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Shrinkage

Agenda
» Setup: the Normal means model
X ~ N(6,I)

and the canonical estimation problem with loss || — 6|2

» The James-Stein (JS) shrinkage estimator.
P> Three ways to arrive at the JS estimator (almost):

1. Reverse regression of 6; on X;.
2. Empirical Bayes: random effects model for 6;.

3. Shrinkage factor minimizing Stein’s Unbiased Risk Estimate.

» Proof that JS uniformly dominates X as estimator of 9.
» The Normal means model as asymptotic approximation.

2/47



Shrinkage

Takeaways for this part of class

» Shrinkage estimators trade off variance and bias.
» In multi-dimensional problems, we can estimate the optimal degree of shrinkage.

» Three intuitions that lead to the JS-estimator:

1. Predict 6; given X; = reverse regression.
2. Estimate distribution of the 6; = empirical Bayes.
3. Find shrinkage factor that minimizes estimated risk.

» Some calculus allows us to derive the risk of JS-shrinkage
= better than MLE, no matter what the true 0 is.

» The Normal means model is more general than it seems: large sample approximation
to any parametric estimation problem.
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Shrinkage

LThe Normal means model

The Normal means model
Setup

> 6 cRK

> &~ N(0,l)

> X=0+¢e~N(0,I)
> Estimator: 8 = 6(X)
» Loss: squared error

L(6,6) =Y (6, 6,)?
i
» Risk: mean squared error

R(@,@):Ee[ 99)] ZEg[(O e)}

4/47



Shrinkage

LThe Normal means model

Two estimators

» Canonical estimator: maximum likelihood,

» Risk function

» James-Stein shrinkage estimator
~JS k—2)/k
0 = (1——( _)/ )-X.

» Celebrated result: uniform risk dominance; for all 0

R(6%°.6) < R(B"™,0) = k.

5/47



Shrinkage

L Regression perspective

First motivation of JS: Regression perspective

> We will discuss three ways to motivate the JS-estimator
(up to degrees of freedom correction).

» Consider estimators of the form

b=c X
or
6,=a+b-X.
» How to choose c or (a, b)?
» Two particular possibilities:
1. Maximum likelihood: ¢ =1

2. James-Stein: ¢ = (1 — (k;??/k>
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Shrinkage

[ Regression perspective

Practice problem (Infeasible estimator)

» Suppose you knew Xi,...,Xx as well as 0y,..., 6,
» but are constrained to use an estimator of the form 5, =c-X.

1. Find the value of ¢ that minimizes loss.
2. For estimators of the form 5, = a+ b- X;, find the values of a and b that minimize loss.
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Shrinkage

[ Regression perspective

Solution

» First problem:
¢ =argmin Z(CX, —6)?
c i

» Least squares problem!

» First order condition:
0=Y(c"-Xi—6)-X.
i

» Solution
«_ LXibi

¢t = :
X X?
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Shrinkage

L Regression perspective

Solution continued

» Second problem:
(a*,b") = argmin Z(a—i— b-X;— ;)2
a,b i

» |east squares problem again!
» First order conditions:

0=) (a"+b"-X;—6)

]
0=) (a"+b"-X—6)-X.
i
» Solution _ _
Y(Xi—X)-(6,—6) _ sxo

* * * Y _ 0
Ve - A
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LRegression perspective

Regression and reverse regression

> Recall X; = 0;+ ¢, E[8i|9,'] =0, Var(S/) =1.
> Regression of X on 6: Slope

S, S,
X2 0 1 626 1
S S
0 6

» For optimal shrinkage, we want to predict 0 given X, not the other way around!
> Reverse regression of 6 on X: Slope

2 2
Sxe Sg + Seo _ Sp
sy S3+2s9+s2  s3+1

> Interpretation: “signal to (signal plus noise) ratio” < 1.
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[ Regression perspective

[llustration
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Shrinkage

[ Regression perspective

Expectations

Practice problem

1. Calculate the expectations of

and
2. Calculate the expected numerator and denominator of ¢* and b*.
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Shrinkage

[ Regression perspective

Solution
> E[X]=6
> E[X?]=62+1
> E[2]=02—0"+1=s3+1
> c* = (X0)/(X?), and E[X8] = 62. Thus

> b* = sxg/s%, and E[sxg] = s3. Thus

*N
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[ Regression perspective

Feasible analog estimators

Practice problem

Propose feasible estimators of ¢* and b*.
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[ Regression perspective

