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Statistical Decision Theory

Takeaways for this part of class

1. A general framework to think about what makes a “good” estimator, test, etc.

2. How the foundations of statistics relate to those of microeconomic theory.

3. In what sense the set of Bayesian estimators contains most “reasonable” estimators.
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Statistical Decision Theory

Examples of decision problems

I Decide whether or not the hypothesis of no racial discrimination in job interviews is true

I Provide a forecast of the unemployment rate next month

I Provide an estimate of the returns to schooling

I Pick a portfolio of assets to invest in

I Decide whether to reduce class sizes for poor students

I Recommend a level for the top income tax rate
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Statistical Decision Theory

Agenda

I Basic definitions

I Optimality criteria

I Relationships between optimality criteria

I Analogies to microeconomics

I Two justifications of the Bayesian approach
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Statistical Decision Theory

Basic definitions

Components of a general statistical decision problem

I Observed data X

I A statistical decision a

I A state of the world θ

I A loss function L(a,θ) (the negative of utility)

I A statistical model f (X |θ)

I A decision function a = δ (X)
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Statistical Decision Theory

Basic definitions

How they relate

I underlying state of the world θ

⇒ distribution of the observation X .

I decision maker: observes X ⇒ picks a decision a

I her goal: pick a decision that minimizes loss L(a,θ)
(θ unknown state of the world)

I X is useful⇔ reveals some information about θ

⇔ f (X |θ) does depend on θ .

I problem of statistical decision theory:
find decision functions δ which “make loss small.”
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Statistical Decision Theory

Basic definitions

Graphical illustration

state of the world
θ

observed data
X

decision
a

 loss
  L(a,θ)

decision function
a=δ(X)

statistical
model

X~f(x,θ)
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Statistical Decision Theory

Basic definitions

Examples

I investing in a portfolio of assets:
I X : past asset prices
I a: amount of each asset to hold
I θ : joint distribution of past and future asset prices
I L: minus expected utility of future income

I decide whether or not to reduce class size:
I X : data from project STAR experiment
I a: class size
I θ : distribution of student outcomes for different class sizes
I L: average of suitably scaled student outcomes, net of cost
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Statistical Decision Theory

Basic definitions

Practice problem

For each of the examples on slide 2, what are

I the data X ,

I the possible actions a,

I the relevant states of the world θ , and

I reasonable choices of loss function L?
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Statistical Decision Theory

Basic definitions

Loss functions in estimation

I goal: find an a

I which is close to some function µ of θ .

I for instance: µ(θ) = E[X ]

I loss is larger if the difference between our estimate and the true value is larger

Some possible loss functions:

1. squared error loss,
L(a,θ) = (a−µ(θ))2

2. absolute error loss,
L(a,θ) = |a−µ(θ)|
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Statistical Decision Theory

Basic definitions

Loss functions in testing

I goal: decide whether H0 : θ ∈Θ0 is true

I decision a ∈ {0,1} (accept / reject)

Possible loss function:

L(a,θ) =


1 if a = 1, θ ∈Θ0

c if a = 0, θ /∈Θ0

0 else.

truth
decision a θ ∈Θ0 θ /∈Θ0

0 0 c
1 1 0
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Statistical Decision Theory

Basic definitions

Risk function

R(δ ,θ) = Eθ [L(δ (X),θ)].

I expected loss of a decision function δ

I R is a function of the true state of the world θ .

I crucial intermediate object in evaluating a decision function

I small R⇔ good δ

I δ might be good for some θ , bad for other θ .

I Decision theory deals with this trade-off.
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Statistical Decision Theory

Basic definitions

Example: estimation of mean

I observe X ∼ N(µ,1)

I want to estimate µ

I L(a,θ) = (a−µ(θ))2

I δ (X) = α + β ·X

Practice problem (Estimation of means)

Find the risk function for this decision problem.
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Statistical Decision Theory

Basic definitions

Variance / Bias trade-off

Solution:

R(δ ,µ) = E[(δ (X)−µ)2]

= Var(δ (X)) + Bias(δ (X))2

= β
2 Var(X) + (α + βE[X ]−E[X ])2

= β
2 + (α + (β −1)µ)2.

I equality 1 and 2: always true for squared error loss

I Choosing β (and α) involves a trade-off of bias and variance,

I this trade-off depends on µ .
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Statistical Decision Theory

Optimality criteria

Optimality criteria

I Ranking provided by the risk function is multidimensional:

I a ranking of performance between decision functions for every θ

I To get a global comparison of their performance, have to aggregate this ranking into a
global ranking.

