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Shrinkage

Agenda

I Setup: the Normal means model

X ∼ N(θ , Ik )

and the canonical estimation problem with loss ‖θ̂ −θ‖2.

I The James-Stein (JS) shrinkage estimator.
I Three ways to arrive at the JS estimator (almost):

1. Reverse regression of θi on Xi .
2. Empirical Bayes: random effects model for θi .
3. Shrinkage factor minimizing Stein’s Unbiased Risk Estimate.

I Proof that JS uniformly dominates X as estimator of θ .

I The Normal means model as asymptotic approximation.
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Shrinkage

Takeaways for this part of class

I Shrinkage estimators trade off variance and bias.

I In multi-dimensional problems, we can estimate the optimal degree of shrinkage.
I Three intuitions that lead to the JS-estimator:

1. Predict θi given Xi ⇒ reverse regression.
2. Estimate distribution of the θi ⇒ empirical Bayes.
3. Find shrinkage factor that minimizes estimated risk.

I Some calculus allows us to derive the risk of JS-shrinkage
⇒ better than MLE, no matter what the true θ is.

I The Normal means model is more general than it seems: large sample approximation
to any parametric estimation problem.
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Shrinkage

The Normal means model

The Normal means model
Setup

I θ ∈ Rk

I ε ∼ N(0, Ik )

I X = θ + ε ∼ N(θ , Ik )

I Estimator: θ̂ = θ̂(X)

I Loss: squared error
L(θ̂ ,θ) = ∑

i
(θ̂i −θi)

2

I Risk: mean squared error

R(θ̂ ,θ) = Eθ

[
L(θ̂ ,θ)

]
= ∑

i
Eθ

[
(θ̂i −θi)

2
]
.
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Shrinkage

The Normal means model

Two estimators
I Canonical estimator: maximum likelihood,

θ̂
ML

= X

I Risk function
R(θ̂

ML
,θ) = ∑

i
Eθ

[
ε

2
i

]
= k .

I James-Stein shrinkage estimator

θ̂
JS

=

(
1− (k−2)/k

X 2

)
·X .

I Celebrated result: uniform risk dominance; for all θ

R(θ̂
JS
,θ) < R(θ̂

ML
,θ) = k .
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Shrinkage

Regression perspective

First motivation of JS: Regression perspective

I We will discuss three ways to motivate the JS-estimator
(up to degrees of freedom correction).

I Consider estimators of the form
θ̂i = c ·Xi

or
θ̂i = a + b ·Xi .

I How to choose c or (a,b)?
I Two particular possibilities:

1. Maximum likelihood: c = 1
2. James-Stein: c =

(
1− (k−2)/k

X2

)
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Shrinkage

Regression perspective

Practice problem (Infeasible estimator)

I Suppose you knew X1, . . . ,Xk as well as θ1, . . . ,θk ,

I but are constrained to use an estimator of the form θ̂i = c ·Xi .

1. Find the value of c that minimizes loss.

2. For estimators of the form θ̂i = a + b ·Xi , find the values of a and b that minimize loss.
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Shrinkage

Regression perspective

Solution

I First problem:
c∗ = argmin

c
∑

i
(c ·Xi −θi)

2

I Least squares problem!

I First order condition:
0 = ∑

i
(c∗ ·Xi −θi) ·Xi .

I Solution

c∗ =
∑Xiθi

∑i X 2
i
.
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Shrinkage

Regression perspective

Solution continued
I Second problem:

(a∗,b∗) = argmin
a,b

∑
i

(a + b ·Xi −θi)
2

I Least squares problem again!
I First order conditions:

0 = ∑
i

(a∗+ b∗ ·Xi −θi)

0 = ∑
i

(a∗+ b∗ ·Xi −θi) ·Xi .

I Solution

b∗ =
∑(Xi −X) · (θi −θ)

∑i(Xi −X)2
=

sXθ

s2
X
, a∗+ b∗ ·X = θ
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Shrinkage

Regression perspective

Regression and reverse regression

I Recall Xi = θi + εi , E[εi |θi ] = 0, Var(εi) = 1.

I Regression of X on θ : Slope

sXθ

s2
θ

= 1 +
sεθ

s2
θ

≈ 1.

I For optimal shrinkage, we want to predict θ given X , not the other way around!

I Reverse regression of θ on X : Slope

sXθ

s2
X

=
s2

θ
+ sεθ

s2
θ

+ 2sεθ + s2
ε

≈
s2

θ

s2
θ

+ 1
.

