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Introduction

Three goals

1 Inference on the number of roots of functions which are
nonparametrically identified

2 Relating different notions of equilibrium to the roots of identifiable
functions

3 Testing whether there are multiple equilibria in the dynamics of
neighborhood composition in US cities
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Introduction

This paper proposes

a superconsistent estimator of the number of equilibria of economic
systems,

an inference procedure based on non-standard asymptotics.

More precisely, suppose:

the equilibria of a system are solutions of g(x) = 0.

g is nonparametrically identified by a conditional moment restriction.

This paper provides confidence sets for the number Z (g) of solutions to
the equation g(x) = 0.
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Introduction

Examples of multiple equilibria in economics

Urban segregation: Becker and Murphy (2000), Card, Mas, and
Rothstein (2008)

Household level poverty traps: Dasgupta and Ray (1986)

Social norms: Young (2008)

Agglomerations in economic geography: Krugman (1991)

Market entry of firms: Bresnahan and Reiss (1991), Berry (1992)

Poverty traps in macro models of economic growth: Quah
(1996), Azariadis and Stachurski (2005), Bowles, Durlauf, and Hoff
(2006)

Financial market bubbles: Stiglitz (1990), Lux (1995)

...
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Introduction

Example: Dynamics of neighborhood composition

In the search-model of the housing market proposed in my paper on
“Identification in models of sorting with social externalities”

∆m = κ · (d(m,X )−m), (1)

where

m is the minority share among households living in the neighborhood,

d is the minority share among households wanting to live in the
neighborhood,

∆m is the change of m over a given time period,

X are exogenous factors influencing relative demand,

κ is a parameter reflecting search frictions.
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Introduction
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Introduction

Why should we care about multiple equilibria?

They explain persistent inequality.

They imply history dependence.

They imply that “Big Push” interventions have a lasting effect.

Why should we care about inference on the number of equilibria?

Because we should care about multiple equilibria.

The statistical theory is mathematically interesting.
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Introduction

Two general setups, relating equilibria to roots

1) Static games of incomplete information (See Bajari, Hong, Krainer,
and Nekipelov (2006)):

Two players i , actions ai ∈ {0, 1}, public information s observed by
the econometrician.

Under exclusion restrictions, we can estimate the average response
function of a player to the expected action σ−i of the other player,
gi (σ−i , s).

Bayesian Nash equilibria are given by solutions to
g(σ1, s) = g1(g2(σ1, s), s)− σ1 = 0.
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Introduction

2) Stochastic difference equations

∆Xi ,t+1 = Xi ,t+1 − Xi ,t = g(Xi ,t , εi ,t)

number of roots of g in X ≈ number of “equilibrium regions”

number of roots of nonparametric quantile regressions of ∆Xi ,t+1 on
Xi ,t ≥ number of roots of g in X
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Introduction

Roadmap

1 Inference procedure and its asymptotic justification, baseline case

2 Monte Carlo evidence

3 Generalizations: control variables, higher dimensional systems, stable
and unstable equilibria

4 Identification and inference for games and for difference equations

5 Application to data on neighborhood composition (from Card, Mas,
and Rothstein (2008))

6 Conclusion
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Inference in the baseline case

Baseline case - Assumptions

Parameter of interest: number of roots

Z (g) := |{x ∈X : g(x) = 0}| (2)

Assume:

g has one-dimensional and compact domain and range (generalized
later)

observable data are i.i.d. draws of (Yi ,Xi )

the density of X is bounded away from 0 on X

g is identified by a conditional moment restriction

g(x) = argminy EY |X [m(Y − y)|X = x ] (3)

Examples of conditional moment restrictions:

m(δ) = δ2 for conditional mean regression

mq(δ) = δ(q − 1(δ < 0)) for conditional qth quantile regression
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Inference in the baseline case

Assumptions - continued

Assume, furthermore, that g is continuously differentiable and generic:

Definition (Genericity)

A continuously differentiable function g is called generic if

{x : g(x) = 0 and g ′(x) = 0} = ∅

and if all roots of g are in the interior of X .

Genericity of g implies that g has only a finite number of roots.
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Inference in the baseline case

The estimator

Let Kτ and Lρ be kernel functions.

1 Estimate g(.) and g ′(.) using local linear m-regression:(
ĝ(x), ĝ ′(x)

)
= argmina,b

∑
i

Kτ (Xi − x)m(Yi − a− b(Xi − x)).

2 Estimate Z (g) by Ẑ = Zρ
(

ĝ(.), ĝ ′(.)
)

, where Zρ is defined as

Zρ
(
g(.), g ′(.)

)
:=

∫
X

Lρ(g(x))|g ′(x)|dx .

Kτ and Lρ are assumed to be Lipschitz continuous, positive symmetric kernel functions

integrating to 1 with bandwidth τ and ρ and support [−τ, τ ] and [−ρ, ρ].
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Inference in the baseline case

Inference

3 Estimate the variance and bias of Ẑ relative to Z using bootstrap.

4 Construct integer valued confidence sets for Z using t-statistics based
on Ẑ and the bootstrapped variance and bias.
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Inference in the baseline case

Justification and asymptotic properties

Proposition

For g continuously differentiable and generic, if ρ > 0 is small enough, then

Zρ(g(.), g ′(.)) = Z (g(.)).

Idea of proof:

Consider the subset of X where Lρ(g) 6= 0, i.e., g(x) < ρ.

