
Reinforcement learning

Advanced Econometrics 2, Hilary term 2020
Reinforcement learning

Maximilian Kasy

Department of Economics, Oxford University

1 / 21

Reinforcement learning

Agenda

I Markov decision problems: Goal oriented interactions with an environment.

I Expected updates – dynamic programming.
Familiar from economics. Requires complete of knowledge transition probabilities.

I Sample updates: Transition probabilities are unknown.
I On policy: Sarsa.
I Off policy: Q-learning.

I Approximation: When state and action spaces are complex.
I On policy: Semi-gradient Sarsa.
I Off policy: Semi-gradient Q-learning.
I Deep reinforcement learning.
I Eligibility traces and TD(λ).

2 / 21

Reinforcement learning

Takeaways for this part of class

I Markov decision problems provide a general model of goal-oriented interaction with an
environment.

I Reinforcement learning considers Markov decision problems where transition
probabilities are unknown.

I A leading approach is based on estimating action-value functions.

I If state and action spaces are small, this can be done in tabular form, otherwise
approximation (e.g., using neural nets) is required.

I We will distinguish between on-policy and off-policy learning.

3 / 21

Reinforcement learning

Introduction

I Many interesting problems can be modeled as Markov decision problems.

I Biggest successes in game play (Backgammon, Chess, Go, Atari games,...), where
lots of data can be generated by self-play.

I Basic framework is familiar from macro / structural micro, where it is solved using
dynamic programming / value function iteration.

I Big difference in reinforcement learning:
Transition probabilities are not known, and need to be learned from data.

I This makes the setting similar to bandit problems, with the addition of changing states.

I We will discuss several approaches based on estimating action-value functions.

4 / 21

Reinforcement learning

Markov decision problems

Markov decision problems

I Time periods t = 1,2, . . .

I States St ∈S (This is the part that’s new relative to bandits!)

I Actions At ∈A (St)

I Rewards Rt+1

I Dynamics (transition probabilities):

P(St+1 = s′,Rt+1 = r |St = s,At = a,St−1,At−1, . . .) = p(s′, r |s,a).

I The distribution depends only on the current state and action.
I It is constant over time.
I We will allow for continuous states and actions later.

5 / 21

Reinforcement learning

Markov decision problems

Policy function, value function, action value function

I Objective: Discounted stream of rewards, ∑t≥0 γ tRt .

I Expected future discounted reward at time t , given the state St = s:
Value function,

Vt(s) = E

[
∑
t ′≥t

γ
t ′−tRt ′ |St = s

]
.

I Expected future discounted reward at time t , given the state St = s and action At = a:
Action value function,

Qt(a,s) = E

[
∑
t ′≥t

γ
t ′−tRt ′ |St = s,At = a

]
.

6 / 21

Reinforcement learning

Markov decision problems

Bellman equation

I Consider a policy π(a|s), giving the probability of choosing a in state s.
This gives us all transition probabilities, and we can write expected discounted returns
recursively

Qπ(a,s) = (BπQπ)(a,s) = ∑
s′,r

p(s′, r |s,a)

(
r + γ ·∑

a′
π(a′|s′)Qπ(a

′,s′)

)
.

I Suppose alternatively that future actions are chosen optimally.
We can again write expected discounted returns recursively

Q∗(a,s) = (B∗Q∗)(a,s) = ∑
s′,r

p(s′, r |s,a)
(

r + γ ·max
a′

Q∗(a
′,s′)

)
.

7 / 21

Reinforcement learning

Markov decision problems

Existence and uniequeness of solutions

I The operators Bπ and B∗ define contraction mappings on the space of action value
functions. (As long as γ < 1.)

I By Banach’s fixed point theorem, unique solutions exist.

I The difference between assuming a given policy π , or considering optimal actions
argmax a Q(a,s), is the dividing line between on policy and off policy methods in
reinforcement learning.

8 / 21

Reinforcement learning

Expected updates - dynamic programming

Expected updates - dynamic programming

I Suppose we know the transition probabilities p(s′, r |s,a).
I Then we can in principle just solve for the action value functions and optimal policies.

I This is typically assumed in macro, IO models.

I Solutions: Dynamic programming.
Iteratively replace
I Qπ(a,s) by (Bπ Qπ)(a,s), or
I Q∗(a,s) by (B∗Q∗)(a,s).

I Decision problems with terminal states: Can solve in one sweep of backward induction.

I Otherwise: Value function iteration until convergence – replace repeatedly.

9 / 21

Reinforcement learning

Sample updates

Sample updates

I In practically interesting settings, agents (human or AI) typically don’t know the
transition probabilities p(s′, r |s,a).

I This is where reinforcement learning comes in.
Learning from observation while acting in an environment.

I Observations come in the form of tuples

〈s,a, r ,s′〉.

I Based on a sequence of such tuples, we want to learn Qπ or Q∗.

10 / 21

Reinforcement learning

Sample updates

Classification of one-step reinforcement
learning methods

1. Known vs. unknown transition probabilities.

2. Value function vs. action value function.

3. On policy vs. off policy.

I We will discuss Sarsa and Q-learning.

I Both: unknown transition probabilities and action
value functions.

I First: “tabular” methods, where we keep track off
all possible values (a,s).

I Then: “approximate” methods for richer spaces of
(a,s), e.g., deep neural nets.

11 / 21

Reinforcement learning

Sample updates

Sarsa

I On policy learning of action value functions.

I Recall Bellman equation

Qπ(a,s) = ∑
s′,r

p(s′, r |s,a)

(
r + γ ·∑

a′
π(a′|s′)Qπ(a

′,s′)

)
.

