Taxation and Al

Maximilian Kasy

Department of Economics, University of Oxford

April 2025

Three important topics

- 1. Global corporate taxation, intangibles, and Al.
- 2. Data externalities, privacy, and Pigou taxes.
- 3. Al for optimal taxation maximizing welfare versus observables.

1) Global corporate tax avoidance

- Traditional corporate taxation:
 - Multinational corporations owe taxes where production occurs.
 - Use "arms length pricing" to apportion profits across countries.
- Problem:
 - Where does "production" for AI occur?
 - Can use fictitious prices for data, algorithms, to move profits to countries with the lowest tax rate.
 - Race to the bottom of tax rates ensues.

The 2021 Global Tax Agreement

- Sensible partial solutions:
 - 1. Profits are partially taxed in countries where sales occur.
 - 2. Global minimum tax on corporate profits.
- But: The US under the current administration has threatened retaliation against countries complying with the agreement.

2) Data ownership and privacy

- Two complementary approaches to privacy:
 - Differential privacy (in computer science):
 Make individuals indifferent whether their data are collected.
 - Individual control rights of data subjects (e.g. GDPR):
 Right to refuse data collection, right to be forgotten, etc.

Problem:

- Machine learning is about patterns across observations, not individual observations.
- Can maintain differential privacy without cost to learning.
- Downstream harms and benefits of AI are unaffected.

Data externaities

- > Individuals do not bear the costs or benefits of sharing their data.
- Conventional economic solution: "Pigou taxes."
 - Tax individuals according to these social costs or benefits.
 - But how to sensibly quantify these?
- Maybe better:
 - Collective governance of data collection.
 - E.g. Data trusts.

3) The pitfalls of "AI for good"

- Almost all of Al:
 - Maximize observed rewards / minimize observed losses.
 - E.g.: algorithms for labor market service agencies to maximize the probability of finding employment.
- Problem:
 - Big gap between observables and welfare.
 - Example: Unemployment insurance.
 - Forced labor maximizes employment prospects.
 - Versus maximizing welfare:
 - Requires increasing option sets, not penalties.

Adaptive welfare maximization

- Some recent theoretical work (with machine learning co-authors):
 - Modifying machine learning algorithms (bandits, reinforcement learning)
 - to incorporate insights of welfare economics / optimal tax theory.
 - Algorithms learn how to maximize welfare, rather than observable outcomes.

Thank you!

For more on these topics, see my forthcoming book:

https:

//press.uchicago.edu/ucp/books/
book/chicago/M/bo255887145.html