A solution

» Recall:
__ X6
| 4 C*_ﬁ_
> Oc~0,e2~1.
» Since X; = 6, + ¢,

X0=X2—Xe=X2—0e—€e2~ X2—1
» Thus:

., X2—0g—e X2-1
c = — ~ — =1-

1
X2 X2 e ¢
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[ Regression perspective

Solution continued

» Similarly:
» * _ Sx6
"=
> Spe ~ 0,82~ 1.
» Since X; = 6; + €,
2 2 2?1
Sxg = SX Sxe = SX Soe SE ~ SX
» Thus: » » »
sk Sx Sx
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Shrinkage

LRegression perspective

James-Stein shrinkage

>
>
>

We have almost derived the James-Stein shrinkage estimator.

Only difference: degree of freedom correction
Optimal corrections:
k—2)/k
sy k=2)/k
X2
and
pis _q_ (k=3)/k
sk
Note: if 6 =0, then ¥, X? ~ x2.
Then, by properties of inverse x? distributions

1 1
Eles|=—,
YiX? k-2
so that E [¢*°] = 0.
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Shrinkage

L Regression perspective

Positive part JS-shrinkage

> The estimated shrinkage factors can be negative.
> ¢S <oiff
Y XP<k-2.
i

> Better estimator: restrict to ¢ > 0.
» “Positive part James-Stein estimator:”

~ k—2)/k
9JS+:max (0,1 —#) -X

X2
» Dominates James-Stein.
> We will focus on the JS-estimator for analytical tractability.
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Shrinkage

LParametric empirical Bayes

Second motivation of JS: Parametric empirical Bayes

Setup

vvyyypy

vy

As before: 6 € R¥

X|6 ~ N(6,Ix)

Loss L(6,0) = X,(6; — 6,2

Now add an additional conceptual layer:

Think of 6; as i.i.d. draws from some distribution.

“Random effects vs. fixed effects”
Let's consider 6; ~™ N(0,72),
where 72 is unknown.
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|—Parametric empirical Bayes

Practice problem

» Derive the marginal distribution of X given 72.

» Find the maximum likelihood estimator of 72.

» Find the conditional expectation of 8 given X and 72.

» Plug in the maximum likelihod estimator of 72 to get the empirical Bayes estimator of 6.
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LParametric empirical Bayes

Solution

> Marginal distribution:
X~ N(0,(t2+1)-l)
» Maximum likelihood estimator of 72:

'EA2=argmax —12 log(t2+1)+ X7
t2 2 i

(724+1)
=X2 1
» Conditional expectation of 6; given X;, 7°:
0 — M _ T_z X
! Var(X;) 241 T

» Plugging in 1/7\2:

~ 1
X2 21/47
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LParametric empirical Bayes

General parametric empirical Bayes
Setup

> Data X,

parameters 6,

hyper-parameters 1
» Likelihood

X|6,n ~ fX\G
» Family of priors
9|17 ~ f6|n

» Limiting cases:

» 0 = n: Frequentist setup.
» 1 has only one possible value: Bayesian setup.
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Shrinkage

LParametric empirical Bayes

Empirical Bayes estimation

» Marginal likelihood
fxa(xlm) = [ B (x16)fopy (61m)dtE.

Has simple form when family of priors is conjugate.
» Estimator for hyper-parameter 1: marginal MLE

n = argmax fyjp (x|n).
n
» Estimator for parameter 0: pseudo-posterior expectation

6 =E[0|X =x,n =1].
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Shrinkage
LStein’s Unbiased Risk Estimate

Third motivation of JS: Stein’s Unbiased Risk Estimate

P Stein’s lemma (simplified version):
» Suppose X ~ N(0, ).
» Suppose g(-) : R¥ — R is differentiable and E[|g’(X)|] < oo.
» Then

E[(X—6)-g(X)] = E[Vg(X)].
> Note:

» 0 shows up in the expression on the LHS, but not on the RHS
> Unbiased estimator of the RHS: Vg(X)
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|—Stein's Unbiased Risk Estimate

Practice problem

Prove this.
Hints:

1. Show that the standard Normal density ¢(-) satisfies

¢'(x) = —x-9(x).

