Africa Summer School in Econometrics, Abidjan: Adaptive field experiments

Multi-armed bandits

Maximilian Kasy

Department of Economics, University of Oxford

June 2024

Outline

- Setup: The multi-armed bandit problem. Adaptive experiment with exploration / exploitation trade-off.
- Two popular approximate algorithms:
 - 1. Thompson sampling
 - 2. Upper Confidence Bound algorithm
- Characterizing regret fixed parameter asymptotics, local-to-zero asymptotics.
- Characterizing an exact solution: Gittins Index.
- Extension to settings with covariates (contextual bandits).

Takeaways for this part of class

- When experimental units arrive over time, and we can adapt our treatment choices, we can learn optimal treatment quickly.
- Treatment choice: Trade-off between
 - 1. choosing good treatments now (exploitation),
 - 2. and learning for future treatment choices (exploration).
- Optimal solutions are hard, but good heuristics are available.
- We will derive a bound on the regret of one heuristic.
 - Bounding the number of times a sub-optimal treatment is chosen,
 - using large deviations bounds (cf. testing!).
- Worst case regret occurs for intermediate effect sizes that are of order $1/\sqrt{T}$.
- We will also derive a characterization of the optimal solution in the infinite-horizon case. This relies on a separate index for each arm.

Two popular algorithms

Regret bounds (fixed parameter)

Local-to-zero and worst case regret

Gittins index

Contextual bandits

References

The multi-armed bandit Setup

- Treatments $D_t \in 1, \ldots, k$
- Experimental units come in sequentially over time. One unit per time period *t* = 1, 2, ...
- Potential outcomes: i.i.d. over time, $Y_t = Y_t^{D_t}$,

$$Y^d_t \sim F^d$$
 $E[Y^d_t] = heta^d$

Treatment assignment can depend on past treatments and outcomes,

$$D_{t+1} = d_t(D_1,\ldots,D_t,Y_1,\ldots,Y_t).$$

Setup continued

• Optimal treatment:

$$d^* = \operatorname*{argmax}_d \, heta^d \qquad \qquad heta^* = \operatorname*{max}_d heta^d = heta^{d^*}$$

• Expected regret for treatment *d*:

$$\Delta^d = E\left[Y^{d^*} - Y^d\right] = \theta^{d^*} - \theta^d.$$

• Finite horizon objective: Average outcome,

$$U_T = \frac{1}{T} \sum_{1 \le t \le T} Y_t.$$

Infinite horizon objective: Discounted average outcome,

$$U_{\infty} = \sum_{t \ge 1} \beta^t Y_t$$

Expectations of objectives

• Expected finite horizon objective:

$$\mathsf{E}[U_T] = \mathsf{E}\left[\frac{1}{T}\sum_{1\leq t\leq T}\theta^{D_t}\right]$$

• Expected infinite horizon objective:

$$E[U_{\infty}] = E\left[\sum_{t\geq 1}\beta^t\theta^{D_t}\right]$$

• Expected finite horizon regret: Compare to always assigning optimal treatment **d***.

$$R_{T} = E\left[\frac{1}{T}\sum_{1 \le t \le T} \left(Y_{t}^{d^{*}} - Y_{t}\right)\right] = E\left[\frac{1}{T}\sum_{1 \le t \le T} \Delta^{D_{t}}\right]$$

Practice problem

- Show that these equalities hold.
- Interpret these objectives.
- Relate them to our decision theory terminology.

Two popular algorithms

Regret bounds (fixed parameter)

Local-to-zero and worst case regret

Gittins index

Contextual bandits

References

Two popular algorithms

Upper Confidence Bound (UCB) algorithm

• Define

$$ar{Y}^d_t = rac{1}{T^d_t} \sum_{1 \leq s \leq t} \mathbf{1}(D_s = d) \cdot Y_s,$$
 $T^d_t = \sum_{1 \leq s \leq t} \mathbf{1}(D_s = d)$
 $B^d_t = B(T^d_t).$

- B(·) is a decreasing function, giving the width of the "confidence interval." We will specify this function later.
- At time t + 1, choose

$$D_{t+1} = \underset{d}{\operatorname{argmax}} \ \bar{Y}_t^d + B_t^d.$$

• "Optimism in the face of uncertainty."