I preference relationship on space of risk functions
⇒ preference relationship on space of decision functions
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Statistical Decision Theory

Optimality criteria

Illustrations for intuition
I Suppose θ can only take two values,
I ⇒ risk functions are points in a 2D-graph,
I each axis corresponds to R(δ ,θ) for θ = θ0,θ1.

R(.,θ1)

R(.,θ0)
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Statistical Decision Theory

Optimality criteria

Three approaches to get a global ranking

1. partial ordering:
a decision function is better relative to another
if it is better for every θ

2. complete ordering, weighted average:
a decision function is better relative to another
if a weighted average of risk across θ is lower
weights ∼ prior distribution

3. complete ordering, worst case:
a decision function is better relative to another
if it is better under its worst-case scenario.
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Statistical Decision Theory

Optimality criteria

Approach 1: Admissibility

Dominance:
δ is said to dominate another function δ ′ if

R(δ ,θ)≤ R(δ
′,θ)

for all θ , and
R(δ ,θ) < R(δ

′,θ)

for at least one θ .

Admissibility:
decisions functions which are not dominated are called admissible,
all other decision functions are inadmissible.
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Statistical Decision Theory

Optimality criteria

R(.,θ1)

R(.,θ0)

feasible

admissible
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Statistical Decision Theory

Optimality criteria

I admissibility ∼ “Pareto frontier”

I Dominance only generates a partial ordering of decision functions.

I in general: many different admissible decision functions.
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Statistical Decision Theory

Optimality criteria

Practice problem

I you observe Xi ∼iid N(µ,1), i = 1, . . . ,n for n > 1

I your goal is to estimate µ , with squared error loss
I consider the estimators

1. δ (X) = X1

2. δ (X) = 1
n ∑i Xi

I can you show that one of them is inadmissible?
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Statistical Decision Theory

Optimality criteria

Approach 2: Bayes optimality

I natural approach for economists:

I trade off risk across different θ

I by assigning weights π(θ) to each θ

Integrated risk:

R(δ ,π) =
∫

R(δ ,θ)π(θ)dθ .
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Statistical Decision Theory

Optimality criteria

Bayes decision function:
minimizes integrated risk,

δ
∗ = argmin

δ

R(δ ,π).

I Integrated risk ∼ linear indifference planes in space of risk functions

I prior ∼ normal vector for indifference planes
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Statistical Decision Theory

Optimality criteria

R(.,θ1)

R(.,θ0)

π(θ)R(δ*,.)
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Statistical Decision Theory

Optimality criteria

Decision weights as prior probabilities

I suppose 0 <
∫

π(θ)dθ < ∞

I then wlog
∫

π(θ)dθ = 1 (normalize)

I if additionally π ≥ 0

I then π is called a prior distribution
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Statistical Decision Theory

Optimality criteria

Posterior

I suppose π is a prior distribution

I posterior distribution:

π(θ |X) =
f (X |θ)π(θ)

m(X)

I normalizing constant = prior likelihood of X

m(X) =
∫

f (X |θ)π(θ)dθ
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Statistical Decision Theory

Optimality criteria

Practice problem

I you observe X ∼ N(θ ,1)

I consider the prior
θ ∼ N(0,τ2)

I calculate
1. m(X)
2. π(θ |X)
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Statistical Decision Theory

Optimality criteria

Posterior expected loss

R(δ ,π|X) :=
∫

L(δ (X),θ)π(θ |X)dθ

Proposition

Any Bayes decision function δ ∗

can be obtained by minimizing R(δ ,π|X)
through choice of δ (X) for every X .

Practice problem

Show that this is true.

Hint: show first that
R(δ ,π) =

∫
R(δ (X),π|X)m(X)dX .
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Statistical Decision Theory

Optimality criteria

Bayes estimator with quadratic loss

I assume quadratic loss, L(a,θ) = (a−µ(θ))2

I posterior expected loss:

R(δ ,π|X) = Eθ |X [L(δ (X),θ)|X ]

= Eθ |X
[
(δ (X)−µ(θ))2|X

]
= Var(µ(θ)|X) + (δ (X)−E[µ(θ)|X ])2

I Bayes estimator minimizes posterior expected loss⇒

δ
∗(X) = E[µ(θ)|X ].
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Statistical Decision Theory

Optimality criteria

Practice problem

I you observe X ∼ N(θ ,1)

I your goal is to estimate θ , with squared error loss

I consider the prior
θ ∼ N(0,τ2)

I for any δ , calculate
1. R(δ (X),π|X)
2. R(δ ,π)
3. the Bayes optimal estimator δ ∗
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Statistical Decision Theory

Optimality criteria

Practice problem

I you observe Xi iid., Xi ∈ {1,2, . . . ,k},
P(Xi = j) = θj

I consider the so called Dirichlet prior, for αj > 0:

π(θ) = const. ·
k

∏
j=1

θ
αj−1
j

I calculate π(θ |X)

I look up the Dirichlet distribution on Wikipedia

I calculate E[θ |X ]
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Statistical Decision Theory

Optimality criteria

Approach 3: Minimaxity

I Don’t want to pick a prior?