2. Consider each component i separately and use integration by parts.
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Shrinkage
LStein’s Unbiased Risk Estimate

Solution

> Recall that ¢(x) = (27) %% - exp(—x?/2).
Differentiation immediately yields the first claim.
» Consider the component i = 1; the others follow similarly. Then

E[dx, 9(X)] =

k

:/ / I 9(X1,. .., Xk) @(x1 — 61)- [ o(xi — 6))ax1 ... dxk
Xo,... Xk J Xq i=2
k

:/ / 90Xt X6 (=3 @(x1 — 01))- T @ (x — 6 ... e
Xo,... Xk J Xq i=2
k

:/ g(x1,...,xk) '(X1 761)([)(X1 791)'H(p(X,'79,')dX1...ka
X,... Xk J Xq i=2

=E[(X1 — 61)- g(X)].
» Collecting the components i =1,... k yields

E[(X—G)-Q(X)] :E[Vg(X)]. 26/47



Shrinkage
|—Stein's Unbiased Risk Estimate

Stein’s representation of risk

> Consider a general estimator for 6 of the form 6 = §(X) = X+ g(X), for differentiable

g.
» Recall that the risk function is defined as

R(6,0) =Y E[(6;:— 6:?].
i
» We will show that this risk function can be rewritten as

R(6,6) = k+ Y (E[0:(X)?] +2E[,gi(X)]) -

Practice problem

> Interpret this expression.
» Propose an unbiased estimator of risk, based on this expression.
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Shrinkage
LStein’s Unbiased Risk Estimate

Answer

» The expression of risk has 3 components:

1. K is the risk of the canonical estimator 0= X, corresponding to g = 0.
2. Y, E[gi(X)?] = ¥ E[(6; — X;)?] is the sample sum of squared errors.
3. Y E[0xgi(X)] can be thought of as a penalty for overfitting.

> We thus can think of this expression as giving a “penalized least squares” objective.
» The sample analog expression gives “Stein’s Unbiased Risk Estimate” (SURE)

R= k+Y, (51—)(;)2+2'Z(9X,g,-(X).
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Shrinkage
|—Stein's Unbiased Risk Estimate

> We will use Stein’s representation of risk in 2 ways:

1. To derive feasible optimal shrinkage parameter using its sample analog (SURE).
2. To prove uniform dominance of JS using population version.

Practice problem

Prove Stein’s representation of risk.
Hints:

> Add and subtract X; in the expression defining R(6, 6).
> Use Stein’s lemma.
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Shrinkage
LStein's Unbiased Risk Estimate

Solution

R(6) =Y. E[(6;— Xi+Xi— 6,)°]

=Y E[(X—6)° HO-X)  +2(6-X)- (X~ 6)]
=y +E[gi(X)?]  +2E[gi(X)- (X 6)]
=Y +E[gi(X)?] +2E [94,9i(X)],

where Stein’s lemma was used in the last step.
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|—Stein's Unbiased Risk Estimate

Using SURE to pick the tuning parameter

P First use of SURE: To pick tuning parameters, as an alternative to cross-validation or
marginal likelihood maximization.

» Simple example: Linear shrinkage estimation

§:C-X.

Practice problem

» Calculate Stein’s unbiased risk estimate for 5
» Find the coefficient ¢ minimizing estimated risk.
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Shrinkage
LStein’s Unbiased Risk Estimate

Solution

> When§=c~AX,
theng(X)=60—-X=(c—1)-X,
and dy.gi(X) =c—1.

» Estimated risk:

~

R=k+(1—c)?- Y X?+2k-(c—1).
i

P First order condition for minimizing R:
k=(1-c")-) X
i
» Thus
. 1
c=1——.

X2

» Once again: Almost the JS estimator, up to degrees of freedom correction!
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Shrinkage
|—Stein's Unbiased Risk Estimate

Celebrated result: Dominance of the JS-estimator

> We next use the population version of SURE to prove uniform dominance of the
JS-estimator relative to maximum likelihood.

» Recall that the James-Stein estimator was defined as

8% = (1 —%) X.

~ML
» Claim: The JS-estimator has uniformly lower risk than 8 = X.

Practice problem

Prove this, using Stein’s representation of risk.
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Shrinkage
LStein's Unbiased Risk Estimate

Solution

~ML
> Therisk of 8 s equal to k.
» For JS, we have

~JS k—2
9(X)=6; —X = —=z X and

' L XF

k—2 2X?