Two popular algorithms

Thompson sampling

- Start with a Bayesian prior for θ .
- Assign each treatment with probability equal to the posterior probability that it is optimal.
- Put differently, obtain one draw $\hat{\theta}_{t+1}$ from the posterior given $(D_1, \ldots, D_t, Y_1, \ldots, Y_t)$, and choose

$$D_{t+1} = rgmax_{d} \ \hat{ heta}^d_{t+1}.$$

• Easily extendable to more complicated dynamic decision problems, complicated priors, etc.!

Two popular algorithms

Thompson sampling - the binomial case

- Assume that $Y \in \{0,1\}$, $Y_t^d \sim Ber(\theta^d)$.
- Start with a uniform prior for θ on $[0,1]^k$.
- Then the posterior for θ^d at time t + 1 is a **Beta** distribution with parameters

$$egin{aligned} &lpha_t^d = 1 + T_t^d \cdot ar{Y}_t^d, \ η_t^d = 1 + T_t^d \cdot (1 - ar{Y}_t^d). \end{aligned}$$

Thus

$$D_t = \underset{d}{\operatorname{argmax}} \ \hat{\theta}_t.$$

where

$$\hat{ heta}^{d}_{t} \sim \textit{Beta}(lpha^{d}_{t},eta^{d}_{t})$$

is a random draw from the posterior.

Two popular algorithms

Regret bounds (fixed parameter)

Local-to-zero and worst case regret

Gittins index

Contextual bandits

References

Regret bounds

- Back to the general case.
- Recall expected finite horizon regret,

$$R_{T} = E\left[\frac{1}{T}\sum_{1 \leq t \leq T} \left(Y_{t}^{d^{*}} - Y_{t}\right)\right] = E\left[\frac{1}{T}\sum_{1 \leq t \leq T} \Delta^{D_{t}}\right].$$

• Thus,

$$T \cdot R_T = \sum_d E[T_T^d] \cdot \Delta^d.$$

- Good algorithms will have $E[T_T^d]$ small when $\Delta^d > 0$.
- We will next derive upper bounds on $E[T_T^d]$ for the UCB algorithm.
- We will then state that for large *T* similar upper bounds hold for Thompson sampling.
- There is also a lower bound on regret across all possible algorithms which is the same, up to a constant.

Probability theory preliminary

Large deviations

Suppose that

$$E[\exp(\lambda \cdot (Y - E[Y]))] \le \exp(\psi(\lambda)).$$

• Let $\bar{Y}_T = \frac{1}{T} \sum_{1 \le t \le T} Y_t$ for i.i.d. Y_t . Then, by Markov's inequality and independence across t,

$$\begin{split} P(\bar{Y}_T - E[Y] > \varepsilon) &\leq \frac{E[\exp(\lambda \cdot (\bar{Y}_T - E[Y]))]}{\exp(\lambda \cdot \varepsilon)} \\ &= \frac{\prod_{1 \leq t \leq T} E[\exp((\lambda/T) \cdot (Y_t - E[Y]))]}{\exp(\lambda \cdot \varepsilon)} \\ &\leq \exp(T\psi(\lambda/T) - \lambda \cdot \varepsilon). \end{split}$$

Large deviations continued

• Define the Legendre-transformation of ψ as

$$\psi^*(\varepsilon) = \sup_{\lambda \ge 0} \left[\lambda \cdot \varepsilon - \psi(\lambda)
ight].$$

• Taking the inf over λ in the previous slide implies

$$P(\bar{Y}_T - E[Y] > \varepsilon) \leq \exp(-T \cdot \psi^*(\varepsilon)).$$

- For distributions bounded by [0,1]: $\psi(\lambda) = \lambda^2/8$ and $\psi^*(\varepsilon) = 2\varepsilon^2$.
- For normal distributions: $\psi(\lambda) = \lambda^2 \sigma^2/2$ and $\psi^*(\varepsilon) = \varepsilon^2/(2\sigma^2)$.