I Interpretation: “signal to (signal plus noise) ratio” < 1.
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Shrinkage

Regression perspective

Illustration
148 S. M. STIGLER 

Florida be used to improve an estimate of the price of 
French wine, when it is assumed that they are unre- 
lated? The best heuristic explanation that has been 
offered is a Bayesian argument: If the 0i are a priori 
independent N(0, r2), then the posterior mean of Oi is 
of the same form as OJ, and hence O'J can be viewed 
as an empirical Bayes estimator (Efron and Morris, 
1973; Lehmann, 1983, page 299). Another explanation 
that has been offered is that 0JS can be viewed as a 
relative of a "pre-test" estimator; if one performs a 
preliminary test of the null hypothesis that 0 = 0, and 
one then uses 0 = 0 or 0i = Xi depending on the 
outcome of the test, the resulting estimator is a 
weighted average of 0 and 00 of which 0Js is a smoothed 
version (Lehmann, 1983, pages 295-296). But neither 
of these explanations is fully satisfactory (although 
both help render the result more plausible); the first 
because it requires special a priori assumptions where 
Stein did not, the second because it corresponds to 
the result only in the loosest qualitative way. The 
difficulty of understanding the Stein paradox is com- 
pounded by the fact that its proof usually depends on 
explicit computation of the risk function or the theory 
of complete sufficient statistics, by a process that 
convinces us of its truth without really illuminating 
the reasons that it works. (The best presentation I 
know is that in Lehmann (1983, pages 300-302) of a 
proof due to Efron and Morris (1973); Berger (1980, 
page 165, example 54) outlines a short but unintuitive 
proof; the one shorter proof I have encountered in a 
textbook is vitiated by a major noncorrectable error.) 
The purpose of this paper is to show how a different 
perspective, one developed by Francis Galton over a 
century ago (Stigler, 1986, chapter 8), can render the 
result transparent, as' well as lead to a simple, full 
proof. This perspective is perhaps closer to that of the 
period before 1950 than to subsequent approaches, but 
it has points in common with more recent works, 
particularly those of Efron and Morris (1973), Rubin 
(1980), Dempster (1980) and Robbins (1983). 

2. STEIN ESTIMATION AS A REGRESSION 
PROBLEM 

The estimation problem involves pairs of values 
(Xi, Os), i = 1, * * , k, where one element of each pair 
(Xi) is known and one (Oi) is unknown. Since the Oi's 
are unknown, the pairs cannot in fact be plotted, but 
it will help our understanding of the problem and 
suggest a means of approaching it if we imagine what 
such a plot would look like. Figure 1 is hypothetical, 
but some aspects of it accurately reflect the situation. 
Since X is N(O, 1), we can think of the X's as being 
generated by adding N(O, 1) "errors" to the given O's. 
Thus the horizontal deviations of the points from the 
450 line 0 = X are independent N(O, 1), and in that 
respect they should cluster around the line as indi- 
cated. Also, E(X) = W and Var(X) = 1/k, so we should 

(9i,X,) I@ * -' 

8~~~~~~(i X,)- 

o~~~ x 

FIG. 1. Hypothetical bivariate plot of Oi vs. Xi, for i =1, * ,k. 

expect the point of means (, )to lie near the 45? 
line. 

Now our goal is to estimate all of the Oi's given all 
of the Xi's, with no assumptions about a possible 
dfistributional structure for the Oi's-they are simply 
to be viewed as unknown constants. Nonetheless, to 
3ee why we should expect that the ordinary estimator 
O' can be improved upon, it helps to think about what 
we would do if this were not the case. If the Oi's, and 
hence the pairs (Xi, Oi ), had a known joint distribution, 
a natural (and in some settings even optimal) method 
of proceeding would be to calculate 6 (X) = E (O I X) 
and use this, the theoretical regression function of 0 
on X, to generate estimates of the Oi's by evaluating it 
for each Xi. We may think of this as an unattainable 
ideal, unattainable because we do not know the con- 
ditional distribution of 0 given X. Indeed, we will not 
assume that our uncertainty about the unknown con- 
stants Oi can be described by a probability distribution 
at all; our view is not that of either the Bayesian or 
empirical Bayesian approach. We do know the condi- 
tional distribution of X given 0, namely N(O, 1), and 
we can calculate E (X I 0) = 0. Indeed this, the theo- 
retical regression line of X on 0, corresponds to the 
line 0 = X in Figure 1, and it is this line which gives 
the ordinary estimators 09? = Xi. Thus the ordinary 
estimator may be viewed as being based on the 
"4wrong" regression line, on E (XI l ) rather than 
E(O I X). Since, as Francis Galton already knew in the 
1880's, the regressions of X on 0 and of 0 on X can be 
markedly different, this suggests that the ordinary 
estimator can be improved upon and even suggests 
how this might be done-by attempting to approxi- 
mate "E(O I X) "-or whatever that might mean in a 

