
Foundations of machine learning

Large Language Models and Transformers

Maximilian Kasy

Department of Economics, University of Oxford

Fall 2023

1 / 17

Prediction tasks in language processing

The transformer architecture

Generative AI

References

Prediction tasks in language processing
• Suppose the data consist of pairs of sequences of “tokens:”

x= (x1, . . . ,xn) and y = (y1, . . . ,ym).

• Various tasks in language processing require to estimate models P̂ for

P(Y|X)

• Typical loss function for an observation (x,y): Negative log likelihood,

− log P̂(Y = y|X = x).

Examples:
1. Machine translation:

x is a sentence in the source language.
y is a sentence in the target language.

2. Question answering:
x is a question. y is an answer.

2 / 17

Self-supervised learning

• These prediction problems require specific data – pairs of x and y.

• There is much greater availability of data of “unlabeled” sequences x.
E.g., all the text on the internet (Wikipedia, Arxiv, Github, ...).

• Self-supervised learning fits models for the distribution of such sequences.

Leading cases:
1. Autoregressive models:

Model P(xi|x1, . . . ,xi−1), for all i.

2. Masking:
Model P(xi|x1, . . . ,xi−1,xi+1, . . . ,xn), for all i.

3 / 17

Masking

4 / 17

Embeddings and pre-training

• Many language models are trained in two steps:
1. Self-supervised learning on a large corpus of sequences x, using masking.

This yields an embedding (representation) of the source data x.

2. Fine-tuning on a task-specific corpus:
Using the embeddings from 1. as predictors for y.

• This is also known as transfer learning.
It yields much better results than simply training on the task-specific corpus.

5 / 17

Prediction tasks in language processing

The transformer architecture

Generative AI

References

The transformer architecture

• How do we get an embedding for a sequence of tokens?

• What functional form should we choose?

• Leading answer: Transformers.

• Transformers consist of multiple transformer blocks.

• Each of which includes self-attention layers.

6 / 17

Self-attention layers
• Take as given a sequence of input vectors x1, . . . ,xn,

• We want to transform it,
to produce a sequence of output vectors y1, . . . ,yn
of the same dimension.

• yj is supposed to encode the meaning of xi in the context of the other xj.

• First step: Take a linear tranformation of the xi.

vi =Wv ·xi.

• Second step: Take a weighted average of the vi to get the output yi.

yi = ∑
j

αijvj.

7 / 17

Self-attention layers continued
• The weights αij capture the importance of xj as context for xi.

• But where do the weights come from? Self-attention!

αij =
exp(scoreij)

∑j′ exp(scoreij′)
.

Normalizing sum of weights to 1 (aka softmax / multinomial logit).

• scoreij: Relevance of xj as context for xi.

scoreij = ⟨qi,kj⟩ inner product
qi =Wq ·xi query

kj =Wk ·xj key

• Contrast to time series models: Weights depend only on |i− j|.
⇒ Would not recognize importance of far-away sentence parts for context.

8 / 17

Backward looking and bi-directional self-attention

9 / 17

Transformer blocks

• Self-attention layers are packaged with some additional transformations as
follows:

z= LayerNorm(x+SelfAttention(x))
y = LayerNorm(z+FFN(z))

• LayerNorm(x) normalizes x= (x1, . . . ,xn)
by subtracting the mean and dividing by the standard deviation.

• The addition of x to SelfAttention(x) is called “residual connection.”
This keeps raw information from previous input.

• FFN(z) is a standard feed-forward neural network.

10 / 17

11 / 17

Multi-head attention

• Tweak on the transformer block:
Replace the single self-attention layer
by several parallel versions, indexed by b.

• Thus:

ybi = ∑
j

αij ·
[
Wv,b ·xi

]
, α

b
ij =

exp(scorebij)

∑j′ exp(scorebij′)
,

scorebij =
〈[

Wq,b ·xi
]
,
[
Wk,b ·xj

]〉
.

• The rest of the transformer block stays the same.

• Motivation: Context matters in various ways.

12 / 17

Prediction tasks in language processing

The transformer architecture

Generative AI

References

Generative AI

• Suppose you have fit an autoregressive model, which gives

P̂(yi+1|x,y1, . . . ,yi−1).

• Suppose you would like to generate a prediction of y, given an input x.

• That is you would like to find

ŷ = argmax
y

P̂(y|x) = argmax
y

∏
i
P̂(yi|x,y1, . . . ,yi−1).

• Such forecasting of autoregressive models is at the heart of “generative AI.”

13 / 17

Greedy sampling

• Naive idea: Sequentially find the highest probability prediction, one step at a
time:

ŷi = argmax P̂(yi+1|x,y1, . . . ,yi−1).

• This is known as greedy search.

• Problem:
This does not take into account the impact of the choice of ŷi
on the availability of high probability choices later.

• Dynamic programming problem!

14 / 17

Beam search

• Exhaustive search of the tree of possible sequences is too costly.

• Compromise: Beam search.
1. Start with the k highest-probability choices for ŷ1.

2. For each of these choices separately,
find the k highest probability choices for ŷ2.

3. Keep the k sequences of ŷ1, ŷ2 with the highest probability,
discard the rest.

4. Iterate.

15 / 17

16 / 17

References

Speech and Language Processing,
Dan Jurafsky and James H. Martin, 2023,
chapters 10-11.

17 / 17

	Prediction tasks in language processing
	The transformer architecture
	Generative AI
	References

