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Introduction

The goal of many experiments is to inform policy choices:

1. Job search assistance for refugees:
• Treatments: Information, incentives, counseling, ...
• Goal: Find a policy that helps as many refugees as possible

to find a job.

2. Clinical trials:
• Treatments: Alternative drugs, surgery, ...
• Goal: Find the treatment that maximize the survival rate of patients.

3. Online A/B testing:
• Treatments: Website layout, design, search filtering, ...
• Goal: Find the design that maximizes purchases or clicks.

4. Testing product design:
• Treatments: Various alternative designs of a product.
• Goal: Find the best design in terms of user willingness to pay.
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Example

• There are 3 treatments d .

• d = 1 is best, d = 2 is a close second, d = 3 is clearly worse.
(But we don’t know that beforehand.)

• You can potentially run the experiment in 2 waves.

• You have a fixed number of participants.

• After the experiment, you pick the best performing treatment
for large scale implementation.

How should you design this experiment?

1. Conventional approach.

2. Bandit approach.

3. Our approach.
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Conventional approach

Split the sample equally between the 3 treatments,
to get precise estimates for each treatment.

• After the experiment, it might still be hard to distinguish whether
treatment 1 is best, or treatment 2.

• You might wish you had not wasted a third of your observations on
treatment 3, which is clearly worse.

The conventional approach is

1. good if your goal is to get a precise estimate for each treatment.

2. not optimal if your goal is to figure out the best treatment.
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Bandit approach

Run the experiment in 2 waves
split the first wave equally between the 3 treatments.
Assign everyone in the second (last) wave to
the best performing treatment from the first wave.

• After the experiment, you have a lot of information on the d that performed best
in wave 1, probably d = 1 or d = 2,

• but much less on the other one of these two.

• It would be better if you had split observations equally between 1 and 2.

The bandit approach is

1. good if your goal is to maximize the outcomes of participants.

2. not optimal if your goal is to pick the best policy.
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Our approach

Run the experiment in 2 waves
split the first wave equally between the 3 treatments.
Split the second wave between
the two best performing treatments from the first wave.

• After the experiment you have the maximum amount of information
to pick the best policy.

Our approach is

1. good if your goal is to pick the best policy,

2. not optimal if your goal is to estimate the effect of all treatments,
or to maximize the outcomes of participants.

Let θd denote the average outcome
that would prevail if everybody was assigned to treatment d .
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What is the objective of your experiment?
1. Getting precise treatment effect estimators, powerful tests:

minimize
∑
d

(θ̂d − θd)2

⇒ Standard experimental design recommendations.

2. Maximizing the outcomes of experimental participants:

maximize
∑
i

θDi

⇒ Multi-armed bandit problems.

3. Picking a welfare maximizing policy after the experiment:

maximize θd
∗
,

where d∗ is chosen after the experiment.
⇒ This talk.
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Preview of findings

• Optimal adaptive designs improve expected welfare.
• Features of optimal treatment assignment:

• Shift toward better performing treatments over time.
• But don’t shift as much as for Bandit problems:

We have no “exploitation” motive!

• Fully optimal assignment is computationally challenging in large samples.
• We propose a simple modified Thompson algorithm.

• Show that it dominates alternatives in calibrated simulations.
• Prove theoretically that it is rate-optimal for our problem.
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Literature
• Adaptive designs in clinical trials:

• Berry (2006).

• Bandit problems:
• Gittins index (optimal solution to some bandit problems): Weber et al. (1992).
• Regret bounds for bandit problems: Bubeck and Cesa-Bianchi (2012).
• Thompson sampling: Russo et al. (2018).

• Reinforcement learning:
• Ghavamzadeh et al. (2015),
• Sutton and Barto (2018).

• Best arm identification:
• Russo (2016).

Key reference for our theory results.

• Empirical examples for our simulations:
• Ashraf et al. (2010),
• Bryan et al. (2014),
• Cohen et al. (2015).
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Setup

• Waves t = 1, . . . ,T , sample sizes Nt .

• Treatment D ∈ {1, . . . , k}, outcomes Y ∈ {0, 1}.
• Potential outcomes Y d .

• Repeated cross-sections:
(Y 0

it , . . . ,Y
k
it ) are i.i.d. across both i and t.

• Average potential outcome:
θd = E [Y d

it ].

• Key choice variable:
Number of units ndt assigned to D = d in wave t.

