup f ∈F fn(yn)

q(yn)
= Vn(F)− D(q‖p∗n),

where p∗n is the normalized maximum likelihood forecaster and D denotes Kullback–Leibler
divergence.

9.6 Show that ∫ 1

0

1√
x(1− x)

dx = π.

Hint: Substitute x by sin2 α.

9.7 Show that for every n > 1 there exists a class Fn of two static experts such that if p̂ denotes the
exponentially weighted average (or mixture) forecaster, then

Vn( p̂,Fn)

Vn(Fn)
≥ c
√

n

for some universal constant c (see Cesa-Bianchi and Lugosi [53]). Hint: Let Y = {0, 1} and let
Fn contain the two experts f, g defined by f (1 | yt−1) = 1

2 and g(1 | yt−1) = 1
2 + 1

2n . Show, on
the one hand, that Vn(Fn) ≤ c1n−1/2 and on the other hand that Vn( p̂,Fn) ≥ c2 for appropriate
constants c1, c2.

9.8 Extend Theorem 9.2 to the case when the outcome space is Y = {1, . . . , m}. More precisely,
show that the minimax regret of the class of constant experts is

Vn(F) = m − 1

2
ln

n

2π
+ ln

�(1/2)m

�(m/2)
+ o(1) = m − 1

2
ln

ne

m
+ o(1)

(Xie and Barron [312]).

9.9 Complete the proof of Theorem 9.2 by showing that Vn(F) ≥ 1
2 ln n + 1

2 ln π

2 + o(1). Hint: The
proof goes the same way as that of the upper bound, but to get the right constant you need to be
a bit careful when n1/n or n2/n is small.
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9.10 Define the Laplace forecaster for the class of all constant experts over the alphabet Y =
{1, 2, . . . , m} for m > 2. Extend the arguments of Section 9.6 to this general case. In partic-
ular, show that the worst-case cumulative regret of the uniformly weighted mixture forecaster
satisfies

sup
yn∈Yn

(
L̂(yn)− inf

f ∈F
L f (yn)

)
= ln

(
n + m − 1

m − 1

)
≤ (m − 1) ln(n + 1).

9.11 Prove Lemma 9.3. Hint: Show that the ratio of the two sides decreases if we replace n by n + 1
(and also increase either n1 or n2 by 1) and thus achieves its minimum when n = 1. Warning:
This requires some work.

9.12 Show that the function defined by (9.1) is decreasing in both of its variables. Hint: Proceed by
induction.

9.13 Show that the minimax regret Vn(Mk) of the class of all kth-order Markov experts over a binary
alphabet Y = {1, 2} satisfies

Vn(Mk) = 2k

2
ln

n

2k
+ O(1)

(Rissanen [242].)

9.14 Generalize Theorem 9.6 to the case when Y = {1, . . . , m}, with m > 2, and F is the class of
all constant experts.

9.15 Generalize Theorem 9.6 to the case when Y = {1, 2} and F =Mk is the class of all kth-order
Markov experts. Hint: You may need to redefine classes Tj as classes of “Markov types”
adequately. Counting the cardinality of these classes is not as trivial as in the case of constant
experts. (See Weinberger, Merhav, and Feder [307] for a more general result.)

9.16 (Double mixture for markov experts) Assume that Y = {1, 2}. Construct a forecaster p̂ such
that for any k = 1, 2, . . . and any kth-order Markov expert f ∈Mk ,

sup
yn∈Yn

(
L̂(yn)− L f (yn)

) ≤ 2k

2
ln

n

2k
+ αk,n,

where for each k, lim supn→∞ αk,n ≤ βk <∞. Hint: For each k consider the forecaster described
in Example 9.1. Then combine them by the countable mixture described in Section 9.2 (see also
Ryabko [252, 253]).

9.17 (Predicting as well as the best finite-state machine) Consider Y = {1, 2}. A k-state finite-
state machine forecaster is defined as a triple (S, F, G) where S is a finite set of k elements,
F : S → [0, 1] is the output function, and G : Y × S → S is the next-state function. For a
sequence of outcomes y1, y2, . . . , the finite-state forecaster produces a prediction given by the
recursions

st = G(st−1, yt−1) and ft (1 | yt−1) = F(st )

for t = 2, 3, . . . while f1(1) = F(s1) for an initial state s1 ∈ S. Construct a forecaster that
predicts almost as well as any finite-state machine forecaster in the sense that

sup
yn∈Yn

(
L̂(yn)− L f (yn)

) = O(ln n)

for every finite-state machine forecaster f . Hint: Use the previous exercise. (See also Feder,
Merhav, and Gutman [95].)
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9.18 (Experts with fading memory) Let Y = {0, 1} and consider the one-parameter class F of
distributions on {0, 1}n containing all experts f (a), with a ∈ [0, 1], where each f (a) is defined
by its conditionals as f (a)

1 (1) = 1/2, f (a)
2 (1 | y1) = y1, and

f (a)
t (1 | yt−1) = 1

t − 1

t−1∑
s=1

ys

(
1+ a(2s − t)

t − 2

)
for all yt−1 ∈ {0, 1}t−1 and for all t > 2. Show that

Vn(F) = O(ln n).

Hint: First show using Theorem 9.8 that Vn(F (δ)) ≤ 1
2 ln n + 1

2 ln ln
√

n
δ
+ ln 1

δ
+ O(1) and then

use Lemma 9.5.
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Sequential Investment

10.1 Portfolio Selection

This chapter is devoted to the application of the ideas described in Chapter 9 to the problem
of sequential investment. Imagine a market of m assets (stocks) in which, in each trading
period (day), the price of a stock may vary in an arbitrary way. An investor operates on this
market for n days with the goal of maximizing his final wealth. At the beginning of each
day, on the basis of the past behavior of the market, the investor redistributes his current
wealth among the m assets. Following the approach developed in the previous chapters,
we avoid any statistical assumptions about the nature of the stock market, and evaluate
the investor’s wealth relative to the performance achieved by the best strategy in a class of
reference investment strategies (the “experts”).

In the idealized stock market we assume that there are no transaction costs and the
amount of each stock that can be bought at any trading period is only limited by the
investor’s wealth at that time. Similarly, the investor can sell any quantity of the stocks he
possesses at any time at the actual market price.

The model may be formalized as follows. A market vector x = (x1, . . . , xm) for m assets
is a vector of nonnegative real numbers representing price relatives for a given trading
period. In other words, the quantity xi ≥ 0 denotes the ratio of closing to opening price
of the i th asset for that period. Hence, an initial wealth invested in the m assets according
to fractions Q1, . . . , Qm multiplies by a factor of

∑m
i=1 xi Qi at the end of the period. The

market behavior during n trading periods is represented by a sequence of market vectors
xn = (x1, . . . , xn). The j th component of xt , denoted by x j,t , is the factor by which the
wealth invested in asset j increases in the t th period.

As in Chapter 9, we denote the probability simplex in R
m byD. An investment strategy Q

for n trading periods is a sequence Q1, . . . , Qn of vector-valued functions Qt : R
t−1
+ → D,

where the i th component Qi,t (xt−1) of the vector Qt (xt−1) denotes the fraction of the current
wealth invested in the i th asset at the beginning of the t th period on the basis of the past
market behavior xt−1. We use

Sn(Q, xn) =
n∏

t=1

(
m∑

i=1

xi,t Qi,t (xt−1)

)

to denote the wealth factor of strategy Q after n trading periods. The fact that Qt has
nonnegative components summing to 1 expresses the condition that short sales and buying
on margin are excluded.

276
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Example 10.1 (Buy-and-hold strategies). The simplest investment strategies are the so
called buy-and-hold strategies. An investor following such a strategy simply distributes
his initial wealth among m assets according to some distribution Q1 ∈ D before the first
trading period and does not trade anymore. The wealth factor of such a strategy, after n
periods, is simply

Sn(Q, xn) =
m∑

j=1

Q j,1

n∏
t=1

x j,t .

Clearly, this wealth factor is at most as large as the gain max j=1,...,m
∏n

t=1 x j,t of the best
stock over the same investment period and achieves this maximal wealth if Q1 concentrates
on this best stock. �

Example 10.2 (Constantly rebalanced portfolios). Another simple and important class of
investment strategies is the class of constantly rebalanced portfolios. Such a strategy B
is parameterized by a probability vector B = (B1, . . . , Bm) ∈ D and simply Qt (xt−1) = B
regardless of t and the past market behavior xt−1. Thus, an investor following such a strategy
rebalances, at every trading period, his current wealth according to the distribution B by
investing a proportion B1 of this wealth in the first stock, a proportion B2 in the second
stock, and so on. Observe that, as opposed to buy-and-hold strategies, an investor using a
constantly rebalanced portfolio B is engaged in active trading in each period. The wealth
factor achieved after n trading periods is

Sn(B, xn) =
n∏

t=1

(
m∑

i=1

xi,t Bi

)
.

To understand the power of constantly rebalanced strategies, consider a simple market of
m = 2 stocks such that the sequence of market vectors is

(
1, 1

2

)
, (1, 2),

(
1, 1

2

)
, (1, 2), . . . .

Thus, the first stock maintains its value stable while the second stock is more volatile: on
even days it doubles its price, whereas on odd days it loses half of its value. Clearly, on a
long run, none of the two stocks (and therefore no buy-and-hold strategy) yields any gain.
On the other hand, the investment strategy that rebalances every day uniformly (i.e., with
B = ( 1

2 , 1
2

)
) achieves an exponentially increasing wealth at a rate (9/8)n/2. The importance

of constantly rebalanced portfolios is largely due to the fact that if the market vectors xt

are realizations of an i.i.d. process and the number n of investment periods is large, then
the best possible investment strategy, in a quite strong sense, is a constantly rebalanced
portfolio (see Cover and Thomas [74] for a nice summary). �

As for the other models of prediction considered in this book, the performance of any
investment strategy is measured by comparing it to the best in a fixed class of strategies.
To formalize this notion, we introduce the worst-case logarithmic wealth ratio in the next
section. In Section 10.3 the main result of this chapter is presented, which points out a
certain equivalence between the problem of sequential investment and prediction under the
logarithmic loss studied in Chapter 9. This equivalence permits one to determine the limits
of any investment strategy as well as to design strategies with near optimal performance
guarantees. In particular, in Section 10.4 a strategy called “universal portfolio” is introduced
that is shown to be an analog of the mixture forecasters of Chapter 9. The so-called eg
investment strategy is presented in Section 10.5 whose aim is to relieve the computational
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burden of the universal portfolio. In Section 10.6 we allow the investor to take certain side
information into account and develop investment strategies in this extended framework.

10.2 The Minimax Wealth Ratio

The investor’s objective is to achieve a wealth comparable to the best of a certain class of
investment strategies regardless of the market behavior. Thus, given a class Q of investment
strategies, we define the worst-case logarithmic wealth ratio of strategy P by

Wn(P,Q) = sup
xn

sup
Q∈Q

ln
Sn(Q, xn)

Sn(P, xn)
.

Clearly, the investor’s goal is to choose a strategy P for which Wn(P,Q) is as small
as possible. Wn(P,Q) = o(n) means that the investment strategy P achieves the same
exponent of growth as the best reference strategy in classQ for all possible market behaviors.
The minimax logarithmic wealth ratio is just the best possible worst-case logarithmic wealth
ratio achievable by any investment strategy P:

Wn(Q) = inf
P

Wn(P,Q).

Example 10.3 (Finite classes). Assume that the investor competes against a finite class
Q = {Q(1), . . . , Q(N )} of investment strategies. A very simple strategy P divides the initial
wealth in N equal parts and invests each part according to the “experts” Q(i). Then the total
wealth of the strategy is

Sn(P, xn) = 1

N

N∑
i=1

Sn(Q(i), xn)

and the worst-case logarithmic wealth ratio is bounded as

Wn(P,Q) = sup
xn

ln
maxi=1,...,N Sn(Q(i), xn)

1
N

∑N
j=1 Sn(Q( j), xn)

≤ sup
xn

ln
maxi=1,...,N Sn(Q(i), xn)

1
N max j=1,...,N Sn(Q( j), xn)

= ln N . �

10.3 Prediction and Investment

In this section we point out an intimate connection between the sequential investment
problem and the problem of prediction under the logarithmic loss studied in Chapter 9.

The first thing we observe is that any investment strategy Q over m assets may be used to
define a forecaster that predicts the elements yt ∈ Y = {1, . . . , m} of a sequence yn ∈ Yn

with probability vectors p̂t ∈ D. To do this, we simply restrict our attention to those market
vectors x that have a single component that is equal to 1 and all other components equal to
0. Such vectors are called Kelly market vectors. Observe that a Kelly market is just like the
horse race described in Section 9.3, with the only restriction that all odds are supposed to
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be equal to 1. If x1, . . . , xn are Kelly market vectors and we denote the index of the only
nonzero component of each vector xt by yt , then we may define forecaster f by

ft (y | yt−1) = Qy,t (xt−1).

We say that the forecaster f is induced by the investment strategy Q. With some abuse of
notation we write Sn(Q, yn) for Sn(Q, xn) when xn is a sequence of Kelly vectors determined
by the sequence yn of indices. Clearly, Sn(Q, yn) = fn(yn) if f is the forecaster induced
by Q.

To relate the regret in forecasting to the logarithmic wealth ratio, we use the logarithmic
loss �(̂pt , yt ) = − ln p̂t (yt | yt−1). Then the regret against a reference forecaster f is

L̂n − L f,n = ln
fn(yn)

p̂n(yn)
= ln

Q(yn)

P(yn)
,

where Q and P are the investment strategies induced by f and p̂ (see Section 9.1).
Now it is obvious that the investment problem is at least as difficult as the corresponding

prediction problem.

Lemma 10.1. Let Q be a class of investment strategies, and let F denote the class of
forecasters induced by the strategies in Q. Then the minimax regret

Vn(F) = inf
pn

sup
yn

sup
f ∈F

ln
fn(yn)

pn(yn)

satisfies Wn(Q) ≥ Vn(F).

Proof. Let P be any investment strategy and let p be its induced forecaster. Then

sup
xn

sup
Q∈Q

ln
Sn(Q, xn)

Sn(P, xn)
≥ max

yn∈Yn
sup
Q∈Q

ln
Sn(Q, yn)

Sn(P, yn)

= max
yn∈Yn

sup
f ∈F

ln
fn(yn)

pn(yn)

= Vn(p,F) ≥ Vn(F).

Surprisingly, as it turns out, the investment problem is not genuinely more difficult than that
of prediction. In what follows, we show that in many interesting cases the two problems
are, in fact, equivalent in a minimax sense.

Given a prediction strategy p, we define an investment strategy P as follows:

Pj,t (xt−1) =

∑
yt−1∈Y t−1

pt ( j | yt−1)pt−1(yt−1)

(∏t−1

s=1
xys ,s

)
∑

yt−1∈Y t−1
pt−1(yt−1)

(∏t−1

s=1
xys ,s

) .

Note that the factors
∏n

t=1 xyt ,t may be viewed as the return of the “extremal” investment
strategy that, on each trading period t , invests everything on the yt th asset. Clearly, the
obtained investment strategy induces p, and so we will say that p and P induce each other.

The following result is the key in relating the minimax wealth ratio to the minimax regret
of forecasters.
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Theorem 10.1. Let P be an investment strategy induced by a forecaster p, and let Q be an
arbitrary class of investment strategies. Then for any market sequence xn,

sup
Q∈Q

ln
Sn(Q, xn)

Sn(P, xn)
≤ max

yn∈Yn
sup
Q∈Q

ln

∏n
t=1 Qyt ,t (x

t−1)

pn(yn)
.

The proof of the theorem uses the following two simple lemmas. The first is an elementary
inequality, whose proof is left as an exercise.

Lemma 10.2. Let a1, . . . , an, b1, . . . , bn be nonnegative numbers. Then∑n
i=1 ai∑n
i=1 bi

≤ max
j=1,...,n

a j

b j
,

where we define 0/0 = 0.

Lemma 10.3. The wealth factor achieved by an investment strategy Q may be written as

Sn(Q, xn) =
∑

yn∈Yn

(
n∏

t=1

xyt ,t

)(
n∏

t=1

Qyt ,t (x
t−1)

)
.

If the investment strategy P is induced by a forecaster pn, then

Sn(P, xn) =
∑

yn∈Yn

(
n∏

t=1

xyt ,t

)
pn(yn).

Proof. First, we expand the product in the definition of Sn(Q, xn):

Sn(Q, xn) =
n∏

t=1

⎛⎝ m∑
j=1

x j,t Q j,t (xt−1)

⎞⎠
=
∑

yn∈Yn

(
n∏

t=1

xyt ,t Qyt ,t (x
t−1)

)

=
∑

yn∈Yn

(
n∏

t=1

xyt ,t

)(
n∏

t=1

Qyt ,t (x
t−1)

)
.

On the other hand, if an investment strategy is induced by a forecaster p, then

Sn(P, xn) =
n∏

t=1

⎛⎝ m∑
j=1

x j,t Pj,t (xt−1)

⎞⎠

=
n∏

t=1

∑m

j=1

∑
yt−1∈Y t−1

pt (yt−1 j)x j,t

(∏t−1

s=1
xys ,s

)
∑

yt−1∈Y t−1
pt−1(yt−1)

(∏t−1

s=1
xys ,s

)
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=
n∏

t=1

∑
yt∈Y t

(∏t

s=1
xys ,s

)
pt (yt )∑

yt−1∈Y t−1

(∏t−1

s=1
xys ,s

)
pt−1(yt−1)

=
∑

yn∈Yn

(
n∏

t=1

xyt ,t

)
pn(yn),

where in the last equality we set
∑

yt−1∈Y t−1

(∏t−1
s=1 xys ,s

)
pt−1(yt−1) = 1 for t = 1.

Proof of Theorem 10.1. Fix any market sequence xn and choose any reference strategy
Q′ ∈ Q. To simplify notation, we write Sn(yn, xn) =∏n

t=1 xyt ,t . Then using the expressions
derived above for Sn(Q′, xn) and Sn(P, xn), we have

Sn(Q′, xn)

Sn(P, xn)
=
∑

yn∈Yn Sn(yn, xn)
(∏n

t=1 Q′
yt ,t (x

t−1)
)∑

yn∈Yn Sn(yn, xn)pn(yn)

≤ max
yn : Sn (yn ,xn )>0

Sn(yn, xn)
∏n

t=1 Q′
yt ,t (x

t−1)

Sn(yn, xn)pn(yn)

(by Lemma 10.2)

= max
yn∈Yn

∏n
t=1 Q′

yt ,t (x
t−1)

pn(yn)

≤ max
yn∈Yn

sup
Q∈Q

∏n
t=1 Qyt ,t (x

t−1)

pn(yn)
.

An important and immediate corollary of Theorem 10.1 is that the minimax logarithmic
wealth ratio Wn(Q) of any class Q of static strategies equals the minimax regret associated
with the class of the induced forecasters. To make this statement precise, we introduce
the notion of static investment strategies, similar to the notion of static experts in pre-
diction problems. A static investment strategy Q satisfies Qt (xt−1) = Qt ∈ D for each
t = 1, . . . , n. Thus, the allocation of wealth Qt for each trading period does not depend on
the past market behavior.

Theorem 10.2. Let Q be a class of static investment strategies, and let F denote the class
of forecasters induced by strategies in Q. Then

Wn(Q) = Vn(F).

Furthermore, the minimax optimal investment strategy is defined by

P∗j,t (x
t−1) =

∑
yt−1∈Y t−1 p∗t ( j | yt−1)p∗t−1(yt−1)

(∏t−1
s=1 xys ,s

)
∑

yt−1∈Y t−1 p∗t−1(yt−1)
(∏t−1

s=1 xys ,s

) ,

where p∗ is the normalized maximum likelihood forecaster

p∗n(yn) = supQ∈Q
∏n

t=1 Qyt ,t∑
yn∈Yn supQ∈Q

∏n
t=1 Qyt ,t

.



282 Sequential Investment

Proof. By Lemma 10.1 we have Wn(Q) ≥ Vn(F); so it suffices to prove that Wn(Q) ≤
Vn(F). Recall from Theorem 9.1 that the normalized maximum likelihood forecaster p∗ is
minimax optimal for the class F ; that is,

max
yn∈Yn

ln sup
Q∈Q

∏n
t=1 Qyt ,t

p∗n(yn)
= Vn(F).

Now let P∗ be the investment strategy induced by the minimax forecaster p∗ for Q. By
Theorem 10.1 we get

Wn(Q) ≤ sup
xn

sup
Q∈Q

ln
Sn(Q, xn)

Sn(P∗, xn)
≤ max

yn∈Yn
sup
Q∈Q

ln

∏n
t=1 Qyt ,t

p∗n(yn)
= Vn(F).

The fact that the worst-case wealth ratio supxn supQ∈Q Sn(Q, xn)/Sn(P∗, xn) achieved by
the strategy P∗ equals Wn(Q) follows by the inequality above and the fact that Vn(F) ≤
Wn(Q).

Example 10.4 (Constantly rebalanced portfolios). Consider now the class Q of all con-
stantly rebalanced portfolios. It is obvious that the strategies of this class induce the “con-
stant” forecasters studied in Sections 9.5, 9.6, and 9.7. Thus, combining Theorem 10.2 with
the remark following Theorem 9.2, we obtain the following expression for the behavior of
the minimax logarithmic wealth ratio:

Wn(Q) = m − 1

2
ln n + ln

�(1/2)m

�(m/2)
+ o(1).

This result shows that the wealth Sn(P∗,Q) of the minimax optimal investment strategy
given by Theorem 10.2 comes within a factor of n(m−1)/2 of the best possible constantly
rebalanced portfolio, regardless of the market behavior. Since, typically, supQ∈Q Sn(Q, xn)
increases exponentially with n, this factor becomes negligible on the long run. �

10.4 Universal Portfolios

Just as in the case of the prediction problem of Chapter 9, the minimax optimal solu-
tion for the investment problem is not feasible in practice. In this section we introduce
computationally more attractive methods, close in spirit to the mixture forecasters of Sec-
tions 9.6 and 9.7.

For simplicity and for its importance, in this section we restrict our attention to classQ of
all constantly rebalanced portfolios. Recall that each strategy Q in this class is determined
by a vector B = (B1, . . . , Bm) in the probability simplex D in R

m . In order to compete with
the best strategy in Q, we introduce the universal portfolio strategy P by

Pj,t (xt−1) =
∫
D B j St−1(B, xt−1)µ(B) dB∫
D St−1(B, xt−1)µ(B) dB

, j = 1, . . . , m, t = 1, . . . , n,

where µ is a density function on D. In the simplest case µ is just the uniform density,
though we will see that it may be advantageous to consider nonuniform densities such
as the Dirichlet(1/2, . . . , 1/2) density. In any case, the universal portfolio is a weighted
average of the strategies in Q, weighted by their past performance. We will see in the
proof of Theorem 10.3 below that the universal portfolio is nothing but the investment
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strategy induced by the mixture forecaster (the Laplace mixture in case of uniform µ and
the Krichevsky–Trofimov mixture if µ is the Dirichlet(1/2, . . . , 1/2) density).

The wealth achieved by the universal portfolio is just the average of the wealths achieved
by the individual strategies in the class. This may be easily seen by observing that

Sn(P, xn) =
n∏

t=1

m∑
j=1

Pj,t (xt−1)x j,t

=
n∏

t=1

∫
D
∑m

j=1 x j,t B j St−1(B, xt−1)µ(B) dB∫
D St−1(B, xt−1)µ(B) dB

=
n∏

t=1

∫
D St (B, xt )µ(B) dB∫

D St−1(B, xt−1)µ(B) dB

=
∫
D

Sn(B, xn)µ(B) dB

because the product is telescoping and S0 ≡ 1. This last expression offers an intuitive
explanation of what the universal portfolio does: by approximating the integral by a Riemann
sum, we have

Sn(P, xn) ≈
∑

i

Qi Sn(Bi , xn),

where, given the elements �i of a fine finite partition of the simplex D, we assume that
Bi ∈ �i and Qi =

∫
�i

µ(B)dB. The right-hand side is the capital accumulated by a strategy
that distributes its initial capital among the constantly rebalanced investment strategies Bi

according to the proportions Qi and lets these strategies work with their initial share. In
other words, the universal portfolio performs a kind of buy-and-hold over all constantly
rebalanced portfolios.

This simple observation is the key in establishing performance bounds for the universal
portfolio.

Theorem 10.3. If µ is the uniform density on the probability simplex D in R
m, then the

wealth achieved by the universal portfolio satisfies

sup
xn

sup
B∈D

ln
Sn(B, xn)

Sn(P, xn)
≤ (m − 1) ln(n + 1).

If the universal portfolio is defined using the Dirichlet (1/2, . . . , 1/2) density µ, then

sup
xn

sup
B∈D

ln
Sn(B, xn)

Sn(P, xn)
≤ m − 1

2
ln n + ln

�(1/2)m

�(m/2)
+ m − 1

2
ln 2+ o(1).

The second statement shows that the logarithmic worst-case wealth ratio of the universal
portfolio based on the Dirichlet (1/2, . . . , 1/2) density comes within a constant of the
minimax optimal investment strategy.

Proof. First recall that each constantly rebalanced portfolio strategy indexed by B is
induced by the “constant” forecaster pB, which assigns probability

pB
n (yn) = Bn1

1 · · · Bnm
m
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to each sequence yn in which the number of occurrences of symbol j is n j ( j = 1, . . . , m).
By Lemma 10.3, the wealth achieved by such a strategy is

Sn(B, xn) =
∑

yn

(
n∏

t=1

xyt ,t

)
pB

n (yn).

Using the fact that the wealth achieved by the universal portfolio is just the average of the
wealths achieved by the strategies in Q, we have

Sn(P, xn) =
∫
D

Sn(B, xn)µ(B) dB

=
∑

yn

(
n∏

t=1

xyt ,t

)∫
D

pB
n (yn)µ(B) dB.

The last expression shows that the universal portfolio P is induced by the mixture forecaster

pn(yn) =
∫
D

pB
n (yn)µ(B) dB.

(Simply note that by Lemma 10.3 the wealth achieved by the strategy induced by the
mixture forecaster is the same as the wealth achieved by the universal portfolio; hence the
two strategies must coincide.)

By Theorem 10.1,

sup
xn

sup
B∈D

ln
Sn(B, xn)

Sn(P, xn)
≤ max

yn∈Yn
sup
B∈D

ln
pB

n (yn)

pn(yn)
.

In other words, the worst-case logarithmic wealth factor achieved by the universal portfolio
is bounded by the worst-case logarithmic regret of the mixture forecaster. But we have
already studied this latter quantity. In particular, if µ is the uniform density, then pn is just
the Laplace forecaster whose performance is bounded by Theorem 9.3 (for m = 2) and by
Exercise 9.10 (for m ≥ 2), yielding the first half of the theorem.

The second statement is obtained by noting that if the universal portfolio is defined
on the basis of the Dirichlet(1/2, . . . , 1/2) density, then pn is the Krichevsky–Trofimov
forecaster whose loss is bounded in Section 9.7.

10.5 The EG Investment Strategy

The worst-case performance of the universal portfolio is basically unimprovable, but it has
some practical disadvantages. Just note that the definition of the universal portfolio involves
integration over an m-dimensional simplex. Even for moderate values of m, the exponential
computational cost may become prohibitive. In this section we describe a simple strategy
P whose computational cost is linear in m, a dramatic improvement. Unfortunately, the
performance guarantees of this version are inferior to those established in Theorem 10.3
for the universal portfolio.
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This strategy, called the eg investment strategy, invests at time t using the vector Pt =
(P1,t , . . . , Pm,t ) where P1 = (1/m, . . . , 1/m) and

Pi,t =
Pi,t−1 exp

(
η(xi,t−1/Pt−1 · xt−1)

)∑m
j=1 Pj,t−1 exp

(
η(x j,t−1/Pt−1 · xt−1)

) , i = 1, . . . , m, t = 2, 3, . . . .

This weight assignment is a special case of the gradient-based forecaster for linear regression
introduced in Section 11.4:

Pi,t =
Pi,t−1 exp

(
η∇�t−1(Pt−1)i

)∑m
j=1 Pj,t−1 exp

(
η∇�t−1(Pt−1) j

)
when the loss functions is set as �t−1(Pt−1) = − ln Pt−1 · xt−1.

Note that with this loss function, L̂n = − ln S(P, xn), where L̂n is the cumulative loss of
the gradient-based forecaster, and Ln(B) = − ln S(B, xn), where Ln(B) is the cumulative
loss of the forecaster with fixed coefficients B. Hence, by adapting the proof of Theo-
rem 11.3, which shows a bound on the regret of the gradient-based forecaster, we can
bound the worst-case logarithmic wealth ratio of the eg investment strategy. On the other
hand, the following simple and direct analysis provides slightly better constants.

Theorem 10.4. Assume that the price relatives xi,t all fall between two positive constants
c < C. Then the worst-case logarithmic wealth ratio of the eg investment strategy with
η = (c/C)

√
(8 ln m)/n is bounded by

ln m

η
+ nη

8

C2

c2
= C

c

√
n

2
ln m.

Proof. The worst-case logarithmic wealth ratio is

max
xn

max
B∈D

ln

∏n
t=1 B · xt∏n
t=1 Pt · xt

,

where the first maximum is taken over market sequences satisfying the boundedness
assumption. By using the elementary inequality ln(1+ u) ≤ u, we obtain

ln

∏n
t=1 B · xt∏n
t=1 Pt · xt

=
n∑

t=1

ln

(
1+ (B− Pt ) · xt

Pt · xt

)

≤
n∑

t=1

m∑
i=1

(
Bi − Pi,t

)
xi,t

Pt · xt

=
n∑

t=1

⎛⎝ m∑
j=1

B j
x j,t

Pt · xt
−

m∑
i=1

Pi,t
xi,t

Pt · xt

⎞⎠ .

Introducing the notation

�′i,t =
C

c
− xi,t

Pt · xt
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and noting that, under the boundedness assumption 0 < c ≤ xi,t ≤ C , �′i,t ∈ [0, C/c], we
may rewrite the wealth ratio above as

ln

∏n
t=1 B · xt∏n
t=1 Pt · xt

≤
n∑

t=1

m∑
i=1

Pi,t�
′
i,t −

n∑
t=1

m∑
i=1

Bi�
′
i,t .

Because this expression is a linear function of B, it achieves its maximum in one of the
corners of the simplex D, and therefore

max
B∈D

ln

∏n
t=1 B · xt∏n
t=1 Pt · xt

≤
n∑

t=1

m∑
i=1

�′i,t Pi,t − min
j=1,...,m

n∑
t=1

�′j,t .

Now note that

Pi,t = wi,t−1

Wt−1
=

exp
(
η
∑t−1

s=1(xi,s/Ps · xs)
)

∑m
j=1 exp

(
η
∑t−1

s=1(x j,s/Ps · xs)
) = exp

(
−η
∑t−1

s=1 �′i,s
)

∑m
j=1 exp

(
−η
∑t−1

s=1 �′j,s
) .

Hence, P1, P2, . . . are the predictions of the exponentially weighted average forecaster
applied to a linear loss function with range [0, C/c]. The regret

n∑
t=1

m∑
i=1

�′i,t Pi,t − min
j=1,...,m

n∑
t=1

�′j,t

can thus be bounded using Theorem 2.2 applied to scaled losses (see Section 2.6). (Note
that this theorem also applies when, as in this case, the losses at time t depend on the
forecaster’s prediction Pt · xt ).

The knowledge of constants c and C can be avoided using exponential forecasters with
time-varying potentials like the one described in Section 2.8.

Remark 10.1. A linear upper bound on the worst-case logarithmic wealth ratio is inevitably
suboptimal. Indeed, the linear upper bound

m∑
j=1

B j

(
n∑

t=1

(
m∑

i=1

Pi,t�i,t

)
− � j,t

)
=

m∑
j=1

B j

m∑
i=1

(
n∑

t=1

Pi,t
(
�i,t − � j,t

))
is maximized for a constantly rebalanced portfolio B lying in a corner of the simplex D,
whereas the logarithmic wealth ratio ln

∏n
t=1 (B · xt/Pt · xt ) is concave in B, and therefore it

is possibly maximized in the interior of the simplex. Thus, no algorithm trying to minimize
the linear upper bound on the worst-case logarithmic wealth ratio can be minimax optimal.
Note also that the bound obtained for the worst-case logarithmic wealth ratio of the eg
strategy grows as

√
n, whereas that of the universal portfolio has only a logarithmic growth.