Applied to the Bandit setting

• Suppose that for all *d*

$$egin{aligned} & E[\exp(\lambda\cdot(Y^d- heta^d))]\leq \exp(\psi(\lambda)) \ & E[\exp(-\lambda\cdot(Y^d- heta^d))]\leq \exp(\psi(\lambda)). \end{aligned}$$

• Recall / define

$$\bar{Y}_t^d = \frac{1}{T_t^d} \sum_{1 \le s \le t} \mathbf{1}(D_s = d) \cdot Y_s, \qquad B_t^d = (\psi^*)^{-1} \left(\frac{\alpha \log(t)}{T_t^d}\right).$$

• Then we get

$$egin{aligned} & \mathcal{P}(ar{Y}^d_t - heta^d > B^d_t) \leq \exp(-T^d_t \cdot \psi^*(B^d_t)) \ &= \exp(-lpha \log(t)) = t^{-lpha} \ & \mathcal{P}(ar{Y}^d_t - heta^d < -B^d_t) \leq t^{-lpha}. \end{aligned}$$

Why this choice of $B(\cdot)$?

- A smaller $B(\cdot)$ is better for exploitation.
- A larger $B(\cdot)$ is better for exploration.
- Special cases:
 - Distributions bounded by [0,1]:

$$B_t^d = \sqrt{rac{lpha \log(t)}{2T_t^d}}.$$

Normal distributions:

$$B_t^d = \sqrt{2\sigma^2 rac{lpha \log(t)}{T_t^d}}$$

 The α log(t) term ensures that coverage goes to 1, but slow enough to not waste too much in terms of exploitation.

When *d* is chosen by the UCB algorithm

 By definition of UCB, at least one of these three events has to hold when d is chosen at time t + 1:

$$\bar{Y}_t^{d^*} + B_t^{d^*} \le \theta^* \tag{1}$$

$$\bar{Y}_t^d - B_t^d > \theta^d \tag{2}$$

$$2B_t^d > \Delta^d. \tag{3}$$

• 1 and 2 have low probability. By previous slide,

$$P\left(ar{Y}_t^{d^*} + B_t^{d^*} \leq heta^*
ight) \leq t^{-lpha}, \qquad P\left(ar{Y}_t^d - B_t^d > heta^d
ight) \leq t^{-lpha}.$$

• 3 only happens when T_t^d is small. By definition of B_t^d , 3 happens iff

$$T^d_t < rac{lpha \log(t)}{\psi^*(\Delta^d/2)}.$$

Practice problem

Show that at least one of the statements 1, 2, or 3 has to be true whenever $D_{t+1} = d$, for the UCB algorithm.

Bounding $E[T_t^d]$ • Let

$$\widetilde{T}_T^d = \left\lfloor \frac{\alpha \log(T)}{\psi^*(\Delta^d/2)}
ight
floor.$$

- Forcing the algorithm to pick d the first \tilde{T}_T^d periods can only increase T_T^d .
- We can collect our results to get

$$\begin{split} E[T_T^d] &= \sum_{1 \le t \le T} \mathbf{1}(D_t = d) \le \tilde{T}_T^d + \sum_{\tilde{T}_T^d < t \le T} E[\mathbf{1}(D_t = d)] \\ &\le \tilde{T}_T^d + \sum_{\tilde{T}_T^d < t \le T} E[\mathbf{1}((1) \text{ or } (2) \text{ is true at } t)] \\ &\le \tilde{T}_T^d + \sum_{\tilde{T}_T^d < t \le T} E[\mathbf{1}((1) \text{ is true at } t)] + E[\mathbf{1}((2) \text{ is true at } t)] \\ &\le \tilde{T}_T^d + \sum_{\tilde{T}_T^d < t \le T} 2t^{-\alpha + 1} \le \tilde{T}_T^d + \frac{\alpha}{\alpha - 2}. \end{split}$$

Upper bound on expected regret for UCB

• We thus get:

$$egin{aligned} & E[T_T^d] \leq rac{lpha \log(T)}{\psi^*(\Delta^d/2)} + rac{lpha}{lpha-2}, \ & R_T \leq rac{1}{T} \sum_d \left(rac{lpha \log(T)}{\psi^*(\Delta^d/2)} + rac{lpha}{lpha-2}
ight) \cdot \Delta^d. \end{aligned}$$

- Expected regret (difference to optimal policy) goes to 0 at a rate of O(log(T)/T)

 pretty fast!
- While the cost of "getting treatment wrong" is Δ^d , the difficulty of figuring out the right treatment is of order $1/\psi^*(\Delta^d/2)$. Typically, this is of order $(1/\Delta^d)^2$.