setig hreth -fdono ---0aditibt -n 
With no di~stiuinlasmtosaothe', 

This content downloaded from 128.103.149.52 on Thu, 2 Oct 2014 09:21:26 AM
All use subject to JSTOR Terms and Conditions
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Shrinkage

Regression perspective

Expectations

Practice problem

1. Calculate the expectations of

X = 1
k ∑

i
Xi , X 2 = 1

k ∑
i

X 2
i ,

and
s2

X = 1
k ∑

i
(Xi −X)2 = X 2−X

2

2. Calculate the expected numerator and denominator of c∗ and b∗.
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Shrinkage

Regression perspective

Solution
I E[X ] = θ

I E[X 2] = θ 2 + 1

I E[s2
X ] = θ 2−θ

2
+ 1 = s2

θ
+ 1

I c∗ = (Xθ)/(X 2), and E[Xθ ] = θ 2. Thus

c∗ ≈ θ 2

θ 2 + 1
.

I b∗ = sXθ/s2
X , and E[sXθ ] = s2

θ
. Thus

b∗ ≈
s2

θ

s2
θ

+ 1
.
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Shrinkage

Regression perspective

Feasible analog estimators

Practice problem

Propose feasible estimators of c∗ and b∗.
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Shrinkage

Regression perspective

A solution

I Recall:
I c∗ = Xθ

X2

I θε ≈ 0, ε2 ≈ 1.
I Since Xi = θi + εi ,

Xθ = X 2−Xε = X 2−θε− ε2 ≈ X 2−1

I Thus:

c∗ =
X 2−θε− ε2

X 2
≈ X 2−1

X 2
= 1− 1

X 2
=: ĉ.
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Shrinkage

Regression perspective

Solution continued

I Similarly:
I b∗ = sXθ

s2
X

I sθε ≈ 0, s2
ε ≈ 1.

I Since Xi = θi + εi ,
sXθ = s2

X − sXε = s2
X − sθε − s2

ε ≈ s2
X −1

I Thus:

b∗ =
s2

X − sθε − s2
ε

s2
X

≈ s2
X −1
s2

X
= 1− 1

s2
X

=: b̂
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Shrinkage

Regression perspective

James-Stein shrinkage
I We have almost derived the James-Stein shrinkage estimator.
I Only difference: degree of freedom correction
I Optimal corrections:

cJS = 1− (k−2)/k

X 2
,

and

bJS = 1− (k−3)/k
s2

X
.

I Note: if θ = 0, then ∑i X 2
i ∼ χ2

k .
I Then, by properties of inverse χ2 distributions

E

[
1

∑i X 2
i

]
=

1
k−2

,

so that E
[
cJS
]

= 0.
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Shrinkage

Regression perspective

Positive part JS-shrinkage

I The estimated shrinkage factors can be negative.

I cJS < 0 iff

∑
i

X 2
i < k−2.

I Better estimator: restrict to c ≥ 0.

I “Positive part James-Stein estimator:”

θ̂
JS+

= max

(
0,1− (k−2)/k

X 2

)
·X .

I Dominates James-Stein.

I We will focus on the JS-estimator for analytical tractability.
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Shrinkage

Parametric empirical Bayes

Second motivation of JS: Parametric empirical Bayes
Setup

I As before: θ ∈ Rk

I X |θ ∼ N(θ , Ik )

I Loss L(θ̂ ,θ) = ∑i(θ̂i −θi)
2

I Now add an additional conceptual layer:
Think of θi as i.i.d. draws from some distribution.

I “Random effects vs. fixed effects”

I Let’s consider θi ∼iid N(0,τ2),
where τ2 is unknown.
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Shrinkage

Parametric empirical Bayes

Practice problem

I Derive the marginal distribution of X given τ2.

I Find the maximum likelihood estimator of τ2.