9 0i(X) = k=2 (4025,
- %X %X
» Summing over components gives
o (k—2)
Zi,gi(x) T L and
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Shrinkage
LStein’s Unbiased Risk Estimate

Solution continued

P Plugging into Stein’s expression for risk then gives

R(6°,0) =k + E Zg, +2Zax,g,(x

(k=2 (k=2

THEE e TPy
B (k—2)?
_k_E[ Y X? ]

> The term (Z Xg is always positive (for k > 3), and thus so is its expectation. Uniform
dominance |mmed|ately follows.
» Pretty cool, no?
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L Local asymptotic Normality

The Normal means model as asymptotic approximation

v

The Normal means model might seem quite special.
But asymptotically, any sufficiently smooth parametric model is equivalent.
Formally: The likelihood ratio process of ni.i.d. draws Y; from the distribution

n
6o+h/\/n’

converges to the likelihood ratio process of one draw X from

—1
N (h1g)
Here his a local parameter for the model around 6y, and /g, is the Fisher information
matrix.
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Shrinkage
LLocaI asymptotic Normality

» Suppose that Py has a density fy relative to some measure.
» Recall the following definitions:

> Log-likelihood: £¢(Y) = logfy(Y)

> Score: Lg(Y) = dglogfy(Y)

> Hessian (o(Y) = d3logfy(Y)

» Information matrix: lg = Varg(£g(Y)) = —Eg[le(Y)]
» Likelihood ratio process:

H Tog+nyval Yi)
. feo(yi) ’

where Yi,..., Yy areiid. Py 4/ /7 distributed.
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Shrinkage
I—Local asymptotic Normality

Practice problem (Taylor expansion)

» Using this notation, provide a second order Taylor expansion for the log-likelihood
Lo,+n(Y) with respect to h.
> Provide a corresponding Taylor expansion for the log-likelihood of ni.i.d. draws Y; from
the distribution Pg /. /7-
» Assuming that the remainder is negligible, describe the limiting behavior (as n — o) of
the log-likelihood ratio process
og [Ty
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LLocaI asymptotic Normality

Solution

» Expansion for £g,4(Y):
Cogn(Y) = Loy(Y)+H Loy (Y)+ 3 - h-Lo,(Y) - h+ remainder.
» Expansion for the log-likelihood ratio of ni.i.d. draws:
lo H "OJ;:/(‘Q(% = h Zﬁgo )+ a-h Zﬁgo ) h+ remainder.
P> Asymptotic behavior (by CLT, LLN):
ZEQO ) =% N(0,1q,),

Z;'ZE% ,' —P _5’60-
i
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L Local asymptotic Normality

P Suppose the remainder is negligible.
» Then the previous slide suggests

f Yi)
lo H 9o+h/f( _A H.-A— %hllgoh,

where
A~ N(O,Igo).

> Theorem 7.2 in van der Vaart (2000), chapter 7 states sufficient conditions for this to
hold.

» We show next that this is the same likelihood ratio process as for the model

1
N (htg')-
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|—Local asymptotic Normality

Practice problem

» Suppose X ~ N (h, I9‘01)
» Write out the log likelihood ratio
‘Pl‘;o1 (X—h)

log —0— "
(Plgo‘ (X)
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Shrinkage
LLocaI asymptotic Normality

Solution

» The Normal density is given by

1
q),;(x)— ; exp(—le-lgo X)
’ (2m)*| det(lq)|
» Taking ratios and logs yields
| (P'E‘;(X_h) H-1 IH -lg,-h
IR
0

> This is exactly the same process we obtained before, with /g, - X taking the role of A.
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L Local asymptotic Normality

Why care

» Suppose that Y; ~ P11/ /> @nd Tn(Y1,..., Yn) is an arbitrary statistic that satisfies
Th—% Lon

for some limiting distribution Lg , and all h.
» Then Lg p is the distribution of some (possibly randomized) statistic 7(X)!

» This is a (non-obvious) consequence of the convergence of the likelihood ratio
process.

» cf. Theorem 7.10 in van der Vaart (2000).
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LLocaI asymptotic Normality

Maximum likelihood and shrinkage

» This result applies in particular to T = estimators of 6.
> Suppose that O™ is the maximum likelihood estimator.

> Then OM. —9 X, and any shrinkage estimator based on 8" converges in distribution
to a corresponding shrinkage estimator in the limit experiment.
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