Related bounds - rate optimality

• Lower bound: Consider the Bandit problem with binary outcomes and any algorithm such that $E[T_t^d] = o(t^a)$ for all a > 0. Then

$$\liminf_{t\to\infty} \frac{T}{\log(T)}\bar{R}_T \geq \sum_d \frac{\Delta^d}{kl(\theta^d,\theta^*)},$$

where $kl(p,q) = p \cdot \log(p/q) + (1-p) \cdot \log((1-p)/(1-q))$.

• **Upper bound for Thompson sampling**: In the binary outcome setting, Thompson sampling achieves this bound, i.e.,

$$\liminf_{t\to\infty} \frac{\tau}{\log(T)} \bar{R}_T = \sum_d \frac{\Delta^d}{kl(\theta^d, \theta^*)}.$$

Two popular algorithms

Regret bounds (fixed parameter)

Local-to-zero and worst case regret

Gittins index

Contextual bandits

References

Local-to-zero asymptotics

- The regret rate we just derived holds θ constant, as $T \rightarrow \infty$.
- This provides a good characterization in the "high-powered" case, where it is easy to detect the best treatment quickly.
- What about the low-powered case?
- Here is a heuristic calculation, for two arms, normal outcomes, variance 1:
 1. The probability of correctly identifying the best arm, after *T*/2 observations on each arm, is Φ (2√*T*Δ).
 - 2. The regret if we get the arm wrong equals Δ .
 - 3. Thus the expected average regret is on the order of $\Delta \cdot \Phi \left(-2\sqrt{T}\Delta\right)$.
 - 4. This vanishes for $\Delta \to 0$ and for $\Delta \to \infty$, and peaks in between, for $\Delta = O(1/\sqrt{T})$, yielding a worst-case average regret of order $1/\sqrt{T}$. (Not $\log(T)/T$, as in the fixed parameter case!)

Limiting regret of two-arm Thompson sampling



From Wager and Xu (2021). Darker hues indicate a higher prior variance.

Formalizing local-to-zero asymptotics

- Consider a set of sequential experiments, indexed by their sample size T.
- Suppose $\theta^d = \theta_1^d / \sqrt{T}$, and $\sigma^{2d} = Var(Y^d)$ is the same for all T.
- Denote

$$\tilde{Y}_t^d = \frac{1}{\sqrt{T}} \sum_{s=1}^t \mathbf{1}(D_s = d) \cdot Y_s$$
$$\tilde{T}_t^d = \frac{1}{T} \sum_{s=1}^t \mathbf{1}(D_s = d).$$

• Assume that the assignment probability for treatment d, p_t^d , is given by a function

$$p_t^d = \psi^d(ilde{Y}_t, ilde{T}_t)$$

This covers, for instance, Thompson sampling for normal outcomes.

Practice problem

Suppose that $Y_t^d \sim N(\theta^d, \sigma^d)$.

- What is the distribution of the stochastic process $\frac{1}{\sqrt{T}} \sum_{s=1}^{t} Y_s^d$? What is the limit of this stochastic process?
- Given \tilde{Y}^d_t , what is the expectation of $\tilde{T}^d_{t+1} \tilde{T}^d_t$?
- Given $(\tilde{T}^d_t, \tilde{Y}^d_t)_{d=1}^k$, what is the expectation and variance of $\tilde{Y}^d_{t+1} \tilde{Y}^d_t$?

Practice problem

Write the expected average regret R_T as a function of $(\tilde{T}_T^d)_{d=1}^k$.

A stochastic differential equation

Theorem 1 in the paper:

Under Assumption 1, the stochastic process given by $(\tilde{Y}_t^d, \tilde{T}_t^d)_{d=1}^k$ (with the range of *t* normalized to [0,1]) converges to the solution of the stochastic differential equations

$$egin{aligned} d ilde{T}^d_t &= \psi^d(ilde{T}^d_t, ilde{Y}^d_t)dt, \ d ilde{Y}^d_t &= \psi^d(ilde{T}^d_t, ilde{Y}^d_t)\cdot heta^d dt + \sqrt{\psi^d(ilde{T}^d_t, ilde{Y}^d_t)}\sigma^d dB^d_t, \end{aligned}$$

where B_t^d is a standard Brownian motion.