I Find the conditional expectation of θ given X and τ2.

I Plug in the maximum likelihod estimator of τ2 to get the empirical Bayes estimator of θ .
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Shrinkage

Parametric empirical Bayes

Solution
I Marginal distribution:

X ∼ N
(
0,(τ

2 + 1) · Ik
)

I Maximum likelihood estimator of τ2:

τ̂2 =argmax
t2

−1
2 ∑

i

(
log(τ

2 + 1) +
X 2

i

(τ2 + 1)

)
=X 2−1

I Conditional expectation of θi given Xi , τ2:

θ̂i =
Cov(θi ,Xi)

Var(Xi)
·Xi =

τ2

τ2 + 1
·Xi .

I Plugging in τ̂2:

θ̂i =

(
1− 1

X 2

)
·Xi .
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Shrinkage

Parametric empirical Bayes

General parametric empirical Bayes
Setup

I Data X ,
parameters θ ,
hyper-parameters η

I Likelihood
X |θ ,η ∼ fX |θ

I Family of priors
θ |η ∼ fθ |η

I Limiting cases:
I θ = η : Frequentist setup.
I η has only one possible value: Bayesian setup.
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Shrinkage

Parametric empirical Bayes

Empirical Bayes estimation

I Marginal likelihood

fX |η (x |η) =
∫

fX |θ (x |θ)fθ |η (θ |η)dθ .

Has simple form when family of priors is conjugate.

I Estimator for hyper-parameter η : marginal MLE

η̂ = argmax
η

fX |η (x |η).

I Estimator for parameter θ : pseudo-posterior expectation

θ̂ = E[θ |X = x ,η = η̂].
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Shrinkage

Stein’s Unbiased Risk Estimate

Third motivation of JS: Stein’s Unbiased Risk Estimate

I Stein’s lemma (simplified version):

I Suppose X ∼ N(θ , Ik ).

I Suppose g(·) : Rk → R is differentiable and E[|g′(X)|] < ∞.

I Then
E[(X −θ) ·g(X)] = E[∇g(X)].

I Note:
I θ shows up in the expression on the LHS, but not on the RHS
I Unbiased estimator of the RHS: ∇g(X)
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Shrinkage

Stein’s Unbiased Risk Estimate

Practice problem

Prove this.
Hints:

1. Show that the standard Normal density ϕ(·) satisfies

ϕ
′(x) =−x ·ϕ(x).

2. Consider each component i separately and use integration by parts.
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Shrinkage

Stein’s Unbiased Risk Estimate

Solution
I Recall that ϕ(x) = (2π)−0.5 · exp(−x2/2).

Differentiation immediately yields the first claim.
I Consider the component i = 1; the others follow similarly. Then

E[∂x1 g(X)] =

=
∫

x2,...xk

∫
x1

∂x1 g(x1, . . . ,xk ) ·ϕ(x1−θ1)·
k

∏
i=2

ϕ(xi −θi)dx1 . . .dxk

=
∫

x2,...xk

∫
x1

g(x1, . . . ,xk ) ·(−∂x1 ϕ(x1−θ1)) ·
k

∏
i=2

ϕ(xi −θi)dx1 . . .dxk

=
∫

x2,...xk

∫
x1

g(x1, . . . ,xk ) ·(x1−θ1)ϕ(x1−θ1)·
k

∏
i=2

ϕ(xi −θi)dx1 . . .dxk

=E[(X1−θ1) ·g(X)].

I Collecting the components i = 1, . . . ,k yields

E[(X −θ) ·g(X)] = E[∇g(X)]. 26 / 47



Shrinkage

Stein’s Unbiased Risk Estimate

Stein’s representation of risk
I Consider a general estimator for θ of the form θ̂ = θ̂(X) = X + g(X), for differentiable

g.
I Recall that the risk function is defined as

R(θ̂ ,θ) = ∑
i

E[(θ̂i −θi)
2].

I We will show that this risk function can be rewritten as

R(θ̂ ,θ) = k +∑
i

(
E[gi(X)2] + 2E[∂xi gi(X)]

)
.

Practice problem

I Interpret this expression.

I Propose an unbiased estimator of risk, based on this expression.
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Shrinkage

Stein’s Unbiased Risk Estimate

Answer

I The expression of risk has 3 components:
1. k is the risk of the canonical estimator θ̂ = X , corresponding to g ≡ 0.
2. ∑i E[gi (X)2] = ∑i E[(θ̂i −Xi )

2] is the sample sum of squared errors.
3. ∑i E[∂xi gi (X)] can be thought of as a penalty for overfitting.