• Outcomes:
Number of units sdt having a “success” (outcome Y = 1).
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Treatment assignment, outcomes, state space

• Treatment assignment in wave t: nt = (n1
t , . . . , n

k
t ).

• Outcomes of wave t: st = (s1
t , . . . , s

k
t ).

• Cumulative versions:

Mt =
∑
t′≤t

Nt′ , mt =
∑
t′≤t

nt , r t =
∑
t′≤t

st .

• Relevant information for the experimenter in period t + 1
is summarized by mt and r t .

• Total trials for each treatment, total successes.

10 / 41



Design objective

• Policy objective SW (d):
Average outcome Y , net of the cost of treatment.

• Choose treatment d after the experiment is completed.

• Posterior expected social welfare:

SW (d) = E [θd |mT , rT ]− cd ,

where cd is the unit cost of implementing policy d .
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Bayesian prior and posterior

• By definition, Y d |θ ∼ Ber(θd).

• Prior: θd ∼ Beta(αd
0 , β

d
0 ), independent across d .

• Posterior after period t:

θd |mt , r t ∼ Beta(αd
t , β

d
t )

αd
t = αd

0 + rdt

βdt = βd0 + md
t − rdt .

• In particular,

SW (d) =
αd

0 + rdT
αd

0 + βd0 + md
T

− cd .
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Optimal assignment: Dynamic optimization problem

• Dynamic stochastic optimization problem:
• States (mt , r t),
• actions nt .

• Solve for the optimal experimental design using backward induction.

• Denote by Vt the value function after completion of wave t.

• Starting at the end, we have

VT (mT , rT ) = max
d

(
αd

0 + rdT
αd

0 + βd0 + md
T

− cd
)
.

• Finite state and action space.
⇒ Can, in principle, solve directly for optimal rule using dynamic programming:
Complete enumeration of states and actions.
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Simple examples

• Consider a small experiment
with 2 waves, 3 treatment values (minimal interesting case).

• The following slides plot expected welfare
as a function of:

1. Division of sample size between waves, N1 + N2 = 10.
N1 = 6 is optimal.

2. Treatment assignment in wave 2, given wave 1 outcomes.
N1 = 6 units in wave 1, N2 = 4 units in wave 2.

• Keep in mind:

α1 = (1, 1, 1) + s1

β1 = (1, 1, 1) + n1 − s1
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Dividing sample size between waves
• N1 + N2 = 10.
• Expected welfare as a function of N1.
• Boundary points ≈ 1-wave experiment.
• N1 = 6 (or 5) is optimal.
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Expected welfare, depending on 2nd wave assignment

After one success, one failure for each treatment.
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Expected welfare, depending on 2nd wave assignment

After one success in treatment 1 and 2, two successes in 3
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Expected welfare, depending on 2nd wave assignment

After one success in treatment 1 and 2, no successes in 3.
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Thompson sampling

• Fully optimal solution is computationally impractical.
Per wave, O(N2k

t ) combinations of actions and states.
⇒ simpler alternatives?
• Thompson sampling

• Old proposal by Thompson (1933).
• Popular in online experimentation.

• Assign each treatment with probability equal to
the posterior probability that it is optimal.

pdt = P

(
d = argmax

d ′
(θd

′ − cd
′
)|mt−1, r t−1

)
.

• Easily implemented: Sample draws θ̂it from the posterior, assign

Dit = argmax
d

(
θ̂dit − cd

)
.
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Modified Thompson sampling

• Agrawal and Goyal (2012) proved that Thompson-sampling is rate-optimal
for the multi-armed bandit problem.

• It is not for our policy choice problem!
• We propose two modifications:

1. Expected Thompson sampling:
Assign non-random shares pdt of each wave to treatment d .

2. Modified Thompson sampling:
Assign shares qdt of each wave to treatment d , where

qdt = St · pdt · (1− pdt ),

St =
1∑

d p
d
t · (1− pdt )

.

• These modifications
1. Improve performance in our simulations.
2. Will be theoretically motivated later in this talk.

In particular, we will show (constrained) rate-optimality.
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Illustration of the mapping from Thompson to modified Thompson

p q p q p q p q
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1.00
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Calibrated simulations

• Simulate data calibrated to estimates of 3 published experiments.

• Set θ equal to observed average outcomes for each stratum and treatment.

• Total sample size same as original.