The following simple example shows that the bound of the order of
√

n cannot be improved
for the eg strategy. Consider a market with two assets and market vectors xt = (1, 1/2) for
all t . Then, for every wealth allocation Pt , 1/2 ≤ Pt · xt ≤ 1. The best constantly rebalanced
portfolio is clearly (1, 0), and the worst-case logarithmic wealth ratio is

n∑
t=1

ln
1

1− P2,t/2
≥

n∑
t=1

P2,t/2.
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In the case of the eg strategy, we may lower bound P2,t by

P2,t =
exp

(
η
∑t−1

s=1
1

2Ps ·xs

)
exp

(
η
∑t−1

s=1
1

Ps ·xs

)
+ exp

(
η
∑t−1

s=1
1

2Ps ·xs

)
=

exp
(
−η
∑t−1

s=1
1

2Ps ·xs

)
1+ exp

(
−η
∑t−1

s=1
1

2Ps ·xs

)
≥ exp (−η(t − 1))

2
.

Thus, the logarithmic wealth ratio of the eg algorithm is bounded from below by

n∑
t=1

exp
(−η(t − 1)

)
4

= 1

4
× 1− e−ηn

1− e−η
≈ 1

4η
,

where the last approximation holds for large values of n. Since η is proportional to 1/
√

n,
the worst-case logarithmic wealth ratio is proportional to

√
n, a value significantly larger

than the logarithmic growth obtained for the universal portfolio.

10.6 Investment with Side Information

The investment strategies considered up to this point determine their portfolio as a function
of the past market behavior and the investment strategies in the comparison class. However,
sometimes an investor may want to incorporate external information in constructing a
portfolio. For example, the price of oil may have an effect on stock prices, and one may
not want to ignore them even if oil is not traded on the market. Such arguments lead us to
incorporating the notion of side information. We do this similarly as in Section 9.9.

Suppose that, at trading period t , before determining a portfolio, the investor observes
the side information zt , which we assume to take values in a set Z of finite cardinality.
For simplicity, and without loss of generality, we take Z = {1, . . . , K }. The portfolio
chosen by the forecaster at time t may now depend on the side information zt . Formally, an
investment strategy with side information Q is a sequence of functions Qt : R

t−1
+ × Z → D,

t = 1, . . . , n. At time t , on observing the side information zt , the strategy uses the portfolio
Qt (xt−1, zt ). Starting with a unit capital, the accumulated wealth after n trading periods
becomes

Sn(Q, xn, zn) =
n∏

t=1

xt ·Qt (x
t−1, zt ).

Our goal is to design investment strategies that compete with the best in a given reference
class of investment strategies with side information. For simplicity, we consider reference
classes built from static classes of investment strategies. More precisely, let Q1, . . . ,QK

be “base” classes of static investment strategies and let Q(1) ∈ Q1, . . . , Q(K ) ∈ QK be
arbitrary strategies. The class of investment strategies with side information we consider
are such that

Qt (x
t−1, zt ) = Qzt

nzt
,
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where Q j
t ∈ D is the portfolio of an investment strategy Q( j) ∈ Q j at the t th time period and

n j is the length of the sequence of those time instances s < t when zs = j ( j = 1, . . . , K ).
In other words, a strategy in the comparison class assigns a static strategy Q( j) to any j =
1, . . . , K and uses this strategy whenever the side information equals j . This formulation
is the investment analogue of the problem of prediction with side information described in
Section 9.9.

In analogy with the forecasting strategies introduced in Section 9.9, we may consider
the following investment strategy: let G1, . . . ,GK denote the classes of (static) forecasters
induced by the classes of investment strategies Q1, . . . ,QK , respectively. Let q (1)

n , . . . , q (K )
n

be forecasters with worst-case cumulative regrets (with respect to the corresponding refer-
ence classes)

Vn(q ( j)
n ,G j ) = sup

yn∈Yn
sup

g( j)∈G j

n∑
t=1

ln
g( j)

t (yt )

q ( j)
t (yt | yt−1)

.

On the basis of this, one may define the forecaster with side information in Section 9.9:

pt (y | yt−1, zt ) = q (zt )
t zt

(y | yt
zt

).

This forecaster now induces the investment strategy with side-information Pt (xt−1, zt )
defined by its components

Pj,t (xt−1, zt ) =
∑

yt−1∈Y t−1
ps( j | ys−1, zs)

∏t−1

s=1

(
xys ,s ps(ys | ys−1, zs)

)
∑

yt−1∈Y t−1

∏t−1

s=1

(
xys ,s ps(ys | ys−1, zs)

) .

The following result is a straightforward combination of Theorems 9.7 and 10.1. The proof
is left as an exercise.

Theorem 10.5. For any side-information sequence z1, . . . , zn, the investment strategy
defined above has a worst-case logarithmic wealth ratio bounded by

sup
xn

sup
Q∈Q

ln
Sn(Q, xn, zn)

Sn(P, xn, zn)
≤

K∑
j=1

Vn j (q
( j)
n ,G j ).

If the base classes Q1, . . . , QK all equal to the class of all constantly rebalanced portfolios
and the forecasters q ( j) are mixture forecasters, then it is easy to see that the forecaster of
Theorem 10.5 takes the simple form

Pj,t (xt−1, zt ) =
∫
D B j Snzt

(B, xt−1
zt

)µ(B) dB∫
D Snzt

(B, xt−1
zt

)µ(B) dB
, j = 1, . . . , m, t = 1, . . . , n,

where µ is a density function on D and xt−1
j is the subsequence of the past market sequence

xt−1 determined by those time instances s < t when zs = j . Thus, the strategy defined
above simply selects the subsequence of the past corresponding to the times when the
side information was the same as the actual value of side information zt and calculates a
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universal portfolio over that subsequence. Theorem 10.5, combined with Theorem 10.3,
implies the following.

Corollary 10.1. Assume that the universal portfolio with side information defined above is
calculated on the basis of the Dirichlet (1/2, . . . , 1/2) density µ. Let Q denote the class
of investment strategies with side information such that the base classes Q1, . . . ,QK all
coincide with the class of constantly rebalanced portfolios. Then, for any side information
sequence, the worst-case logarithmic wealth ratio with respect to class Q satisfies

sup
xn

sup
Q∈Q

ln
Sn(Q, xn, zn)

Sn(P, xn, zn)

≤ K (m − 1)

2
ln

n

K
+ K ln

�(1/2)m

�(m/2)
+ K (m − 1)

2
ln 2+ o(1).
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approach, closer to the spirit of this chapter, for horse race markets of the type described
in Section 9.3, and assumed an independent, identically distributed sequence of market
vectors. Breiman [41] extended Kelly’s framework to general markets with i.i.d. returns.
The assumption of independence was substantially relaxed by Algoet and Cover [6], who
considered stationary and ergodic markets; see also Algoet [4,5], Walk and Yakowitz [304],
Györfi and Schäfer [136], and Györfi, Lugosi, and Udina [135] for various results under
such general assumptions.

The problem of sequential investment of arbitrary markets was first considered by Cover
and Gluss [71], who used Blackwell’s approachability (see Section 7.7) to construct an
investment strategy that performs almost as well as the best constantly rebalanced portfolio
if the market vectors take their values from a given finite set. The universal portfolio
strategy, discussed in Section 10.4, was introduced and analyzed in a pioneering work of
Cover [70]. The minimax value Wn(Q) for the class of all constantly rebalanced portfolios
was found by Ordentlich and Cover [229]. The bound for the universal portfolios over
the class of constantly rebalanced portfolios was obtained by Cover and Ordentlich [72].
The general results of Theorems 10.1 and 9.2 were given in Cesa-Bianchi and Lugosi [52].
The eg investments strategy was introduced and analyzed by Hembold, Schapire, Singer,
and Warmuth [158]. Theorem 10.4 is due to them (though the proof presented here is taken
from Stoltz and Lugosi [279]).

The model of investment with side information described in Section 10.6 was introduced
by Cover and Ordentlich [72], and Corollary 10.1 is theirs. Györfi, Lugosi, and Udina [135]
choose the side information by nonparameteric methods and construct investment strategies
with universal guarantees for stationary and ergodic markets.

Singer [269] considers the problem of “tracking the best portfolio” and uses the tech-
niques described in Section 5.2 to construct investment strategies that perform almost as
well as the best investment strategy, in hindsight, which is allowed to switch between
portfolios a limited number of times.
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Kalai and Vempala [175] develop efficient algorithms for approximate calculation of the
universal portfolio.

Vovk and Watkins [303] describe various versions of the universal portfolio, considering,
among others, the possibility of “short sales,” that is, when the portfolio vectors may have
negative components (see also Cover and Ordentlich [73]).

Cross and Barron [78] extend the universal portfolio to general smoothly parameterized
classes of investment strategies and also extend the problem of sequential investment to
continuous time.

One important aspect of sequential trading that we have ignored throughout the chapter
is transaction costs. Including transaction costs in the model is a complex problem that has
been considered from various different points of view. We just mention the work of Blum
and Kalai [33], Iyengar and Cover [167], Iyengar [166], and Merhav, Ordentlich, Seroussi,
and Weinberger [215].

Borodin, El-Yaniv, and Gogan [37] propose ad hoc investment strategies with very
convincing empirical performance.

Stoltz and Lugosi [279] introduce and study the notion of internal regret (see Section 4.4)
in the framework of sequential investment.

10.8 Exercises

10.1 Show that for any constantly rebalanced portfolio strategy B, the achieved wealth Sn(B, xn) is
invariant under permutations of the sequence x1, . . . , xn .

10.2 Show that the wealth Sn(P, xn) achieved by the universal portfolio P is invariant under
permutations of the sequence x1, . . . , xn . Show that the same is true for the minimax optimal
investment strategy P∗ (with respect to the class of constantly rebalanced portfolios).

10.3 (Universal portfolio exceeds value line index) Let P be the universal portfolio strategy
based on the uniform density µ. Show that the wealth achieved by P is at least as large as the
geometric mean of the wealth achieved by the individual stocks, that is,

Sn(P, xn) ≥
⎛⎝ m∏

j=1

n∏
t=1

x j,t

⎞⎠1/m

(Cover [70].) Hint: Use Jensen’s inequality twice.

10.4 Let F be a finite class of forecasters. Show that the investment strategy induced by the mixture
forecaster over this class is just the strategy described in the first example of Section 10.2
based on the class Q of investment strategies induced by members of F .

10.5 Prove Lemma 10.2.

10.6 Consider the following randomized approximation of the universal portfolio. Observe that
an interpretation of the identity Sn(P, xn) = ∫D Sn(B, xn)µ(B)dB is that the wealth achieved
by the universal portfolio is the expected value, with respect to the density µ, of the wealth
of all constantly rebalanced strategies. This expectation may be approximated by randomly
choosing N vectors B1, . . . , BN according to the density µ and distributing the initial wealth
uniformly among them just as in the example of Section 10.2. Investigate the relationship of
the wealth achieved by this randomized strategy and that of the universal portfolio. What value
of N do you suggest? (Blum and Kalai [33].)

10.7 Consider a market of m > 2 assets and class Q of all investment strategies that rebalance
between two assets. More precisely, Q is the class of all constantly rebalanced portfolios
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such that the probability vector B ∈ D characterizing the strategy has at most two nonzero
components. Determine tight bounds for the minimax logarithmic wealth ratio Wn(Q). Define
and analyze a universal portfolio for this class.

10.8 (Universal portfolio for smoothly parameterized classes) LetQ be a class of static investment
strategies that is, each Q ∈ Q is given by a sequence B1, . . . , Bn of portfolio vectors (i.e.,
Bt ∈ D). Assume that the strategies in Q are parameterized by a set of vectors � ⊂ R

d , that is,
Q ≡ {Qθ = (Bθ,1, . . . , Bθ,n) : θ ∈ �}. Assume that � is a convex, compact set with nonempty
interior, and the parameterization is smooth in the sense that∥∥Bθ,t − Bθ ′,t

∥∥ ≤ c
∥∥θ − θ ′

∥∥
for all θ, θ ′ ∈ � and t = 1, . . . , n, where c > 0 is a constant. Let µ be a bounded density on
� and define the generalized universal portfolio by

Pj,t (xt−1) =
∫

�
B j

θ,t St−1(Qθ , xt−1)µ(θ ) dθ∫
�

St−1(Qθ , xt−1)µ(θ ) dθ
, j = 1, . . . , m, t = 1, . . . , n,

where B j
θ,t denotes the j the component of the portfolio vector Bθ,t . Show that if the price

relatives xi,t fall between 1/C and C for some constant C > 1, then the worst-case logarithmic
wealth ratio satisfies

sup
xn

sup
θ∈�

ln
Sn(Qθ , xn)

Sn(P, xn)
= O (d ln n)

(Cross and Barron [78]).

10.9 (Switching portfolios) Define class Q of investment strategies that can switch buy-and-hold
strategies at most k times during n trading periods. More precisely, any strategy in Q ∈ Q is
characterized by a sequence i1, . . . , in ∈ {1, . . . , m} of indices of assets with size(i1, . . . , in) ≤
k (where size denotes the number of switches in the sequence; see the definition in Section 5.2)
such that, at time t , Q invests all its capital in asset it . Construct an efficiently computable
investment strategy P whose worst-case logarithmic wealth ratio satisfies

sup
xn

sup
Q∈Q

ln
Sn(Q, xn)

Sn(P, xn)
≤ (k + 1) ln m + k ln

n

k

(Singer [269]). Hint: Combine Theorem 10.1 with the techniques in Section 5.2.

10.10 (Switching constantly rebalanced portfolios) Consider now class Q of investment strategies
that can switch constantly rebalanced portfolios at most k times. Thus, a strategy in Q ∈ Q
is defined by a sequence of portfolio vectors B1, . . . , Bn such that the number of times t =
1, . . . , n − 1 with Bt �= Bt+1 is bounded by k. Construct an efficiently computable investment
strategy P whose logarithmic wealth ratio satisfies

sup
Q∈Q

ln
Sn(Q, xn)

Sn(P, xn)
≤ C

c

√
n

2

(
(k + 1) ln m + (n − 1)H

(
k

n − 1

))
whenever the price relatives xi,t fall between the constants c < C . Hint: Combine the eg
investment strategy with the algorithm for tracking the best expert of Section 5.2.

10.11 (Internal regret for sequential investment) Given any investment strategy Q, one may define
its internal regret (in analogy to the internal regret of forecasting strategies; see Section 4.4),
for any i, j ∈ {1, . . . , m}, by

R(i, j),n =
n∑

t=1

ln
Qi→ j

t · xt

Qt · xt
,

where the modified portfolio Qi→ j
t is defined such that its i th component equals 0, its j th

component equals Q j,t + Qi,t , and all other components are equal to those of Qt . Construct
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an investment strategy such that if the price relatives are bounded between two constants c
and C , then maxi, j R(i, j),n = O(n1/2) and, at the same time, the logarithmic wealth ratio with
respect to the class of all constantly rebalanced portfolios is also bounded by O(n1/2) (Stoltz
and Lugosi [279]). Hint: First establish a linear upper bound as in Section 10.4 and then use
an internal regret minimizing forecaster from Section 4.4.

10.12 Prove Theorem 10.5 and Corollary 10.1.
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11.1 Prediction with Side Information

We extend the protocol of prediction with expert advice by assuming that some side
information, represented by a real vector xt ∈ R

d , is observed at the beginning of each
prediction round t . In this extended protocol we study experts and forecasters whose
predictions are based on linear functions of the side information.

Let the decision space D and the outcome space Y be a common subset of the real
line R. Linear experts are experts indexed by vectors u ∈ R

d . In the sequel we identify
experts with this corresponding parameter, thus referring to a vector u as a linear expert.
The prediction fu,t of a linear expert u at time t is a linear function of the side information:
fu,t = u · xt . Likewise, the prediction p̂t of the linear forecaster at time t is p̂t = wt−1 · xt ,
where the weight vector wt−1 is typically updated making use of the side information xt .

This prediction protocol can be naturally related to a sequential model of pattern recogni-
tion: by viewing the components of the side-information vector as features of an underlying
data element, we can use linear forecasters to solve pattern classification or regression
problems, as described in Section 11.3 and subsequent sections.

As usual, we define the regret of a forecaster with respect to expert u ∈ R
d by

Rn(u) = L̂n − Ln(u) =
n∑

t=1

(
�( p̂t , yt )− �(u · xt , yt )

)
,

where � is a fixed loss function.
In some applications we slightly depart from the linear prediction model by considering

forecasters and experts that, given the side information x, predict with σ (u · x), where
σ : R → R is a nonlinear transfer function. This transfer function, if chosen in conjunction
with a specific loss function, makes the proof of regret bounds easier.

In this chapter we derive bounds on the regret of forecasters using weights of the form
w = ∇�, where � is a potential function. Unlike in the case of the weighted average
forecasters using the advice of finitely many experts, we do not define potentials over the
regret space (which is now a space of functions indexed by R

d ). Rather, we generalize the
approach of defining potentials over the gradient of the loss presented in Section 2.5 for
the exponential potential. To carry out this generalization we need some tools from convex
analysis that are described in the next section. In Section 11.3 we introduce the gradient-
based linear forecaster and prove a general bound for its regret. This bound is specialized to
the polynomial and exponential potentials in Section 11.4, where we analyze the gradient-
based forecaster using a nonlinear transfer function to control the norm of the loss gradient.

293



294 Linear Pattern Recognition

Section 11.5 introduces the projected forecaster, a gradient-based forecaster whose weights
are kept in a given convex and closed region by means of repeated projections. This
forecaster, when used with a polynomial potential, enjoys some remarkable properties. In
particular, we show that projected forecasters are able to “track” the best linear expert and
to dynamically tune their learning rate in a nearly optimal way.

In the rest of the chapter we explore potentials that change over time. The regret bounds
that we obtain for the square loss grow logarithmically with time, providing an exponential
improvement on the bounds obtained using static potentials. In Section 11.9 we show that
these bounds cannot be improved any further. Finally, in Section 11.10 we obtain similar
improved regret bounds for the logarithmic loss. However, the forecaster that achieves such
logarithmic regret bounds is different, because it is based on a mixture of experts, similar,
in spirit, to the mixture forecasters studied in Chapter 9.

11.2 Bregman Divergences

In this section we make a digression to introduce Bregman divergences, a notion that plays
a key role in the analysis of linear forecasters.

Bregman divergences are a natural way of defining a notion of “distance” on the basis
of an arbitrary convex function. To ensure that these divergences enjoy certain useful
properties, the convex functions must obey some restrictions.

We call Legendre any function F : A→ R such that

1. A ⊆ R
d is nonempty and its interior int(A) is convex;

2. F is strictly convex with continuous first partial derivatives throughout int(A);
3. if x1, x2, . . . ∈ A is a sequence converging to a boundary point of A, then
‖∇F(xn)‖ → ∞ as n →∞.

The Bregman divergence induced by a Legendre function F : A→ R is the nonnegative
function DF : A× int(A) → R defined by

DF (u, v) = F(u)− F(v)− (u− v) · ∇F(v).

Hence, the Bregman divergence from u to v is simply the difference between F(u) and
its linear approximation via the first-order Taylor expansion of F around v. Due to the
convexity of F , this difference is always nonnegative. Clearly, if u = v, DF (u, v) = 0.
Note also that the divergence is not symmetric in the arguments u and v, so we will speak
of DF (u, v) as the divergence from u to v.

Example 11.1. The half of the squared euclidean distance 1
2 ‖u− v‖2 is the (symmetric)

Bregman divergence induced by the half of the squared euclidean norm F(x) = 1
2 ‖x‖2. In

this example we may take A = R
d . �

Example 11.2. The unnormalized Kullback–Leibler divergence

DF (p, q) =
d∑

i=1

pi ln
pi

qi
+

d∑
i=1

(qi − pi )
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w

w′

u

S

Figure 11.1. This figure illustrates the generalized pythagorean inequality for squared euclidean
distances. The law of cosines states that ‖u− w‖2 is equal to ‖u− w′‖2 + ‖w′ − w‖2 −
2 ‖u− w′‖ ‖w′ − w‖ cos θ , where θ is the angle at vertex w′ of the triangle. If w′ is the closest
point to w in the convex set S, then cos θ ≤ 0, implying that ‖u− w‖2 ≥ ‖u− w′‖2 + ‖w′ − w‖2.

is the Bregman divergence induced by the unnormalized negative entropy

F(p) =
d∑

i=1

pi ln pi −
d∑

i=1

pi

defined on A = (0,∞)d . �

The following result, whose proof is left as an easy exercise, shows a basic relationship
between the divergences of three arbitrary points. This relationship is used several times in
subsequent sections.

Lemma 11.1. Let F : A→ R be Legendre. Then, for all u ∈ A and all v, w ∈ int(A),

DF (u, v)+ DF (v, w) = DF (u, w)+ (u− v)
(∇F(w)− ∇F(v)

)
.

We now investigate the properties of projections based on Bregman divergences. Let F :
A→ R be a Legendre function and let S ⊂ R

d be a closed convex set with S ∩ A �= ∅.
The Bregman projection of w ∈ int(A) onto S is

argmin
u∈S∩A

DF (u, w) .

The following lemma, whose proof is based on standard calculus, ensures existence and
uniqueness of projections.

Lemma 11.2. For all Legendre functions F : A→ R, for all closed convex sets S ⊂ R
d

such that A ∩ S �= ∅, and for all w ∈ int(A), the Bregman projection of w onto S exists
and is unique.

With respect to projections, all Bregman divergences behave similarly to the squared
euclidean distance, as shown by the next result (see Figure 11.1).
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Lemma 11.3 (Generalized pythagorean inequality). Let F be a Legendre function.
For all w ∈ int(A) and for all convex and closed sets S ⊆ R

d with S ∩ A �= ∅, if
w′ = argminv∈S∩A DF (v, w) then

DF (u, w) ≥ DF
(
u, w′

)+ DF
(
w′, w

)
for all u ∈ S.

Proof. Define the function G(x) = DF (x, w)− DF
(
x, w′

)
. Expanding the divergences

and simplifying, we note that

G(x) = −F(w)− (x− w)∇F(w)+ F(w′)+ (x− w′)∇F(w′).

Thus G is linear. Let xα = αu+ (1− α)w′ be an arbitrary point on the line joining u and
w′. By linearity, G(xα) = α G(u)+ (1− α)G(w′) and thus

DF (xα, w)− DF
(
xα, w′

)
= α

(
DF (u, w)− DF

(
u, w′

))+ (1− α)DF
(
w′, w

)
.

For α > 0, this leads to

DF (u, w)− DF
(
u, w′

)− DF
(
w′, w

)
= DF (xα, w)− DF

(
xα, w′

)− DF
(
w′, w

)
α

≥ −DF
(
xα, w′

)
α

,

where we used DF (xα, w) ≥ DF
(
w′, w

)
. This last inequality is true since w′ is the point in

S with smallest divergence to w and xα ∈ S since u ∈ S and S is convex by hypothesis.
Let D(x) = DF

(
x, w′

)
. To prove the theorem it is then enough to prove that D(xα)/α = 0

for some α > 0. Indeed,

lim
α→0+

D(xα)

α
= lim

α→0+

D(w′ + α (u− w′))− D(w′)
α

.

The last limit is the directional derivative D′
u−w′(w

′) of D in the direction u− w′ evaluated at
w′ (the directional derivative exists in int(A) because of the second condition in the definition
of Legendre functions; moreover, if w ∈ int(A), then the third condition guarantees that w′

does not belong to the boundary of A). Now, exploiting a well-known relationship between
the directional derivative of a function and its gradient, we find that

D′
u−w′(w

′) = (u− w) · ∇D(w′).

Since D is differentiable and nonnegative and D(w′) = 0, we have ∇D(w′) = 0. This
completes the proof.

Note that Lemma 11.3 holds with equality whenever S is a hyperplane (see Exer-
cise 11.2).

To derive some additional key properties of Bregman divergences, we need a few basic
notions about convex duality. Let F : A→ R be Legendre. Then its Legendre dual (or
Legendre conjugate) is the function F∗ defined by

F∗(u) = sup
v∈A

(
u · v− F(v)

)
.

The conditions defining Legendre functions guarantee that whenever F is Legendre,
then F∗ : A∗ → R is also Legendre and such that A∗ is the range of the mapping
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∇F : int(A) → R
d . Moreover, the Legendre dual F∗∗ of F∗ equals F (see, e.g., Sec-

tion 26 in Rockafellar [247]). The following simple identity relates a pair of Legendre
duals.

Lemma 11.4. For all Legendre functions F, F(u)+ F∗(u′) = u · u′ if and only if u′ =
∇F(u).

Proof. By definition of Legendre duality, F∗(u′) is the supremum of the concave function
G(x) = u′ · x− F(x). If this supremum is attained at u ∈ R

d , then ∇G(u) = 0, which is
to say u′ = ∇F(u). On the other hand, if u′ = ∇F(u), then u is a maximizer of G(x), and
therefore F∗(u′) = u · u′ − F(u).

The following lemma shows that gradients of a pair of dual Legendre functions are
inverses of each other.

Lemma 11.5. For all Legendre functions F, ∇F∗ = (∇F)−1.

Proof. Using Lemma 11.4 twice,

u′ = ∇F(u) if and only if F(u)+ F∗(u′) = u · u′
u = ∇F∗(u′) if and only if F∗(u′)+ F∗∗(u) = u · u′.

Because F∗∗ = F , the lemma is proved.

Example 11.3. The Legendre dual of the half of the squared p-norm 1
2 ‖u‖2

p, p ≥ 2, is
the half of the squared q-norm 1

2 ‖u‖2
q , where p and q are conjugate exponents; that is,

1/p + 1/q = 1. The euclidean norm 1
2 ‖u‖2 is the only self-dual norm (it is the dual of

itself). The squared p-norms are Legendre, and therefore the gradients of their duals are
inverses of each other,(∇ 1

2‖u‖2
p

)
i
= sgn(ui ) |ui |p−1

‖u‖p−2
p

and
(∇ 1

2‖u‖2
p

)−1 = ∇ 1
2‖u‖2

q ,

where, as before, 1/p + 1/q = 1. �

Example 11.4. The function F(u) = eu1 + · · · + eud has gradient ∇F(u)i = eui whose
inverse is ∇F∗(v)i = ln vi , vi > 0. Hence, the Legendre dual of F is

F∗(v) =
d∑

i=1

vi (ln vi − 1).

Note that if v lies on the probability simplex in R
d and H (v) is the entropy of v, then

F∗(v) = −(H (v)+ 1). �

Example 11.5. The hyperbolic cosine potential

F(u) = 1

2

d∑
i=1

(
eui + e−ui

)
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has gradient with components equal to the hyperbolic sine ∇F(u)i = sinh(ui ) = 1
2 (eui −

e−ui ). Therefore, the inverse gradient is the hyperbolic arcsine, ∇F∗(v)i = arcsinh(vi ) =
ln
(√

v2
i + 1+ vi

)
, whose integral gives us the dual of F

F∗(v) =
d∑

i=1

(
vi arcsinh(vi )−

√
v2

i + 1

)
. �

We close this section by mentioning an additional property that relates a divergence based
on F to that based on its Legendre dual F∗.

Proposition 11.1. Let F : A→ R be a Legendre function. For all u, v ∈ int(A), if u′ =
∇F(u) and v′ = ∇F(v), then DF (u, v) = DF∗

(
v′, u′

)
.

Proof. We have

DF (u, v) = F(u)− F(v)− (u− v) · ∇F(v)

= F(u)− F(v)− (u− v) · v′
= u′ · u− F∗(u′)− v′ · v+ F∗(v′)− (u− v) · v′

(using Lemma 11.4)

= u′ · u− F∗(u′)+ F∗(v′)− u · v′
= F∗(v′)− F∗(u′)− (v′ − u′) · u
= F∗(v′)− F∗(u′)− (v′ − u′) · ∇F∗(u′)

(using u′ = ∇F(u) and Lemma 11.5)

= DF∗
(
v′, u′

)
.

This concludes the proof.

11.3 Potential-Based Gradient Descent

Now we return to the main topic of this chapter introduced in Section 11.1, that is, to the
design and analysis of forecasters that use the side-information vector xt and compete with
linear experts, or, in other words, with reference forecasters whose prediction takes the
form fu,t = u · xt for some fixed vector u ∈ R

d . In this and the four subsequent sections
we focus our attention on linear forecasters whose prediction, at time t , takes the form
p̂t = wt−1 · xt . The weight vector wt used in the next round of prediction is determined
as a function of the current weight wt−1, the side information xt , and the outcome yt . The
forecasters studied in these sections differ in the way the weight vectors are updated. We
start by describing a family of forecasters that update their weights by performing a kind
of gradient descent based on an appropriately defined potential function.

To motivate the gradient descent forecasters defined below, we compare them first to
the potential-based forecasters introduced in Chapter 2 in a different setup. Recall that
in Chapter 2 we define weighted average forecasters using potential functions in order to
control the dependence of the weights on the regret. More precisely, we define weights at
time t by wt−1 = ∇�(Rt−1), where Rt−1 is the cumulative regret up to time t − 1. The



11.3 Potential-Based Gradient Descent 299

convexity of the loss function, through which the regret is defined, entails (via Lemma 2.1)
an invariant that we call the Blackwell condition: wt−1 · rt ≤ 0. This invariant, together
with Taylor’s theorem, is the main tool used in Theorem 2.1.

If � is a Legendre function, then Lemma 11.5 provides the dual relations wt = ∇�(Rt )
and Rt = ∇�∗(wt ). As � and �∗ are Legendre duals, we may call primal weights the
regrets Rt and dual weights the weights wt , where ∇� maps the primal weights to the dual
weights and ∇�∗ performs the inverse mapping. Introducing the notation θ t = Rt to stress
the fact that we now view regrets as parameters, we see that θ t satisfies the recursion

θ t = θ t−1 + rt (primal regret update).

Via the identities θ t = Rt = ∇�∗(wt ), the primal regret update can be also rewritten in
the equivalent dual form

∇�∗(wt ) = ∇�∗(wt−1)+ rt (dual regret update).

To appreciate the power of this dual interpretation for the regret-based update, consider
the following argument. The direct application of the potential-based forecaster to the class
of linear experts requires a quantization (discretization) of the linear coefficient domain R

d

in order to obtain a finite approximation of the set of experts. Performing this quantization
in, say, a bounded region [−W, W ]d of R

d results in a number of experts of the order of
(W/ε)d , where ε is the quantization scale. This inconvenient exponential dependence on
the dimension d can be avoided altogether by replacing the regret minimization approach
of Chapter 2 with a different loss minimization method. This method, which we call
sequential gradient descent, is applicable to linear forecasters generating predictions of the
form p̂t = θ t−1 · xt and uses the weight update rule

θ t = θ t−1 − λ∇�t (θ t−1) (primal gradient update),

where θ t ∈ R
d , λ > 0 is an arbitrary scaling factor, and we set �t (θ t−1) = �(θ t−1 · xt , yt ).

With this method we replace regret minimization taking place in R
N (where N = R

d in this
case) with gradient minimization taking place in R

d . Note also that, due to the convexity
of the loss functions �(·, y), minimizing the gradient implies minimizing the loss.

In full analogy with the regret minimization approach, we may now introduce a potential
�, the associated dual weights wt = ∇�(θ t ), and the forecaster

p̂t = wt−1 · xt (gradient-based linear forecaster)

whose weights wt−1 are updated using the rule

∇�∗(wt ) = ∇�∗(wt−1)− λ∇�t (wt−1) (dual gradient update).

By rewriting the dual gradient update as

θ t = θ t−1 − λ∇�t (wt−1)

we see that this update corresponds to performing a gradient descent step on the weights
θ t , which are the image of wt according to the bijection ∇�∗, using ∇�t (wt−1) rather than
∇�t (θ t−1) (see Figure 11.2).
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θ t−1θ t

wt−1wt

∇�∗

∇�

Figure 11.2. An illustration of the dual gradient update. A weight wt−1 ∈ R
2 is updated as follows:

first, wt−1 is mapped to the corresponding primal weight θ t−1 via the bijection ∇�∗. Then a gradient
descent step is taken obtaining the updated primal weight θ t . Finally, θ t is mapped to the dual weight
wt via the inverse mapping ∇�. The curve on the left-hand side shows a surface of constant loss.
The curve on the right-hand side is the image of this surface according to the mapping ∇�, where �

is the polynomial potential with degree p = 2.6.

Since ∇� is the inverse of ∇�∗, it is easy to express explicitly the update in terms of
wt :

wt = ∇�
(
∇�∗(wt−1)− λ∇�t (wt−1)

)
.

A different intuition on the gradient-based linear forecaster is gained by observing that wt

may be viewed as an approximate solution to

min
u∈Rd

[
D�∗ (u, wt−1)+ λ�t (u)

]
.