I Can instead always assume the worst.

I worst = θ which maximizes risk

worst-case risk:
R(δ ) = sup

θ

R(δ ,θ).

minimax decision function:

δ
∗ = argmin

δ

R(δ ) = argmin
δ

sup
θ

R(δ ,θ).

(does not always exist!)
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Statistical Decision Theory

Optimality criteria

R(.,θ1)

R(.,θ0)

R(δ*,.)
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Statistical Decision Theory

Some relationships between these optimality criteria

Some relationships between these optimality criteria
Proposition (Minimax decision functions)

If δ ∗ is admissible with constant risk,
then it is a minimax decision function.

Proof:

I picture!
I Suppose that δ ′ had smaller worst-case risk than δ ∗

I Then
R(δ

′,θ ′)≤ sup
θ

R(δ
′,θ) < sup

θ

R(δ
∗,θ) = R(δ

∗,θ ′),

I used constant risk in the last equality
I This contradicts admissibility.
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Statistical Decision Theory

Some relationships between these optimality criteria

I despite this result,
minimax decision functions are very hard to find

I Example:
I if X ∼ N(µ, I), dim(X)≥ 3, then
I X has constant risk (mean squared error) as estimator for µ

I but: X is not an admissible estimator for µ

therefore not minimax
I We will discuss dominating estimator in the next part of class.
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Statistical Decision Theory

Some relationships between these optimality criteria

Proposition (Bayes decisions are admissible)

Suppose:

I δ ∗ is the Bayes decision function

I π(θ) > 0 for all θ , R(δ ∗,π) < ∞

I R(δ ∗,θ) is continuous in θ

Then δ ∗ is admissible.

(We will prove the reverse of this statement in the next section.)
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Statistical Decision Theory

Some relationships between these optimality criteria

Sketch of proof:

I picture!

I Suppose δ ∗ is not admissible

I ⇒ dominated by some δ ′

i.e. R(δ ′,θ)≤ R(δ ∗,θ) for all θ with strict inequality for some θ

I Therefore

R(δ
′,π) =

∫
R(δ

′,θ)π(θ)dθ <
∫

R(δ
∗,θ)π(θ)dθ = R(δ

∗,π)

I This contradicts δ ∗ being a Bayes decision function.
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Statistical Decision Theory

Some relationships between these optimality criteria

Proposition (Bayes risk and minimax risk)

The Bayes risk
R(π) := infδ R(δ ,π)
is never larger than the minimax risk
R := infδ supθ R(δ ,θ).

Proof:

R(π) = inf
δ

R(δ ,π)

≤ sup
π

inf
δ

R(δ ,π)

≤ inf
δ

sup
π

R(δ ,π)

≤ inf
δ

sup
θ

R(δ ,θ) = R.

If there exists a prior π∗ such that R(π) = R, it is called the least favorable distribution.
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Statistical Decision Theory

Analogies to microeconomics

Analogies to microeconomics

1) Welfare economics

statistical decision theory social welfare analysis
different parameter values θ different people i
risk R(.,θ) individuals’ utility ui(.)

dominance Pareto dominance
admissibility Pareto efficiency
Bayes risk social welfare function
prior welfare weights (distributional preferences)
minimaxity Rawlsian inequality aversion
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Statistical Decision Theory

Analogies to microeconomics

2) choice under uncertainty / choice in strategic interactions

statistical decision theory strategic interactions
dominance of decision functions dominance of strategies
Bayes risk expected utility
Bayes optimality expected utility maximization
minimaxity (extreme) ambiguity aversion
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Statistical Decision Theory

Two justifications of the Bayesian approach

Two justifications of the Bayesian approach
justification 1 – the complete class theorem

I last section: every Bayes decision function is admissible
(under some conditions)

I the reverse also holds true (under some conditions):
every admissible decision function is Bayes,
or the limit of Bayes decision functions

I can interpret this as:
all reasonable estimators are Bayes estimators

I will state a simple version of this result
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Statistical Decision Theory

Two justifications of the Bayesian approach

Preliminaries

I set of risk functions that correspond to some δ is the risk set,

R := {r(.) = R(.,δ ) for some δ}

I will assume convexity of R
– no big restriction, since we can always randomly “mix” decision functions