Ashraf, N., Berry, J., and Shapiro, J. M. (2010). Can higher prices stimulate product use? Evidence from a field
experiment in Zambia.
American Economic Review, 100(5):2383–2413

Bryan, G., Chowdhury, S., and Mobarak, A. M. (2014). Underinvestment in a profitable technology: The case of
seasonal migration in Bangladesh.
Econometrica, 82(5):1671–1748

Cohen, J., Dupas, P., and Schaner, S. (2015). Price subsidies, diagnostic tests, and targeting of malaria
treatment: evidence from a randomized controlled trial.
American Economic Review, 105(2):609–45
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Calibrated parameter values

Cohen, Dupas, and Schaner (2014)

Bryan, Chowdhury, and Mobarak (2014)

Ashraf, Berry, and Shapiro (2010)

0.00 0.25 0.50 0.75 1.00

Average outcome for each treatment

• Ashraf et al. (2010): 6 treatments, evenly spaced.

• Bryan et al. (2014): 2 close good treatments, 2 worse treatments
(overlap in picture).

• Cohen et al. (2015): 7 treatments, closer than for first example.
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Coming up

• Compare 4 assignment methods:

1. Non-adaptive (equal shares)
2. Thompson
3. Expected Thompson
4. Modified Thompson

• Report 2 statistics:

1. Average regret:

Average difference, across simulations, between maxd θ
d and θd for the d chosen

after the experiment.
2. Share optimal:

Share of simulations for which the optimal d is chosen after the experiment (and
thus regret equals 0).
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Visual representations

• Compare modified Thompson to non-adaptive assignment.

• Full distribution of regret.
• 2 representations:

1. Histograms
Share of simulations with any given value of regret.

2. Quantile functions
(Inverse of) integrated histogram.

• Histogram bar at 0 regret equals share optimal.

• Integrated difference between quantile functions is
difference in average regret.

• Uniformly lower quantile function means
1st-order dominated distribution of regret.
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Regret and Share Optimal

Table: Ashraf, Berry, and Shapiro (2010)

Statistic 2 waves 4 waves 10 waves

Regret
modified Thompson 0.002 0.001 0.001
expected Thompson 0.002 0.001 0.001
Thompson 0.002 0.001 0.001
non-adaptive 0.005 0.005 0.005

Share optimal
modified Thompson 0.977 0.990 0.988
expected Thompson 0.970 0.981 0.983
Thompson 0.971 0.981 0.983
non-adaptive 0.933 0.930 0.932

Units per wave 502 251 100
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Policy Choice and Regret Distribution

2 waves 4 waves 10 waves
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Policy Choice and Regret Distribution

2 waves 4 waves 10 waves
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Regret and Share Optimal

Table: Bryan, Chowdhury, and Mobarak (2014)

Statistic 2 waves 4 waves 10 waves

Regret
modified Thompson 0.005 0.004 0.004
expected Thompson 0.005 0.004 0.004
Thompson 0.005 0.004 0.004
non-adaptive 0.005 0.005 0.005

Share optimal
modified Thompson 0.789 0.807 0.820
expected Thompson 0.784 0.800 0.804
Thompson 0.786 0.796 0.808
non-adaptive 0.750 0.747 0.750

Units per wave 935 467 187
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Policy Choice and Regret Distribution

2 waves 4 waves 10 waves
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30 / 41



Policy Choice and Regret Distribution

2 waves 4 waves 10 waves
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Regret and Share Optimal

Table: Cohen, Dupas, and Schaner (2014)

Statistic 2 waves 4 waves 10 waves

Regret
modified Thompson 0.007 0.006 0.006
expected Thompson 0.007 0.006 0.006
Thompson 0.007 0.007 0.006
non-adaptive 0.009 0.009 0.009

Share optimal
modified Thompson 0.565 0.582 0.587
expected Thompson 0.564 0.582 0.575
Thompson 0.562 0.581 0.590
non-adaptive 0.526 0.521 0.527

Units per wave 1080 540 216
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Policy Choice and Regret Distribution

2 waves 4 waves 10 waves

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.0

0.1

0.2

Share of simulations

R
eg

re
t

non−adaptive modified Thompson

Cohen, Dupas, and Schaner (2014)

33 / 41



Policy Choice and Regret Distribution

2 waves 4 waves 10 waves
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Theoretical analysis
Thompson sampling

• Literature: In-sample regret for bandit algorithms.
• Agrawal and Goyal (2012) (Theorem 2):

For Thompson sampling,

lim
T→∞

E

[∑T
t=1 ∆d

logT

]
≤

∑
d 6=d∗

1

(∆d)2

2

.

where ∆d = maxd′ θ
d′ − θd .