In other words, wt expresses a tradeoff between the distance from the old weight wt−1

(measured by the Bregman divergence induced by the dual potential �∗) and the loss
suffered by wt if the last observed pair (xt , yt ) appeared again at the next time step. To
terminate the discussion on wt , note that wt is in fact characterized as a solution to the
following convex minimization problem:

min
u∈Rd

[
D�∗ (u, wt−1)+ λ

(
�t (wt−1)+ (u− wt−1)∇�t (wt−1)

)]
.

This second minimization problem is an approximated version of the first one because
the term �t (wt−1)+ (u− wt−1)∇�t (wt−1) is the first-order Taylor approximation of �t (u)
around wt−1.

We call regular loss function any convex, differentiable, nonnegative function � : R×
R → R such that, for any fixed xt ∈ R

d and yt ∈ R, the function �t (w) = �(w · xt , yt ) is
differentiable. The next result shows a general bound on the regret of the gradient-based
linear forecaster.

Theorem 11.1. Let � be a regular loss function. If the gradient-based linear forecaster
is run with a Legendre potential �, then, for all u ∈ R

d , the regret Rn(u) = L̂n − Ln(u)
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satisfies

Rn(u) ≤ 1

λ
D�∗ (u, w0)+ 1

λ

n∑
t=1

D�∗ (wt−1, wt ) .

Proof. Consider any linear forecaster using fixed weights u ∈ R
d . Then

�t (wt−1) ≤ �t (u)− (u− wt−1) · ∇�t (wt−1)

(by Taylor’s theorem and using convexity of �)

= �t (u)+ 1

λ
(u− wt−1) · (∇�∗(wt )−∇�∗(wt−1)

)
(by definition of the dual gradient update)

= �t (u)+ 1

λ

(
D�∗ (u, wt−1)− D�∗ (u, wt )+ D�∗ (wt−1, wt )

)
(by Lemma 11.1).

Summing over t and using the nonnegativity of Bregman divergences to drop the
term −D�∗ (u, wn) completes the proof.

At a first glance, the bound of Theorem 11.1 may give the impression that the larger
the λ, the smaller the regret is. However, a large value of λ may make the weight vectors
wt change rapidly with time, causing an increase in the divergences in the second term. In
the concrete examples that follow, we will see that the learning rate λ needs to be tuned
carefully to obtain optimal performance.

It is interesting to compare the bound of Theorem 11.1 (for λ = 1) with the bound of
Theorem 2.1. Rewriting both bounds in primal weight form, we obtain, setting w0 = ∇�(0),

�(Rn) ≤ �(0)+
n∑

t=1

D�(θ t , θ t−1)

Rn(u) ≤ D�

(
0,∇�∗(u)

)+ n∑
t=1

D�

(
θ ′t , θ

′
t−1

)
,

where the θ t are updated using the primal regret update (as in Theorem 2.1) and the θ ′t
are updated using the primal gradient update (as in Theorem 11.1). Note that, in both
cases, the terms in the sum on the right-hand side are the divergences from the old primal
weight to the new primal weight. However, whereas the first bound applies to a set of N
arbitrary experts, the second bound applies to the set of all (continuously many) linear
experts.

11.4 The Transfer Function

To add flexibility to the gradient-based linear forecaster, and to make its analysis easier,
we constrain its predictions p̂t = wt−1 · xt by introducing a differentiable and nondecreas-
ing transfer function σ : R → R and letting p̂t = σ (wt−1 · xt ). Similarly, we redefine the
predictions of expert u as σ (u · xt ). and let �σ

t (wt−1) = �
(
σ (wt−1 · xt ), yt

)
. The forecaster
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predicting with a transfer function, which we simply call gradient-based forecaster, is
sketched in the following:

THE GRADIENT-BASED FORECASTER

Parameters: learning rate λ > 0, transfer function σ .

Initialization: w0 = ∇�(0).

For each round t = 1, 2, . . .

(1) observe xt and predict p̂t = σ (wt−1 · xt );
(2) get yt ∈ R and incur loss �σ

t (wt−1) = �( p̂t , yt );
(3) let wt = ∇�

(∇�∗(wt−1)− λ∇�σ
t (wt−1)

)
.

The regret of the gradient-based forecaster with respect to a linear expert u takes the form

Rσ
n (u) =

n∑
t=1

(
�σ

t (wt−1)− �σ
t (u)

)
.

Note that, for fairness, the loss of the forecaster p̂t = σ (wt−1 · xt ) is compared with the
loss of the “transferred” linear expert σ (u · xt ). Instances of the gradient-based forecaster
obtained by considering specific potentials correspond to well-known pattern recognition
algorithms. For example, the Widrow–Hoff rule [310] wt = wt−1 − λ(wt−1 · xt − yt ) is
equivalent to the gradient-based forecaster using the quadratic potential (i.e., the polynomial
potential with p = 2), the square loss, and the identity transfer function σ (p) = p. The eg
algorithm of Kivinen and Warmuth [181] corresponds to the forecaster using the exponential
potential. Regret bounds for these concrete potentials are derived later in this section.

To apply Theorem 11.1 with transfer functions, we have to make sure that the loss
�(σ (w · x), y) is a convex function of w for all y. Because w · x is linear, it suffices
to guarantee that �(σ (v), y) is convex in v . We call nice pair any pair (σ, �) such that
�(σ (·), y) is convex for all fixed y. Trivially, any regular loss function forms a nice pair
with the identity transfer function. Less trivial examples are as follows.

Example 11.6. The hyperbolic tangent σ (v) = (ev − e−v )/(ev + e−v ) ∈ [−1, 1] and the
entropic loss

�(p, y) = 1+ y

2
ln

1+ y

1+ p
+ 1− y

2
ln

1− y

1− p

form a nice pair. �

Example 11.7. The logistic transfer function σ (v) = (1+ e−v )−1 ∈ [0, 1] and the Hellinger
loss �(p, y) = (

√
p −√y)2 + (

√
1− p −√1− y)2 form a nice pair. �

To avoid imposing artificial conditions on the sequence of outcomes and side information,
we focus on nice pairs (σ, �) satisfying the additional condition(

d�(σ (v), y)

dv

)2

≤ α �(σ (v), y) for some α > 0.
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We call such pairs α-subquadratic. The nice pair of Example 11.6 is 2-subquadratic and
the nice pair of Example 11.7 is 1/4-subquadratic. The nice pair formed by the identity
transfer function and the square loss �(p, y) = 1

2 (p − y)2 is 1-subquadratic. (To analyze the
gradient-based forecaster, it is more convenient to work with this definition of square loss
equal to half of the square loss used in previous chapters.) We now illustrate the regret bounds
that we can obtain through the use of α-subquadratic nice pairs. Let Rσ

n (u) = L̂σ
n − Lσ

n (u),
where

L̂σ
n =

n∑
t=1

�
(
σ (wt−1 · xt ), yt

)
and Lσ

n (u) =
n∑

t=1

�
(
σ (u · xt ), yt

)
.

Polynomial Potential
The polynomial potential ‖u+‖2

p defined in Chapter 2 is not Legendre because, owing to the
(·)+ operator, it is not strictly convex outside of the positive orthant. To make this potential
Legendre, we may redefine it as �p(u) = 1

2 ‖u‖2
p, where we also introduced an additional

scaling factor of 1/2 so as to have �∗
p(u) = �q (u) = 1

2 ‖u‖2
q (see Example 11.3). It is easy

to check that all the regret bounds we proved in Chapter 2 for the polynomial potential still
hold for the Legendre polynomial potential.

Theorem 11.2. For any α-subquadratic nice pair (σ, �), if the gradient-based fore-
caster using the Legendre polynomial potential �p is run with learning rate λ =
2ε/
(
(p − 1)α X2

p

)
on a sequence (x1, y1), (x2, y2) . . . ∈ R

d × R, where 0 < ε < 1, then
for all u ∈ R

d and for all n ≥ 1 such that maxt=1,...,n ‖xt‖p ≤ X p,

L̂σ
n ≤

Lσ
n (u)

1− ε
+ ‖u‖2

q

ε(1− ε)
× (p − 1)α X2

p

4
,

where q is the conjugate exponent of p.

Proof. We apply Theorem 11.1 to the Legendre potential �p(u) and to the convex loss
�σ

t (·) and obtain

Rσ
n (u) ≤ 1

λ
D�q (u, w0)+ 1

λ

n∑
t=1

D�q (wt−1, wt ) .

Since the initial primal weight θ0 is 0, w0 = ∇�p(0) = 0 and �q (w0) = 0. This implies
D�q (u, w0) = �q (u). As for the other terms, we simply observe that, by Proposition 11.1,
D�q (wt−1, wt ) = D�p (θ t , θ t−1), where θ t = ∇�q (wt ) and θ t = θ t−1 − λ∇�σ

t (wt−1). We
can then adapt the proof of Corollary 2.1 replacing N by d and rt by −λ∇�σ

t (wt−1) and
adjusting for the scaling factor 1/2. This yields

Rσ
n (u) ≤ �q (u)

λ
+ 1

λ

n∑
t=1

D�q (wt−1, wt )

≤ �q (u)

λ
+ (p − 1)

λ

2

n∑
t=1

∥∥∇�σ
t (wt−1)

∥∥2
p

≤ �q (u)

λ
+ (p − 1)

λ

2

n∑
t=1

(
d�(σ (vt ), yt )

dvt

∣∣∣∣
vt=wt−1·xt

)2

‖xt‖2
p
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≤ �q (u)

λ
+ (p − 1)

λ

2

n∑
t=1

α �σ
t (wt−1) ‖xt‖2

p

(as (σ, �) is α-subquadratic)

≤ �q (u)

λ
+ (p − 1)

α λ

2
X2

p L̂σ
n .

Note that Rσ
n (u) = L̂σ

n − Lσ
n (u). Rearranging terms, substituting our choice of λ, and using

the equality 1
2�q (u) = ‖u‖2

q yields the result.

Choosing, say, ε = 1/2, the bound of Theorem 11.2 guarantees that the cumulative loss
of the gradient-based forecaster is not larger than twice the loss of any linear expert plus
a constant depending on the expert. If ε is chosen to be a smaller constant, the factor of 2
in front of Lσ

n (u) may be decreased to any value greater than 1, at the price of increasing
the constant terms. One may be tempted to choose the value of the tuning parameter ε so
as to minimize the obtained upper bound. However, this tuned ε would have to depend on
the preliminary knowledge of Lσ

n (u). Since the bound holds for all u, and u is arbitrary,
such optimization is not feasible. In Section 11.5 we introduce a so-called self-confident
forecaster that dynamically tunes the value of the learning rate λ to achieve a bound of the
order

√
Lσ

n (u) for all u for which �q (u) is bounded by a constant. Note that this bound
behaves as if λ had been optimized in the bound of Theorem 11.2 separately for each u in
the set considered.

Exponential Potential
As for the polynomial potential, the exponential potential defined as

1

η
ln

d∑
i=1

eη ui

is not Legendre (in particular, the gradient is constant along the line u1 = u2 = · · · =
ud , and therefore the potential is not strictly convex). We thus introduce the Legendre
exponential potential �(u) = eu1 + · · · + eud (the parameter η, used for the exponential
potential in Chapter 2, is redundant here). Recalling Example 11.4, ∇�∗(w)i = ln wi . For
this potential, the dual gradient update wt = ∇�

(∇�∗(wt−1)− λ∇�t (wt−1)
)

can thus be
written as

wi,t = exp
(
ln wi,t−1 − λ∇�t (wt−1)i

) = wi,t−1 e−λ∇�t (wt−1)i for i = 1, . . . , d.

Adding normalization, which we need for the analysis of the regret, results in the final
weight update rule

wi,t = wi,t−1e−λ∇�t (wt−1)i∑d
j=1 w j,t−1e−λ∇�t (wt−1) j

.

This normalization corresponds to a Bregman projection of the original weight onto the
probability simplex in R

d , where the projection is taken according to the Legendre dual

�∗(u) =
d∑

i=1

ui (ln ui − 1)



11.4 The Transfer Function 305

(see Exercise 11.4). A thorough analysis of gradient-based forecasters with projected
weights is carried out in Section 11.5.

The gradient-based forecaster using the Legendre exponential potential with projected
weights is sometimes called the eg (exponentiated gradient) algorithm. Although we used
the Legendre version of the exponential potential to be able to define eg as a gradient-based
forecaster, it turns out that the original potential is better suited to prove a regret bound. For
this reason, we slightly change the proof of Theorem 11.1 and use the standard exponential
potential. Finally, because the eg forecaster uses normalized weights, we also restrict our
expert class to those u that belong to the probability simplex in R

d .

Theorem 11.3. For any α-subquadratic nice pair (σ, �), if the eg forecaster is run
with learning rate λ = 2ε/(α X2

∞) on a sequence (x1, y1), (x2, y2) . . . ∈ R
d × R, where

0 < ε < 1, then for all u ∈ R
d in the probability simplex and for all n ≥ 1 such that

maxt=1,...,n ‖xt‖∞ ≤ X∞,

L̂σ
n ≤

Lσ
n (u)

1− ε
+ α X2

∞ ln d

2ε(1− ε)
.

Proof. Recall the (non-Legendre) exponential potential, with η = 1,

�(u) = ln
d∑

i=1

eui .

We now go through the proof of Theorem 11.1 using the relative entropy

D(u‖v) =
d∑

i=1

ui ln
ui

vi
.

(see Section A.2) in place of the divergence D�∗(u, v). Example 11.2 tells us that the
relative entropy is the Bregman divergence for the unnormalized negative entropy potential

�(u) =
d∑

i=1

ui ln ui −
d∑

i=1

ui , u ∈ (0,∞)d ,

in the special case when both u and v belong to the probability simplex in R
d .

Let w ′
i,t = wi,t−1e−λ∇�t (wt−1)i and let wt be w′t normalized. Just as in Theorem 11.1, we

begin the analysis by applying Taylor’s theorem to �:

�σ
t (wt−1)− �σ

t (u) ≤ −(u− wt−1) · ∇�σ
t (wt−1).

Introducing the abbreviation z = λ∇�σ
t (wt−1) and the new vector v with components vi =

wt−1 · z− zi , we proceed as follows:

−(u− wt−1) · z

= −u · z+ wt−1 · z− ln

(
d∑

i=1

wi,t−1evi

)
+ ln

(
d∑

i=1

wi,t−1evi

)

= −u · z− ln

(
d∑

i=1

wi,t−1e−zi

)
+ ln

(
d∑

i=1

wi,t−1evi

)
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=
d∑

j=1

u j ln e−z j − ln

(
d∑

i=1

wi,t−1e−zi

)
+ ln

(
d∑

i=1

wi,t−1evi

)

=
d∑

j=1

u j ln

(
1

w j,t−1

w j,t−1e−z j∑d
i=1 wi,t−1e−zi

)
+ ln

(
d∑

i=1

wi,t−1evi

)

=
d∑

j=1

u j ln
w j,t

w j,t−1
+ ln

(
d∑

i=1

wi,t−1evi

)

= D(u‖wt−1)− D(u‖wt )+ ln

(
d∑

i=1

wi,t−1evi

)
.

Note that, as in Theorem 11.1, we have obtained a telescoping sum. However, unlike
Theorem 11.1, the third term is not a relative entropy.

On the other hand, bounding this extra term is not difficult. Since wt−1 belongs to the
simplex, we may view v1, . . . , vd as the range of a zero-mean random variable V distributed
according to wt−1. To this end, let

Ct = d�(σ (v), yt )

dv

∣∣∣∣
v=wt−1·xt

‖xt‖∞

so that zi ∈ [−λCt , λCt ]. Applying Hoeffding’s inequality (Lemma A.1) to V then yields

ln

(
d∑

i=1

wi,t−1evi

)
≤ λ2C2

t

2
.

Summing over t = 1, . . . , n gives

n∑
t=1

(
�σ

t (wt−1)− �σ
t (u)

) ≤ D(u‖w0)

λ
+ λ

2

n∑
t=1

C2
t ,

where the negative term −D(u‖wn) has been discarded. Using the assumption that
(σ, �) is α-subquadratic, we have C2

t ≤ α �σ
t (wt−1) X2

∞. Moreover, θ0 = 0 implies that,
after normalization, w0 = (1/d, . . . , 1/d). This gives D(u‖w0) ≤ ln d (see Examples 11.2
and 11.4). Substituting these values in the above inequality we get

Rσ
n (u) ≤ ln d

λ
+ α λ

2
X2
∞ L̂σ

n .

Note that this inequality has the same form as the corresponding inequality at the end of
the proof of Theorem 11.2. Substituting our choice of λ and rearranging yields the desired
result.

Note that, as for the analysis in Chapter 2, we can obtain a bound equivalent to that of
Theorem 11.3 by using Theorem 11.2 with the polynomial potential tuned to p = 2 ln d.

The exponential potential has the additional limitation of using only positive weights.
As explained in Grove, Littlestone, and Schuurmans [133], this limitation can be actually
overcome by feeding to the forecaster modified side-information vectors x′t ∈ R

2d , where

x′t = (−x1,t , x1,t ,−x2,t , x2,t , . . . ,−xd,t , xd,t )
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and xt = (x1,t , . . . , xd,t ) is the original unmodified vector. Note that running the gradient-
based linear forecaster with exponential potential on these modified vectors amounts to
running the same forecaster with the hyperbolic cosine potential (see Example 11.5) on the
original sequence of side information vectors.

We close this section by comparing the results obtained so far for the gradient-based
forecaster. Note that the bounds of Theorem 11.2 (for the polynomial potential) and The-
orem 11.3 (for the exponential potential) are different just because they use different pairs
of dual norms. To allow a fair comparison between these bounds, fix some linear expert u
and consider a slight extension of Theorem 11.3 in which we scale the simplex such that
each wt is projected enough to contain the chosen u. Then the bound for the exponential
potential takes the form

Lσ
n (u)

1− ε
+ α

2ε(1− ε)
× (ln d) ‖u‖2

1 X2
∞,

where X∞ = maxt ‖xt‖∞. The bound of Theorem 11.2 for the polynomial potential is very
similar:

Lσ
n (u)

1− ε
+ α

2ε(1− ε)
× p − 1

2
‖u‖2

q X2
p,

where X p = maxt ‖xt‖p and (p, q) are conjugate exponents. Note that the two bounds differ
only because the sizes of u and xt are measured using different pairs of dual norms (1 is the
conjugate exponent of∞). For p ≈ 2 ln d the bound for the polynomial potential becomes
essentially equivalent to the one for the exponential potential. To analyze the other extreme,
p = 2 (the spherical potential), note that, using ‖v‖∞ ≤ ‖v‖2 ≤ ‖v‖1 for all v ∈ R

d , it
is easy to construct sequences such that one of the two potentials gives a regret bound
substantially smaller than the other. For instance, consider a sequence (x1, y1), (x2, y2) . . .

where, for all t , xt ∈ {−1, 1}d and yt = u� · xt for u = (1, 0, . . . , 0). Then ‖u‖2
2 X2

2 = d
and ‖u‖2

1 X2
∞ = 1. Hence, the exponential potential has a considerable advantage when a

sequence of “dense” side information xt can be well predicted by some “sparse” expert u. In
the symmetric situation (sparse side information and dense experts) the spherical potential
is better. As shown by the arguments of Kivinen and Warmuth [181], these discrepancies
turn out to be real properties of the algorithms, and not mere artifacts of the proofs.

11.5 Forecasters Using Bregman Projections

In this section we introduce a modified gradient-based linear forecaster, which always
chooses its weights from a given convex set. This is done by following each gradient-based
update by a projection onto the convex set, where the projection is based on the Bregman
divergence defined by the forecaster’s potential (Theorem 11.3 is a first example of this
technique). Using this simple trick, we are able to extend some of the results proven in the
previous sections.

In essence, projection is used to guarantee that the forecaster’s weights are kept in a
region where they enjoy certain useful properties. For example, in one of the applications
of projected forecasters shown later, confining the weights in a convex region S of small
diameter allows to effectively “track” the best linear forecaster as it moves around in the
same region S. This is reminiscent of the “weight sharing” technique of Section 5.2, where,
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in order to track the best expert, the forecaster’s weights were kept close to the uniform
distribution.

Let S ⊆ R
d be a convex and closed set and define the forecaster based on the update

wt = P�∗ (w′t , S) (projected gradient-based linear update),

where w′t = ∇�
(∇�∗(wt−1)− λ∇�t (wt−1)

)
is the standard dual gradient update, used here

as an intermediate step, andP�∗ (v, S) denotes the Bregman projection argminu∈S D�∗ (u, v)
of v onto S (if v ∈ S, then we set P�∗ (v, S) = v). We now show two interesting applications
of the projected forecaster.

Tracking Linear Experts
All results shown so far in this chapter have a common feature: even though the bounds
hold for wide classes of data sequences, the forecaster’s regret is always measured against
the best fixed linear expert. In this section we show that the projected gradient-based linear
forecaster has a good regret against any linear expert that is allowed to change its weight at
each time step in a controlled fashion. More precisely, the regret of the projected forecaster
is shown to scale with a measure of the overall amount of changes the expert undergoes.

Given a transfer function σ and an arbitrary sequence of experts 〈ut 〉 = u0, u1, . . . ∈ R
d ,

define the tracking regret by

Rσ
n (〈ut 〉) = L̂σ

n − Lσ
n (〈ut 〉) =

n∑
t=1

�σ
t (wt−1)−

n∑
t=1

�σ
t (ut−1).

Theorem 11.4. Fix any α-subquadratic nice pair (σ, �). Let 1/p + 1/q = 1, Uq > 0, and
ε ∈ (0, 1) be parameters. If the projected gradient-based forecaster based on the Legendre
polynomial potential �p is run with S = {w ∈ R

d : �q (w) ≤ Uq
}

and learning rate λ =
2ε/
(
(p − 1)α X2

p

)
on a sequence (x1, y1), (x2, y2) . . . in R

d × R, then for all sequences
〈ut 〉 = u0, u1 . . . ∈ S and for all n ≥ 1 such that maxt=1,...,n ‖xt‖p ≤ X p,

L̂σ
n ≤

Lσ
n (〈ut 〉)
1− ε

+ (p − 1)α X2
p

2ε(1− ε)

(√
2 Uq

n∑
t=1

‖ut−1 − ut‖q +
‖un‖2

q

2

)
.

Observe that the smaller the parameter Uq , the smaller the second term becomes in the
upper bound. On the other hand, with a small value of Uq , the set S shrinks and the loss of
the forecaster is compared to sequences 〈ut 〉 taking values in a reduced set.

Note that when u0 = u1 = · · · = un , the regret bound reduces to the bound proven in
Theorem 11.2 for the regret against a fixed linear expert. The term

n∑
t=1

‖ut−1 − ut‖q

can thus be viewed as a measure of “complexity” for the sequence 〈ut 〉.
Before proving Theorem 11.4 we need a technical lemma stating that the polynomial

potential of a vector is invariant with respect to the invertible mapping ∇�p.
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Lemma 11.6. Let �p be the Legendre polynomial potential. For all θ ∈ R
d , �p(θ ) =

�q
(∇�p(θ)

)
.

Proof. Let w = ∇�p(θ). By Lemma 11.4, �p(θ)+�q (w) = θ · w. By Hölder’s inequal-
ity, θ · w ≤ 2

√
�p(θ)�q (w). Hence,(√

�p(θ)−√�q (w)
)2
≤ 0,

which implies �p(θ) = �q (w).

We are now ready to prove the theorem bounding the tracking regret of the projected
gradient-based forecaster.

Proof of Theorem 11.4. From the proof of Theorem 11.1 we get

�σ
t (wt−1)− �σ

t (ut−1)

≤ 1

λ

(
D�q (ut−1, wt−1)− D�q

(
ut−1, w′t

)+ D�q

(
wt−1, w′t

))
≤ 1

λ

(
D�q (ut−1, wt−1)− D�q (ut−1, wt )+ D�q

(
wt−1, w′t

))
,

where in the second step we used the fact that, since ut−1 ∈ S, by the generalized
pythagorean inequality Lemma 11.3,

D�q

(
ut−1, w′t

) ≥ D�q (ut−1, wt )+ D�q

(
w′t , wt

)
≥ D�q (ut−1, wt ) .

With the purpose of obtaining a telescoping sum, we add and subtract D�q (ut−1, wt )−
D�q (ut , wt ) in the last formula, obtaining

�σ
t (wt−1)− �σ

t (ut−1)

≤ 1

λ

(
D�q (ut−1, wt−1)− D�q (ut , wt )

− D�q (ut−1, wt )+ D�q (ut , wt )+ D�q

(
wt−1, w′t

))
.

We analyze the five terms on the right-hand side as we sum for t = 1, . . . , n. The first two
terms telescope; hence – as in the proof of Theorem 11.2 – we get

n∑
t=1

(
D�q (ut−1, wt−1)− D�q (ut , wt )

) ≤ �q (u0).

Using the definition of Bregman divergence, the third and fourth terms can be rewritten as

−D�q (ut−1, wt )+ D�q (ut , wt )

= �q (ut )−�q (ut−1)+ (ut−1 − ut ) · ∇�q (wt ).
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Note that the sum of �q (ut )−�q (ut−1) telescopes. Moreover, letting θ t = ∇�q (wt ),

(ut−1 − ut ) · ∇�q (wt ) = (ut−1 − ut ) · θ t

≤ 2
√

�q (ut−1 − ut )�p(θ t ) (by Hölder’s inequality)

= 2
√

�q (ut−1 − ut )�q (wt ) (by Lemma 11.6)

≤ ‖ut−1 − ut‖q

√
2 Uq (since wt ∈ S).

Hence,

−
n∑

t=1

(
D�q (ut−1, wt )+ D�q (ut , wt )

)
≤ �q (un)−�q (u0)+√2 Uq

n∑
t=1

‖ut−1 − ut‖q .

Finally, we bound the fifth term using the techniques described in the proof of Theorem 11.2:

n∑
t=1

D�q

(
wt−1, w′t

) ≤ (p − 1)
α λ2

2
X2

p L̂σ
n .

Hence, piecing everything together,

n∑
t=1

(
�σ

t (wt−1)− �σ
t (ut−1)

)
≤ �q (u0)+�q (un)−�q (u0)

λ

+
√

2 Uq

λ

n∑
t=1

‖ut−1 − ut‖q + (p − 1)
α λ

2
X2

p L̂σ
n

= �q (un)

λ
+
√

2 Uq

λ

n∑
t=1

‖ut−1 − ut‖q + (p − 1)
α λ

2
X2

p L̂σ
n .

Rearranging, substituting our choice of λ, and using the equality �q (un) = 1
2 ‖un‖2

q yields
the desired result.

Self-Confident Linear Forecasters
The results of Section 11.4 leave open the problem of finding a forecaster with a regret
growing sublinearly in Lσ

n (u). If one limited the possible values of u to a bounded subset,
then by choosing the learning rate λ as a function of n (assuming that the total number of
rounds n is known in advance), one could optimize the bound for the maximal regret and
obtain a bound that grows at a rate of

√
n. However, ideally, the regret bound should scale

as
√

Lσ
n (u) for each u. Next, we show that, using a time-varying learning rate, the regret of

the projected forecaster is bounded by a quantity of the order of
√

Lσ
n (u) uniformly over

time and for all u in a region of bounded potential.
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SELF-CONFIDENT GRADIENT-BASED FORECASTER

Parameters: α-subquadratic nice pair (σ, �), reals p ≥ 2, Uq > 0, convex set
S = {u ∈ R

d : �q (u) ≤ Uq
}
, where 1/p + 1/q = 1.

Initialization: w0 = ∇�q (0).

For each round t = 1, 2, . . .

(1) observe xt and predict p̂t = σ (wt−1 · xt );
(2) get yt ∈ R and incur loss �σ

t (wt−1) = �( p̂t , yt );
(3) let w′t = ∇�p

(∇�q (wt−1)− λt∇�σ
t (wt−1)

)
, where

λt = βt

(p − 1)α X2
p,t

, X p,t = max
s=1,...,t

‖xs‖p , βt =
√

kt

kt + L̂σ
t

kt = (p − 1)αX2
p,tUq , L̂σ

t =
t∑

s=1

�σ
s (ws−1);

(4) let wt = P�q (w′t , S).

A similar result is achieved in Section 2.3 of Chapter 2 by tuning the exponentially weighted
average forecaster at time t with the loss of the best expert up to time t . Here, however,
there are infinitely many experts, and the problem of tracking the cumulative loss of the best
expert could easily become impractical. Hence, we use the trick of tuning the forecaster at
time t + 1 using his own loss L̂σ

t . Since replacing the best expert’s loss with the forecaster’s
loss is justified only if the forecaster is doing almost as well as the currently best expert
in predicting the sequence, we call this the “self-confident” gradient-based forecaster. The
next result shows that the forecaster’s self-confidence is indeed justified.

Theorem 11.5. Fix any α-subquadratic nice pair (σ, �). If the self-confident gradient-based
forecaster is run on a sequence (x1, y1), (x2, y2) . . . ∈ R

d × R, then for all u ∈ R
d such

that �q (u) ≤ Uq and for all n ≥ 1,

Rσ
n (u) ≤ 5

√
(p − 1)α X2

pUq Lσ
n (u)+ 30(p − 1)α X2

pUq ,

where X p = maxt=1,...,n ‖xt‖p.

Note that the self-confident forecaster assumes a bound 2Uq on the norm ‖u‖q of the
linear experts u against which the regret is measured. The gradient-based forecaster of Sec-
tion 11.4, instead, assumes a bound X p on the largest norm ‖xt‖p of the side-information
sequence x1, . . . , xn . Since u · xt ≤ ‖u‖q ‖xt‖p, the two assumptions impose similar con-
straints on the experts.

Before proceeding to the proof of Theorem 11.5, we give two lemmas. The first states that
the divergence of vectors with bounded polynomial potential is bounded. This simple fact is
crucial in the proof of the theorem. Note that the same lemma is not true for the exponential
potential, and this is the main reason why we analyze the self-confident predictor for the
polynomial potential only.



312 Linear Pattern Recognition

Lemma 11.7. For all u, v ∈ R
d such that �q (u) ≤ Uq and �q (v) ≤ Uq, D�q (u, v) ≤ 4 Uq.

Proof. First of all, note that the Bregman divergence based on the polynomial potential
can be rewritten as

D�q (u, v) = �q (u)+�q (v)− u · ∇�q (w).

This implies the following:

D�q (u, v)

≤ �q (u)+�q (v)+ |u · ∇�q (w)|
≤ �q (u)+�q (v)+ 2

√
�q (u)�p

(∇�q (w)
)

(by Hölder’s inequality)

= �q (u)+�q (v)+ 2
√

�q (u)�q (w) (by Lemma 11.6)

≤ 4 Uq

and the proof is concluded.

The proof of the next lemma is left as exercise.

Lemma 11.8. Let a, �1, . . . , �n be nonnegative real numbers. Then

n∑
t=1

�t√
a +∑t

s=1 �s

≤ 2

⎛⎝√√√√a +
n∑

t=1

�t −
√

a

⎞⎠ .

Proof of Theorem 11.5. Proceeding as in the proof of Theorem 11.4, we get

�σ
t (wt−1)− �σ

t (u)

≤ 1

λt

(
D�q (u, wt−1)− D�q (u, wt )+ D�q

(
wt−1, w′t

))
.

Now, by our choice of λt ,

1

λt

(
D�q (u, wt−1)− D�q (u, wt )+ D�q

(
wt−1, w′t

))
= (p − 1)α

(
X2

p,t

βt
D�q (u, wt−1)− X2

p,t

βt
D�q (u, wt )

)
+ 1

λt
D�q

(
wt−1, w′t

)
= (p − 1)α

(
X2

p,t

βt
D�q (u, wt−1)− X2

p,t+1

βt+1
D�q (u, wt )

+D�q (u, wt )

(
X2

t+1

βt+1
− X2

p,t

βt

))
+ 1

λt
D�q

(
wt−1, w′t

)
≤ (p − 1)α

(
X2

p,t

βt
D�q (u, wt−1)− X2

p,t+1

βt+1
D�q (u, wt )

+4 Uq

(
X2

p,t+1

βt+1
− X2

p,t

βt

))
+ 1

λt
D�q

(
wt , w′t

)
,
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where we used Lemma 11.7 in the last step. To bound the last term, we again apply
techniques from the proof of Theorem 11.2:

1

λt
D�q

(
wt−1, w′t

) ≤ (p − 1)
α λt

2
X2

p,t �σ
t (wt−1) ≤ βt

2
�σ

t (wt−1).

