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Introduction

• Social networks are everywhere, and they are consequential.

• How do network ties form?

• Based on exogenous factors (e.g. shared characteristics, place).

• Based on existing ties (e.g. triadic closure).

• Causal identification for network formation is hard.

• Unobservables, reverse causality, equilibrium.

• Statistical inference for networks is conceptually subtle.

• Many small networks? Sampling from a large network?
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Empirical example

• Network of employees at a global professional services firm.

• Edges ≈ employees working together.

• Employees choose their collaborators.

• Random initial assignment:
Within offices, new hires are randomly assigned to teams.

• Network dynamics:
We observe the evolution of the network over time.
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Setup and notation

• Time periods t = 1, 2, individuals i, j ∈ {1 . . . n}.

• Adjacency matrices At with At
ij ∈ {0, 1}.

• Structural (causal) relationship A2 = f(A1).

• Randomization of initial network: A1 uniform from A.

• Design-based identification and inference:

• We condition on sample {1 . . . n}, and on potential outcomes f .

• Only source of randomness: Sampling of A1 from A.
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Assumption 1

• Structural relationship: A2 = f(A1).

• Panel data: Both A1 and A2 are observed.

• Randomization: P (A1 = A|f) = 1
|A| for all A ∈ A.

• Exclusion restriction: d(A1) = d ⇒ y(f(A1)) = Y d.

• Support: P (d(A1) = d) > 0.
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Identification: Inverse probability weighting

• Denote Y = y(A2) and D = d(A1).

• Define the IPW estimator

Ŷ d = Y · 1(D = d)

P (D = d)
.

• Under Assumption 1,

E
[
Ŷ d|f

]
= Y d.
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Examples

• Outcome: Presence of a tie between i ad j.

Y = A2
ij

• Treatments: D = dij(A
1).

• Triadic closure: Presence of an indirect tie between i and j.

D = 1

(∑
k

A1
ikA

1
kj > 0

)

• Matthew principle: Degree of node i.

D =
∑
k

A1
ik

• Randomization:
A is the set of matrices obtained by swapping new hires within offices.
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Assumption 2

• Permutations:

• For permutation π of {1, . . . , n}, Aπ id the matrix with entries Aπ(i),π(j).

• Let Π be an algebraic group of permutations. The set A is given by

A = {Aπ : π ∈ Π}.

• Equivariance:

• For all π ∈ Π, E is invariant under π,

(i, j) ∈ E ⇒ (π(i), π(j)) ∈ E .

• For all π ∈ Π and (i, j) ∈ E , dij is equivariant under π,

dij(Aπ) = dπ(i),π(j)(A).
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Weighted linear regression

• Denote pij(d) = P (Dij = d), and Pij = pij(Dij).

• Define

β̂ = argmin
β

∑
(i,j)∈E

1

Pij
(Yij −Dij · β)2 ,

β =
1

|E|
∑

(i,j)∈E

(∑
d∈D

d · d′
)−1

·

(∑
d∈D

Y d
ij · d

) .

• Under Assumptions 1 and 2,
E[β̂|f ] = β.

8 / 21



Sample average treatment effect

• Special case: Binary treatment.

• Dij = (1, Xij), with Xij ∈ {0, 1}.

• Then
β2 =

∑
(i,j)∈E

(Y 1
ij − Y 0

ij)

is the sample average treatment effect.

• Support condition: For all (i, j) ∈ E ,

0 < P (Xij = 1) < 1.

• Example: Triadic closure.
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Randomization inference

• Consider the null hypothesis that Y d
ij does not depend on d, for all (i, j) ∈ E .

• For π ∈ Π, define the permuted estimator

β̂π = argmin
β

∑
(i,j)∈E

1

Pπ(i)π(j)

(
Yij −Dπ(i)π(j) · β

)2
,

and the p-value

p =
1

|Π|
∑
π∈Π

1
(
β̂ ≤ β̂π

)
.

• Under the null, given Assumptions 1 and 2,

P (p ≤ α) ≤ α.
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Computational implementation (1)

• Our application: New hires i ∈ I are randomly permuted within an office.

• Potential ties: Defined based on support requirement.

J = {j /∈ I : ∀d ∈ D ∃i ∈ I : dij(A
1) = d},

Emax = I × J .

• Data can be stored in matrices of dimension |I| × |J |:

Y = (A2
ij)i∈I,j∈J , D = (Dij)i∈I,j∈J ,

where Dij = dij(A
1).
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Computational implementation (2)

• Assignment probabilities:

pij(d) =
1
|I|

∑
i′

1(Di′j = d), Pij = pij(Dij). (1)

• “Instrument:” Zij =
1
Pij

Dij .

• Weighted regression:

C =

 ∑
i∈I,j∈J

Zij ·D′
ij

−1

, Bi,i′ = C ·

∑
j∈J

Zij · Yi′j

 , β̂ =
∑
i∈I

Bi,i. (2)
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Computational implementation (3)

• Permutations π:
Column j remains constant, any permutation of the rows i is allowed.

• Randomization inference:

• Do not need to re-calculate the terms C and Bi,i′ .

• The permuted estimator β̂π is simply given by

β̂π =
∑
i∈I

Bπ(i),i.
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Empirical setting

• Global firm in the professional services industry.

• Entry-level employees hired straight from degree programs.

• Work in project teams. Tie ≈ working together.

• Initial team assignment determined by an HR manager.
Random within offices.

• Later team assignment based on an internal labor market.
Junior employees aim to be recruited by senior colleagues.
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Sample characteristics

Variable Mean Std dev

Tie formed 0.0043 0.0653
Indirect tie 0.3853 0.4867
Discretized degree 0.5071 0.4999
Female 0.4613 0.4985
Black 0.0482 0.2143
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Preliminary findings

Effect estimates

Treatment Outcome Intercept Effect P-value N new hires N edges

Indirect tie Tie formed 0.0026 0.0011 0.000 6,042 130,686,467
Discretized degree Tie formed 0.0038 0.0009 0.000 4,414 105,968,417

Placebo tests

Treatment Outcome Intercept Effect P-value N new hires N edges

Indirect tie Female 0.4517 0.0116 0.066 6,042 130,686,467
Indirect tie Black 0.0505 -0.0028 0.788 6,042 130,686,467
Discretized degree Female 0.4460 0.0308 0.045 4,414 105,968,417
Discretized degree Black 0.0554 -0.0058 0.777 4,414 105,968,417
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Effect estimates
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Placebo tests
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Effect estimates
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Discussion (1)

• Design-based inference:

• Avoids awkwardness of sampling models for networks:
Many small networks? Infinite super-network?

• Avoids arbitrary asymptotics.

• Based solely on partial randomness of initial ties.

• Heterogeneity, super-populations, and estimands:

• No need to assume treatment effects are the same across ties.

• No need to assume hypothetical super-population.

• Inference for variants of a sample average treatment effect.
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Discussion (2)

• Dynamics versus equilibrium:

• Equilibrium notions for networks are ambiguous.

• Who needs to consent to tie formation? Tie disolution?

• Additionally: Many equilibria - equilibrium selection?

• Focusing on network dynamics allows us to avoid taking a stance.

• Confounders and reverse causality :

• Confounders: Unobserved heterogeneity can easily lead to patterns like triadic
closure, Matthew effect.

• Reverse causality: Did the tie between 1, 2 cause the tie between 2, 3, or the other
way around? ≈ “reflection problem.”

• Random initial assignment solves both.
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Thank you!
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