Two popular algorithms

Regret bounds (fixed parameter)

Local-to-zero and worst case regret

Gittins index

Contextual bandits

References

Gittins index

Setup

- Consider now the discounted infinite-horizon objective, $E[U_{\infty}] = E\left[\sum_{t\geq 1}\beta^t \theta^{D_t}\right]$, averaged over independent (!) priors across the components of θ .
- We will characterize the optimal strategy for maximizing this objective.
- To do so consider the following, simpler decision problem:
 - You can only assign treatment *d*.
 - You have to pay a charge of γ^d each period in order to continue playing.
 - You may stop at any time, then the game ends.
- Define γ_t^d as the charge which would make you indifferent between playing or not, given the period t posterior.

Gittins index

Formal definition

- Denote by π_t the posterior in period t, by $\tau(\cdot)$ an arbitrary stopping rule.
- Define

$$\begin{split} \gamma^{d}_{t} &= \sup \left\{ \gamma : \sup_{\tau(\cdot)} E_{\pi_{t}} \left[\sum_{1 \leq s \leq \tau} \beta^{s} \left(\theta^{d} - \gamma \right) \right] \geq 0 \right\} \\ &= \sup_{\tau(\cdot)} \frac{E_{\pi_{t}} \left[\sum_{1 \leq s \leq \tau} \beta^{s} \theta^{d} \right]}{E_{\pi_{t}} \left[\sum_{1 \leq s \leq \tau} \beta^{s} \right]} \end{split}$$

• Gittins and Jones (1974) prove: The optimal policy in the bandit problem always chooses

$$D_t = \operatorname*{argmax}_d \gamma_t^d.$$

Heuristic proof (sketch)

- Imagine a per-period charge for each treatment is set initially equal to γ_1^d .
 - Start playing the arm with the highest charge, continue until it is optimal to stop.
 - At that point, the charge is reduced to γ_t^d .
 - Repeat.
- This is the optimal policy, since:
 - 1. It maximizes the amount of charges paid.
 - 2. Total expected benefits are equal to total expected charges.
 - 3. There is no other policy that would achieve expected benefits bigger than expected charges.

Two popular algorithms

Regret bounds (fixed parameter)

Local-to-zero and worst case regret

Gittins index

Contextual bandits

References

Contextual bandits

- A more general bandit problem:
 - For each unit (period), we observe covariates X_t .
 - Treatment may condition on X_t.
 - Outcomes are drawn from a distribution $F^{x,d}$, with mean $\theta^{x,d}$.
- In this setting Gittins' theorem fails when the prior distribution of $\theta^{x,d}$ is not independent across x or across d.
- But Thompson sampling is easily generalized. For instance to a hierarchical Bayes model:

$$egin{aligned} & Y^d | X = x, heta, lpha, eta &\sim extsf{Ber}(heta^{x,d}) \ & heta^{x,d} | lpha, eta &\sim extsf{Beta}(lpha^d, eta^d) \ & (lpha^d, eta^d) &\sim \pi. \end{aligned}$$

• This model updates the prior for $\theta^{x,d}$ not only based on observations with D = d, X = x, but also based on observations with D = d & different values for X.

References

- Bubeck, S. and Cesa-Bianchi, N. (2012). Regret Analysis of Stochastic and Nonstochastic Multi-armed Bandit Problems. Foundations and Trends® in Machine Learning, 5(1):1–122.
- Russo, D. J., Roy, B. V., Kazerouni, A., Osband, I., and Wen, Z. (2018). A Tutorial on Thompson Sampling. Foundations and Trends[®] in Machine Learning, 11(1):1–96.
- Wager, S. and Xu, K. (2021). Diffusion asymptotics for sequential experiments. arXiv preprint arXiv:2101.09855.
- Weber, R. et al. (1992). On the Gittins index for multiarmed bandits. The Annals of Applied Probability, 2(4):1024–1033.