We now sum over t = 1, . . . , n. Note that the quantity X2
p,n+1/βn+1 is a free parameter

here, and we conveniently set βn+1 = βn and X p,n+1 = X p,n . This yields

n∑
t=1

(
�σ

t (wt−1)− �σ
t (u)

)
≤ (p − 1)α

(
X2

p,1

β1
D�q (u, w0)+ 4 Uq

(
X2

p,n+1

βn+1
− X2

p,1

β1

))
+ 1

2

n∑
t=1

βt�
σ
t (wt−1)

≤ 4(p − 1)α Uq

X2
p

βn
+ 1

2

n∑
t=1

βt�
σ
t (wt−1),

where we again applied Lemma 11.7 to the term D�q (u, w0). Recalling that kt = (p −
1)α X2

p,tUq , we can rewrite the above as

n∑
t=1

(
�σ

t (wt−1)− �σ
t (u)

) ≤ 4
√

kn(kn + L̂σ
n )+ 1

2

n∑
t=1

βt�
σ
t (wt−1)

≤ 4
√

kn(kn + L̂σ
n )+ 1

2

√
kn

n∑
t=1

�σ
t (wt−1)√
kn + L̂σ

t

,

where we used

βt =
√

kt

kt + L̂σ
t

≤
√

kn

kn + L̂σ
t

.

Applying Lemma 11.8, we then immediately get

L̂σ
n − Lσ

n (u) ≤ 4
√

kn(kn + L̂σ
n )+

√
kn(kn + L̂σ

n ) = 5
√

kn(kn + L̂σ
n ).

Solving for L̂σ
n and overapproximating gives the desired result.

Projected gradient-based forecasters can be used with the exponential potential. How-
ever, the convex setS onto which weights are projected should not be taken as the probability
simplex in R

d , which is the most natural choice for this potential (see, e.g., Theorem 11.3).
The region of the simplex where one or more of the weight components are close to 0 would
blow up either the dual of the exponential potential (preventing the tracking analysis of
Theorem 11.4) or the Bregman divergence (preventing the self-confident analysis of Theo-
rem 11.5). A simple trick to fix this problem is to intersect the simplex with the hypercube
[β/d, 1]d , where 0 < β < 1 is a free parameter. This amounts to imposing a lower bound
on each weight component (see Exercise 11.10).



314 Linear Pattern Recognition

11.6 Time-Varying Potentials

Consider again the gradient-based forecasters introduced in Section 11.3 (without the use
of any transfer function). To motivate such forecasters, we observed that the dual weight
wt is a solution to the convex minimization problem

min
u∈Rd

[
D�∗ (u, wt−1)+ λ

(
�t (wt−1)+ (u− wt−1)∇�t (wt−1)

)]
,

where the term �t (wt−1)+ (u− wt−1)∇�t (wt−1) is the first-order Taylor approximation
of �t (u) around wt−1. As mentioned in Exercise 11.3, an alternative (and more natural)
definition of wt would look like

wt = argmin
u∈Rd

[
D�∗(u, wt−1)+ λ �t (u)

]
.

An interesting closed-form solution for wt in this expression is obtained for a potential
that evolves with time, where the evolution depends on the loss. In particular, let � be an
arbitrary Legendre potential and �∗ its dual potential. Define the recurrence{

�∗
0 = �∗

�∗
t = �∗

t−1 + �t
(time-varying potential).

Here, as usual, �t (w) = �(w · xt , yt ) is the convex function induced by the loss at time t and,
conventionally, we let �0 be the zero function. If the potentials in the sequence �∗

0,�
∗
1, . . .

are all Legendre, then for all t ≥ 1, the associated forecaster is defined by

wt = argmin
u∈Rd

[
D�∗

t−1
(u, wt−1)+ �t (u)

]
, t = 1, 2, . . . ,

where w0 = 0. (Note that, for simplicity, here we take λ = 1 because the learning parameter
is not exploited below.) This can also be rewritten as

wt = argmin
u∈Rd

[
D�∗

t−1
(u, wt−1)+�∗

t (u)−�∗
t−1(u)

]
.

By setting to 0 the gradient of the expression in brackets, one finds that the solu-
tion wt is defined by ∇�∗

t (wt ) = ∇�∗
t−1(wt−1). Solving for wt one then gets wt =

∇�t
(∇�∗

t−1(wt−1)
)
. Note that, due to ∇�∗

t (wt ) = ∇�∗
t−1(wt−1), the above solution can

also be written as wt = ∇�t (θ0), where θ0 = ∇�∗(0) is a base primal weight. This shows
that, in contrast to the fixed potential case, no explicit update is carried out, and the poten-
tial evolution is entirely responsible for the weight dynamics. The following two diagrams
below illustrate the evolution of primal and dual weights in the case of fixed (left-hand side)
and time-varying (right-hand side) potential.

θ0
��

∇�

��

θ1
��

∇�

��

. . . ��

∇�

��

θ t

∇�

��
w0 �� w1 �� . . . �� wt

θ0

∇�0

��
∇�1

��
�

���
��

�����������������

∇�t
����������

������������

w0 w1 . . . wt
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Remark 11.1. If ∇�∗(0) = 0, then ∇�∗
t (wt ) = 0 for all t ≥ 0 and one can equivalently

define wt by

wt = argmin
u∈Rd

�∗
t (u),

where, we recall, �∗
t is convex for all t (see also Exercise 11.13 for additional remarks on

this alternative formulation).

Remark 11.2. Note that expanding the Bregman divergence term in the above definition of
gradient-based linear forecaster, and performing an obvious simplification, yields

wt = argmin
u∈Rd

[
�∗

t (u)−�∗
t−1(wt−1)+ (u− wt−1)∇�∗

t−1(wt−1)
]
.

The term in brackets is the difference between �∗
t (u) and the linear approximation of �∗

t−1
around wt−1, which again looks like a divergence.

The gradient-based forecaster using the time-varying potential defined above is sketched
in the following.

GRADIENT-BASED FORECASTER WITH TIME-VARYING POTENTIAL

Initialization: w0 = 0 and �∗
0 = �∗.

For each round t = 1, 2, . . .

(1) observe xt and predict p̂t = wt−1 · xt ;
(2) get yt ∈ R and incur loss �t (wt−1) = �( p̂t , yt );
(3) let wt = ∇�t

(∇�∗
t−1(wt−1)

)
.

Theorem 11.6. Fix a regular loss function �. If the gradient-based linear forecaster is run
with a time-varying Legendre potential � such that ∇�∗(0) = 0, then, for all u ∈ R

d ,

Rn(u) = D�∗
0
(u, w0)− D�∗

n
(u, wn)+

n∑
t=1

D�∗
t
(wt−1, wt ) .

Proof. Choose any u ∈ R
d . Using ∇�∗

t (wt ) = 0 for all t ≥ 0 (see Remark 11.1), one
immediately gets D�∗

t
(u, wt ) = �∗

t (u)−�∗
t (wt ) for all u ∈ R

d . Since �∗
t (u) = �∗

t−1(u)+
�t (u), we get �t (u) = D�∗

t
(u, wt )+�∗

t (wt )−�∗
t−1(u) and �t (wt−1) = D�∗

t
(wt−1, wt )+

�∗
t (wt )−�∗

t−1(wt−1). This yields

�t (wt−1)− �t−1(u)

= D�∗
t
(wt−1, wt )−�∗

t−1(wt−1)− D�∗
t
(u, wt )+�∗

t−1(u)

= D�∗
t
(wt−1, wt )− D�∗

t
(u, wt )+ D�∗

t−1
(u, wt−1) .

Summing over t gives the desired result.
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Note that Theorem 11.6 provides an exact characterization (there are no inequalities!) of
the regret in terms of Bregman divergences. In Section 11.7 we show the elliptic potential,
a concrete example of time-varying potential. Using Theorem 11.6 we derive a bound on
the cumulative regret of the gradient-based forecaster using the elliptic potential.

11.7 The Elliptic Potential

We now show an application of the time-varying potential based on the polynomial potential
(with p = 2) and the square loss. To this end, we introduce some additional notation.

A vector u is always understood as a column vector. Let (·)� be the transpose operator.
Then u� is a row vector, A� is the transpose of matrix A, and u�v is the inner product
between vectors u and v (which we also denote with u · v). Likewise, we define the outer
product u v� yielding the square matrix whose element in row i and column j is ui v j .

Let the d × d matrix M be symmetric, positive definite and of rank d. Let v ∈ R
d and

c ∈ R be arbitrary. The triple (M, v, c) defines the potential

�(u) = 1

2
u�M u+ u�v+ c (the elliptic potential).

Note that because M is positive definite, M1/2 exists, and therefore we can also write
�(u) = 1

2

∥∥M1/2u
∥∥2 + u�v+ c. The elliptic potential is easily seen to be Legendre with

∇�(u) = M u+ v. Since M is full rank, M−1 exists and ∇�∗(u) = M−1(u− v). Hence,

�∗(u) = 1

2

∥∥M−1/2(u− v)
∥∥2 = 1

2

∥∥M−1/2u
∥∥2 − u�M−1v+ 1

2

∥∥M−1/2v
∥∥2

,

which shows that the dual potential of an elliptic potential is also elliptic.
Elliptic potentials enjoy the following property.

Lemma 11.9. Let � be an elliptic potential defined by the triple (M, v, c). Then, for all
u, w ∈ R

d ,

D�(u, w) = 1

2

∥∥M1/2(u− w)
∥∥2

.

The proof is left as an exercise.
We now show that the time-varying potential obtained from the polynomial potential

�(u) = 1
2 ‖u‖2 and the square loss �( p̂, y) = 1

2 ( p̂ − y)2 is an elliptic potential. First note
that � = �∗, due to the self-duality of the 2-norm. Rewrite �∗(u) as 1

2 u� I u, where I is
the d × d identity matrix, and let �∗

0 = �∗. Then, following the definition of time-varying
potential,

�∗
1(u) = �∗

0(u)+ �1(u)

= 1

2
u� I u+ (u�x1 − y1

)2
= 1

2
u� I u+ 1

2
u�x1 x�1 u− y1u�x1 + y2

1

2

= 1

2
u�
(
I + x1 x�1

)
u− y1u�x1 + y2

1

2
.
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Iterating this argument, we obtain the time-varying elliptic potential

�∗
t (u) = 1

2
u�
(

I +
t∑

s=1

xs x�s

)
u− u�

t∑
s=1

ys xs + 1

2

t∑
s=1

y2
s .

We now take a look at the update rule wt = ∇�t
(∇�∗

t−1(wt−1)
)

when �t is the time-
varying elliptic potential. Introduce

At =
(

I +
t∑

s=1

xs x�s

)
for all t = 0, 1, 2, . . .

Using the definition of �∗
t , we can easily compute the gradient

∇�∗
t (u) = At u−

t∑
s=1

ys xs .

Before proceeding with the argument, we need to check that �∗
t is Legendre. Since �∗

t

is defined on R
d , and ∇�∗

t computed above is continuous, we only need to verify that �∗
t

is strictly convex. To see this, note that At is the Hessian matrix of �∗
t . Furthermore, At is

positive definite for all t = 0, 1, . . . because

v�At v = ‖v‖2 +
d∑

s=1

(
x�s v

)2 ≥ 0

for any v ∈ R
d , and v�At v = 0 if and only if v = 0. This implies that �∗

t is strictly convex.
Since �∗

t is Legendre, Lemma 11.5 applies, and we can invert ∇�∗
t to obtain

∇�t (u) = A−1
t

(
u+

t∑
s=1

ys xs

)
.

This last equation immediately yields a closed-form expression for wt :

wt = ∇�t (0) = A−1
t

t∑
s=1

ys xs .

In this form, wt can be recognized as the solution of

argmin
u∈Rd

[
1

2
‖u‖2 + 1

2

t∑
s=1

(u�xs − ys)2

]
= argmin

u∈Rd

�∗
t (u),

which defines the well-known ridge regression estimator of Hoerl and Kennard [162]. As
noted in Remark 11.1, of Section 11.6, this alternative nonrecursive definition of wt is
possible under any time-varying potential. However, notwithstanding this equivalence, it
is the recursive definition of wt that makes it easy to prove regret bounds as witnessed by
Theorem 11.6.

After this short digression, we now return to the analysis of the regret. Applying the
above formulas to wt = ∇�t

(∇�∗
t−1(wt−1)

)
, and using a little algebra, we obtain wt =

A−1
t (At−1 wt−1 + yt xt ). We now state (proof left as exercise) a more explicit form for

the update rule. In the rest of this chapter, we abbreviate the name of the gradient-based
forecaster using the time-varying elliptic potential with the more concise “ridge regression
forecaster.”
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The next lemma, used in the analysis of ridge regression, shows that the weight update
rule of this forecaster can be written as an instance of the Widrow-Hoff rule (mentioned in
Section 11.4) using a real matrix (instead of a scalar) as learning rate.

Lemma 11.10. The weights generated by the ridge regression forecaster satisfy, for each
t ≥ 1,

wt = wt−1 − A−1
t

(
w�t−1xt − yt

)
xt .

Before proving the main result of this section, we need a further technical lemma.

Lemma 11.11. Let B be an arbitrary n × n full-rank matrix, let x an arbitrary vector, and
let A = B + x x�. Then

x�A−1 x = 1− det(B)

det(A)
.

Proof. If x = (0, . . . , 0), then the theorem holds trivially. Otherwise, we write

B = A − x x� = A
(
I − A−1x x�

)
.

Hence, computing the determinant of the leftmost and rigthmost matrices,

det(B) = det(A) det
(
I − A−1x x�

)
.

The right-hand side of this equation can be transformed as follows:

det(A) det
(
I − A−1x x�

)
= det(A) det

(
A1/2

)
det
(
I − A−1x x�

)
det
(

A−1/2
)

= det(A) det
(
I − A−1/2x x�A−1/2

)
.

Hence, we are left to show that det
(
I − A−1/2x x�A−1/2

) = 1− x�A−1 x. Letting z =
A−1/2x, this can be rewritten as det(I − z z�) = 1− z�z. It is easy to see that z is an
eigenvector of I − z z� with eigenvalue λ1 = 1− z�z. Moreover, the remaining d − 1
eigenvectors u2, . . . , ud of I − z z� form an orthogonal basis of the subspace of R

d orthog-
onal to z, and the corresponding eigenvalues λ2 . . . , λd are all equal to 1. Hence,

det(I − z z�) =
d∏

i=1

λi = 1− z�z,

which concludes the proof.

We are now ready to prove a bound on the regret for the square loss of the ridge regression
forecaster.

Theorem 11.7. If the ridge regression forecaster is run on a sequence (x1, y1), (x2, y2) . . . ∈
R

d × R, then, for all u ∈ R
d and for all n ≥ 1, the regret Rn(u) defined in terms of the

square loss satisfies

Rn(u) ≤ 1

2
‖u‖2 +

(
d∑

i=1

ln (1+ λi )

)
max

t=1,...,n
�t (wt−1),

where λ1, . . . , λd are the eigenvalues of the matrix x1 x�1 + · · · + xn x�n .
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Proof. Note that ∇�∗
0(0) = ∇ 1

2 ‖0‖2 = 0. Hence, Theorem 11.6 can be applied. Using
the nonnegativity of Bregman divergences, we get

Rn(u) ≤ D�∗
0
(u, w0)+

n∑
t=1

D�∗
t
(wt−1, wt ) ,

where D�∗
0
(u, w0) = 1

2 ‖u‖2 because w0 = 0.
Using Lemmas 11.9 and 11.10, we can write

D�∗
t
(wt−1, wt ) = 1

2
(wt−1 − wt )

�At (wt−1 − wt )

= 1

2
(wt−1 − wt )

� (w�t−1xt − yt
)

xt

= 1

2

(
w�t−1xt − yt

)2
x�t A−1

t xt

= �t (wt−1) x�t A−1
t xt .

Applying Lemma 11.11, we get

n∑
t=1

x�t A−1
t xt =

n∑
t=1

(
1− det(At−1)

det(At )

)

≤
n∑

t=1

ln
det(At )

det(At−1)
(because 1− x ≤ − ln x for all x > 0)

= ln
det(An)

det(A0)

=
d∑

i=1

ln(1+ λi ),

where the last equality holds because det(A0) = det(I ) = 1 and because det(An) = (1+
λ1)× · · · × (1+ λd ), where λ1, . . . , λd are the eigenvalues of the d × d matrix An − I =
x1 x�1 + · · · + xn x�n . Hence,

n∑
t=1

�t (wt−1) x�t A−1
t xt ≤

(
d∑

i=1

ln(1+ λi )

)
max

t=1,...,n
�t (wt−1)

this concludes the proof.

Theorem 11.7 is somewhat disappointing because we do not know how to control the
term maxt �t (wt−1). If this term were bounded by a constant (which is certainly the case if the
pairs (xt , yt ) come from a bounded subset of R

d × R), then the regret would be bounded by
O(ln n), an exponential improvement over the forecasters using fixed potentials! To see this,
choose X such that ‖xt‖ ≤ X for all t = 1, . . . , n. A basic algebraic fact states that An − I
has thesame nonzero eigenvalues as the matrix G with entries Gi, j = x�i x j (G is called the
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Gram matrix of the points x1, . . . , xn). Therefore λ1 + · · · + λd = x�1 x1 + · · · + x�n xn ≤
n X2. The quantity (1+ λ1)× . . .× (1+ λd ), under the constraint λ1 + · · · + λd ≤ n X2,
is maximized when λi = n X2/d for each i . This gives

d∑
i=1

ln(1+ λi ) ≤ d ln

(
1+ n X2

d

)
.

11.8 A Nonlinear Forecaster

In this section we show a variant of the ridge regression forecaster achieving a logarithmic
regret bound with an improved leading constant. In Section 11.9 we show that this constant
is optimal.

We start from the nonrecursive definition, given in Section 11.7, of the gradient-based
forecaster using the time-varying elliptic potential (i.e., the ridge regression forecaster)

wt−1 = argmin
u∈Rd

[
1

2
‖u‖2 + 1

2

t−1∑
s=1

(u�xs − ys)2

]
= argmin

u∈Rd

�∗
t−1(u).

We now introduce the Vovk–Azoury–Warmuth forecaster, introduced by Vovk [300], as an
extension to linear experts of his aggregating forecaster (see Sections 3.5 and 11.10), and
also studied by Azoury and Warmuth [20] as a special case of a different algorithm. The
Vovk–Azoury–Warmuth forecaster predicts at time t with ŵ�t xt , where

ŵt = argmin
u∈Rd

[
1

2
‖u‖2 + 1

2

t−1∑
s=1

(u�xs − ys)2 + 1

2
(u�xt )

2

]
.

Note that now the weight ŵt used to predict xt has index t rather than t − 1. We use this,
along with the “hat” notation, to stress the fact that now ŵt does depend on xt . Note that
this makes the Vovk–Azoury–Warmuth forecaster nonlinear.

Comparing this choice of ŵt with the corresponding choice of wt−1 for the gradient-
based forecaster, one can note that we simply added the term 1

2 (u�xt )2. This additional
term can be viewed as the loss 1

2 (u�xt − yt )2, where the outcome yt , unavailable when ŵt

is computed, has been “estimated” by 0.
As we did in Section 11.7, it is easy to derive an explicit form for this new ŵt also:

ŵt = A−1
t

t−1∑
s=1

ysxs .

We now prove a logarithmic bound on the regret for the square loss of the Vovk–Azoury–
Warmuth forecaster. Though its proof heavily relies on the techniques developed for proving
Theorems 11.6 and 11.7, it is not clear how to derive the bound directly as a corollary of
those results. On the other hand, the same regret bound can be obtained (see the proof
in Azoury and Warmuth [20]) using the gradient-based linear forecaster with a modified
time-varying potential, and then adapting the proof of Theorem 11.6 in Section 11.6. We
do not follow that route in order to keep the proof as simple as possible.
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Theorem 11.8. If the Vovk–Azoury–Warmuth forecaster is run on a sequence
(x1, y1), (x2, y2), . . . ∈ R

d × R, then, for all u ∈ R
d and for all n ≥ 1,

Rn(u) ≤ 1

2
‖u‖2 + Y 2

2

(
d∑

i=1

ln(1+ λi )

)

≤ 1

2
‖u‖2 + dY 2

2
ln

(
1+ n X2

d

)
,

where X = maxt=1,...,n ‖xt‖, Y = maxt=1,...,n |yt |, and λ1, . . . , λd are the eigenvalues of the
matrix x1 x�1 + · · · + xn x�n .

Proof. For convenience, we introduce the shorthand

at =
t∑

s=1

yt xt .

In what follows, we use ŵt = A−1
t at−1 to denote the weight, at time t , of the Vovk–

Azoury–Warmuth forecaster, and wt−1 = A−1
t−1at−1 to denote the weight, at time t , of the

ridge regression forecaster. A key step in the proof is the observation that, for all u ∈ R
d ,

Ln(u) ≥ inf
v∈Rd

�∗
n(v)− 1

2
‖u‖2 = �∗

n(wn)− 1

2
‖u‖2 ,

where we recall that Ln(u) = �1(u)+ · · · + �n(u). Hence, the loss of an arbitrary linear
expert is simply bounded by the potential of the weight of the ridge regression forecaster.
This can be exploited as follows:

Rn(u) = L̂n − Ln(u)

≤ L̂n + 1

2
‖u‖2 −�∗

n(wn)

=
n∑

t=1

(
�t (ŵt )+�∗

t−1(wt−1)−�∗
t (wt )

)
=

n∑
t=1

(
�t (ŵt )− �t (wt−1)

)+ n∑
t=1

D�∗
t
(wt−1, wt ) ,

where in the last step we used the equality

�t (wt−1) = D�∗
t
(wt−1, wt )+�∗

t (wt )−�∗
t−1(wt−1)

established at the beginning of the proof of Theorem 11.6. Note that we upper bounded the
regret Rn(u) with the difference

n∑
t=1

(
�t (ŵt )− �t (wt−1)

)
between the Vovk–Azoury–Warmuth forecaster and the ridge regression forecaster plus a
sum of divergence terms.
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Now, the identities At − At−1 = xt x�t , A−1
t−1 − A−1

t = A−1
t−1xt x�t A−1

t and A−1
t−1 −

A−1
t = A−1

t xt x�t A−1
t−1 together imply that

A−1
t−1 − A−1

t − A−1
t xt x�t A−1

t = (x�t A�t−1xt
)

A−1
t xt x�t A−1

t .

Using this and the definition of the time-varying elliptic potential (see Section 11.7),

�∗
t (wt ) = 1

2
w�t At wt − w�t at + 1

2

t∑
s=1

y2
s ,

we prove that

�t (ŵt )− �t (wt−1)+ D�∗
t
(wt−1, wt )

= y2
t

2
x�t A−1

t xt − 1

2

(
x�t A−1

t−1xt
)

(w�t−1xt )
2 ≤ y2

t

2
x�t A−1

t xt ,

where the term dropped in the last step is negative (recall that At is positive definite implying
that A−1

t also is positive definite). Using Lemma 11.11 then gives the desired result.

As a final remark, note that, using the Sherman–Morrison formula,

A−1
t = A−1

t−1 −
(

A−1
t−1xt

) (
A−1

t−1xt
)�

1+ x�t A−1
t−1xt

The d × d matrix A−1
t , where At = At−1 + xt x�t , can be computed from A−1

t−1 in time
�(d2). This is much better than �(d3) required by a direct inversion of At . Hence, both the
ridge regression update and the Vovk–Azoury–Warmuth update can be computed in time
�(d2). In contrast, the time needed to compute the forecasters based on fixed potentials is
only �(d).

11.9 Lower Bounds

We now prove that the Vovk–Azoury–Warmuth forecaster is optimal in the sense that its
leading constant cannot be decreased.

Theorem 11.9. Let � be the square loss �(p, y) = 1
2 (p − y)2. For all d ≥ 1, for all Y > 0,

for all ε > 0, and for any forecaster, there exists a sequence (x1, y1), (x2, y2), . . . ∈ R
d ×

[−Y, Y ], with ‖xt‖ = 1 for t = 1, 2, . . . , such that

lim inf
n→∞

L̂n − infu∈Rd

(
Ln(u)+ ‖u‖2

)
ln n

≥ (d − ε)
Y 2

2
.

Proof. We only prove the theorem in the case d = 1; the easy generalization to an arbitrary
d ≥ 1 is left as exercise. Without loss of generality, set Y = 1/2 (the bound can be rescaled
to any range). Let xt = 1 for t = 1, 2, . . . , so that all losses are of the form 1

2 (w − y)2.
Since this value does not change if the same constant is added to w and y, without loss
of generality we may assume that yt ∈ {0, 1} for all t (instead of yt ∈ {−1/2, 1/2}, as
suggested by the assumption Y = 1/2).
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Let L(F, yn) be the cumulative square loss of forecaster F on the sequence
(1, y1), . . . , (1, yn) and let L(u, yn) be the cumulative square loss of expert u on the same
sequence. Then

inf
F

max
yn

(
L(F, yn)− inf

u

(
L(u, yn)+ u2

))
≥ inf

F
E

[
L(F, Y1, . . . , Yn)− inf

u

(
L(u, Y1, . . . , Yn)+ u2

)]
,

where the expectation is taken with respect to a probability distribution on {0, 1}n defined
as follows: first, Z ∈ [0, 1] is drawn from the Beta distribution with parameters (a, a),
where a > 1 is specified later. Then each Yt is drawn independently from a Bernoulli
distribution of parameter Z . It is easy to show that the forecaster F achieving the infimum
of E L(F, Y1, . . . , Yn) predicts at time t + 1 by minimizing the expected loss on the next
outcome Yt+1 conditioned on the realizations of the previous outcomes Y1, . . . , Yt . The
prediction p̂t+1 minimizing the expected square loss on Yt+1 is simply the expected value
of Yt+1 conditioned on the number of times St = Y1 + · · · + Yt the outcome 1 showed up
in the past. Using simple properties of the Beta distribution (see Section A.1.9), we find
that the conditional density fZ (p | St = k) of Z , given the event St = k, equals

fZ (p | St = k) = pa+k−1(1− p)a+t−k−1

B(a + k, a + t − k)
,

where B(x, y) = �(x)�(y)/�(x + y) is the Beta function. Therefore,

p̂t+1 = E [Yt+1 | St = k] =
∫ 1

0
E [Yt+1 | Z = p] fZ (p | St = k) dp

=
∫ 1

0
p

pa+k−1(1− p)a+t−k−1

B(a + k, a + t − k)
dp

= k + a

t + 2a
.

Let Ep be the conditional expectation E [· | Z = p]. Then,

Ep
[
( p̂t+1 − Yt+1)2

] = Ep
[
( p̂t+1 − p)2

]+ Ep
[
(Yt+1 − p)2

]
= Ep

[(
St + a

t + 2a
− p

)2
]
+ p(1− p)

= Ep

[(
St + a

t + 2a
− pt + a

t + 2a

)2
]
+
(

p − pt + a

t + 2a

)2

+ p(1− p)

(since Ep St = pt)

= Ep
St − pt

t + 2a
+
(

2ap − a

t + 2a

)2

+ p(1− p)

= tp(1− p)

(t + 2a)2
+
(

2ap − a

t + 2a

)2

+ p(1− p).
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Hence, recalling that a > 1, the expected cumulative loss of the optimal forecaster F is
computed as

E L(F, Y1, . . . , Yn) = 1

2
E [Z (1− Z )]

n−1∑
t=0

t

(t + 2a)2

+ 1

2
E
[
(2aZ − a)2

] n−1∑
t=0

1

(t + 2a)2

+ 1

2

n−1∑
t=0

E [Z (1− Z )]

≥ 1

2
E [Z (1− Z )]

∫ n−1

1

t

(t + 2a)2
dt

+ a2

2

(
1

4a2
+
∫ n−1

0

dt

(t + 2a)2

)
+ 1

2

n−1∑
t=0

E [Z (1− Z )] .

We now lower bound the three terms on the right-hand side. The integral in the first term
equals

ln
n − 1+ 2a

1+ 2a
− 2a(n − 2)

(1+ 2a)(n − 1+ 2a)
= ln

n − 1+ 2a

1+ 2a
+�(1),

where, here and in what follows, �(1) is understood for a constant and n →∞. As the
entire second term is �(1), using E[Z (1− Z )] = a/(4a + 2), we get

E L(F, Y1, . . . , Yn) ≥ a

4(2a + 1)
ln

n − 1+ 2a

1+ 2a
+ an

4(2a + 1)
+�(1).

Now we compute the cumulative loss of the best expert. Recalling that Sn = Y1 + · · · + Yn ,
we have

Ep

[
inf

u

n∑
t=1

(u − Yt )
2

]
= Ep

[
n∑

t=1

(Sn/n − Yt )
2

]

=
n∑

t=1

Ep Y 2
t −

2

n
Ep

[
n∑

t=1

Yt Sn

]
+ n Ep

[(
Sn

n

)2
]

=
n∑

t=1

Ep Y 2
t −

2

n
Ep

⎡⎣( n∑
t=1

Yt

)2
⎤⎦+ 1

n
Ep S2

n .

Hence, recalling that the variance of any random variable X is E X2 − (E X )2, and that the
variance of the Binomial random variable Sn is np(1− p), we get

Ep

[
inf

u

n∑
t=1

(u − Yt )
2

]

= np − 2

n

(
np(1− p)+ (np)2

)+ 1

n

(
np(1− p)+ (np)2

)
= np(1− p)− p(1− p).
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Integrating over p yields

E

[
inf

u

n∑
t=1

(u − Yt )
2

]
= an

2(2a + 1)
− p(1− p).

Therefore, as 0 ≤ u ≤ 1,

E

[
L(F, Y1, . . . , Yn)− inf

u

(
L(u, Y1, . . . , Yn)+ u2

)]
= a

4(2a + 1)
ln

n − 1+ 2a

1+ 2a
+ an

4(2a + 1)
− an

4(2a + 1)
+�(1)

=
(

1− 1

2a + 1

)
1

8
ln

n − 1+ 2a

1+ 2a
+�(1).

We conclude the proof by observing that the factor multiplying ln n can be made arbitrarily
close to 1 by choosing a large enough.

11.10 Mixture Forecasters

We have seen that in the case of linear experts, regret bounds growing logarithmically with
time are obtainable for the squared loss function. The purpose of this section is to show that
by a natural extension of the mixture forecasters introduced in Chapter 9, one may obtain a
class of algorithms that achieve logarithmic regret bounds under general conditions for the
logarithmic loss function.

We start by describing a general framework for linear prediction under the logarithmic
loss function. The basic setup is reminiscent of sequential probability assignment intro-
duced in Chapter 9. The model is extended to allow side information and experts that
depend on “squashed” linear functions of the side-information vector. To harmonize nota-
tion with Chapter 9, consider the following model. At each time instance t , before making
a prediction, the forecaster observes the side-information vector xt such that ‖xt‖ ≤ 1. The
forecaster, based on the side-information vector and the past, assigns a nonnegative number
p̂t (y, xt ) to each element y of the outcome space Y . Note that, as opposed to the rest of the
section, we do not require that Y be a subset of the real line. The function p̂t (·, xt ) is some-
times interpreted as a “density” over Y , though Y does not even need to be a measurable
space. The loss at time t of the forecaster is defined by the logarithmic loss − ln p̂t (yt , xt ),
and the corresponding cumulative loss is

L̂n = − ln
n∏

t=1

p̂t (yt , xt ).

Just as in earlier sections in this chapter, each expert is indexed by a vector u ∈ R
d , and

its prediction depends on the inner product of u and the side-information vector through
a transfer function. Here the transfer function σ : Y × R → R is nonnegative, and the
prediction of expert u, on observing the side information xt , is the “density” σ (·, u · xt ).
The cumulative loss of expert u is thus

Ln(u) = − ln
n∏

t=1

σ (yt , u · xt ).
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In this section we consider mixture forecasters of the form

p̂t (y, xt ) =
∫

σ (y, u · xt )qt (u) du,

where qt is a density function (i.e., a nonnegative function with integral 1) over R
d defined,

for t = 1, 2, . . ., by

qt (u) = q0(u)e−Lt−1(u)∫
q0(v)e−Lt−1(v) dv

= q0(u)
∏t−1

s=1 σ (ys, u · xs)∫
q0(v)

∏t−1
s=1 σ (ys, v · xs) dv

,

where q0 denotes a fixed initial density. Thus, p̂t is the prediction of the exponentially
weighted average forecaster run with initial weights given by the “prior” density q0.

Example 11.8 (Square loss). Assume now thatY is a subset of the real line. By considering
the “gaussian” transfer function

σ (y, u · x) = 1√
2π

e−(u·x−y)2/2

the logarithmic loss of expert u becomes ln
√

2π + 1
2 (u · xt − yt )2, which is basically

the square loss studied in earlier sections. However, the logarithmic loss of the mixture
forecaster p̂t (yt , xt ) does not always correspond to the squared loss of any vector-valued
forecaster wt . If the initial density q0 is the multivariate gaussian density with identity
covariance matrix, then it is possible to modify the mixture predictor such that it becomes
equivalent to the Vovk–Azoury–Warmuth forecaster (see Exercise 11.18). �

The main result of this section is the following general performance bound.