I a class of decision functions δ is a complete class if it contains every admissible
decision function δ ∗
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Statistical Decision Theory

Two justifications of the Bayesian approach

Theorem (Complete class theorem)

Suppose

I the set Θ of possible values for θ is compact

I the risk set R is convex

I all decision functions have continuous risk

Then the Bayes decision functions constitute a complete class:
For every admissible decision function δ ∗, there exists a prior distribution π such that δ ∗ is
a Bayes decision function for π .
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Statistical Decision Theory

Two justifications of the Bayesian approach

R(.,θ1)

R(.,θ0)

π(θ)R(δ,.)
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Statistical Decision Theory

Two justifications of the Bayesian approach

Intuition for the complete class theorem

I any choice of decision procedure has to trade off risk across θ

I slope of feasible risk set
= relative “marginal cost” of decreasing risk at different θ

I pick a risk function on the admissible frontier

I can rationalize it with a prior
= “marginal benefit” of decreasing risk at different θ

I for example, minimax decision rule:
rationalizable by least favorable prior
slope of feasible set at constant risk admissible point

I analogy to social welfare: any policy choice or allocation corresponds to distributional
preferences / welfare weights
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Statistical Decision Theory

Two justifications of the Bayesian approach

Proof of complete class theorem:

I application of the separating hyperplane theorem,
to the space of functions of θ , with the inner product

〈f ,g〉=
∫

f (θ)g(θ)dθ .

I for intuition: focus on binary θ , θ ∈ {0,1},
and 〈f ,g〉= ∑θ f (θ)g(θ)

I Let δ ∗ be admissible. Then R(.,δ ∗) belongs to the lower boundary of R.

I convexity of R, separating hyperplane theorem
separating R from (infeasible) risk functions dominating δ ∗
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Statistical Decision Theory

Two justifications of the Bayesian approach

I ⇒ there exists a function π̃ (with finite integral) such that for all δ

〈R(.,δ ∗), π̃〉 ≤ 〈R(.,δ ), π̃〉.

I by construction π̃ ≥ 0

I thus π := π̃/
∫

π̃ defines a prior distribution.

I δ ∗ minimizes
〈R(.,δ ∗),π〉= R(δ

∗,π)

among the set of feasible decision functions

I and is therefore the optimal Bayesian decision function for the prior π .
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Statistical Decision Theory

Two justifications of the Bayesian approach

justification 2 – subjective probability theory

I going back to Savage (1954) and Anscombe and Aumann (1963).

I discussed in chapter 6 of
Mas-Colell, A., Whinston, M., and Green, J. (1995), Microeconomic theory, Oxford
University Press

I and maybe in Econ 2010 / Econ 2059.
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Statistical Decision Theory

Two justifications of the Bayesian approach

I Suppose a decision maker ranks risk functions R(.,δ ) by a preference relationship
�

I properties � might have:
1. completeness: any pair of risk functions can be ranked
2. monotonicity: if the risk function R is (weakly) lower than R′ for all θ , than R is (weakly)

preferred
3. independence:

R1 � R2⇔ αR1 + (1−α)R3 � αR2 + (1−α)R3

for all R1,R2,R3 and α ∈ [0,1]

I Important: this independence has nothing to do with statistical independence
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Statistical Decision Theory

Two justifications of the Bayesian approach

Theorem

If � is complete, monotonic, and satisfies independence, then there exists a prior π such
that

R(.,δ 1)� R(.,δ 2)⇔ R(π,δ 1)≤ R(π,δ 2).

Intuition of proof:

I Independence and completeness imply linear, parallel indifference sets

I monotonicity makes sure prior is non-negative
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Statistical Decision Theory

Two justifications of the Bayesian approach

Sketch of proof:
Using independence repeatedly, we can show that for all R1,R2,R3 ∈ RX , and all α > 0,

1. R1 � R2 iff αR1 � αR2,

2. R1 � R2 iff R1 + R3 � R2 + R3,

3. {R : R � R1}= {R : R � 0}+ R1,

4. {R : R � 0} is a convex cone.

5. {R : R � 0} is a half space.

The last claim requires completeness. It immediately implies the existence of π .
Monotonicity implies that π is not negative.
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Statistical Decision Theory

Two justifications of the Bayesian approach

Remark

I personally, I’m more convinced by the complete class theorem
than by normative subjective utility theory

I admissibility seems a very sensible requirement

I whereas “independence” of the preference relationship seems more up for debate
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Statistical Decision Theory

Two justifications of the Bayesian approach
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