I We thus can think of this expression as giving a “penalized least squares” objective.

I The sample analog expression gives “Stein’s Unbiased Risk Estimate” (SURE)

R̂ = k +∑
i

(
θ̂i −Xi

)2
+ 2 ·∑

i
∂xi gi(X).
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Shrinkage

Stein’s Unbiased Risk Estimate

I We will use Stein’s representation of risk in 2 ways:
1. To derive feasible optimal shrinkage parameter using its sample analog (SURE).
2. To prove uniform dominance of JS using population version.

Practice problem

Prove Stein’s representation of risk.
Hints:

I Add and subtract Xi in the expression defining R(θ̂ ,θ).

I Use Stein’s lemma.
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Shrinkage

Stein’s Unbiased Risk Estimate

Solution

R(θ) =∑
i

E
[
(θ̂i −Xi + Xi −θi)

2]
=∑

i
E
[
(Xi −θi)

2 +(θ̂i −Xi)
2 +2(θ̂i −Xi) · (Xi −θi)

]
=∑

i
1 +E

[
gi(X)2] +2E

[
gi(X) · (Xi −θi)

]
=∑

i
1 +E

[
gi(X)2] +2E

[
∂xi gi(X)

]
,

where Stein’s lemma was used in the last step.

30 / 47



Shrinkage

Stein’s Unbiased Risk Estimate

Using SURE to pick the tuning parameter

I First use of SURE: To pick tuning parameters, as an alternative to cross-validation or
marginal likelihood maximization.

I Simple example: Linear shrinkage estimation

θ̂ = c ·X .

Practice problem

I Calculate Stein’s unbiased risk estimate for θ̂ .

I Find the coefficient c minimizing estimated risk.

31 / 47



Shrinkage

Stein’s Unbiased Risk Estimate

Solution
I When θ̂ = c ·X ,

then g(X) = θ̂ −X = (c−1) ·X ,
and ∂xi gi(X) = c−1.

I Estimated risk:
R̂ = k + (1− c)2 ·∑

i
X 2

i + 2k · (c−1).

I First order condition for minimizing R̂:

k = (1− c∗) ·∑
i

X 2
i .

I Thus

c∗ = 1− 1

X 2
.

I Once again: Almost the JS estimator, up to degrees of freedom correction!
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Shrinkage

Stein’s Unbiased Risk Estimate

Celebrated result: Dominance of the JS-estimator

I We next use the population version of SURE to prove uniform dominance of the
JS-estimator relative to maximum likelihood.

I Recall that the James-Stein estimator was defined as

θ̂
JS

=

(
1− (k−2)/k

X 2

)
·X .

I Claim: The JS-estimator has uniformly lower risk than θ̂
ML

= X .

Practice problem

Prove this, using Stein’s representation of risk.
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Shrinkage

Stein’s Unbiased Risk Estimate

Solution
I The risk of θ̂

ML
is equal to k .

I For JS, we have

gi(X) = θ̂
JS
i −Xi = − k−2

∑j X 2
j
·Xi , and

∂xi gi(X) =
k−2

∑j X 2
j
·

(
−1 +

2X 2
i

∑j X 2
j

)
.

I Summing over components gives

∑
i

gi(X)2 =
(k−2)2

∑j X 2
j

, and

∑
i

∂xi gi(X) =−(k−2)2

∑j X 2
j

.
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Shrinkage

Stein’s Unbiased Risk Estimate

Solution continued
I Plugging into Stein’s expression for risk then gives

R(θ̂
JS
,θ) =k + E

[
∑

i
gi(X)2 + 2∑

i
∂xi gi(X)

]

=k + E

[
(k−2)2

∑i X 2
i
−2

(k−2)2

∑j X 2
j

]

= k−E

[
(k−2)2

∑i X 2
i

]
.

I The term (k−2)2

∑i X 2
i

is always positive (for k ≥ 3), and thus so is its expectation. Uniform
dominance immediately follows.

I Pretty cool, no?
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Local asymptotic Normality

The Normal means model as asymptotic approximation

I The Normal means model might seem quite special.

I But asymptotically, any sufficiently smooth parametric model is equivalent.