Theorem 11.10. Assume that the transfer function σ is such that, for each fixed y ∈ Y , the
function Fy(z) = − ln σ (y, z), defined for z ∈ R, is twice continuously differentiable, and
there exists a constant c such that |F ′′y (z)| ≤ c for all z ∈ R. Let u ∈ R

d , ε > 0, and let qε
u

be any density over R
d with mean

∫
vqε

u(v) dv = u and covariance matrix ε2 I . Then the
regret of the mixture forecaster defined above, with respect to expert u, is bounded as

L̂n − Ln(u) ≤ ncε2

2
+ D(qε

u‖q0),

where

D(qε
u‖q0) =

∫
qε

u(v) ln
qε

u(v)

q0(v)
dv

is the Kullback–Leibler divergence between qε
u and the initial density q0.

Proof. Fix u ∈ R
d , and let qε

u be any density with mean u and covariance matrix ε2 I . In
the first step of the proof we relate the cumulative loss L̂n to the averaged cumulative loss

Ln(qε
u)

def=
∫

Ln(v)qε
u(v) dv.
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First observe that by Taylor’s theorem and the condition on the transfer function, for any
y ∈ Y and z, z0 ∈ R,

Fy(z) ≤ Fy(z0)+ F ′y(z0)(z − z0)+ c

2
(z − z0)2.

Next we apply this inequality for z = V · xt and z0 = E[V] · xt , where V is a random
variable distributed according to the density qε

u. Noting that z0 = u · xt , and taking expected
values on both sides, we have

E Fy(V · xt ) ≤ Fy(u · xt )+ c

2
ε2,

where we used the fact that var(x · V) =∑d
i=1 var(Vi )x2

i = ε2∑d
i=1 x2

i ≤ ε2. Observing
that

n∑
t=1

Fyt (u · xt ) = Ln(u) and
n∑

t=1

E Fyt (V · xt ) = Ln(qε
u)

we obtain

Ln(qε
u) ≤ Ln(u)+ ncε2

2
.

To finish the proof, it remains to compare L̂n with Ln(qε
u). By definition of the mixture

forecaster,

L̂n − Ln(qε
u) = − ln

n∏
t=1

p̂t (yt , xt )+
∫

qε
u(v) ln

n∏
t=1

σ (yt , v · xt ) dv

=
∫

qε
u(v) ln

∏n
t=1 σ (yt , v · xt )∏n

t=1 p̂t (yt , xt )
dv

=
∫

qε
u(v) ln

∏n
t=1 σ (yt , v · xt )∫

q0(w)
∏n

t=1 σ (yt , w · xt )dw
dv

=
∫

qε
u(v) ln

qn(v)

q0(v)
dv (by definition of qn)

=
∫

qε
u(v) ln

qε
u(v)

q0(v)
dv−

∫
qε

u(v) ln
qε

u(v)

qn(v)
dv

= D(qε
u‖q0)− D(qε

u‖qn)

≤ D(qε
u‖q0),

where at the last step we used the nonnegativity of the Kullback–Leibler divergence (see
Section A.2). This concludes the proof of the theorem.

Remark 11.3. The boundedness condition of the second derivative of the logarithm of
the transfer function is satisfied in several natural applications. For example, for the gaus-
sian transfer function σ (y, z) = (1/

√
2π
)
e−(z−y)2/2, we have F ′′y (z) = 1 for all y, z ∈ R.

Another popular transfer function is the one used in logistic regression. In this case
Y = {−1, 1}, and σ is defined by σ (y, u · x) = 1/

(
1+ e−y u·x). It is easy to see that

|F ′′y (z)| ≤ 1 for both y = −1, 1.
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Note that the definition of the mixture forecaster does not depend on the choice of qε
u, so

that we are free to choose this density to minimize the obtained upper bound. Minimization
the Kullback–Leibler divergence given the variance constraint is a complex variational
problem, in general. However, useful upper bounds can easily be derived in various special
cases. Next we work out a specific example in which the variational problem can be solved
easily and qε

u can be chosen optimally. See the exercises for other examples.

Corollary 11.1. Assume that the mixture forecaster is used with the gaussian initial density
q0(u) = (2π )−d/2e−‖u‖

2/2. If the transfer function satisfies the conditions of Theorem 11.10,
then for any u ∈ R

d ,

L̂n − Ln(u) ≤ ‖u‖
2

2
+ d

2
ln
(

1+ nc

d

)
.

Proof. The Kullback–Leibler divergence between q0 and any density qε
u with mean u and

covariance matrix ε2 I equals

D(qε
u‖q0) =

∫
qε

u(v) ln qε
u(v) dv−

∫
qε

u(v) ln q0(v) dv

=
∫

qε
u(v) ln qε

u(v) dv−
∫

qε
u(v) ln

1

(2π )d/2
dv+

∫
qε

u(v)
‖v‖2

2
dv

=
∫

qε
u(v) ln qε

u(v) dv+ d

2
ln(2π )+ ‖u‖

2

2
+ dε2

2
.

The first term on the right-hand side is just the negative of the differential entropy of
the density qε

u(v). It is easy to see (Exercise 11.19) that among all densities with a given
covariance matrix, the differential entropy is maximized for the gaussian density. Therefore,
the best choice for qε

u(v) is the multivariate normal density with mean u and covariance
matrix ε2 I . With this choice,∫

qε
u(v) ln qε

u(v) dv = −d

2
ln(2πeε2)

and the statement follows by choosing ε to minimize the obtained bound.

11.11 Bibliographic Remarks

Sequential gradient descent can be viewed as an application of the well-known stochastic
gradient descent procedure of Tsypkin [291] (see Bottou and Murata [39] for a survey)
to a deterministic (rather than stochastic) data sequence. The gradient-based linear fore-
caster was introduced with the name general additive regression algorithm by Warmuth
and Jagota [305] (see also Kivinen and Warmuth [183]) for regression problems, and
independently with the name quasi-additive classification algorithm by Grove, Littlestone,
and Schuurmans [133] for classification problems. Potentials in pattern recognition have
been introduced to describe, in a single unified framework, seemingly different algorithms
such as the Widrow–Hoff rule [310] (weights updated additively) and the exponentiated
gradient (eg) of Kivinen and Warmuth [181] (weights updated multiplicatively). The frame-
work of potential functions enables one to view both algorithms as instances of a single
algorithm, the gradient-based linear forecaster, whose weights are updated as in the dual
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gradient update. In particular, the Widrow–Hoff rule corresponds to the gradient-based
linear forecaster applied to square loss and using the quadratic potential (Legendre poly-
nomial potential with p = 2), while the eg algorithm corresponds to the forecaster of
Theorem 11.3. As it has been observed by Grove, Littlestone, and Schuurmans [133], the
polynomial potential provides a parameterized interpolation between genuinely additive
algorithms and multiplicative algorithms. Earlier individual sequence analyses of additive
and multiplicative algorithms for linear experts appear in Foster [103], Littlestone, Long,
and Warmuth [202], Cesa–Bianchi, Long, and Warmuth [50], and Bylander [43]. For an
extensive discussion on the advantages of using polynomial vs. exponential potentials in
regression problems, see Kivinen and Warmuth [181].

Gordon [131] develops an analysis of regret for more general problems than regression
based on a generalized notion of Bregman divergence.

The interpretation of the gradient-based update in terms of iterated minimization of
a convex functional was suggested by Helmbold, Schapire, Singer, and Warmuth [157].
However, the connection with convex optimization is far from being accidental. An analog
of the dual gradient update rule was introduced by Nemirovski and Yudin [223] under
the name of mirror descent algorithm for the iterative solution of nonsmooth convex
optimization problems. The description of this algorithm in the framework of Bregman
divergences is due to Beck and Teboulle [24], who also propose a version of the algorithm
based on the exponential potential. In the context of convex optimization, the iterated
minimization of the functional

min
u∈Rd

[
D�∗ (u, wt−1)+ λ�t (u)

]
(which we used to motivate the dual gradient update) corresponds to the well-known
proximal point algorithm (see, e.g., Martinet [210] and Rockafellar [248]). A version of the
proximal point algorithm based on the exponential potential was proposed by Tseng and
Bertsekas [290].

Theorem 11.1 is due to Warmuth and Jagota [305]. The use of transfer functions in this
context was pioneered by Helmbold, Kivinen, and Warmuth [153]. The good properties of
subquadratic pairs of transfer and loss functions were observed by Cesa-Bianchi [46]. A dif-
ferent approach, based on the notion “matching loss functions,” uses Bregman divergences
to build nice pairs of transfer and loss functions and was investigated in Haussler, Kivinen,
and Warmuth [153]. In spite of its elegance, the matching-loss approach is not discussed
here because it does not fit very well with the proof techniques used in this chapter.

The projected gradient-based forecaster of Section 11.5 has been introduced by Herbster
and Warmuth [160]. They prove Theorem 11.4 about tracking linear experts. The self-
confident forecaster has been introduced by Auer, Cesa-Bianchi, and Gentile [13], who
also prove Theorem 11.5.

The time varying potential for gradient-based forecasters of Section 11.6 was introduced
and studied by Azoury and Warmuth [20], who also proved Theorem 11.6. The forecaster
based on the elliptic potential, also analyzed in [20], corresponds to the well-known ridge
regression algorithm (see Hoerl and Kennard [162]). An early analysis of the least-squares
forecaster in the case where yt = u�xt + εt , where u ∈ R

d is an unknown target vector and
εt are i.i.d. random variables with finite variance, is due to Lai, Robbins, and Wei [190].
Lemma 11.11 is due to Lai and Wei [191]. Theorem 11.7 is proven by Vovk in [300]. A
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different proof of the same result is shown by Azoury and Warmuth in [20]. The proof
presented here uses ideas from Forster [102] and [20].

The derivation and analysis of the nonlinear forecaster in Section 11.8 is taken from
Azoury and Warmuth [20], who introduced it as the “forward algorithm.” In [300], Vovk
derives exactly the same forecaster generalizing to continuously many experts the aggre-
gating forecaster described in Section 3.5, where the initial weights assigned to the linear
experts are gaussian. Using different (and somewhat more complex techniques) Vovk also
proves the same bound as the one proven in Theorem 11.8. The first logarithmic regret
bound for the square loss with linear experts is due to Foster [103], who analyzes a variant
of the ridge regression forecaster in the more specific setup where outcomes are binary, the
side-information elements xt belong to [0, 1]d , and the linear experts u belong to the prob-
ability simplex in R

d . The lower bound in Section 11.9 on prediction with linear experts
and square loss is due to Vovk [300] (see also Singer, Kozat, and Feder [268] for a stronger
result).

Mixture forecasters in the spirit of Section 11.10 were considered by Vovk [299, 300].
Vovk’s aggregating forecaster is, in fact, a mixture forecaster and the Vovk–Azoury–
Warmuth forecaster is obtained via a generalization of the aggregating forecaster. Theo-
rem 11.10 was proved by Kakade and Ng [173]. A logarithmic regret bound may also be
derived by a variation on a result of Yamanishi [314], who proved a general logarithmic
bound for all mixable losses and for general parametric classes of experts using the aggre-
gating forecaster. However, the resulting forecaster is not computationally efficient. It is
worth pointing out that the mixture forecasters in Section 11.10 are formally equivalent
to predictive bayesian mixtures. In fact, if q0 is the prior density, the mixture predictors
are obtained by bayesian updating. Such predictors have been thoroughly studied in the
bayesian literature under the assumption that the sequence of outcomes is generated by one
of the models (see, e.g., Clarke and Barron [62, 63]). The choice of prior has been studied
in the individual sequence framework by Clarke and Dawid [64].

11.12 Exercises

11.1 Prove Lemma 11.1.

11.2 Prove that Lemma 11.3 holds with equality whenever S is a hyperplane.

11.3 Consider the modified gradient-based linear forecaster whose weight wt at time t is the solution
of the equation

wt = argmin
u∈Rd

[
D�∗ (u, wt−1)+ λ �t (u)

]
.

Note that this amounts to not taking the linear approximation of �t (u) around wt−1, as done in
the original characterization of the gradient-based linear forecaster expressed as solution of a
convex optimization problem.

Prove that a solution to this equation always exists and then adapt the proof of Theorem 11.1
to prove a bound on the regret of the modified forecaster.

11.4 Prove that the weight update rule

wi,t = wi,t−1e−λ∇�t (wt−1)i∑d
j=1 w j,t−1e−λ∇�t (wt−1) j
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corresponds to a Bregman projection of wi,t = wi,t−1 e−λ∇�t (wt−1)i , i = 1, . . . , d, onto the prob-
ability simplex in R

d , where the projection is taken according to the Legendre dual

�∗(u) =
d∑

i=1

ui (ln ui − 1)

of the potential �(u) = eu1 + · · · + eud .

11.5 Consider the Legendre polynomial potential �p . Show that if the loss function is the square
loss �(p, y) = 1

2 (p − y)2, then for all w, u ∈ Rd , for all y ∈ R, and for all c > 0,

1

1+ c
�(w · x, y)− �(u · x) ≤ (p − 1) ‖x‖2

p

c

(
D�q (u, w)− D�q

(
u, w′)) ,

where w′ = �p

(
�q (w)− λ∇�(w)

)
is the dual gradient update, and η = c/

(
(1+ c)(p −

1) ‖x‖2
p

)
(Kivinen and Warmuth [181], Gentile [124].) Warning: This exercise is difficult.

11.6 (Continued) Use the inequality stated in Exercise 11.5 to derive a bound on the square loss
regret Rn(u) for the gradient-based linear forecaster using the identity function as transfer
function. Find a value of c that yields a regret bound for the square loss slightly better than
that of Theorem 11.2.

11.7 Derive a regret bound for the gradient-based forecaster using the absolute loss �( p̂, y) =
|̂p − y|. Note that this loss is not regular as it is not differentiable at p̂ = y (Cesa-Bianchi [46],
Long [205].)

11.8 Prove a regret bound for the projected gradient-based linear forecaster using the hyperbolic
cosine potential.

11.9 Prove Lemma 11.8. Hint: Set �0 = a and prove, for each t = 1, . . . , n, the inequality

�t

2
∑t

s=0 �s

≤
√√√√ t∑

s=0

�s −
√√√√ t−1∑

s=0

�s .

11.10 Prove an analogue of Theorem 11.4 using the Legendre exponential potential and projecting
the weights to the convex set obtained by intersecting the probability simplex in R

d with the
hypercube [β/d, 1]d , where β is a free parameter (Herbster and Warmuth [160]).

11.11 Prove Lemma 11.9.

11.12 Show that

1. the nice pair of Example 11.6 is 2-subquadratic,
2. the nice pair of Example 11.7 is 1/4-subquadratic.

11.13 Consider the alternative definition of gradient-based forecaster using the time-varying potential

wt = argmin
u∈Rd

�∗
t (u),

where

�∗
t (u) = D�∗ (u, w0)+

t∑
s=1

�s(u)

for some initial weight w0 and Legendre potential � = �0. Using this forecaster, show a
more general version of Theorem 11.6 proving the same bound without the requirement
∇�∗

t (wt ) = 0 for all t ≥ 0 (Azoury and Warmuth [20]).

11.14 Prove Lemma 11.10.

11.15 (Follow the best expert) Consider the online linear prediction problem with the square loss
�(wt · xt , y) = (wt · xt − y)2. Consider the follow-the-best-expert (or least-squares) forecaster
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with weights

wt = argmin
u∈Rd

t∑
s=1

(u · xs − ys)2.

Show that

wt =
(

t∑
s=1

xsx�s

)−1 t∑
s=1

ysxs

whenever x1x�1 + · · · + xt x�t is invertible. Use the analysis in Section 3.2 to derive logarithmic
regret bounds for this forecaster when yt ∈ [−1, 1]. What conditions do you need for the xt ?

11.16 Provide a proof of Theorem 11.9 in the general case d ≥ 1.

11.17 By adapting the proof of Theorem 11.9, show a lower bound for the relative entropy loss in
the univariate case d = 1. (Yamanishi [314].)

11.18 Consider the mixture forecaster p̂t (·, xt ) of Section 11.10 with the gaussian transfer function.
Assume that the gaussian initial density q0(u) = (2π )−d/2e−‖u‖

2/2 is used. Assume that Y =
[−1, 1]. Show that the forecaster wt defined by

wt = p̂t (−1, xt )− p̂t (1, xt )

4

is just the Vovk–Azoury–Warmuth forecaster (Vovk [300]).

11.19 Show that for any multivariate density q on R
d with zero mean

∫
uq(u) du = 0 and covariance

matrix K , the differential entropy h(q) = − ∫ q(u) ln q(u) du satisfies

h(q) ≤ d

2
ln(2πe)+ 1

2
ln det(K )

and equality is achieved by the multivariate normal density with covariance matrix K (see,
e.g., Cover and Thomas [74]).

11.20 Consider the mixture predictor in Section 11.10 and choose the initial density q0 to be uniform
in a cube [−B, B]d . Show that for any vector u with ‖u‖∞ ≤ B − (3d/nc)1/2, the regret
satisfies

L̂n − Ln(u) ≤ d

2
ln

enc

3d
+ d ln B.

Hint: Choose the auxiliary density qε
u to be uniform on a cube centered at u.
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Linear Classification

12.1 The Zero–One Loss

An important special case of linear prediction with side information (Chapter 11) is the
problem of binary pattern classification, where the decision space D and the outcome space
Y are both equal to {−1, 1}. To predict an outcome yt ∈ {−1, 1}, given the side information
xt ∈ R

d , the forecaster uses the linear classification ŷt = sgn(wt−1 · xt ), where wt−1 is a
weight vector and sgn(·) is the sign function. In the entire chapter we use the terminology
and notation introduced in Chapter 11.

A natural loss function in the framework of classification is the zero–one loss �(̂y, y) =
I{ŷ �=y} counting the number of classification mistakes ŷ �= y. Since this loss function is
not convex, we cannot analyze forecasters in this model using the machinery developed in
Chapter 11. A possibility, which we investigate in Chapter 4 for arbitrary losses, is to allow
the forecaster to randomize his predictions. As the expected zero–one loss is equivalent to
the absolute loss 1

2 |y − p|, where y ∈ {−1, 1} and p ∈ [−1,+1], we see that randomization
provides a convex variant of the original problem, which we can study using the techniques
of Chapter 11. In this chapter we show that, even in the case of deterministic predictions,
meaningful zero–one loss bounds can be derived by twisting the analysis for convex
losses.

Let p̂ be a real-valued prediction used to determine the forecast ŷ by ŷ = sgn( p̂), and
then consider a regular (and thus convex) loss function � such that I{ŷ �=y} ≤ �( p̂, y) for
all p̂ ∈ R and y ∈ {−1, 1}. Now take any forecaster for linear experts, such as one of the
gradient-based forecasters in Chapter 11. The techniques developed in Chapter 11 allow
one to derive bounds for the regret L̂n − Ln(u), where

L̂n =
n∑

t=1

�( p̂t , yt ) and Ln(u) =
n∑

t=1

�(u · xt , yt ).

Since I{ŷ �=y} ≤ �( p̂, y), we immediately obtain a bound on the “regret”

n∑
t=1

I{ŷt �=yt } − Ln(u)

of the forecaster using classifications of the form ŷt = sgn( p̂t ). Note that this notion of
regret evaluates the performance of the linear reference predictor u with a loss function

333
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( p̂ − 1)2

(1− p̂/γ )+

Figure 12.1. A plot of the square loss �( p̂, y) = ( p̂ − y)2 for y = 1. This loss upper bounds the
zero–one loss. The “normalized” hinge loss (1− y p̂/γ )+ is another convex upper bound on the
zero–one loss (see Section 12.2). The plot shows (1− p̂/γ )+ for γ = 3/2.

larger than the one used to evaluate the forecaster ŷ. This discrepancy is inherent to our
analysis, which is largely based on convexity arguments.

An example of the results we can obtain using such an argument is the following.
Consider the square loss �( p̂, y) = ( p̂ − y)2. This loss is regular and upper bounds the
zero–one loss (see Figure 12.1). If we predict each binary outcome yt using ŷt = sgn( p̂t ),
where p̂t is the Vovk–Azoury–Warmuth forecaster (see Section 11.8), then Theorem 11.8
immediately implies the bound

n∑
t=1

I{ŷt �=yt } ≤
n∑

t=1

(u · xt − yt )
2 + ‖u‖2 +

d∑
i=1

ln(1+ λi ),

where λ1, . . . , λd are the eigenvalues of the matrix x1 x�1 + · · · + xn x�n . This bound holds
for any sequence (x1, y1), (x2, y2), . . . ∈ R

d × {−1, 1} and for all u ∈ R
d .

In the next sections we illustrate a more sophisticated “variational” approach to the
analysis of forecasters for linear classification. This approach is based on the idea of finding
a parametric family of functions that upper bound the zero–one loss and then expressing
the regret using the best of these functions to evaluate the performance of the reference
forecaster.

The rest of this chapter is organized as follows. In Section 12.2 we introduce the hinge
loss, which we use to derive mistake bounds for forecasters based on various potentials. In
Section 12.3 we show that by modifying the forecaster based on the quadratic potential, we
can obtain, after a finite number of weight updates, a maximum margin linear separator for
any linearly separable data sequence. In Section 12.4 we extend the label efficient setup to
linear classification and prove label efficient mistake bounds for several forecasters. Finally,
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Section 12.5 shows that some of the linear forecasters analyzed here can perform nonlinear
classification, with a moderate computational overhead, by implicitly embedding the side
information into a suitably chosen Hilbert space.

12.2 The Hinge Loss

In general, the convex upper bound on the zero–one loss yielding the tightest approx-
imation of the overall mistake count depends on the whole unknown sequence of side
information and outcome pairs (xt , yt ), t = 1, 2, . . .. In this section we introduce the hinge
loss, a parameterized approximation to the zero–one loss, and we show simple forecast-
ers that achieve a mistake bound that strikes an optimal tradeoff for the value of the
parameter.

Following a consolidated terminology in learning theory, we call instance any side
information x, and example any pair (x, y), where y is the label associated with x.

The hinge loss, with hinge at γ > 0, is defined by

�γ (p, y) = (γ − py)+ (the hinge loss),

where p ∈ R, y ∈ {−1, 1}, and (x)+ denotes the positive part of x . Note that �γ (p, y) is
convex in p and �γ /γ is an upper bound on the zero–one loss (see Figure 12.1). Equipped
with this notion of loss, we derive bounds on the regret

n∑
t=1

I{ŷt �=yt } − inf
γ>0

1

γ

n∑
t=1

�γ (u · xt , yt )

that hold for an arbitrarily chosen u ∈ R
d .

We develop forecasters for classification that adopt a conservative updating policy.
This means that the current weight vector wt−1 is updated only when ŷt �= yt . So, the
prediction of a conservative forecaster at time t only depends on the past examples
(xs, ys), for s < t such that ŷs �= ys . The philosophy behind this conservative policy is
that there is no reason to change the weight vector if it has worked well at the last time
instance. We focus on conservative gradient-based forecasters whose update is based on
the hinge loss. Recall from Section 11.3 that the gradient-based linear forecaster computes
predictions p̂t = wt−1 · xt , where the weights wt−1 are updated using the dual gradient
update

∇�∗(wt ) = ∇�∗(wt−1)− λ∇�γ,t (wt−1),

where ∇�γ,t (w) = ∇�γ (w · xt , yt ). Technically, �γ (p, y) is not differentiable at p = γ /y.
However, since our algorithms are conservative, the derivative of �γ (·, y) is computed only
when p and y have different signs. Thus, we may set ∇�γ,t (w) = −yt xt I{ŷ �=yt }, where
ŷ = sgn(w · xt ).

The conservative gradient-based forecaster for classifications is spelled out, for a Leg-
endre potential �, here. For the definition of a Legendre potential function � and its dual
�∗ see Section 11.2.
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THE CONSERVATIVE FORECASTER
FOR LINEAR CLASSIFICATION

Parameters: learning rate λ > 0, Legendre potential �.

Initialization: w0 = ∇�(0).

For each round t = 1, 2, . . .

(1) observe xt , set p̂t = wt−1 · xt , and predict ŷt = sgn( p̂t );
(2) get yt ∈ {−1, 1};
(3) if ŷt �= yt , then let wt = ∇�

(∇�∗(wt−1)+ λyt xt
)
;

else let wt = wt−1.

A direct application of the results from Chapter 11 would not serve to prove regret bounds
where γ is set optimally. We take a different route that can be followed in the case of
any gradient-based forecaster using the hinge loss with a conservative updating policy. A
basic inequality for such forecasters, shown in the proof of Theorem 11.1 using Taylor’s
theorem, is

λ
(
�γ,t (wt−1)− �γ,t (u)

) ≤ λ(u− wt−1) · (−∇�γ,t (wt−1)
)

= D�∗ (u, wt−1)− D�∗ (u, wt )+ D�∗ (wt−1, wt )

for any u ∈ R
d and any Legendre potential �. Now observe that, at any step t such that

sgn( p̂t ) �= yt , the hinge loss �γ,t (u) = (γ − yt u · xt )+ obeys the inequality

γ − �γ,t (u) = γ − (γ − yt u · xt )+ ≤ yt u · xt = u · (−∇�γ,t (wt−1)
)
.

Therefore,

λ
(
γ − �γ,t (u)

)
I{ŷt �=yt } ≤ λu · (−∇�γ,t (wt−1)

)
≤ λ(u− wt−1) · (−∇�γ,t (wt−1

)
= D�∗ (u, wt−1)− D�∗ (u, wt )+ D�∗ (wt−1, wt ) .

To understand the second inequality note that∇�γ,t �= 0 only when sgn( p̂t ) �= yt and, in this
case, wt−1 · ∇�γ,t (wt−1) = −yt wt−1 · xt > 0. The equality holds when∇�γ,t = 0 because,
in that case, wt−1 = wt .

The advantage of this approach is seen as follows: if we multiply both sides of

λ
(
γ − �γ,t (u)

)
I{ŷt �=yt } ≤ λu · (−∇�γ,t (wt−1)

)
by an arbitrary extra parameter α > 0, and proceed as above, we obtain the new inequality

αλ
(
γ − �γ,t (u)

)
I{ŷt �=yt } ≤ D�∗ (αu, wt−1)− D�∗(αu, wt )+ D�∗(wt−1, wt ) .

Note that on the right-hand side u is now scaled by α. Summing for t = 1, . . . , n and using
some simple algebraic manipulation, we obtain

n∑
t=1

(
αλγ − D�∗(wt−1, wt )

)
I{ŷt �=yt } ≤ αλLγ,n(u)+ D�∗ (αu, w0) . (12.1)

This is our basic inequality for the hinge loss, and we now apply it to different potential
functions.
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Polynomial Potential and the Perceptron
Consider first the conservative forecaster for classification based on the Legendre poly-
nomial potential �p(u) = 1

2 ‖u‖2
p, where p ≥ 2. The conservative update rule for this

forecaster can be written as

wt = ∇�p
(∇�q (wt−1)+ λyt xt I{ŷt �=yt }

)
.

It turns out that for the polynomial potential linear classification is, in some sense, easier
than the linear pattern recognition problem of Chapter 11. In particular, a constant learning
rate (λ = 1) is sufficient to obtain a good bound for the number of mistakes. Unfortunately,
as we see, this is not the case for the exponential potential, which still needs a careful choice
of the learning rate.

Theorem 12.1. If the conservative forecaster using the Legendre polynomial potential �p

is run on a sequence (x1, y1), (x2, y2) . . . ∈ R
d × {−1, 1} with learning rate λ = 1, then

for all n ≥ 1, for all u ∈ R
d , and for all γ > 0,

n∑
t=1

I{ŷt �=yt }

≤ Lγ,n(u)

γ
+ (p − 1)

(
X p

γ
‖u‖q

)2

+
√

(p − 1)

(
X p

γ
‖u‖q

)2 Lγ,n(u)

γ
,

where X p = maxt=1,...,n ‖xt‖p and q = p/(p − 1) is the conjugate exponent of p.

Note that this bound holds simultaneously for all u ∈ R
d and for all γ > 0. Hence, in

particular, it holds for the best possible γ for each linear classifier u. Note also that this
bound has the same general form as of the bound stated in Theorem 11.2 in which λ is
set optimally for each choice of γ and u. So, linear classification does not require the
self-confident tuning techniques that we used in Section 11.5.

Proof. We start from inequality (12.1). Following the proof of Theorem 11.2, for any t
with ŷt �= yt , we upper bound D�∗ (wt−1, wt ) as follows

D�∗ (wt−1, wt ) ≤ p − 1

2

∥∥∇�γ,t (wt−1)
∥∥2

p ≤
p − 1

2
X2

p.

Now apply this bound to (12.1) for u ∈ R
d arbitrary and with λ = 1. This yields

n∑
t=1

(
αγ − p − 1

2
X2

p

)
I{ŷt �=yt } ≤ αLγ,n(u)+ ‖u‖

2
q

2
α2,

where we used the equality D�∗ (αu, w0) = α2 1
2 ‖u‖2

q .
Setting α = (2ε + (p − 1)X2

p

)
/(2γ ) for ε > 0 (to be determined later), and dividing by

ε > 0, gives

n∑
t=1

I{ŷt �=yt } ≤
Lγ,n(u)

γ
+ (p − 1)X2

p

2ε

Lγ,n(u)

γ
+
(
2ε + (p − 1)X2

p

)2
4εγ 2

‖u‖2
q

2
.
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To minimize the bound, set

ε = X p

‖u‖q

√
(p − 1)γ Lγ,n(u)+

(
p − 1

2
X p ‖u‖q

)2

.

With an easy algebraic manipulation we then get

n∑
t=1

I{ŷt �=yt } ≤
Lγ,n(u)

γ
+ p − 1

2

(
X p

γ
‖u‖q

)2

+ X p ‖u‖q

γ

√
(p − 1)

Lγ,n(u)

γ
+
(

(p − 1)X p ‖u‖q

2γ

)2

.

Using
√

a + b ≤ √a +√b for all a, b > 0 we get the inequality stated in the theorem.
Since u and γ > 0 were arbitrary, the proof is concluded.

The forecaster of Theorem 12.1 is also known as the p-norm Perceptron algorithm. For
p = 2, this reduces to the classical Perceptron algorithm, whose weight updating rule is
simply wt = wt−1 + yt xtI{ŷt �=yt }. Note also that, for p = 2 and Lγ,n(u) = 0, the bound of
Theorem 12.1 reduces to

n∑
t=1

I{ŷt �=yt } ≤
⎛⎝ max

t=1,...,n
‖xt‖ ‖u‖
γ

⎞⎠2

.

In this special case, the result is equivalent to the Perceptron convergence theorem (see
Section 12.6). More precisely, Lγ,n(u) = 0 implies that the sequence (x1, y1), . . . , (xn, yn)
is linearly separated by the hyperplane u with margin at least γ . The margin of the linearly
separable data sequence with respect to the separating hyperplane u is defined by mint yt u ·
xt/ ‖u‖. The Perceptron convergence theorem states that the number of mistakes (or,
equivalently, updates) performed by the Perceptron algorithm on any linearly separable
sequence is at most the squared ratio of (1) the radius of the smallest origin-centered
euclidean ball enclosing all instances and (2) the margin γ of any separating hyperplane u
(see Figure 12.2).

The dynamic tuning λt = 1/ ‖xt‖ is known to improve the empirical performance of
the Perceptron algorithm. Indeed, we can easily extend the analysis of Theorem 12.1 (see
Exercise 12.1) and prove a bound that, in the case of linearly separable sequences, can be
stated as

n∑
t=1

I{ŷt �=yt } ≤
(

max
t=1,...,n

‖xt‖ ‖u‖
yt u · xt

)2

,

where u is any linear separator. The improvement is clear when we rewrite the bound for
the Perceptron with static tuning λ = 1 as

n∑
t=1

I{ŷt �=yt } ≤
⎛⎝ max

t=1,...,n
‖xt‖ ‖u‖

min
t=1...,n

(
yt u · xt

)
⎞⎠2

.
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+
−

R
γ

Figure 12.2. The instances xt ∈ R
2 of a linearly separable sequence (x1, y1), . . . , (xn, yn). Empty

circles denote instances xt with label yt = 1 and filled circles denote instances with label
yt = −1. A separating hyperplane, passing through the origin, with margin γ is drawn. The Per-
ceptron convergence theorem states that, on this sequence, the Perceptron algorithm will make at
most (R/γ )2 mistakes or, equivalently, perform at most (R/γ )2 updates.