I Sarsa estimates expectations by sample averages.

I After each observation 〈s,a, r ,s′,a′〉, replace the estimated Qπ(a,s) by

Qπ(a,s)+α ·
(
r + γ ·Qπ(a

′,s′)−Qπ(a,s)
)
.

I α is the step size / speed of learning / rate of forgetting.

12 / 21

Reinforcement learning

Sample updates

Sarsa as stochastic (semi-)gradient descent

I Think of Qπ(a,s) as prediction for Y = r + γ ·Qπ(a′,s′).

I Quadratic prediction error:
(Y −Qπ(a,s))

2 .

I Gradient for minimization of prediction error for current observation w.r.t. Qπ(a,s):

−(Y −Qπ(a,s)) .

I Sarsa is thus a variant of stochastic gradient descent.

I Variant: Data are generated by actions where π is chosen as the optimal policy for the
current estimate of Qπ .

I Reasonable method, but convergence guarantees are tricky.

13 / 21

Reinforcement learning

Sample updates

Q-learning

I Similar to Sarsa, but off policy.

I Like Sarsa, estimate expectation over p(s′, r |s,a) by sample averages.

I Rather than the observed next action a′ consider the optimal action
argmax a′ Q∗(a′,s′).

I After each observation 〈s,a, r ,s′〉, replace the estimated Q∗(a,s) by

Q∗(a,s)+α ·
(

r + γ ·max
a′

Q∗(a
′,s′)−Q∗(a,s)

)
.

14 / 21

Reinforcement learning

Approximation

Approximation

I So far, we have implicitly assumed that there is a small, finite number of states s and
actions a, so that we can store Q(a,s) in tabular form.

I In practically interesting cases, this is not feasible.

I Instead assume parametric functional form for Q(a,s;θ).

I In particular: Deep neural nets!

I Assume differentiability with gradient ∇θ Q(a,s;θ).

15 / 21

Reinforcement learning

Approximation

Stochastic gradient descent
I Denote our prediction target for an observation 〈s,a, r ,s′,a′〉 by

Y = r + γ ·Qπ(a
′,s′;θ).

I As before, for the on-policy case, we have the quadratic prediction error

(Y −Qπ(a,s;θ))
2 .

I Semi-gradient: Only take derivative for the Qπ(a,s;θ) part, but not for the prediction
target Y :

−(Y −Qπ(a,s;θ)) ·∇θ Q(a,s;θ).

I Stochastic gradient descent updating step: Replace θ by

θ +α · (Y −Qπ(a,s;θ)) ·∇θ Q(a,s;θ).

16 / 21

Reinforcement learning

Approximation

Off policy variant

I As before, can replace a′ by the estimated optimal action.

I Change the prediction target to

Y = r + γ ·max
a′

Q∗(a
′,s′;θ).

I Updating step as before, replacing θ by

θ +α · (Y −Q∗(a,s;θ)) ·∇θ Q∗(a,s;θ).

17 / 21

Reinforcement learning

Eligibility traces

Multi-step updates
I All methods discussed thus far are one-step methods.
I After observing 〈s,a, r ,s′,a′〉, only Q(a,s) is targeted for an update.
I But we could pass that new information further back in time, since

Q(a,s) = E

[
t+k

∑
t ′=t

γ
t ′−tRt + γ

k+1Q(At+k+1,St+k+1)|At = a,St = s

]
.

I One possibility: at time t + k +1, update θ using the prediction target

Y k
t =

t+k−1

∑
t ′=t

γ
t ′−tRt + γ

k Qπ(At+k ,St+k).

I k -step Sarsa: At time t + k , replace θ by

θ +α ·
(
Y k

t −Qπ(At ,St ;θ)
)
·∇θ Qπ(At ,St ;θ).

18 / 21

Reinforcement learning

Eligibility traces

TD(λ) algorithm
I Multi-step updates can result in faster learning.
I We can also weight the prediction targets for different numbers of steps, e.g. using

weights λ k :

Y k
t =

t+k

∑
t ′=t

γ
t ′−tRt + γ

k+1Qπ(At+k+1,St+k+1),

Y λ
t = (1−λ)

∞

∑
k=1

λ
k ·Y k

t .

I But don’t we have to wait forever before we can make an update based on Y λ
t ?

I Note quite, since we can do the updating piece-wise!
I This idea leads to the so-called TD(λ) algorithm.

19 / 21

Reinforcement learning

Eligibility traces

Eligibility traces
I For TD(λ), we proceed as for one-step Sarsa, using the prediction target

Yt = Rt + γ ·Qπ(At+1,St+1;θ).

I But we replace the gradient ∇θ Qπ(At ,St ;θ) by a weighted average of past gradients,
the so-called eligibility trace: Let Z0 = 0 and

Zt = γλ ·Zt−1 +∇θ Qπ(At ,St ;θ).

I Updating step: At time t replace θ by

θ +α · (Yt −Qπ(At ,St ;θ)) ·Zt .

I This exactly implements the updating by Y λ
t in the long run.

I This is one of the most popular and practically successful reinforcement learning
algorithms.

20 / 21

Reinforcement learning

References

References

I Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction.
MIT press.

I François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., and Pineau, J.
(2018). An introduction to deep reinforcement learning. Foundations and
Trends R© in Machine Learning, 11(3-4):219–354.

21 / 21

	Markov decision problems
	Expected updates - dynamic programming
	Sample updates
	Approximation
	Eligibility traces
	References

