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Introduction

Social networks are everywhere, and they are consequential.
® How do network ties form?

® Based on exogenous factors (e.g. shared characteristics, place).

® Based on existing ties (e.g. triadic closure).

Causal identification for network formation is hard.

® Unobservables, reverse causality, equilibrium.

Statistical inference for networks is conceptually subtle.

® Many small networks? Sampling from a large network?
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Empirical example

Network of employees at a global professional services firm.

Edges ~ employees working together.

Employees choose their collaborators.

® Random initial assignment:
Within offices, new hires are randomly assigned to teams.

Network dynamics:
We observe the evolution of the network over time.
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Setup and notation

Time periods ¢t = 1,2, individuals 7,5 € {1...n}.

* Adjacency matrices A" with Af; € {0, 1}.

Structural (causal) relationship A2 = f(A!).

Randomization of initial network: Al uniform from A.

Design-based identification and inference:

® We condition on sample {1...n}, and on potential outcomes f.

® Only source of randomness: Sampling of A' from A.
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Assumption 1

Structural relationship: A? = f(A').

Panel data: Both A' and A? are observed.

Randomization: P(A' = A|f) = o for all Ae A

® FExclusion restriction: d(Al) =d= y(f(Al)) =Y<

Support: P(d(A') = d) > 0.
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|dentification: Inverse probability weighting

® Denote Y = y(A?) and D = d(A').

® Define the IPW estimator

® Under Assumption 1,
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Examples
® Qutcome: Presence of a tie between i ad j.

® Treatments: D = d;;(A!).

® Triadic closure: Presence of an indirect tie between 7 and j.
D=1 (Z AL AL > 0)
2

® Matthew principle: Degree of node 1.

D:ZA}k
k

® Randomization:

A is the set of matrices obtained by swapping new hires within offices.
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Assumption 2

® Permutations:

® For permutation 7 of {1,...,n}, A; id the matrix with entries A (;) ().

® Let IT be an algebraic group of permutations. The set A is given by

A={A;: well}.

® Fquivariance:
® For all # € II, &€ is invariant under m,

(1,4) € €= (n(i),7(j)) € €.

® Forall m €Il and (4,5) € &, d;; is equivariant under T,
dij(Az) = dn(i) n(j) (A)-
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Identification and inference



Weighted linear regression

® Denote pij(d) = P(Dij = d), and Pz'j = pz‘j(Dij)-

® Define 1
f = argmin Z o (Yij — Dyj - B)?,
(ij)ee ¥
) -1
!
mE (B (2
ij)e€ | \deD deD
® Under Assumptions 1 and 2, R
E[B|f] =

Yg-d)].
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Sample average treatment effect

® Special case: Binary treatment.

D;j = (1, X;5), with X;; € {0,1}.

® Then
/8 E ('jfl ]fO)

(i,9)€€

is the sample average treatment effect.

Support condition: For all (i,j) € &,

O<P(Xij=1)<1.

Example: Triadic closure.
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Randomization inference

e Consider the null hypothesis that Yi;-l does not depend on d, for all (i,7) € £.

® For 7 € II, define the permuted estimator

and the p-value

® Under the null, given Assumptions 1 and 2,

Pp<a)<a
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Computational implementation (1)

® Qur application: New hires i € Z are randomly permuted within an office.

® Potential ties: Defined based on support requirement.

j:{j¢z VdEDHZGIdU(Al):d}7
gmar — T 7.

¢ Data can be stored in matrices of dimension |I] x |.J|:

Y = (43))iezjes, D= (Dijietjes,

where Dij = dU(Al)
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Computational implementation (2)

® Assignment probabilities:

pij(d) = 7 ) U(Dyj = d), Bij = pij(Dij)- (1)

,L‘l

® “Instrument:” Z;; = %Dij-
® Weighted regression:
-1

C= Z Zij - Di; , Biiw=C" ZZij‘Yi’j ; //B\ZZBi,i- (2)

i€L,jeT JjeT i€
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Computational implementation (3)

® Permutations m:
Column j remains constant, any permutation of the rows ¢ is allowed.

® Randomization inference:
® Do not need to re-calculate the terms C and B; ;.

® The permuted estimator Eﬂ is simply given by

Br = Z Br(i),i-

i€l
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Empirical setting

Global firm in the professional services industry.

Entry-level employees hired straight from degree programs.

Work in project teams. Tie &~ working together.

Initial team assignment determined by an HR manager.
Random within offices.

Later team assignment based on an internal labor market.
Junior employees aim to be recruited by senior colleagues.
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Sample characteristics

Variable Mean Std dev
Tie formed 0.0043 0.0653
Indirect tie 0.3853 0.4867
Discretized degree 0.5071 0.4999
Female 0.4613 0.4985
Black 0.0482 0.2143
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Preliminary findings

Effect estimates

Treatment Outcome Intercept  Effect P-value N new hires N edges
Indirect tie Tie formed 0.0026 0.0011 0.000 6,042 130,686,467
Discretized degree  Tie formed 0.0038 0.0009 0.000 4,414 105,968,417
Placebo tests
Treatment Outcome  Intercept Effect P-value N new hires N edges
Indirect tie Female 0.4517  0.0116 0.066 6,042 130,686,467
Indirect tie Black 0.0505 -0.0028 0.788 6,042 130,686,467
Discretized degree  Female 0.4460  0.0308 0.045 4,414 105,968,417
Discretized degree  Black 0.0554 -0.0058 0.777 4,414 105,968,417
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Effect estimates

B Untreated [ Treated

Discretized degree -| o0
Indirect tie - o—O
I I I I
0.000 0.002 0.004

Average outcome

Discretized degree

Indirect tie

[ I I 1
0.000.05 0.10 0.150.20
P-value

17/21



Placebo tests

indirect tie — female
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Effect estimates
indirect tie — tie formed
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Discussion (1)

® Design-based inference:

® Avoids awkwardness of sampling models for networks:
Many small networks? Infinite super-network?

® Avoids arbitrary asymptotics.
® Based solely on partial randomness of initial ties.
® Heterogeneity, super-populations, and estimands:

® No need to assume treatment effects are the same across ties.
® No need to assume hypothetical super-population.

® |nference for variants of a sample average treatment effect.
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Discussion (2)

® Dynamics versus equilibrium:
® Equilibrium notions for networks are ambiguous.
® Who needs to consent to tie formation? Tie disolution?
® Additionally: Many equilibria - equilibrium selection?
® Focusing on network dynamics allows us to avoid taking a stance.

® Confounders and reverse causality:

® Confounders: Unobserved heterogeneity can easily lead to patterns like triadic
closure, Matthew effect.

® Reverse causality: Did the tie between 1,2 cause the tie between 2,3, or the other
way around? = “reflection problem.”

® Random initial assignment solves both.
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Thank you!
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