Exponential Potential and Winnow
We proceed by considering the conservative linear forecaster based on the Legendre expo-
nential potential �(u) = eu1 + · · · + eud . Unlike the analysis of the polynomial potential,
here the choice of the learning rate makes a difference. Indeed, our result does not address
the issue of tuning λ, and the regret bound we prove retains the same general form as the
bound proven in Theorem 11.3 for the linear pattern recognition problem.

Theorem 12.2. Assume the conservative forecaster using the Legendre exponential poten-
tial �(u) = eu1 + · · · + eud with normalized weights is run with learning rate λ =
(2γ ε)/X2

∞, where 0 < ε < 1, on a sequence (x1, y1), (x2, y2) . . . ∈ R
d × {−1, 1}. Then

for all n ≥ 1 such that X∞ ≥ maxt=1,...,n ‖xt‖∞ and for all u ∈ R
d in the probability

simplex,

n∑
t=1

I{ŷt �=yt } ≤
1

1− ε

Lγ,n(u)

γ
+
(

X∞
γ

)2 ln d

2ε(1− ε)
.

Proof. Following the proof of Theorem 11.3, we upper bound D�∗ (wt−1, wt ) as follows:

D�∗ (wt−1, wt ) ≤ D�∗
(
wt−1, w′t

) ≤ λ2

2
X2
∞,

where w ′
i,t = wi,t−1e−λ∇�t (wt )i and wt is w′t normalized (as in the proof of Theorem 11.3,

we applied the generalized pythagorean inequality, Lemma 11.3, in the second step of this
derivation). Now apply this bound to (12.1) for α = 1 and for any u ∈ R

d in the probability
simplex. This yields

n∑
t=1

(
λγ − λ2

2
X2
∞

)
I{ŷt �=yt } ≤ λLγ,n(u)+ ln d,
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where we used the inequality D�∗ (u, w0) ≤ ln d for w0 = (1/d, . . . , 1/d). Dividing both
sides by λγ > 0 and substituting our choice of λ yields the desired bound.

The forecaster used in Theorem 12.2 is a “zero-threshold” variant of the Winnow algo-
rithm. In the linearly separable case, the bound of Theorem 12.2, with ε = 1/2, reduces
to

n∑
t=1

I{ŷt �=yt } ≤ 2

⎛⎝ max
t=1,...,n

‖xt‖∞
γ

⎞⎠2

ln d,

where γ is the margin of the hyperplane defined by u. A comparison with the corre-
sponding bound for the Perceptron algorithm reveals an interplay between polynomial and
exponential potential analogous to that discussed in Section 11.4.

The Second-Order Perceptron
We close this section by showing an analysis of the conservative classifier based on the
Vovk–Azoury–Warmuth forecaster (see the discussion at the end of Section 12.2). Fol-
lowing the terminology introduced by Cesa-Bianchi, Conconi, and Gentile [47], we call
this classifier second-order Perceptron. At each time step t = 1, 2, . . . the second-order
Perceptron predicts with ŷt = sgn

(
ŵ�t xt

)
, where

ŵt = A−1
t

t−1∑
s=1

ysxs I{ŷs �=ys } and At =
(

aI +
t−1∑
s=1

xs x�s I{ŷs �=ys } + xt x�t

)
(following the notation introduced in Chapter 11, we use ŵt instead of ŵt−1 to denote the
weight vector of this forecaster at time t). Note that we have introduced a parameter a > 0
multiplying the identity matrix I . Even though this parameter is not used in the analysis of
the second-order Perceptron, it becomes convenient when we compare the behavior of this
algorithm with that of the standard Perceptron.

Rather than using the inequality (12.1), we follow the arguments developed in
Section 11.8 for the analysis of the Vovk-Azoury-Warmuth forecaster.

Theorem 12.3. If the second-order Perceptron (the conservative Vovk-Azoury-Warmuth
forecaster) is run on a sequence (x1, y1), (x2, y2) . . . ∈ R

d × {−1, 1}, then for all n ≥ 1,
for all u ∈ R

d , and for all γ > 0,

n∑
t=1

I{ŷt �=yt } ≤
Lγ,n(u)

γ
+ 1

γ

√√√√(a ‖u‖2 + u�Anu
) d∑

i=1

ln

(
1+ λi

a

)
,

where λ1, . . . , λd are the eigenvalues of the matrix

An =
n∑

t=1

xt x�t I{ŷt �=yt }.

The bound stated by Theorem 12.3 is not in closed form as the terms I{ŷt �=yt } appear on both
sides. We could obtain a closed form by replacing An with the matrix x1 x�1 + · · · + xn x�n
including all instances. Note that this substitution can only increase the eigenvalues



12.2 The Hinge Loss 341

λ1, . . . , λd . However, the closed-form bound is probably too weak to reveal the improve-
ments brought about by the second-order Perceptron analysis with respect to the classical
Perceptron (see the end of this subsection for a detailed comparison of the two bounds in a
special case).

Proof of Theorem 12.3. We follow the notation of Section 11.8 with the necessary adjust-
ments because we have introduced the new parameter a and we are considering conservative
forecasters. So, in particular, define

�∗
t (u) =

[
a

2
‖u‖2 + 1

2

t−1∑
s=1

(
u�xs − ys

)2
I{ŷs �=ys }

]
.

This potential is connected to ŵt by the following relation (see the proof of Theorem 11.8):

1

2

(
ŵ�t xt − yt

)2
I{ŷt �=yt } = inf

v
�∗

t+1(v)− inf
v

�∗
t (v)+ 1

2
x�t A−1

t xt I{ŷt �=yt }

−1

2

(
x�t A−1

t−1xt
)

(ŵ�t xt )
2
I{ŷt �=yt },

where, if ŷt = yt , the equality holds because infv �∗
t+1(v) = infv �∗

t (v). We drop the last
term, which is negative because At−1 is positive definite, and sum over t = 1, . . . , n,
obtaining, for any u ∈ R

d ,

1

2

n∑
t=1

(
ŵ�t xt − yt

)2
I{ŷt �=yt }

≤ inf
v

�∗
n+1(v)− inf

v
�∗

1(v)+ 1

2

n∑
t=1

x�t A−1
t xt I{ŷt �=yt }

≤ �∗
n+1(u)+ 1

2

n∑
t=1

x�t A−1
t xt I{ŷt �=yt }

= a

2
‖u‖2 + 1

2

n∑
t=1

(
u�xt − yt

)2
I{ŷt �=yt } +

1

2

n∑
t=1

x�t A−1
t xt I{ŷt �=yt },

where we used infv �∗
1(v) = 0. Expanding the squares and performing trivial simplifica-

tions, we get to the following inequality:

1

2

n∑
t=1

((
ŵ�t xt

)2 − 2yt ŵ�t xt

)
I{ŷt �=yt } ≤

1

2

[
a ‖u‖2 +

n∑
t=1

(
u�xt

)2
I{ŷt �=yt }

]

−
n∑

t=1

yt u�xt I{ŷt �=yt } +
1

2

n∑
t=1

x�t A−1
t xt I{ŷt �=yt }.

Note that the left-hand side of this inequality is a sum of positive terms, because
−2yt ŵ�t xt ≥ 0 whenever ŷt �= yt . In addition, we can write

1

2

[
a ‖u‖2 +

n∑
t=1

(
u�xt

)2
I{ŷt �=yt }

]
= 1

2
u�
(

I +
n∑

t=1

xt x�t I{ŷt �=yt }

)
u = 1

2
u�Anu
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and, using Lemma 11.11,

1

2

n∑
t=1

x�t A−1
t xt I{ŷt �=yt } ≤

1

2

d∑
i=1

ln

(
1+ λi

a

)
.

This allows us to write the simpler form

0 ≤ 1

2
u�(aI + An)u−

n∑
t=1

yt u�xt I{ŷt �=yt } +
1

2

d∑
i=1

ln

(
1+ λi

a

)
.

Since u was chosen arbitrarily, this inequality also holds when u is replaced by αu, where
α > 0 is a free parameter. Performing this substitution, we end up with

0 ≤ α2

2
u�(I + An)u− α

n∑
t=1

yt u�xt I{ŷt �=yt } +
1

2

d∑
i=1

ln

(
1+ λi

a

)
.

To introduce hinge loss terms, observe that −yt u�xt ≤ �γ,t (u)− γ for all γ > 0. Sub-
stituting this into the above inequality, rearranging, and dividing both sides by αγ > 0
yields

n∑
t=1

I{ŷt �=yt } ≤
Lγ,n(u)

γ
+ α

2γ
u�(I + An)u+ 1

2αγ

d∑
i=1

ln

(
1+ λi

a

)
.

Substituting the choice

α =
√∑d

i=1 ln (1+ λi/a)

u�(I + An)u

implies the claimed bound.

We now compare the bound of Theorem 12.3 with the corresponding bound for the
Perceptron algorithm (Theorem 12.1 with p = 2).

Consider the simple case of a sequence (x1, y1), . . . , (xn, yn) where ‖xt‖ = 1 for all t
and such that there exists some u ∈ R

d , with ‖u‖ = 1, satisfying yt u�xt ≥ γ > 0 for all
t = 1, . . . , n. For this linearly separable sequence, the bound of Theorem 12.3 may be then
written as

n∑
t=1

I{ŷt �=yt } ≤
1

γ

√√√√(a + u�Anu
) d∑

i=1

ln

(
1+ λi

a

)
. (12.2)

Recall that this bound is not in closed form as An (and its eigenvalues) depend on the
mistake terms I{ŷt �=yt }. Then let m be the largest cardinality of a subset M ⊆ {1, . . . , n}
such that (12.2) is still satisfied when a mistake is made on each t ∈M. Moreover, let
m ′ = 1/γ 2, where 1/γ 2 is the Perceptron bound specialized to the case ‖u‖ = 1 and
‖xt‖ = 1 for all t . We want to investigate conditions on the sequence guaranteeing that
m < m ′. To do that, we represent m ′ as the unique positive solution of

m ′ =
√

m ′

γ
.
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Thus m < m ′ whenever

(
a + u�Anu

) d∑
i=1

ln

(
1+ λi

a

)
< m. (12.3)

Now note that, since ‖u‖ = 1 and ‖xt‖ = 1,

u�Anu =
n∑

t=1

(u�xt )
2
I{ŷt �=yt } < m.

Using (u�xt )2 = (yt u�xt )2 ≥ γ 2, we conclude γ 2m ≤ u�Anu ≤ m for all u ∈ R
d . Hence,

we may write u�Anu = αm for some γ 2 ≤ α ≤ 1. Since ‖xt‖ = 1 also implies λ1 +
· · · + λd = m, we may set λi = αi m, where the coefficients α1, . . . , αd ≥ 0 are such that
α1 + · · · + αd = 1. Performing these substitutions in (12.3) we obtain

(a + αm)
d∑

i=1

ln
(

1+ αi m

a

)
< m. (12.4)

If αm = u�Anu is small compared with the large eigenvalues of An , then there exist choices
of a that satisfy (12.4) (see Exercise 12.5).

This discussion suggests that the linearly separable sequences on which the second-order
Perceptron has an advantage over the classical Perceptron are those where linear separators
u tend to be nearly orthogonal to the eigenvectors of An with large eigenvalues. In such
sequences, a large share of instances xt must thus have the property that yt u�xt is close to
the minimum value γ .

As a final remark note that the bounds of Theorems 12.1 and 12.3 are invariant to
simultaneous rescalings of γ and ‖u‖ that do not change the ratio ‖u‖ /γ (in Theorem 12.1
this ratio should take the form ‖u‖q /γ ). This is what we expect, because the loss Lγ,n(u)/γ
exhibits the same kind of invariance. Hence, we do not lose any generality if these results
are stated with γ set to 1.

12.3 Maximum Margin Classifiers

In this section we study the scenario in which a forecaster is repeatedly run on the
same sequence of examples. More specifically, we say that a forecaster is cyclically run
on a “base sequence” (x1, y1), . . . , (xn, yn) ∈ R

d × {−1, 1} if it is run on the sequence
(x′1, y′1), (x′2, y′2), . . ., where (x′kn+t , y′kn+t ) = (xt , yt ) for all k ≥ 0 and t = 1, . . . , n.

If the base sequence is linearly separable, then the mistake bound for a conservative
forecaster tells us how many updates are performed at most before the forecaster’s current
classifier converge to a linear separator of the base sequence. For example, the Perceptron
convergence theorem (see Section 12.2) states that at most

(
maxt ‖xt‖ /γ

)2
updates are

needed to find a linear separator for any sequence linearly separable with margin γ > 0.
However, the results of Section 12.2 do not provide information on the margin of the
separator found by the forecaster.

The question addressed here is whether we can modify the forecasters of Section 12.2
so that the classifier obtained after the last update has a margin close to the largest margin
achievable by any linear separator of the sequence.
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Assume that the sequence (x1, y1), (x2, y2), . . . ∈ R
d × {−1, 1} is linearly separable by

u ∈ R
d such that ‖xt‖ = 1 for all t . We now show that the following algorithm, a simple

modification of the Perceptron, when cyclically run on a sequence with margin γ , finds a
linear separator with margin (1− α)γ after at most 1/(αγ )2 updates, where α is an input
parameter. Following the terminology of Gentile [123], we call this modified Perceptron
alma (approximate large margin algorithm).

THE ALMA FORECASTER

Parameter: α ∈ (0, 1].

Initialization: w0 = (0, . . . , 0), k = 1.

For each round t = 1, 2, . . .

(1) γt =
(√

8/k
)
/α;

(2) observe xt , set p̂t = wt−1 · xt , and predict with ŷt = sgn( p̂t );
(2) get label yt ∈ {−1, 1};
(3) if yt wt−1 · xt ≤ (1− α)γt , then

(3.1) ηt =
√

2/k and w′t = wt−1 + ηt yt xt ;
(3.2) wt = w′t/

∥∥w′t
∥∥;

(3.3) k ← k + 1;
(4) else, let wt = wt−1.

Theorem 12.4. Suppose the alma forecaster is cyclically run on a sequence
(x1, y1), . . . , (xn, yn) ∈ R

d × {−1, 1} with ‖xt‖ = 1 for all t , linearly separable by u ∈ R
d

with margin γ > 0. Let m be the number of updates performed by alma on this sequence.
Then the number of mistakes m =∑∞

t=1 I{ŷt �=y′t } is finite and satisfies

m ≤ 2

γ 2

(
2

α
− 1

)2

+ 8

α
− 4.

Furthermore, let s be the time step when the last update occurs. Then the weight ws computed
by ALMA at time s is a linear separator of the sequence achieving margin (1− α)γ .

Proof. For any t = 1, 2, . . ., let Nt = ‖w′t‖, and γt (u) = yt u · xt . We first find an upper
bound on m by studying the quantity u · ws . Choose any round t such that yt wt−1 · xt ≤
(1− α)γt . Then

u · wt = u · wt−1 + ηt yt u · xt

Nt
≥ u · wt−1 + ηtγ

Nt

and

N 2
t =

∥∥w′t
∥∥2

= ‖wt−1 + ηt yt xt‖2

= 1+ η2
t + 2ηt yt wt−1 · xt

≤ 1+ η2
t + 2(1− α)ηtγt .
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The inequality holds because an update at time t implies that yt wt−1 · xt ≤ (1− α)γt .
Substituting the values of ηt and γt in the last expression, we obtain N 2

t ≤ 1+ 2A/kt ,
where A = 4/α − 3 and kt is the number of updates performed after the first t time steps.

Now we bound m by analyzing u · ws through the recursion

u · ws ≥ u · ws−1 + ηsγ√
1+ 2A/m

= u · ws−1√
1+ 2A/m

+ γ√
m/2+ A

.

Solving this recursion, while keeping in mind that w0 = 0 and u · wt = u · wt−1 if no update
takes place at time t , we obtain

u · ws ≥
m∑

k=1

γ√
k/2+ A

m∏
j=k+1

1√
1+ 2A/j

,

where for k = m the product has value 1. Now,

− ln
m∏

j=k+1

1√
1+ 2A/j

= 1

2

m∑
j=k+1

ln

(
1+ 2A

j

)

≤ 1

2

m∑
j=k+1

2A

j
(since ln(1+ x) ≤ x for all x ≥ −1)

≤ A
∫ m

j=k

dx

x

= A ln
m

k
.

Therefore,

m∏
j=k+1

1√
1+ 2A/k

≥
(

k

m

)A

.

Now, since u · ws ≤ 1, we obtain

1 ≥ γ

m∑
k=1

(k/m)A

√
k/2+ A

≥ γ

m∑
k=1

(k/m)A

√
m/2+ A

≥ γ

m A
√

m/2+ A

∫ m

0
k A dk

= γ

A + 1

m√
m/2+ A

.
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Solving for m yields

m ≤ (A + 1)2

4γ 2
+
√

(A + 1)4

16γ 4
+ (A + 1)2 A

γ 2

≤ (A + 1)2

4γ 2
+ (A + 1)3/2

γ

√
A + 1

16γ 2
+ 1

≤ (A + 1)2

4γ 2
+ (A + 1)2

4γ 2
+ 2(A + 1),

where we used the inequality
√

x + 1 ≤ √x + 1/
(
2
√

x
)

for x > 0 in the last step. Substi-
tuting our choice of A yields the desired result.

To show that ws is a linear separator with margin (1− α)γ , note that

γs = 1

α

√
8

m

≥ 1

α

√
8

(A+1)2

2γ 2 + 2(A + 1)

≥ 1

α

√
γ

(A+1)2

16 + A+1
4

(since 0 ≤ γ ≤ 1)

= γ√
1− α2/4

≥ γ.

Since the last update occurs at time n, this means that yt ws · xt > (1− α)γ
for all t > s.

12.4 Label Efficient Classifiers

In Section 6.2 we looked at prediction in a “label efficient” scenario where the forecaster
has limited access to the sequence of outcomes y1, y2, . . .. Using an independent random
process for selecting the outcomes to observe, we have been able to control the regret of
the weighted average forecasters when an a priori bound is imposed on the overall number
of outcomes that may be observed.

In this section we cast label efficient prediction in the model of linear classification with
side information: after generating the prediction ŷt = sgn( p̂t ) for the next label yt given
the side information xt , the forecaster uses randomization to decide whether to query yt

or not. If yt is not queried, its value remains unknown to the forecaster, and the current
classifier is not updated. It is important to remark that, as in Section 6.2, in this model also
the forecaster is evaluated by counting prediction mistakes on those time steps when the
true labels yt remained unknown.
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We study selective sampling algorithms that use a simple randomized rule to decide
whether to query the label of the current instance. This rule prescribes that the label should
be obtained with probability c/(c + |̂pt |), where p̂t is the margin achieved by the current
linear classifier on the instance, and c > 0 is a parameter of the algorithm acting as a scaling
factor on p̂t . Note that a label is sampled with a small probability whenever the margin is
large.

Unlike the approach described in Section 6.2, this rule provides no control on the number
of queried labels. In fact, this number is a random variable depending, through the margin
p̂t , on the interaction between the algorithm and the data sequence on which the algorithm
is run. Owing to the complex nature of this interaction, the analysis fails to characterize the
behavior of this random variable in terms of simple quantities related to the data sequence.
However, the analysis does reveal an interesting phenomenon. In all of the label efficient
algorithms we analyzed, a proper choice of the scaling factor c in the randomized rule yields
the same mistake bound as that achieved by the original forecaster before the introduction
of the label efficient mechanism. Hence, in some sense, the randomization uses the margin
information to select those labels that can be ignored without increasing (in expectation)
the overall number of mistakes.

To provide some intuition on how the randomized selection rule works, consider the
standard Perceptron algorithm run on a sequence (x1, y1), . . . , (xn, yn) ∈ R

d × {−1, 1},
where we assume ‖xt‖ = 1 for t = 1, . . . , n. For the sake of simplicity, assume that this
sequence is linearly separated by a hyperplane u ∈ R

d . Recall that p̂t = wt−1 · xt . A basic
inequality controlling the hinge loss in this case (see Section 12.2, and also the proof of
Theorem 12.5 below) is

(1− yt p̂t )+ ≤ 1

2

(‖u− wt−1‖2 − ‖u− wt‖2 + 1
)
.

Now, if yt p̂t ≤ 0 and |̂pt | is large, then the hinge loss (1− yt p̂t )+ is also large. This
in turn implies that the difference ‖u− wt−1‖2 − ‖u− wt‖2 must be big. This means
that ‖u− wt−1‖2 drops as wt−1 is updated to wt . So, whenever the Perceptron makes
a classification mistake with a large margin value |̂pt |, the weight wt−1 is moved by
a significant amount toward the linear separator u. In this respect, mistakes with large
margin bear a bigger progress than mistakes with margin close to 0. On the other hand,
the standard Perceptron algorithm does not take into account the information brought
by |̂pt |. The basic idea underlying the label efficient method is a way to incorporate this
information into the prediction by using the size of |̂pt | to trade off a potential progress with a
spared label.

We now formally define and analyze a label efficient version of the Perceptron algorithm.
Similar arguments can be developed to prove analogous bounds for other conservative
gradient-based forecasters analyzed in this chapter (see the exercises).

As our forecasters are randomized, we adopt the terminology introduced in Chapter 4.
The forecaster has access to a sequence U1, U2, . . . of i.i.d. random variables uniformly
distributed in [0, 1]. The decision of querying the outcome at time t is defined by the value
of a Bernoulli random variable Zt of parameter qt (where qt is determined by U1, . . . , Ut−1

and by the specific selection rule used by the forecaster). To obtain a realization of Zt ,
the forecaster assigns Zt = 1 if and only if Ut ∈ [0, qt ). The sequence of outcomes is
represented by the random variables Y1, Y2, . . ., where each Yt is measurable with respect
to the σ -algebra generated by U1, . . . , Ut−1. This implies that Yt is determined before the
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value of Zt is drawn. Our results hold also when instances xt are measurable functions of
U1, . . . , Ut−1. However, to keep the notation simple, we derive our results in the special
case of arbitrary and fixed instance sequences.

THE LABEL EFFICIENT PERCEPTRON ALGORITHM

Parameter: c > 0.

Initialization: w0 = (0, . . . , 0).

For each round t = 1, 2, . . .

(1) observe xt , set p̂t = wt−1 · xt , and predict with ŷt = sgn( p̂t );
(2) draw a Bernoulli random variable Zt ∈ {0, 1} of parameter c/(c + |̂pt |);
(3) if Zt = 1, then query label Yt ∈ {−1, 1}, and let wt = wt−1 + Yt xt I{ŷt �=Yt };
(4) if Zt = 0, then wt = wt−1.

Theorem 12.5. If the label efficient Perceptron algorithm is run on a sequence
(x1, Y1), (x2, Y2) . . . ∈ R

d × {−1, 1}, then for all n ≥ 1, for all u ∈ R
d , and for all γ > 0,

the expected number of mistakes satisfies

E

[
n∑

t=1

I{ŷt �=Yt }

]
≤ Lγ,n(u)

γ
+ X2

2c

Lγ,n(u)

γ
+ ‖u‖

2
(
2c + X2

)2
8cγ 2

,

where X = maxt=1,...,n ‖xt‖.

Note that by choosing

c = X

‖u‖

√
γ Lγ,n(u)+

(
X ‖u‖

2

)2

one recovers (in expectation) the bound shown by Theorem 12.1 (in the special case
p = 2). However, as c is an input parameter of the algorithm, this setting implies that, at the
beginning of the prediction process, the algorithm needs some information on the sequence
of examples. In addition, unlike the bound of Theorem 12.1 that holds simultaneously for
all γ and u, this refined bound can only be obtained for fixed choices of these quantities.

Proof of Theorem 12.5. Introduce the Bernoulli random variable Mt = I{ŷt �=Yt }. We start
from the chain of inequalities

γ − �γ,t (u) ≤ u · (−∇�γ,t (wt−1)
)

≤ (u− wt−1) · (−∇�γ,t (wt−1
)

= D�∗ (u, wt−1)− D�∗ (u, wt )+ D�∗ (wt−1, wt ) ,

which we used for the derivation of (12.1) in Section 12.2. This holds for any conservative
gradient-based forecaster on any time step t such that Mt = 1.

Just like the Perceptron, the label efficient Perceptron uses the quadratic potential �(v) =
�∗(v) = 1

2 ‖v‖2, and thus D�∗ (u, v) = 1
2 ‖u− v‖2. Consider now a time step t where the

label efficient Perceptron queries a label and makes a mistake. Then Zt = 1, Mt = 1,
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and −∇�γ,t (wt−1) = Yt xt . Hence, we may rewrite this chain of inequalities as follows:

γ − �γ,t (u)

≤ Yt u · xt

= Yt (u− wt−1 + wt−1) · xt

= Yt wt−1 · xt + 1

2
‖u− wt−1‖2 − 1

2
‖u− wt‖2 + 1

2
‖wt−1 − wt‖2 .

Note that this time we obtained a stronger inequality by adding and subtracting the negative
term Yt wt−1 · xt = Yt p̂t . The additional term provided by this more careful analysis is the
key to obtain the final result.

Using Yt p̂t ≤ 0 and replacing u with αu for α > 0, we obtain the inequality(
αγ + |̂pt |

)
Mt Zt

≤ α�γ,t (u)+ 1

2
‖αu− wt−1‖2 − 1

2
‖αu− wt‖2 + 1

2
‖wt−1 − wt‖2

that holds for all time steps t . Indeed, if Mt Zt = 0 the inequality still holds because
α�γ,t (u) ≥ 0 and wt−1 = wt . Summing for t = 1, . . . , n, we get

n∑
t=1

(
αγ + |̂pt |

)
Mt Zt ≤ αLγ,n(u)+ α2

2
‖u‖2 + 1

2

n∑
t=1

‖wt−1 − wt‖2 ,

where α2 ‖u‖ = ‖αu− w0‖ and we dropped −‖αu− wn‖2 /2. Finally, since Mt Zt = 0
implies ‖wt−1 − wt‖ = 0, using ‖wt−1 − wt‖2 ≤ X2 we get

n∑
t=1

(
αγ + |̂pt | − X2

2

)
Mt Zt ≤ αLγ,n(u)+ α2

2
‖u‖2 .

Now choose α = (c + X2/2)/γ for some c > 0 to be determined. The above inequality
then becomes

n∑
t=1

(
c + |̂pt |

)
Mt Zt ≤ cLγ,n(u)

γ
+ X2

2

Lγ,n(u)

γ
+ ‖u‖

2
(
2c + X2

)2
8γ 2

.

We now take expectations on both sides. Note that, by definition of the algorithm, Et Zt =
c/(c + |̂pt |), where we use Et to indicate conditional expectation given U1, . . . , Ut−1. Also,
Mt and p̂t are measurable with respect to the σ -algebra generated by U1, . . . , Ut−1. Thus
we get

E

[
n∑

t=1

(
c + |̂pt |

)
Mt Zt

]
= E

[
n∑

t=1

(
c + |̂pt |

)
Mt Et Zt

]
= E

[
n∑

t=1

c Mt

]
.

Dividing both sides by c, we arrive at the claimed inequality

E

[
n∑

t=1

Mt

]
≤ Lγ,n(u)

γ
+ X2

2c

Lγ,n(u)

γ
+ ‖u‖

2
(
2c + X2

)2
8cγ 2

.
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Figure 12.3. A set of labeled instances xt ∈ R is shown on the abscissa as empty circles (label −1)
and filled circles (label+1). This set is not linearly separable in R. However, by mapping each xt ∈ R

via φ(x) = (x, 1+ x
√

2+ x2
)

we obtain a linearly separable set in R
2. The coefficient

√
2 is chosen

so that inner products φ(x)φ(x ′) between mapped instances can be computed using the polynomial
kernel function K (x, x ′) = (1+ xx ′)2.

12.5 Kernel-Based Classifiers

Kernel functions are an elegant way of turning a linear forecaster into a nonlinear one with
a reasonable computational cost. As a motivating example, consider the following simple
reduction from quadratic classifiers in R

2 to linear classifiers in R
6. In R

2, a quadratic
classifier f : R

2 → {−1, 1} is defined by

f (x1, x2) = sgn
(

p(x1, x2)
)
,

where p(x1, x2) = w0 + w1x1 + w2x2 + w3x1x2 + w4x2
1 + w5x2

2 is any second-degree
polynomial in the variables x1 and x2. The decision surface of f is the set of points
(x1, x2) ∈ R

2 satisfying the equation p(x1, x2) = 0. The decision surface of a linear clas-
sifier is a hyperplane, whereas for quadratic classifiers the decision surface is a conic (the
family of curves to which ellipses, parabolas and hyperbolas belong). To learn a quadratic
classifier with a linear forecaster, it is enough to observe that p(x1, x2) of the above form
can be written as w · x′ for w = (w0, w1, . . . , w5) and x′ = (1, x1, x2, x1x2, x2

1 , x2
2

)
. Thus,

we can transform each instance xt = (x1,t , x2,t ) via the mapping

φ(x1,t , x2,t ) =
(
1, x1,t , x2,t , x1,t x2,t , x2

1,t , x2
2,t

) = x′t

and then run the linear forecaster on the transformed instances x′t ∈ R
6 instead of the

original instances xt ∈ R
2 (see Figure 12.3 for a 1-dimensional illustration). The vector x′t

is often called a feature vector, and in the example considered, R
6 plays the role of the

feature space.
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This simple trick can be easily generalized to learn any kth-degree polynomial decision
surface in R

d . However, the computational cost of implementing the mapping φ, even for k
moderately large, is too high. In fact,

(d+k
k

)
coefficients are needed to represent a kth-degree

polynomial surface in R
d , implying that we have to run our linear forecaster on instances

of dimension exponentially large in k.
Computational problems nearly disappear if the classification of xt , at an arbitrary time

t , can be computed using only inner products between instances. For example, the classifier
computed by the Perceptron algorithm at time t can be written in the form

f (x) = sgn

(∑
i

αi yti xti · x
)

,

where αi ∈ R and the sum ranges over a subset of the instance sequence x1, . . . , xt−1.
Now suppose the Perceptron is run on the transformed instances x′t = φ(xt ), where we have
rewritten the φ of our initial example as φ(x1, x2) = (1, x1

√
2, x2

√
2, x1x2

√
2, x2

1 , x2
2

)
. Note

that the introduction of the scaling coefficients
√

2 makes no difference for the learning
problem faced by the forecaster. Then, as φ(xt ) · φ(x) = (1+ xt · x)2, we can avoid the
computation of any φ(xt ). Indeed,

f (x) = sgn

(∑
i

αi yti φ(xti ) · φ(x)

)
= sgn

(∑
i

αi yti (1+ xti · x)2

)
.

In general, if φ maps x ∈ R
d to φ(x) = x′ whose components are all the monomials

of a kth-degree polynomial in the variables x (with suitable scaling coefficients), then
φ(xt ) · φ(x) = (1+ xt · x)k . Hence, the forecaster can learn a polynomial classifier without
ever explicitly computing the coefficients of the polynomial curve.

Note that saying that a forecaster manipulates the transformed instances φ(x) using
only inner products implies that the computation performed by the forecaster is invari-
ant to transformations that map the instance sequence (x1, x2, . . .) to (Ax1, Ax2, . . .),
where A performs a change between two orthonormal bases. To see this, note that
(Au)�(Av) = u�A�Av = u�v. Such forecasters are sometimes called rotationally invari-
ant. Unfortunately, not all gradient-based forecasters for classification are rotationally
invariant. In particular, among the linear forecasters studied in this chapter, only the Per-
ceptron and the second-order Perceptron have this property (see Exercise 12.12).

In view of extending this approach to surfaces that go beyond polynomials, we investigate
the conditions guaranteeing that a symmetric function K : R

d × R
d → R has the property

K (u, v) = 〈φ(u), φ(v)〉 for all u, v ∈ R
d and for some φ mapping R

d to a Hilbert space (we
use 〈 ·, · 〉 to denote the inner product in this space). We call kernel any such function K .
Note that we changed the range of φ from a finite-dimensional euclidean space to a Hilbert
space. In this space, our transformed instances φ(x) are vectors with possibly an infinite
number of components. This allows, for example, to learn a certain class of infinite-degree
polynomial decision curves. For reasons that are made clear in the proof of the following
result, the Hilbert space H associated to a kernel function is called reproducing kernel
Hilbert space.

It turns out that a simple characterization of kernels exists.
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Theorem 12.6. A symmetric function K : R
d × R

d → R is a kernel if and only if for all
n ∈ N and for all x1, . . . , xn ∈ R

d the n × n matrix K with elements K (xi , x j ) is positive
semidefinite.