• Lai and Robbins (1985):
No adaptive experimental design can do better than this logT rate.

• Thompson sampling only assigns a share of units of order log(M)/M
to treatments other than the optimal treatment.
• This is good for in-sample welfare, bad for learning:

• We stop learning about suboptimal treatments very quickly.
• The posterior variance of θd for d 6= d∗ goes to zero

at a rate no faster than 1/ log(M).
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Modified Thompson sampling

Proposition

Assume fixed wave size Nt = N.
As T →∞, modified Thompson satisfies:

1. The share of observations assigned to the best treatment converges to 1/2.

2. All the other treatments d are assigned to a share of the sample which converges
to a non-random share q̄d . q̄d is such that the posterior probability of d being
optimal goes to 0 at the same exponential rate for all sub-optimal treatments.

3. No other assignment algorithm for which statement 1 holds has average regret
going to 0 at a faster rate than modified Thompson sampling.
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Sketch of proof

Our proof draws heavily on Russo (2016). Proof steps:

1. Each treatment is assigned infinitely often.
⇒ pdT goes to 1 for the optimal treatment and to 0 for all other treatments.

2. Claim 1 then follows from the definition of modified Thompson.

3. Claim 2: Suppose pdt goes to 0 at a faster rate for some d .
Then modified Thompson sampling stops assigning this d .
This allows the other treatments to “catch up.”

4. Claim 3: Balancing the rate of convergence implies efficiency.
This follows from an efficiency bound for best-arm-selection in Russo (2016)
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Extension: Covariates and treatment targeting

• Suppose now that

1. We additionally observe a (discrete) covariate X .
2. The policy to be chosen can target treatment by X .

• How to adapt modified Thompson sampling to this setting?

• Solution: Hierarchical Bayes model,
to optimally combine information across strata.

• Example of a hierarchical Bayes model:

Y d |X = x , θdx , (αd
0 , β

d
0 ) ∼ Ber(θdx)

θdx |(αd
0 , β

d
0 ) ∼ Beta(αd

0 , β
d
0 )

(αd
0 , β

d
0 ) ∼ π,

• No closed form posterior, but can use Markov Chain Monte Carlo to sample from
posterior.
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MCMC sampling from the posterior
Combining Gibbs sampling & Metropolis-Hasting

• Iterate across replication draws ρ:
1. Gibbs step: Given αρ−1 and βρ−1,

• draw θdx ∼ Beta(αd
ρ−1 + sdx , βd

ρ−1 +mdx − sdx).

2. Metropolis step: Given βρ−1 and θρ,

• draw αd
ρ ∼ (symmetric proposal distribution).

• Accept if an independent uniform is less than the ratio
of the posterior for the new draw, relative to the posterior for αd

ρ−1.
• Otherwise set αd

ρ = αd
ρ−1.

3. Metropolis step: Given θρ and αρ,
• proceed as in 2, for βd

ρ .

• This converges to a stationary distribution such that

P

(
d = argmax

d ′
θd
′x |mt , r t

)
= plim

R→∞

1
R

R∑
ρ=1

1

(
d = argmax

d ′
θd
′x

ρ

)
.
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Inference
• For inference, we have to be careful with adaptive designs.

1. Standard inference won’t work:
Sample means are biased, t-tests don’t control size.

2. But: Bayesian inference can ignore adaptiveness!
3. Randomization tests can be modified to work.

• Example to get intuition for bias:
• Flip a fair coin.
• If head, flip again, else stop.
• Probability dist: 50% tail-stop, 25% head-tail, 25% head-head.
• Expected share of heads?

.5 · 0 + .25 · .5 + .25 · 1 = .375 6= .5.

• Randomization inference:
• Strong null hypothesis: Y 1

i = . . . = Y k
i .

• Under null, easy to re-simulate treatment assignment.
• Re-calculate test statistic each time.
• Take 1− α quantile across simulations as critical value.
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Conclusion

• Different objectives lead to different optimal designs:

1. Treatment effect estimation / testing: Conventional designs.
2. In-sample regret: Bandit algorithms.
3. Post-experimental policy choice: This talk.

• If the experiment can be implemented in multiple waves, adaptive designs for
policy choice

1. significantly increase welfare,
2. by focusing attention in later waves

on the best performing policy options,
3. but not as much as bandit algorithms.

• Implementation of our proposed procedure is easy and fast,
and easily adapted to new settings:
• Hierarchical priors,
• non-binary outcomes...
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Thank you!
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