I Formally: The likelihood ratio process of n i.i.d. draws Yi from the distribution

Pn
θ0+h/

√
n,

converges to the likelihood ratio process of one draw X from

N
(

h, I−1
θ0

)
I Here h is a local parameter for the model around θ0, and Iθ0 is the Fisher information

matrix.
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Shrinkage

Local asymptotic Normality

I Suppose that Pθ has a density fθ relative to some measure.
I Recall the following definitions:

I Log-likelihood: `θ (Y ) = log fθ (Y )
I Score: ˙̀

θ (Y ) = ∂θ log fθ (Y )
I Hessian ῭

θ (Y ) = ∂ 2
θ

log fθ (Y )
I Information matrix: Iθ = Varθ ( ˙̀

θ (Y )) =−Eθ [ ῭
θ (Y )]

I Likelihood ratio process:

∏
i

fθ0+h/
√

n(Yi)

fθ0 (Yi)
,

where Y1, . . . ,Yn are i.i.d. Pθ0+h/
√

n distributed.
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Shrinkage

Local asymptotic Normality

Practice problem (Taylor expansion)

I Using this notation, provide a second order Taylor expansion for the log-likelihood
`θ0+h(Y ) with respect to h.

I Provide a corresponding Taylor expansion for the log-likelihood of n i.i.d. draws Yi from
the distribution Pθ0+h/

√
n.

I Assuming that the remainder is negligible, describe the limiting behavior (as n→ ∞) of
the log-likelihood ratio process

log∏
i

f
θ0+h/

√
n(Yi )

fθ0 (Yi )
.
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Local asymptotic Normality

Solution
I Expansion for `θ0+h(Y ):

`θ0+h(Y ) = `θ0(Y ) + h′ · ˙̀
θ0(Y ) + 1

2 ·h · ῭θ0(Y ) ·h + remainder .

I Expansion for the log-likelihood ratio of n i.i.d. draws:

log∏
i

f
θ0+h′/

√
n(Yi)

fθ0 (Yi)
= 1√

n
h′ ·∑

i

˙̀
θ0(Yi) + 1

2n h′ ·∑
i

῭
θ0(Yi) ·h + remainder .

I Asymptotic behavior (by CLT, LLN):

∆n := 1√
n ∑

i

˙̀
θ0(Yi)→d N(0, Iθ0),

1
2n ·∑

i

῭
θ0(Yi)→p −1

2 Iθ0 .
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Shrinkage

Local asymptotic Normality

I Suppose the remainder is negligible.

I Then the previous slide suggests

log∏
i

fθ0+h/
√

n(Yi)

fθ0 (Yi)
=A h′ ·∆− 1

2 h′Iθ0h,

where
∆∼ N (0, Iθ0) .

I Theorem 7.2 in van der Vaart (2000), chapter 7 states sufficient conditions for this to
hold.

I We show next that this is the same likelihood ratio process as for the model

N
(

h, I−1
θ0

)
.
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Local asymptotic Normality

Practice problem

I Suppose X ∼ N
(

h, I−1
θ0

)
I Write out the log likelihood ratio

log
ϕI−1

θ0
(X −h)

ϕI−1
θ0

(X)
.
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Local asymptotic Normality

Solution

I The Normal density is given by

ϕI−1
θ0

(x) =
1√

(2π)k |det(I−1
θ0

)|
· exp

(
−1

2 x ′ · Iθ0 · x
)

I Taking ratios and logs yields

log
ϕI−1

θ0
(X −h)

ϕI−1
θ0

(X)
= h′ · Iθ0 · x− 1

2 h′ · Iθ0 ·h.

I This is exactly the same process we obtained before, with Iθ0 ·X taking the role of ∆.
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Why care

I Suppose that Yi ∼iid Pθ+h/
√

n, and Tn(Y1, . . . ,Yn) is an arbitrary statistic that satisfies

Tn→d Lθ ,h

for some limiting distribution Lθ ,h and all h.

I Then Lθ ,h is the distribution of some (possibly randomized) statistic T (X)!

I This is a (non-obvious) consequence of the convergence of the likelihood ratio
process.

I cf. Theorem 7.10 in van der Vaart (2000).
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Maximum likelihood and shrinkage

I This result applies in particular to T = estimators of θ .

I Suppose that θ̂ ML is the maximum likelihood estimator.

I Then θ̂ ML→d X , and any shrinkage estimator based on θ̂ ML converges in distribution
to a corresponding shrinkage estimator in the limit experiment.
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