Proof. Assume first that K : R
d × R

d → R is such that K (u, v) = 〈φ(u), φ(v)〉. Fix any
positive integer n ∈ N, choose x1, . . . , xn ∈ R

d arbitrarily, and let K be the associated
matrix. Then, for all u ∈ R

d ,

u�Ku =
n∑

i, j=1

K (xi , x j )ui u j

=
n∑

i, j=1

〈
φ(xi ), φ(x j )

〉
ui u j

=
〈(

n∑
i=1

φ(xi )ui

)
,

⎛⎝ n∑
j=1

φ(x j )u j

⎞⎠〉

=
∥∥∥∥∥

n∑
i=1

φ(xi )ui

∥∥∥∥∥
2

≥ 0.

Hence K is positive semidefinite.
Assume now K : R

d × R
d → R is such that, for any choice of x1, . . . , xn ∈ R

d , the
resulting kernel matrix is positive semidefinite. Introduce the linear space V of functions
f : R

d → R defined by

f (·) =
n∑

i=1

αi K (ui , ·), where n ∈ N, αi ∈ R, i = 1, . . . , n,

where we set α
(

f + g
)
(x) = α f (x)+ α g(x) for any α ∈ R and u ∈ R

d . We now make V
an inner product space. Introduce the operator 〈 ·, · 〉 such that, for any two f, g ∈ V defined
by

f (·) =
m∑

i=1

αi K (ui , ·) and g(·) =
n∑

j=1

β j K (v j , ·),

we have

〈 f, g〉 =
m∑

i=1

n∑
j=1

αiβ j K (ui , v j ).

Clearly, 〈 ·, · 〉 defined in this way is real valued, symmetric, and bilinear. In addition, for
all f ∈ V ,

〈 f, f 〉 =
m∑

i=1

n∑
j=1

αiα j K (ui , u j ) = α�Kα ≥ 0

because K is positive semidefinite by assumption. Thus, to verify that 〈 ·, · 〉 is indeed an
inner product on V , we just have to show that 〈 f, f 〉 = 0 implies f ≡ 0. To see this, first
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note that

〈 f, K (x, ·)〉 =
m∑

i=1

αi K (x, ui ) = f (x) (reproducing property),

where the first equality follows from the definition of 〈 ·, · 〉 by taking g(·) = K (x, ·). Hence,
f (x)2 = 〈 f, K (x, ·)〉2 ≤ 〈 f, f 〉 K (x, x) by the Cauchy–Schwarz inequality, and this yields
the desired implication. Thus V endowed with 〈 ·, · 〉 is an inner product space.

To makeV into a complete Hilbert space, we introduce inV a norm defined by ‖ f − g‖ =√〈 f − g, f − g〉.
By Lemma 12.1, all Cauchy sequences in V have a pointwise limit. Let H be the set

obtained by adding to V all the functions g that are pointwise limits of Cauchy sequences
with respect to this norm. For any f, g ∈ H, define

〈 f, g〉H = lim
n,m→∞〈 fm, gn〉 and ‖ f ‖H = lim

m→∞‖ fm‖ ,

where f1, f2, . . . and g1, g2, . . . are Cauchy sequences in V with pointwise limits f and g,
respectively. It is easy to check that 〈 ·, · 〉H is well defined (i.e., independent of the choice
of the sequences fm and gn converging pointwise to f and g) and that it is an inner product
in H. It is also easy to see that H is a complete space (with respect to ‖·‖H) in which V is
dense. Hence H is an Hilbert space.

To conclude the proof, we define the mapping φ : R
d → H by φ(x) = K (x, ·). Then,

the reproducing property ensures that K (u, v) = 〈φ(u), φ(v)〉.

Note that the identity φ(x) = K (x, ·) provides a representation of the mapping φ directly
in terms of the kernel function K .

Remark 12.1. In the proof of Theorem 12.6 we obtain the same characterization when
R

d is replaced with an arbitrary set S. Hence, kernels may be more generally defined as
functions K : S × S → R where no assumptions are imposed on S (e.g., S can be a set of
combinatorial structures such as sequences, trees, or graphs). Since any kernel K defines a
metric d in H by

d(s, s ′) = ∥∥φ(s)− φ(s ′)
∥∥ = √K (s, s)+ K (s ′, s ′)− 2K (s, s ′),

we may view a kernel as a way to embed an arbitrary set of objects in a metric space.

We now state and prove Lemma 12.1, which we used in the proof of Theorem 12.6.

Lemma 12.1. For any sequence ( f1, f2, . . .) of elements of V , if

lim
n→∞ sup

m>n
‖ fm − fn‖ = 0

(i.e., the sequence is a Cauchy sequence), then g = limn→∞ fn, defined by g(x) =
limn→∞ fn(x) for all x ∈ R

d , exists.

Proof. Fix x and consider the sequence
(

f1(x), f2(x), . . .
)
. Note that

| fm(x)− fn(x)| =
√
〈 fm − fn, K (x, ·)〉 ≤ ‖ fm − fn‖

√
K (x, x),
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where we used the reproducing property in the first step and the Cauchy–Schwarz inequal-
ity. Thus, because ( f1, f2, . . .) is a Cauchy sequence

(
f1(x), f2(x), . . .

)
also is a Cauchy

sequence. By the Cauchy criterion, every such sequence on the reals has a limit.

Kernels of the form K (u, v) = (1+ u · v)k for k ∈ N are appropriately called polynomial
kernels. A closely related kernel is the homogeneous polynomial kernel K (u, v) = (u · v)k .
An infinite-dimensional extension of the homogeneous polynomial kernel is the exponential
kernel K (u, v) = exp(u · v/σ 2) for σ > 0. The Taylor expansion

exp(u · v) =
∞∑

k=0

(u · v)k

k!

reveals that exponential kernels are linear combinations of infinitely many homogeneous
polynomial kernels, where the coefficients of the polynomials decrease exponentially with
the degree. By enforcing ‖φ(x)‖ = 1 or, equivalently, K (x, x) = 1, the exponential kernel
is transformed as follows:

K (u, v)√
K (u, u)K (v, v)

= exp(u · v/σ 2)√
exp(u · u/σ 2) exp(v · v/σ 2)

= exp
(−‖u− v‖2 /2σ 2

)
.

This is the gaussian kernel, widely used in pattern classification. The classifier constructed
by the Perceptron algorithm run with a gaussian kernel corresponds to a weighted mixture
of spherical gaussians with equal variance and centered on a subset of the previously seen
instances. Linear classifiers in the feature space defined by gaussian kernels have often
been called radial basis function (rbf) networks.

Mistake Bounds and Computational Issues
The mistake bounds shown in Section 12.2 extend naturally to kernels. Consider, for
instance, the second-order Perceptron run with a generic kernel function K in a reproducing
kernel Hilbert space H. Pick any sequence (x1, y1), . . . , (xn, yn) ∈ R

d × {−1, 1} and let
the cumulative hinge loss of any function f ∈ H on this sequence be defined by

Lγ,n( f ) =
n∑

t=1

(
γ − yt f (xt )

)
+.

Then the number of mistakes made by the second-order Perceptron is bounded as

n∑
t=1

I{ŷt �=yt } ≤ inf
γ>0, f ∈H : ‖ f ‖=1

⎛⎝ Lγ,n( f )

γ
+ 1

γ

√√√√(1+
n∑

t=1

f (xt )2

)
n∑

i=1

ln(1+ λi )

⎞⎠ ,

where the numbers λi are the eigenvalues of the kernel matrix with entries K (xi , x j ) for
i, j = 1, . . . , n.

Note that if a linear kernel K (xi , x j ) = x�i x j is used, so that f (x) = u�x for some
u ∈ R

d , then the mistake bound of Theorem 12.3 (for the choice ‖u‖ = 1) is recovered
exactly. To see this let  = x1 x�1 + · · · + xn x�n and observe that

u�u =
n∑

t=1

(u�xt )
2.
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Also, the nonzero eigenvalues of the matrix  coincide with the nonzero eigenvalues of the
kernel matrix.

We close this section by noting that the kernel-based version of the Perceptron uses
space �(m) to store a linear classifier and time �(m) to update it, where m is the number of
mistakes made so far. The second-order Perceptron, instead, uses space �(m2) for storing
and time �(m2) for updating (this can be shown via simple linear algebraic identities
about the update of inverse matrices). Thus, kernel-based forecasters have space and time
requirements that grow with the number of mistakes. An interesting thread of research is the
design of principled techniques allowing to trade off a reduction of space requirements with
a moderate increase in the number of mistakes. The label efficient analysis in Section 12.4
is an example of this approach.

12.6 Bibliographic Remarks

Perceptrons, introduced by Rosenblatt [249] as an attempt to model “the capability of higher
organisms for perceptual recognition, generalization, recall, and thinking,” are among the
earliest examples of learning algorithms. Versions of the Perceptron convergence theorem
were proved by Rosenblatt [250], Block [31], and Novikoff [225]. p-Norm Perceptrons
were introduced and analyzed in the linearly separable case by Grove, Littlestone, and
Schuurmans [133], as a special case of their quasi-additive classification algorithm (see also
Warmuth and Jagota [305] and Kivinen and Warmuth [183]). Generalization of this analysis
to sequences that are not linearly separable was proposed by Freund and Schapire [114],
Gentile and Warmuth [125], and Gentile [124]. Perceptrons with dynamic tuning were
considered by Graepel, Herbrich, and Williamson [132].

The Winnow algorithm was introduced by Littlestone [200] as an alternative to Percep-
tron. Just as the Perceptron algorithm is the counterpart for classification of the Widrow–
Hoff rule used in regression, the version of Winnow presented here is the classification
version of the exponentiated gradient algorithm of Kivinen and Warmuth (see the biblio-
graphic remarks in Chapter 11). Recalling the discussion at the end of Section 11.4, we
may conclude that Winnow should perform better than Perceptron on data sequences that
have dense instance vectors and are well approximated by sparse linear experts. In fact,
Winnow was originally proposed for boolean side information, xt ∈ {0, 1}d , and for an
expert class properly contained in the class of linear experts: the class of all monotone
k-literal disjunction experts. Each such expert is defined by a subset of at most k coordi-
nates, and its prediction on xt ∈ {0, 1}d is 1 if and only if these k coordinates have value
1 in xt . As shown by Littlestone [200], if the data sequence is perfectly classified by some
k-literal disjunction expert, then Winnow makes at most O(k ln d) mistakes. On the other
hand, Kivinen, Warmuth, and Auer [184] show that there are boolean data sequences of the
same type on which the Perceptron algorithm makes �(kd) mistakes. For extensions and
applications of the p-norm Perceptron to classification of k-literal disjunctions, see also
Auer and Warmuth [15], Gentile [124], Littlestone [201].

The second-order Perceptron was introduced by Cesa-Bianchi, Conconi, and Gen-
tile [47], who also studied variants using the pseudoinverse of x1 x�1 + · · · + xt x�t rather
than the inverse of I + x1 x�1 + · · · + xt x�t .

Forecasting strategies converging to a separating hyperplane with maximum margin
have been proposed by several authors. A remarkable example is the Adatron of Anlauf
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and Biehl [8]. However, finite-time convergence results for approximate maximum margin
hyperplanes, such as the analysis of alma in Section 12.3, have been proposed only recently.
Such results include the relaxed maximum margin online algorithm of Li and Long [199]
and the margin infused relaxed algorithm of Crammer and Singer [75]. The alma algorithm
and Theorem 12.4 are due to Gentile [123]. Support vector machines (svms), an effective
classification technique originally introduced by Vapnik and Lerner [294] (under a different
name), find the maximum margin hyperplane at once by solving an optimization problem
defined over the entire sequence of examples. In their modern form, svms were introduced
by Boser, Guyon, and Vapnik [38] and Cortes and Vapnik [67]. See the monographs
Cristianini and Shawe-Taylor [76], Schölkopf and Smola [262], and Vapnik [292] for
extensive accounts on the theory of svms.

The label efficient forecasters presented in Section 12.4 were introduced and analyzed
by Cesa-Bianchi, Gentile, and Zaniboni [49]. However, similar techniques aimed at saving
labels have been extensively studied in pattern recognition. See, for instance, the pioneering
paper of Cohn, Atlas, and Ladner [66], the query by committee algorithm of Freund, Seung,
Shamir, and Tishby [116], and the more recent approaches of Campbell, Cristianini, and
Smola [45], Tong and Koller [289], and Bordes, Ertekin, Weston, and Bottou [35].

The study of reproducing kernel Hilbert spaces was developed by Aronszajn [9] in the
1940’s. The use of kernels has been introduced in learning since 1964 with the influen-
tial work of Aizerman, Braverman, and Rozonoer [1–3] and Bashkirov, Braverman, and
Muchnik [23] (see also Specht [277]).

However, it took almost 30 years before the potentialities of kernels began to be fully
understood with the paper of Boser, Guyon, and Vapnik [38]. The books of Schölkopf and
Smola [262] and Cristianini and Shawe-Taylor [77] are two excellent monographs on learn-
ing with kernels. The proof of Theorem 12.6 is taken from Saitoh [255]. Kernel perceptrons
were considered by Freund and Schapire [114]. The kernel second-order Perceptron is due
to Cesa-Bianchi, Conconi, and Gentile [47].

12.7 Exercises

12.1 (Perceptron with time-varying learning rate) Extend Theorem 12.1 to prove that the Percep-
tron (i.e., the p-norm Perceptron with p = 2) with learning rate λt = 1/ ‖xt‖ achieves, on any
sequence (x1, y1), (x2, y2) . . . ∈ R

d × {−1, 1}, and for all γ > 0 and u ∈ R
d , the bound

n∑
t=1

I{ŷt �=yt } ≤
L̂γ,n(u)

γ
+
(‖u‖

γ

)2

+
√(‖u‖

γ

)2 L̂γ,n(u)

γ
,

where L̂γ,n(u) =∑n
t=1

(
γ − yt u · xt/ ‖x‖

)
+ is the normalized cumulative hinge loss.

12.2 (p-Norm perceptron for the absolute loss) By adapting the self-confident linear forecaster
with polynomial potential introduced in Section 11.5, derive a forecaster for the absolute loss
�(p, y) = 1

2 |p − y|, where p ∈ [−1,+1] and y ∈ {−1, 1}. Prove a bound on the absolute loss
of this forecaster in terms of the hinge loss Lγ,n(u) of the best linear forecaster u with q-norm
bounded by a known constant. Set the hinge γ to 1 (Auer, Cesa-Bianchi, and Gentile [13]).
Warning: This exercise is difficult.

12.3 (Learning r -of-k threshold functions) An r -of-k threshold functions is a function f :
{0, 1}d → {−1, 1} specified by k relevant attributes indexed by i1, . . . , ik ∈ {1, . . . , d}.
On any x ∈ {0, 1}d , f (x) = 1 if and only if xi1 + · · · + xik ≥ r . Given a sequence
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(x1, y1), . . . , (xn, yn) ∈ {0, 1}d × {−1, 1}, the attribute error A f on the sequence is a f,1 +
· · · + a f,n , where a f,t is the minimum number of components of xt that have to be changed to
ensure that f (xt ) = yt .

Prove a mistake bound for the p-norm Perceptron on sequences over {0, 1}d × {−1, 1}
such that the number of mistakes is bounded in terms of the attribute error A f of an arbitrary
r -of-k threshold function f . Investigate what happens to the bound when p is set to 2 ln(d + 1)
(see Gentile [124]).

12.4 (Parameterized second-order Perceptron) Consider the parameterized second-order fore-
caster defined using

At = aI +
t−1∑
s=1

xs x�s ,

where a > 0 is a free parameter. Hence, the parameterless second-order Perceptron corre-
sponds to the setting a = 1. Prove an analog of Theorem 12.3 for this variant. Investigate
different choices of the parameter a. What happens to the mistake bound for a →∞?

12.5 (Second-order vs. classical Perceptron) Show that there exists a choice of a such that inequal-
ity (12.4) is satisfied when α < 1/(2k), where k is the number of nonzero eigenvalues of An

(Cesa-Bianchi, Conconi, and Gentile [47]).

12.6 (Proofs via the Blackwell condition) Consider the conservative classifiers introduced in
Section 12.2. Observe that the weight vectors used by these classifiers can be equivalently
defined using wt = ∇�(Rt ), where Rt is the cumulative “regret”

Rt =
t∑

s=1

rs = −
t∑

s=1

∇�γ,s(ws−1)

and �γ,s(ws−1) is the hinge loss (γ − ys ws−1 · xs)+. Verify that the Blackwell condition

sup
yt∈{−1,1}

rt · ∇�(Rt−1) ≤ 0

holds for this definition of regret. Then use Corollary 2.1 to derive the same mistake
bound shown in Theorem 12.1. Hint: Use Corollary 2.1 to upper bound �p(Rn) in terms
of
∑n

t=1 I{ŷt �=yt }, and then use Hölder’s inequality to show the lower bound

‖Rn‖p ≥ γ

n∑
t=1

I{ŷt �=yt } −
n∑

t=1

�γ,t (u)

for u ∈ R
d arbitrary (Cesa-Bianchi and Lugosi [54]).

12.7 (ALMA on arbitrary sequences) Suppose alma is run on an arbitrary sequence (x1, y1), . . . ,
(xn, yn), . . . ∈ R

d × {−1, 1}. Prove a bound on the number of updates of the form

m ≤ Lγ (u)

γ
+ c1

γ 2
+ c2

γ

√
Lγ (u)

γ

for any u ∈ R
d with ‖u‖ = 1 and for any γ > 0. Note: The bound does not depend on α,

but you might have to change the constants in the definition of γt and ηt in order to prove it
(Gentile [123]).

12.8 (p-Norm ALMA) Prove a version of Theorem 12.4 using a modified p-norm Perceptron
(Gentile [123]).

12.9 (Label efficient Winnow) Adapt the proof of Theorem 12.2 to show that the label efficient
version of Winnow, querying label Yt with probability c/(c + |̂pt |), and run with parame-
ters η = 2αγ/X 2

∞ and c = (1− α)γ for some 0 < α < 1, achieves an expected number of
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mistakes satisfying

E

[
n∑

t=1

Mt

]
≤ 1

1− α

Lγ,n(u)

γ
+
(

X∞
γ

)2 ln d

2α(1− α)

for all u ∈ R
d in the probability simplex (Cesa-Bianchi, Lugosi, and Stoltz [55] and Cesa-

Bianchi, Gentile, and Zaniboni [49]).

12.10 (Label efficient second order Perceptron) Adapt the proof of Theorem 12.3 to show that
the label efficient version of the second-order Perceptron, querying label Yt with probability
c/(c + |̂pt |), achieves an expected number of mistakes satisfying

E

[
n∑

t=1

Mt

]
≤ Lγ,n(u)

γ
+ c

2γ 2

(‖u‖2 + u�nu
)+ 1

2c

d∑
i=1

ln(1+ λi )

for any choice c > 0 of the input parameter and for all u ∈ R
d and γ > 0.

12.11 Show by induction that a kth-degree surface in R
d is specified by

(d+k
k

)
coefficients.

12.12 (Second-order Perceptron in dual variables) Show that the second-order Perceptron clas-
sification at time t can be computed using only inner product operations between instances
x1, . . . , xt .

12.13 (All subsets kernel) Find an easily computable kernel for the mapping φ : R
d → R

2d
defined

by φ(x) = (x ′A)A, where x ′A =
∏

i∈A xi and A ranges over all subsets of {1, . . . , d} (Takimoto
and Warmuth [286]).

12.14 (ANOVA kernel) Consider the mapping φ such that, for any x ∈ R
d , φ(x) = (x ′A)A, where

x ′A =
∏

i∈A xi and A ranges over all subsets of {1, . . . , d} of size at most k for some fixed k =
1, . . . , d . Direct computation of φ(u) · φ(v) takes time order of dk . Use dynamic programming
to show that the same computation can be performed in time O(kd) (Watkins [306]).



Appendix

In this appendix we collect some of the technical tools used in the book and not proved in
the main text. Most of the results reproduced here are quite standard; they are here to make
the book as self-contained as possible. Here we take a minimalist approach and stick to the
simplest possible versions that are necessary to follow the material in the main text. This
appendix should not be taken as an attempt to an exhaustive survey. The cited references
merely intend to point to the original source of the results.

A.1 Inequalities from Probability Theory

A.1.1 Hoeffding’s Inequality
First we offer a proof of Lemma 2.2, which states the following:

Lemma A.1. Let X be a random variable with a ≤ X ≤ b. Then for any s ∈ R,

ln E
[
es X
] ≤ s E X + s2(b − a)2

8
.

Proof. Since ln E
[
es X
] ≤ s E X + ln E

[
es(X−EX )

]
, it suffices to show that for any random

variable X with E X = 0, a ≤ X ≤ b,

E
[
es X
] ≤ es2(b−a)2/8.

Note that by convexity of the exponential function,

esx ≤ x − a

b − a
esb + b − x

b − a
esa for a ≤ x ≤ b.

Exploiting E X = 0, and introducing the notation p = −a/(b − a), we get

Ees X ≤ b

b − a
esa − a

b − a
esb

= (1− p + pes(b−a)
)

e−ps(b−a)

def= eφ(u),

359
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where u = s(b − a), and φ(u) = −pu + log(1− p + peu). But by straightforward calcu-
lation it is easy to see that the derivative of φ is

φ′(u) = −p + p

p + (1− p)e−u

and therefore φ(0) = φ′(0) = 0. Moreover,

φ′′(u) = p(1− p)e−u

(p + (1− p)e−u)2 ≤
1

4
.

Thus, by Taylor’s theorem,

φ(u) = φ(0)+ uφ′(0)+ u2

2
φ′′(θ ) ≤ u2

8
= s2(b − a)2

8

for some θ ∈ [0, u].

Lemma A.1 was originally proven to derive the following result, also known as Hoeffd-
ing’s inequality.

Corollary A.1. Let X1, . . . , Xn be independent real-valued random variables such that for
each i = 1, . . . , n there exist some ai ≤ bi such that P[ai ≤ Xi ≤ bi ] = 1. Then for every
ε > 0,

P

[
n∑

i=1

Xi − E

n∑
i=1

Xi > ε

]
≤ exp

(
− 2ε2∑n

i=1(bi − ai )2

)
and

P

[
n∑

i=1

Xi − E

n∑
i=1

Xi < −ε

]
≤ exp

(
− 2ε2∑n

i=1(bi − ai )2

)
.

Proof. The proof is based on a clever application of Markov’s inequality, often referred
to as Chernoff’s technique: for any s > 0,

P

[
n∑

i=1

(Xi − EXi ) > t

]
≤ E

[
exp
(
s
∑n

i=1(Xi − EXi )
)]

exp(st)

=
∏n

i=1 E
[
exp
(
s(Xi − EXi )

)]
exp(st)

,

where we used independence of the variables Xi . Bound the numerator using Lemma A.1
and minimize the obtained bound in s to get the first inequality. The second is obtained by
symmetry.

We close this section by a version of Corollary A.1, also due to Hoeffding [161], for
the case when sampling is done without replacement.
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Lemma A.2. Let the set A consist of N numbers a1, . . . , aN . Let Z1, . . . , Zn denote a
random sample taken without replacement from A, where n ≤ N. Denote

m = 1

N

N∑
i=1

ai and c = max
i, j≤N

|ai − a j |.

Then for any ε > 0 we have

P

[ ∣∣∣∣∣1n
n∑

i=1

Zi − m

∣∣∣∣∣ ≥ ε

]
≤ 2e−2nε2/c2

.

For more inequalities of this type, see Hoeffding [161] and Serfling [264].

A.1.2 Bernstein’s Inequality
Next we present inequalities that, in certain situations, give tighter bounds than Hoeffding’s
inequality. The first result is a simple “poissonian” inequality.

Lemma A.3. Let X be a random variable taking values in [0, 1]. Then, for any s ∈ R,

ln E
[
es X
] ≤ (es − 1

)
E X.

Proof. As in the proof of Hoeffding’s inequality, we exploit the convexity of esx by
observing that for any x ∈ [0, 1], esx ≤ xes + (1− x). Thus,

E
[
es X
] ≤ E Xes + 1− E X.

By the elementary inequality 1+ x ≤ ex we have E Xes + 1− E X ≤ e(es−1)EX , as
desired.

The next inequality is a version of Bernstein’s inequality [25]; see also Freedman [110],
Neveu [224].

Lemma A.4. Let X be a zero-mean random variable taking values in (−∞, 1] with variance
E X2 = σ 2. Then, for any η > 0,

ln E eηX ≤ σ 2 (eη − 1− η) .

Proof. The key observation is that the function (ex − x − 1)/x2 is nondecreasing for all
x ∈ R. But then, since X ≤ 1,

eηX − ηX − 1 ≤ X2(eη − η − 1).

Taking expected values on both sides, taking logarithms, and using ln(1+ x) ≤ x , we
obtain the stated result.

A simple consequence of Lemma A.4 is the following inequality.

Lemma A.5. Let X be a random variable taking values in [0, 1]. Let σ =
√

E X2 − (E X )2.
Then for any η > 0,

ln E
[
e−η(X−EX )

] ≤ σ 2 (eη − 1− η) ≤ E X (1− E X ) (eη − 1− η) .
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Proof. The first inequality is a direct consequence of Lemma A.4. The second inequality
follows by noting that, since X ∈ [0, 1],

σ 2 = E X2 − (E X )2 ≤ E X − (E X )2 = E X (1− E X ).

Using Lemma A.4 together with Chernoff’s technique as in the proof of Corollary A.1, it
now is easy to deduce the following result.

Corollary A.2 (Bennett’s inequality). Let X1, . . ., Xn be independent real-valued random
variables with zero mean, and assume that Xi ≤ 1 with probability 1. Let

σ 2 = 1

n

n∑
i=1

E X2
i .

Then for any t > 0,

P

[
n∑

i=1

Xi > t

]
≤ exp

(
−nσ 2 h

(
t

nσ 2

))
,

where h(u) = (1+ u) log(1+ u)− u for u ≥ 0.

The message of this inequality is perhaps best seen if we do some further bounding.
Applying the elementary inequality h(u) ≥ u2/(2+ 2u/3), u ≥ 0 (which may be seen by
comparing the derivatives of both sides), we obtain a classical inequality of Bernstein [25].

Corollary A.3 (Bernstein’s inequality). Under the conditions of the previous theorem, for
any ε > 0,

P

[
1

n

n∑
i=1

Xi > ε

]
≤ exp

(
− nε2

2σ 2 + 2ε/3

)
.

A.1.3 Hoeffding–Azuma Inequality and Related Results
The following extension of Hoeffding’s inequality to bounded martingale difference
sequences is simple and useful.

A sequence of random variables V1, V2, . . . is a martingale difference sequence with
respect to the sequence of random variables X1, X2, . . . if, for every i > 0, Vi is a function
of X1, . . . , Xi , and

E
[
Vi+1

∣∣ X1, . . . , Xi
] = 0 with probability 1.

Lemma A.6. Let V1, V2, . . . be a martingale difference sequence with respect to some
sequence X1, X2, . . . such that Vi ∈ [Ai , Ai + ci ] for some random variable Ai , measur-
able with respect to X1, . . . , Xi−1, and a positive constant ci . If Sk =

∑k
i=1 Vi , then for any

s > 0,

E
[
esSn
] ≤ e(s2/8)

∑n
i=1 c2

i .
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Proof.

E
[
esSn
] = E

[
esSn−1E

[
esVn

∣∣ X1, . . . , Xn−1
]]

≤ E

[
esSn−1 es2c2

n/8
]

= es2c2
n/8

E
[
esSn−1

]
,

where we applied Lemma A.1. The desired inequality is obtained by iterating the argu-
ment.

Just as in the case of Corollary A.1, we obtain the following corollary.

Lemma A.7. Let V1, V2, . . . be a martingale difference sequence with respect to some
sequence X1, X2, . . . such that Vi ∈ [Ai , Ai + ci ] for some random variable Ai , measur-
able with respect to X1, . . . , Xi−1 and a positive constant ci . If Sn =

∑n
i=1 Vi , then for any

t > 0,

P [Sn > t] ≤ exp

( −2t2∑n
i=1 c2

i

)
and

P [Sn < −t] ≤ exp

( −2t2∑n
i=1 c2

i

)
.

In fact, as noted in [161], the following “maximal” version of Lemma A.7 also holds:

P

[
max
i≤n

Si > t

]
≤ exp

( −2t2∑n
i=1 c2

i

)
.

We also need the following “Bernstein-like” improvement that takes variance information
into account (see Freedman [110]). The proof, which we omit, is an extension of the
independent case just shown.

Lemma A.8 (Bernstein’s inequality for martingales). Let X1, . . . , Xn be a bounded
martingale difference sequence with respect to the filtration F = (Fi )1≤i≤n and with |Xi | ≤
K . Let

Si =
i∑

j=1

X j

be the associated martingale. Denote the sum of the conditional variances by

�2
n =

n∑
t=1

E
[
X2

t

∣∣Ft−1
]
.

Then for all constants t, v > 0,

P

[
max

i=1,...,n
Si > t and �2

n ≤ v

]
≤ exp

(
− t2

2 (v + K t/3)

)
,
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and therefore,

P

[
max

i=1,...,n
Si >

√
2vt + (√2/3

)
K t and �2

n ≤ v

]
≤ e−t .

A.1.4 Khinchine’s Inequality
Recall Lemma 8.2:

Lemma A.9. Let a1, . . . , an be real numbers, and let σ1, . . . , σn be i.i.d. sign variables
with P[σ1 = 1] = P[σ1 = −1] = 1/2. Then

E

∣∣∣∣∣
n∑

i=1

aiσi

∣∣∣∣∣ ≥ 1√
2

√√√√ n∑
i=1

a2
i .

Here we give a short and elegant proof (with a suboptimal constant 1/
√

3 instead of 1/
√

2)
due to Littlewood [204]. First note that for any random variable X with finite fourth moment,

E |X | ≥
(
E X2

)3/2(
E X4

)1/2 .

Indeed, by Hölder’s inequality,

E X2 = E
[|X |4/3 |X |2/3

] ≤ (E X4
)1/3(

E |X |)2/3
.

Applying this inequality for X =∑n
i=1 aiσi gives

E

∣∣∣∣∣
n∑

i=1

aiσi

∣∣∣∣∣ ≥
(∑n

i=1 a2
i

)3/2√∑n
i=1 a4

i + 3
∑

i �= j a2
i a2

j

≥ 1√
3

√√√√ n∑
i=1

a2
i ,

where we used
∑n

i=1 a4
i + 3

∑
i �= j a2

i a2
j ≤ 3

(∑n
i=1 a2

i

)2
.

A.1.5 Slud’s Inequality
Here we recall, without proof, an inequality due to Slud [272] between binomial tails and
their approximating normals.

Lemma A.10. Let B be a binomial (n, p) random variable with p ≤ 1/2. Then for n(1−
p) ≥ k ≥ np,

P[B ≥ k] ≥ P

[
N ≥ k − np√

np(1− p)

]
,

where N is a standard normal random variable.

A.1.6 A Simple Limit Theorem

Lemma A.11. Let {Zi,t } be i.i.d. Rademacher random variables (i = 1, . . . , N ; t =
1, 2, . . . ) with distribution P[Zi,t = −1] = P[Zi,t = 1] = 1/2, and let G1, . . . , G N be
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independent standard normal random variables. Then

lim
n→∞E

[
max

i=1,...,N

1√
n

n∑
t=1

Zi,t

]
= E

[
max

i=1,...,N
Gi

]
.

Proof. Define the N -vector Xn = (Xn,1, . . . , Xn,N ) of components

Xn,i
def= 1√

n

n∑
t=1

Zi,t , i = 1, . . . , N .

By the “Cramér–Wold device” (see, e.g., Billingsley [27, p. 48]), the sequence of vectors
{Xn} converges in distribution to a vector random variable G = (G1, . . . , G N ) if and
only if

∑N
i=1 ai Xn,i converges in distribution to

∑N
i=1 ai Gi for all possible choices of the

coefficients a1, . . . , aN . Now clearly,
∑N

i=1 ai Xn,i converges in distribution, as n →∞, to
a zero-mean normal random variable with variance

∑N
i=1 a2

i . Then, by the Cramér–Wold
device, as n →∞ the vector Xn converges in distribution to G = (G1, . . . , Gk), where
G1, . . . , Gk are independent standard normal random variables.

Convergence in distribution is equivalent to the fact that for any bounded continuous
function ψ : R

N → R,

lim
n→∞E

[
ψ(Xn,1, . . . , Xn,N )

] = E
[
ψ(G1, . . . , G N )

]
. (A.1)

Consider, in particular, the function ψ(x1, . . . , xN ) = φL (maxi xi ), where L > 0, and φL is
the “thresholding” function

φL (x) =
⎧⎨⎩
−L if x < −L ,
x if |x | ≤ L ,
L if x > L .

Clearly, φL is bounded and continuous. Hence, by (A.1), we conclude that

lim
n→∞E

[
φL

(
max

i=1,...,N
Xn,i

)]
= E

[
φL

(
max

i=1,...,N
Gi

)]
.

Now note that for any L > 0,

E

[
max

i=1,...,N
Xn,i

]
≥ E

[
φL

(
max

i=1,...,N
Xn,i

)]
+ E

[(
L + max

i=1,...,N
Xn,i

)
I{maxi=1,...,N Xn,i <−L}

]
,

where ∣∣∣∣E [(L + max
i=1,...,N

Xn,i

)
I{maxi=1,...,N Xn,i <−L}

]∣∣∣∣
≤ E

[(∣∣∣∣ max
i=1,...,N

Xn,i

∣∣∣∣− L

)
I{|maxi=1,...,N Xn,i |−L>0}

]
=
∫ ∞

0
P

[ ∣∣∣∣max
1,...,N

Xn,i

∣∣∣∣ > L + u

]
du

=
∫ ∞

L
P

[ ∣∣∣∣max
1,...,N

Xn,i

∣∣∣∣ > u

]
du
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≤
∫ ∞

L
N max

i=1,...,N
P
[ |Xn,i | > u

]
du

≤ 2N
∫ ∞

L
e−u2/2 du

(by Hoeffding’s inequality; see Corollary A.1)

≤ 2N
∫ ∞

L

(
1+ 1

u2

)
e−u2/2 du

= 2N

L
e−L2/2.

Therefore, we have, for any L > 0,

lim inf
n→∞ E

[
max

i=1,...,N
Xn,i

]
≥ E

[
φL

(
max

i=1,...,N
Gi

)]
− 2N

L
e−L2/2.

Letting L →∞ on the right-hand side, and using the dominated convergence theorem, we
see that

lim inf
n→∞ E

[
max
1,...,N

Xn,i

]
≥ E

[
max
1,...,N

Gi

]
.

The proof that

lim sup
n→∞

E

[
max

i=1,...,N
Xn,i

]
≤ E

[
max

i=1,...,N
Gi

]
is similar.

For a proof of the next result see, for example, Galambos [122].

Lemma A.12. Let G1, . . . , G N be independent standard normal random variables. Then

lim
N→∞

E
[
maxi=1,...,N Gi

]
√

2 ln N
= 1.

The following lemma is a related nonasymptotic inequality for maxima of subgaussian
random variables.

Lemma A.13. Let σ > 0, and let X1, . . . , X N be real-valued random variables such that
for all λ > 0 and 1 ≤ i ≤ N, E

[
eλXi

] ≤ eλ2σ 2/2. Then

E

[
max

i=1,...,N
Xi

]
≤ σ

√
2 ln N .

Proof. By Jensen’s inequality, for all λ > 0,

eλ E[maxi=1,...,N Xi ] ≤ E
[
eλ maxi=1,...,N Xi

] = E

[
max

i=1,...,N
eλXi

]
≤

N∑
i=1

E
[
eλXi

] ≤ Neλ2σ 2/2.
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Thus,

E

[
max

i=1,...,N
Xi

]
≤ ln N

λ
+ λσ 2

2

and taking λ =
√

2 ln N/σ 2 yields the result.

A.1.7 Proof of Theorem 8.3
The technique of the proof, called “chaining,” is due to Dudley [91].

For each k = 0, 1, 2, . . ., let F (k) be a minimal cover of F of radius D2−k . Note that
|F (k)| = Nρ(F , D2−k). Denote the unique element of F (0) by f0.

Let � be the common domain where the random variables T f , f ∈ F are defined.
Pick ω ∈ � and let f ∗ ∈ F be such that sup f ∈F T f (ω) = T f ∗ (ω). (Here we implicitly
assume that such an element exists. The modification of the proof for the general case is
straightforward.)

For each k ≥ 0, let f ∗k denote an element of F (k) whose distance to f ∗ is minimal.
Clearly, ρ( f ∗, f ∗k ) ≤ D2−k , and therefore, by the triangle inequality, for each k ≥ 1,

ρ( f ∗k−1, f ∗k ) ≤ ρ( f ∗, f ∗k )+ ρ( f ∗, f ∗k−1) ≤ 3D2−k . (A.2)

Clearly, limk→∞ f ∗k = f ∗, and so by the sample continuity of the process,

sup
f

T f (ω) = T f ∗ (ω) = T f0 (ω)+
∞∑

k=1

(
T f ∗k (ω)− T f ∗k−1

(ω)
)
.

Therefore

E

[
sup

f
T f

]
≤

∞∑
k=1

E

[
max

f,g

(
T f − Tg

)]
,

where the max is taken over all pairs ( f, g) ∈ F (k) × F (k−1) such that ρ( f, g) ≤ 3D2−k .
Noting that there are at most Nρ(F , D2−k)2 of these pairs, and recalling that {T f : f ∈

F} is subgaussian in the metric ρ, we can apply Lemma A.13 using (A.2). Thus, for each
k ≥ 1,

E

[
max

f,g

(
T f − Tg

)] ≤ 3D2−k
√

2 ln Nρ(F , D2−k)2.

Summing over k, we obtain

E

[
sup

f
T f

]
≤

∞∑
k=1

3D2−k
√

2 ln Nρ(F , D2−k)2

= 12
∞∑

k=1

D2−(k+1)
√

ln Nρ(F , D2−k)

≤ 12
∫ D/2

0

√
ln Nρ(F , ε) dε,

as desired.
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A.1.8 Rademacher Averages
Let A ∈ R

n be a bounded set of vectors a = (a1, . . . , an), and introduce the quantity

Rn(A) = E

[
sup
a∈A

1

n

n∑
i=1

σi ai

]
,

where σ1, . . . , σn are independent random variables with P[σi = 1] = P[σi = −1] = 1/2.
Rn(A) is called the Rademacher average associated with A. Rn(A) measures, in a sense,
the richness of set A.

Next we recall some of the simple structural properties of Rademacher averages. Observe
that if A is symmetric in the sense that a ∈ A implies −a ∈ A, then

Rn(A) = E

[
sup
a∈A

1

n

∣∣∣∣∣
n∑

i=1

σi ai

∣∣∣∣∣
]

.

Let A, B be bounded symmetric subsets of R
n and let c ∈ R be a constant. Then the

following subadditivity properties are obvious from the definition:

Rn(A ∪ B) ≤ Rn(A)+ Rn(B),

Rn(c · A) = |c|Rn(A),

Rn(A ⊕ B) ≤ Rn(A)+ Rn(B),

where c · A = {ca : a ∈ A} and A ⊕ B = {a+ b : a ∈ A, b ∈ B}. It follows from Hoeffd-
ing’s inequality (Lemma A.1) and Lemma A.13 that if A = {a(1), . . . , a(N )} ⊂ R

n is a finite
set, then

Rn(A) ≤ max
j=1,...,N

∥∥a( j)
∥∥ √2 log N

n
. (A.3)

Finally, we mention two important properties of Rademacher averages. The first is that
if absconv(A) = {∑N

j=1 c j a( j) : N ∈ N,
∑N

j=1 |c j | ≤ 1, a( j) ∈ A
}

is the absolute convex
hull of A, then

Rn(A) = Rn
(
absconv(A)

)
,

as is easily seen from the definition. The second is known as the contraction principle: let
φ : R → R be a function with φ(0) = 0 and Lipschitz constant Lφ . Defining φ ◦ A as the
set of vectors of form (φ(a1), . . . , φ(an)) ∈ R

n with a ∈ A, we have

Rn(φ ◦ A) ≤ Lφ Rn(A).

(see Ledoux and Talagrand [192]). Often it is useful to derive further upper bounds on
Rademacher averages. As an illustration we consider the case when A is a subset of
{−1, 1}n . Obviously, |A| ≤ 2n . By inequality (A.3), the Rademacher average is bounded
in terms of the logarithm of the cardinality of A. This logarithm may be upper bounded in
terms of a combinatorial quantity, called the vc dimension. If A ⊂ {−1, 1}n , then the vc
dimension of A is the size V of the largest set of indices {i1, . . . , iV } ⊂ {1, . . . , n} such that
for each binary V -vector b = (b1, . . . , bV ) ∈ {−1, 1}V there exists an a = (a1, . . . , an) ∈
A such that (ai1 , . . . , aiV ) = b. The key inequality establishing a relationship between
shatter coefficients and vc dimension is known as Sauer’s lemma (proved independently
by Sauer [261], Shelah [266], and Vapnik and Chervonenkis [293]) which states that the
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cardinality of any set A ⊂ {−1, 1}n may be upper bounded as

|A| ≤
V∑

i=0

(
n

i

)
≤ (n + 1)V ,

where V is the vc dimension of A. In particular, for any A ⊂ {−1, 1}n ,

Rn(A) ≤
√

2V log(n + 1)

n
.

This bound is a version of what has been known as the Vapnik–Chervonenkis inequality.
By a somewhat refined analysis (based on chaining, very much in the spirit of the proof
of Theorem 8.3), the logarithmic factor can be removed, and this results in a bound of the
form

Rn(A) ≤ C

√
V

n

for a universal constant C (Dudley [91]; see also Lugosi [206]).

A.1.9 The Beta Distribution
A random variable X taking values in [0, 1] is said to have the Beta distribution with
parameters a, b > 0 if its density function is given by

f (x) = xa−1(1− x)b−1

B(a, b)

where B(a, b) = �(a)�(b)/�(a, b) is the so-called Beta function. Here �(a) =∫∞
0 xa−1e−x dx denotes Euler’s Gamma function.

Let X have Beta distribution (a, b) and consider a random variable B such that, given
X = x , the conditional distribution of B is binomial with parameters n and x . Then the
marginal distribution of B is calculated, for k = 0, 1, . . . , n, by

P[B = k] =
∫ 1

0
P[B = k | X = x]

xa−1(1− x)b−1

B(a, b)
dx

=
(

n

k

)∫ 1

0

xk+a−1(1− x)n−k+b−1

B(a, b)
dx

=
(

n

k

)
B(k + a, n − k + b)

B(a, b)
.

Now it is easy to determine the conditional density of X given B = k:

f (x | B = k) = f (x)P[B = k | X = x]

P[B = k]

= xa−1(1− x)b−1
(n

k

)
xk(1− x)n−k(n

k

)
B(k + a, n − k + b)

= xk+a−1(1− x)n−k+b−1

B(k + a, n − k + b)
.

This is recognized as a Beta distribution with parameters k + a and n − k + b.
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A.2 Basic Information Theory

In this section we summarize some basic properties of the entropy of a discrete-valued
random variable. For an excellent introductory book on information theory we refer to
Cover and Thomas [74].

Let X be a random variable taking values in the countable set X with distribution
P[X = x] = p(x), x ∈ X . The entropy of X is defined by

H (X ) = E
[− log p(X )

] = −∑
x∈X

p(x) log p(x)

(where log denotes natural logarithm and 0 log 0 = 0). If X, Y is a pair of discrete random
variables taking values in X × Y , then the joint entropy H (X, Y ) of X and Y is defined as
the entropy of the pair (X, Y ). The conditional entropy H (X | Y ) is defined as

H (X | Y ) = H (X, Y )− H (Y ).

If we write p(x, y) = P[X = x, Y = y] and p(x | y) = P[X = x | Y = y], then

H (X | Y ) = −
∑

x∈X ,y∈Y
p(x, y) log p(x | y),

from which we see that H (X | Y ) ≥ 0. It is also easy to see that the defining identity of
the conditional entropy remains true conditionally, that is, for any three (discrete) random
variables X, Y, Z :

H (X, Y | Z ) = H (Y | Z )+ H (X | Y, Z ).

(Just add H (Z ) to both sides and use the definition of the conditional entropy.) A repeated
application of this yields the chain rule for entropy: for arbitrary discrete random variables
X1, . . . , Xn ,

H (X1, . . . , Xn)

= H (X1)+ H (X2 | X1)+ H (X3 | X1, X2)+ · · · + H (Xn | X1, . . . , Xn−1).

Let P and Q be two probability distributions over a countable set X with probability mass
functions p and q. Then the Kullback–Leibler divergence or relative entropy of P and Q is

D(P‖Q) =
∑

x∈X : p(x)>0

p(x) log
p(x)

q(x)
.

Since log x ≤ x − 1,

D(P‖Q) = −
∑

x∈X : p(x)>0

p(x) log
q(x)

p(x)
≥ −

∑
x∈X : p(x)>0

p(x)

(
q(x)

p(x)
− 1

)
≥ 0.

Hence, the relative entropy is always nonnegative and equals 0 if and only if P = Q. This
simple fact has some interesting consequences. For example, if X is a finite set with N
elements, X is a random variable with distribution P , and we take Q to be the uniform
distribution over X , then D(P‖Q) = log N − H (X ), and therefore the entropy of X never
exceeds the logarithm of the cardinality of its range. Another immediate consequence of
the nonnegativity of the relative entropy is the so-called log-sum inequality, which states
that if a1, a2, . . . and b1, b2, . . . are nonnegative numbers with A =∑i ai and B =∑i bi ,
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then ∑
i

ai log
ai

bi
≥ A log

A

B
.

Let now P and Q be distributions over an n-fold product space X n , and for t = 1, . . . , n
denote by

Pt (x1, . . . , xt−1) =
∑

xt ,xt+1,...,xn

P(x1, . . . , xn)

and

Qt (x1, . . . , xt−1) =
∑

xt ,xt+1,...,xn

Q(x1, . . . , xn)

the marginal distributions of the first t − 1 variables. Then the chain rule for relative entropy
(a straightforward consequence of the definition) states that

D(P‖Q) =
n∑

t=1

∑
x1,...,xt−1

D(P|x1,...,xt−1‖Q|x1,...,xt−1 ),

where P|x1,...,xt−1 denotes the conditional distribution over X n−t defined by

P|x1,...,xt−1 (xt , xt+1, . . . , xn) = P(x1, . . . , xn)

Pt (x1, . . . , xt−1)
,

and Q|x1,...,xt−1 is defined similarly.
The following fundamental result is known as Pinsker’s inequality. For any pair of

probability distributions P and Q,√
1

2
D(P‖Q) ≥

∑
x : P(x)≥Q(x)

(
P(x)− Q(x)

)
.

Sketch of Proof. First prove the inequality if P and Q are concentrated on the same two
atoms. Then define A = {x : P(x) ≥ Q(x)

}
and the measures P∗, Q∗ on the set {0, 1}

by P∗(0) = 1− P∗(1) = P(A) and Q∗(0) = 1− Q∗(1) = Q(A), and apply the previous
result.

A.3 Basics of Classification

In this section we summarize some basic facts of the probabilistic theory of binary clas-
sification. For more details we refer to Devroye, Györfi, and Lugosi [88]. The problem of
binary classification is to guess the unknown binary class of an observation. An observation
x is an element of a measurable space X . The unknown nature of the observation is called
a class, denoted by y, and takes values in the set {0, 1}.

In the probabilistic model of classification, the observation/label pair is modeled as a
pair (X, Y ) of random variables taking values in X × {0, 1}.

The posterior probabilities are defined, for all x ∈ X , by

η(x) = P[Y = 1 | X = x] = E[Y | X = x].

Thus, η(x) is the conditional probability that Y is 1, given X = x .
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Any function g : X → {0, 1} defines a classifier, and the value g(x) represents one’s
guess of y given x . An error occurs if g(x) �= y, and the probability of error for a classifier
g is

L(g) = P[g(X ) �= Y ].

The next lemma shows that the Bayes classifier given by

g∗(x) =
{

1 if η(x) > 1/2
0 otherwise

minimizes the probability of error. Its probability of error L(g∗) is called the Bayes error.

Lemma A.14. For any classifier g : X → {0, 1},
P[g∗(X ) �= Y ] ≤ P[g(X ) �= Y ].

Proof. Given X = x , the conditional probability of error of any decision g may be
expressed as

P[g(X ) �= Y | X = x]

= 1− P[Y = g(X ) | X = x]

= 1− (P[Y = 1, g(X ) = 1 | X = x]+ P[Y = 0, g(X ) = 0 | X = x]
)

= 1− (I{g(x)=1} P[Y = 1 | X = x]+ I{g(x)=0} P[Y = 0 | X = x]
)

= 1− (I{g(x)=1} η(x)+ I{g(x)=0} (1− η(x))
)
.

Thus, for every x ∈ X ,

P[g(X ) �= Y | X = x]− P[g∗(X ) �= Y | X = x]

= η(x)
(
I{g∗(x)=1} − I{g(x)=1}

)+ (1− η(x)
)(

I{g∗(x)=0} − I{g(x)=0}
)

= (2η(x)− 1
)(

I{g∗(x)=1} − I{g(x)=1}
)

≥ 0

by the definition of g∗. The statement now follows by taking expected values of both
sides.

Lemma A.15. The Bayes error may be written as

L(g∗) = P[g∗(X ) �= Y ] = E
[
min
{
η(X ), 1− η(X )

}]
.

Moreover, for any classifier g,

L(g)− L(g∗) = 2E
[ ∣∣η(X )− 1/2

∣∣ I{g(X ) �=g∗(X )}
]
.

Proof. The proof of the previous lemma reveals that

L(g) = 1− E
[
I{g(X )=1} η(X )+ I{g(X )=0}

(
1− η(X )

)]
and, in particular,

L(g∗) = 1− E
[
I{η(X )>1/2} η(X )+ I{η(X )≤1/2}

(
1− η(X )

)]
.

The statements are immediate consequences of these expressions.
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[198] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and its Applications. Springer,
New York, 1997. 2nd edition.

[199] Y. Li and P.M. Long. The relaxed online maximum margin algorithm. Machine Learning,
46(1/3):361–387, 2002.

[200] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2(4):285–318, 1988.

[201] N. Littlestone. Redundant noisy attributes, attribute errors, and linear threshold learning using
Winnow. In Proceedings of the 4th Annual Workshop on Computational Learning Theory,
pp. 147–156. Morgan Kaufmann, San Mateo, CA, 1991.

[202] N. Littlestone, P.M. Long, and M. Warmuth. On-line learning of linear functions. Computa-
tional Complexity, 5(1):1–23, 1995.

[203] N. Littlestone and M. Warmuth. The weighted majority algorithm. Information and Compu-
tation, 108:212–261, 1994.

[204] J.E. Littlewood. On bounded bilinear forms in an infinite number of variables. Quarterly
Journal of Mathematics (Oxford) 1, pp. 164–174, 1930.

[205] P.M. Long. On-line evaluation and prediction using linear functions. In Proceedings of the 10th
Annual Conference on Computational Learning Theory, pp. 21–31. ACM Press, New York,
1997.

[206] G. Lugosi. Pattern classification and learning theory. In L. Györfi, ed., Principles of Nonpara-
metric Learning, pp. 5–62. Springer, 2002.

[207] W. Maass and M. Warmuth. Efficient learning with virtual threshold gates. Information and
Computation, 141(1):66–83, 1998.

[208] S. Mannor and N. Shimkin. On-line learning with imperfect monitoring. In Proceedings
of the 16th Annual Conference on Learning Theory, pp. 552–567. Springer, New York,
2003.

[209] H. Markowitz. Portfolio selection. Journal of Finance, 7:77–91, 1952.
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Hölder’s, 13, 309, 310, 312, 357, 364
Hoeffding’s, 16, 19, 22, 209, 210, 213, 219, 240,

244, 306, 359–361, 366, 368
Hoeffding–Azuma, 70, 72, 74, 96, 117, 134, 150,

178, 192, 193, 197, 200, 205, 267, 362
Jensen’s, 9, 18, 22, 45, 142, 168, 290, 366
Khinchine’s, 238, 244, 364
log-sum, 370
Markov’s, 360
Pinsker’s, 167, 371
poissonian, 361
Slud’s, 138, 364
Vapnik–Chervonenkis, 369

initial weight, 37, 47, 102–108, 112, 113, 115, 124,
126, 127, 250, 303, 326, 330, 331

internal regret, 70, 71, 79, 80, 82–85, 87–92, 94, 96,
97, 177, 184, 190–194, 201, 205, 206, 226,
229, 290, 291

investment strategy, 276–280, 287–292
buy-and-hold, 277, 283, 291
constantly rebalanced, 277, 282, 283, 286,

288–292
eg, 277, 284–287, 289, 291
minimax optimal, 281–283, 286, 290
static, 281, 287, 291
universal portfolio, 277, 282–284, 286, 287,

289–291
with side information, 287–289

Jensen’s inequality, 9, 18, 22, 45, 142, 168, 290, 366

kernel-based classifier, 350, 355
Khinchine’s inequality, 238, 244, 364
k-literal disjunction expert, 355
Kolmogorov complexity, 35, 64
Krichevsky–Trofimov mixture forecaster, 258–260,

265, 272, 283, 284
Kullback–Leibler divergence, 167, 266, 273, 294,

326–328, 370

label efficient forecaster, 130, 132–134, 136, 152, 154,
175

label efficient partial monitoring, 177
label efficient prediction, 128, 129, 136, 145, 152,

161, 173, 175, 334, 346, 347, 355, 356
-strategy, 36
Laplace mixture forecaster, 256–258, 271, 274, 283,

284
lazy forecaster, 131, 132, 175
Legendre dual, 296–298, 304, 331, 335
Legendre function, 294–299

linear classification, 333, 334, 336, 337, 346
linear expert, 242, 293, 294, 298, 301, 302, 304,

307, 308, 311, 320, 321, 325, 329, 330, 333,
355

linear pattern recognition, 293, 302, 328
linear regression, 285, 293, 328, 329
log-sum inequality, 370
logistic regression, 327
loss

absolute, 23, 31, 35, 36, 38, 40, 46, 51, 57, 59, 62,
64, 66, 233, 234, 236, 333, 356

convex, 9, 12, 15–17, 21, 23, 30–32, 38–40, 43–45,
48, 49, 60, 65, 67, 233, 299, 303, 333, 335

cumulative, 8
estimated, 130, 133, 146–148, 157, 161, 176, 177
η-mixable, 53–55, 60
exp-concave, 40, 45–48, 52, 57, 60, 63, 65, 249,

256
expected, 69, 71, 72, 74–77, 79, 80, 84, 95, 96, 181,

198–200, 202–204
Hellinger, 64
hinge, 65, 334–336, 342, 347, 354, 356, 357
logarithmic, 2, 31, 35, 46, 48, 52, 56, 57, 64, 65,

247, 249–252, 256, 271, 272, 277, 279, 294,
325, 326

matching, 329
mixable, 40, 54–57, 59, 60, 62, 64, 330
regular, 300, 302, 315, 331, 333, 334
relative entropy, 46, 56, 57, 332
scaled, 8, 24, 286
self-information, 2, 247
square, 37, 42–44, 46, 48, 51, 55, 57, 60, 63, 65, 89,

294, 302, 303, 316, 318, 320, 322, 323, 326,
329–331, 334

vector-valued, 184, 197, 200, 202, 230
zero–one, 333–335

loss game, 24, 26, 29
loss matrix, 145, 146, 152–155, 175, 176, 188, 197,

220, 227, 229–231

majorizing measures, 241
margin, 338–340, 343, 344, 346, 347, 355
margin infused relaxed algorithm, 356
market vector, 276–278, 286, 289

Kelly, 278
Markov expert, 110, 242, 244, 246, 256, 261, 264,

269, 272, 274
Markov process, 102, 107, 211, 212, 215, 216, 231
Markov type, 274
Markov’s inequality, 360
martingale, 133, 159, 160, 244, 363

vector-valued, 230
martingale central limit theorem, 244
martingale convergence theorem, 87, 197, 216
martingale difference sequence, 70, 72, 133, 148–150,

192, 200, 244, 267, 362, 363
maximin regret, 31, 39, 253
maximum margin classifier, 334, 343, 356



Subject Index 393

merging, 95, 227
metric entropy, 272
metric entropy bound, 241
minimax regret, 8, 30, 31, 35, 39, 59, 60, 62, 63, 233,

234, 239, 240, 244, 249, 252–254, 256, 260,
261, 265, 270, 272–274, 279, 281

minimax theorem, 3, 31, 182, 185, 197, 198
von Neumann’s, 35, 95, 182, 184, 185, 187, 188,

190, 197, 225, 226
minimax wealth ratio, 278, 279, 281, 282, 291
minimum description length, 272
mirror descent algorithm, 329
mixability curve, 52, 53, 56, 58, 63, 66
mixability theorem, 54, 56, 57, 59, 62
mixed strategy, 68, 180, 181, 183, 184, 187, 188, 195,

198, 200–202, 207, 208, 210–212, 214, 215,
217, 218, 228–230

mixed strategy profile, 181, 205, 207–209, 211–213,
215, 216, 226, 231

mixture forecaster, 47, 48, 249, 250, 254, 256, 258,
267, 268, 273, 274, 277, 282–284, 288, 290,
294, 325–328, 330, 332

monotone expert, 270
multiarmed bandit problem, 125, 128, 144, 151, 153,

154, 156–158, 160, 161, 164, 174, 177–179,
184, 194, 210, 222

stochastic, 144, 174, 177
multilinear forecaster, 25–27, 29, 36, 39

Nash equilibrium, 181–185, 190, 191, 193, 194,
205–207, 209, 210, 213, 215–217, 226, 227,
229–231

computation of, 183, 193
nice pair, 302, 303, 329, 331

α-subquadratic, 303, 305, 306, 308, 311
noisy observation, 174, 176
nonoblivious opponent, 68–70, 76, 77, 86, 90, 95,

108, 130, 132, 143, 146, 157, 188, 220
normal form game, 180
normalized maximum likelihood forecaster, 252–254,

258, 266, 267, 273, 281

oblivious opponent, 68, 69, 75–77, 79, 86, 108, 118,
130, 132, 169, 175

one-shot game, 183, 184, 198
oracle inequality, 47, 55, 56, 127, 250

partial monitoring, 128, 143–148, 152–157, 164,
173–177

label efficient, 177
payoff, 24, 25, 27, 29, 180, 181, 184, 193, 205, 217,

218, 226
vector-valued, 35

payoff function, 24, 25, 27, 28, 39
Perceptron, 3, 36, 337, 338, 340–344, 347, 348, 351,

354–356
kernel, 356
label efficient, 348, 358

p-norm, 338, 355–357
second-order, 340, 341, 343, 351, 354–358

Perceptron convergence theorem, 339, 343, 355
Perron–Frobenius theorem, 83, 93
Pinsker’s inequality, 167, 371
planar decision graphs, 125
poissonian inequality, 361
polynomial kernel, 350, 354
potential function, 10–12, 14, 25, 36, 37, 40, 45, 46,

48–51, 57, 71, 83, 91, 157, 158, 201–204, 226,
293, 294, 298–300, 302, 307, 310, 314, 316,
319, 321, 322, 328, 334, 336, 341

elliptic, 316, 317, 320, 322, 329
exponential, 14, 15, 17, 36, 37, 40, 45, 49–52, 55,

82, 91, 157, 159, 160, 174, 178, 293, 302,
304–307, 311, 313, 329, 331, 337, 339, 340

hyperbolic cosine, 297, 307, 331
Legendre, 300, 303–305, 308, 309, 314–317, 329,

331, 335–337, 339
polynomial, 12–14, 36, 83, 159, 293, 300, 302–304,

306–308, 311, 316, 329, 331, 337, 339, 340,
356

quadratic, 94, 174, 201, 302, 329, 334, 348
time-varying, 17, 18, 22, 27, 38, 178, 286, 294,

314–317, 320, 322, 331
potential-based approachability, 202, 204, 226,

231
predictive complexity, 35, 64
prequential statistics, 3, 95
price relative, 276, 285, 291, 292
primal gradient update, 299, 301
primal regret update, 299, 301
primal weight, 299–301, 303, 314
prisoners’ dilemma, 220, 221, 225, 232
proximal point algorithm, 329
pure action Nash equilibrium, 205–207, 231
pure strategy, 68, 71, 73, 96, 180, 215, 217, 229

quadratic classifier, 350
quantizer, 125
quasi-additive algorithm, 36, 328, 355

Rademacher average, 234, 237–240, 368
Rademacher process, 241, 244
radial basis function network, 354
randomized opponent, 225
randomized selection strategy, 169, 170, 172, 173,

176
redundancy, 251
regret

conditional, 191, 192, 229, 230
cumulative, 8
discounted, 8, 32, 33, 36, 39, 65, 98
estimated, 158, 218
expected, 69, 74, 75, 80, 100, 110, 117, 129, 132,

140, 147, 152, 156, 174, 176, 177, 179
external, 71, 80, 83, 89, 90, 92, 94, 190, 191
generalized, 71, 90–92, 95



394 Subject Index

regret (cont.)
instantaneous, 8, 9, 32, 39
internal, 70, 71, 79, 80, 82–85, 87–92, 94, 96, 97,

184, 190–194, 201, 205, 206, 226, 229, 290,
291

maximin, 31, 39, 253
minimax, 8, 30, 31, 35, 39, 59, 60, 62, 63, 233, 234,

239, 240, 244, 249, 252–254, 256, 260, 261,
265, 270, 272–274, 279, 281

swap, 91, 94, 96
tracking, 100–102, 104–107, 124–126

regret matching, 226
regret testing, 184, 207, 208, 211, 212, 226, 227

experimental, 211–213, 215–218, 231
annealed, 217

regret-based strategy, 180, 184, 185, 187, 193, 225
relative entropy, 167, 306, 370
relaxed maximum margin algorithm, 356
reproducing kernel Hilbert space, 351, 353, 354, 356
revealing action, 153–155
ridge regression forecaster, 3, 317, 318, 320, 321, 329,

330
r -of-k threshold function, 356
row player, 181, 187–190, 195, 197, 198, 200,

202–204, 220, 221, 224, 228–230

sample continuous process, 240, 267
Sauer’s lemma, 368
self-confident forecaster, 304, 310, 311, 313, 329,

337, 356
sequential allocation problem, 124
sequential compound decision problem, 2, 63
sequential gradient descent, 298–300, 328
sequential investment, 2, 247, 251, 276–278,

289–291
sequential probability assignment, 2, 85, 247, 251,

271, 325
Shannon–Fano code, 251
Shapley’s game, 185, 227
Sherman–Morrison formula, 322
short sale, 276, 290
shortest path problem, 99, 116–119, 124, 125, 127
side information, 2, 3, 109, 110, 112–114, 139, 140,

249, 263–265, 278, 287–289, 293, 298, 302,
306, 307, 311, 325, 333, 335, 346, 355

signed game, 24, 25, 27, 29
simulatable expert, 29–31, 36, 39, 233, 234, 236, 244,

245, 247
Slud’s inequality, 138, 364
smooth fictitious play, 36
specialist, 91, 95
static expert, 30, 31, 35, 61, 62, 234, 236–241,

244–246, 281, 288
static investment strategy, 281, 287, 291

Stirling’s formula, 255, 260, 262
stochastic complexity, 64
stochastic gradient descent, 328
subgaussian process, 240, 267, 367
Sudakov’s minoration, 241
suffix tree, 110
sum-product algorithm, 125
support vector machine, 356
swap regret, 91, 94, 96
switching portfolio, 289, 291
symmetric game, 193

Taylor’s theorem, 10, 11, 44, 178, 204, 294, 299–301,
305, 314, 327, 336, 354, 360

time-varying game, 188, 227
tit for tat, 220, 225
total variation distance, 167
tracking regret, 100–102, 104–107, 124–126, 308, 309
tracking the best expert, 99, 100, 102, 103, 106, 121,

124–126, 179, 308, 311, 313, 329
tracking the best portfolio, 289
tracking the shortest path, 121, 124
transaction cost, 276, 290
transfer function, 293, 301–303, 308, 314, 325–329,

331, 332
tree expert, 99, 109, 110, 112–115, 125, 127
tree expert forecaster, 114, 115

uncoupled strategy, 184, 194, 205, 216, 217, 225, 226,
231

unique decodability, 251
universal coding, 2, 271
universal portfolio, 277, 282–284, 286, 287, 289–291
universal prediction, 271
universal prior, 35
unknown game, 184, 194, 205, 210, 217, 218
useless action, 156

value line index, 290
value of a game, 182, 188, 189, 229
Vapnik–Chervonenkis inequality, 369
vc dimension, 368

wealth factor, 276, 277, 280
weight sharing, 307
weighted majority, 5, 36
Widrow–Hoff rule, 3, 302, 318, 328, 355
Winnow, 125, 339, 340, 355

label efficient, 357
worst-case logarithmic wealth ratio, 277, 278,

283–289, 291

zero-sum game, 34, 181, 182, 184, 185, 187, 189, 190,
197, 205, 227–230