If ρ is small enough, this subset is partitioned into disjoint
neighborhoods of the roots of g , and g is monotonic in each of these
neighborhoods.

A change of variables, setting y = g(x), shows that the integral over
each of these neighborhoods equals one.
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Inference in the baseline case

Figure: Z and Zρ

Notes: Z(g1) = Zρ(g1) = 0,
Z(g2) = 0 < Zρ(g2) < 1
Z(g3) = 2 > Zρ(g3) > 1,
and Z(g4) = Zρ(g4) = 2.
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Inference in the baseline case

Local constancy of Z and Zρ

Definition (C 1 norm)

Let C 1(X ) denote the space of continuously differentiable functions on
the compact domain X . The norm ||.|| on C 1(X ) is defined by

||g || := sup
x∈X
|g(x)|+ sup

x∈X
|g ′(x)|.

Proposition (Local constancy)

Z (.) is constant in a neighborhood, with respect to the norm ||.||, of any
generic function g ∈ C 1, and so is Zρ if ρ is small enough.
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Inference in the baseline case

Figure: On the importance of wiggles
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Inference in the baseline case

Corollary (Superconsistency)

If
(

ĝ , ĝ ′
)

converges uniformly in probability to (g , g ′), if g is generic and

if αn →∞ is some arbitrary diverging sequence, then

αn(Z (ĝ)− Z (g))→p 0.

Furthermore, if ρ is small enough so that Zρ(g , g ′) = Z (g) holds, then

αn(Zρ
(

ĝ , ĝ ′
)
− Z (g))→p 0.
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Inference in the baseline case

Asymptotics for the first stage

Assumption (Bahadur expansion)

(
ĝ(x), ĝ ′(x)

)
− (g(x), g ′(x)) = R−

−f −1
x (x)s−1(x)In(x)

1

n

∑
i

Kτ (Xi − x)φ(Yi − g(x)− g ′(x)(Xi − x))

(
1

τ
,
Xi − x

ν2τ 3

)
(4)

where

fx is the density of x, ν2 :=
∫

K(x)x2dx

φ := m′ (in a piecewise derivative sense), s(x) = ∂
∂g(x)

E [φ(Y − g(x))|X = x ]

In(x) is a non-random matrix converging uniformly to the identity matrix

R = op

((
ĝ(x), ĝ ′(x)

)
− (g(x), g ′(x))

)
uniformly in x

Kong, Linton, and Xia (2010) provide regularity conditions under which

R =
(
1, 1

τ

)
Op

(
log(n)

nτ

)λ
uniformly in x , for some λ ∈ (0, 1) as n→∞.
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Inference in the baseline case

Non-standard sequence of experiments

In order to get nondegenerate asymptotics of Ẑ

we need a nondegenerate limit of ĝ ′

which requires sequences of experiments with increasing amounts of
“noise” relative to “signal.”

Assume:

for the nth experiment we observe (Yi ,n,Xi ,n) for i = 1, . . . , n

Xi ,n ∼iid fx(.) (5)

γi ,n|Xi ,n ∼ fγ|X (6)

Yi ,n = g(Xi ,n) + rnγi ,n, (7)

where {rn} is a real-valued sequence

and 0 = argminaE [m(γ − a)|X ] = argminaE [m(rnγ − a)|X ].

Maximilian Kasy (UC Berkeley) Inference on the number of equilibria 21 / 56



Inference in the baseline case

The central result

Theorem (Asymptotic normality)

Under the above model assumptions, if rn = (nτ5)1/2, nτ →∞, ρ→ 0
and τ/ρ2 → 0, then there exist µ > 0 and V such that√

ρ

τ

(
Ẑ − µ− Z

)
→ N(0,V )

for Ẑ = Zρ
(

ĝ , ĝ ′
)

. Both µ and V depend on the data generating process

only via the asymptotic mean and variance of ĝ ′ at the roots of g , which
in turn depend upon fX , g ′, s and Var(φ|X ) evaluated at the roots of g .
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Inference in the baseline case

Outline of proof:

Ignore variation in ĝ , since variation in ĝ ′ asymptotically dominates.

Apply various Taylor approximations.

Partition the range of integration into intervals of length 2τ .

Using a Poisson approximation, show that the number of Xi falling
into each range is approximately independent.

Deduce that the integrals over each range of length 2τ are
approximately independent except for immediate neighbors.

Using distributional convergence of ĝ ′, show distributional
convergence to nondegenerate limit of the integral over a range 2τ .

Apply a CLT for m-dependent variables, writing the integral as sum of
sub-integrals.
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Inference in the baseline case

Bootstrap inference

Ẑ − Z converges to a normal distribution, after bias correction and
rescaling.

We could perform a t-test on hypotheses about Z , if we had
1 a consistent estimator of V
2 an estimator of µ converging at a rate faster than

√
ρ/τ .

Bootstrap provides such estimators -

if the sample size grows fast enough relative to
√
ρ/τ and τ .
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Inference in the baseline case

Relative efficiency of Zρ

Increasing ρ reduces the variance without affecting the bias in the
limit.

The reason: Asymptotically the difficulty in estimating Z driven
entirely by fluctuations in ĝ ′. Larger ρ averages out these fluctuations
over a larger range of X .

⇒ Zρ1 is asymptotically inefficient relative to Zρ2 for ρ1 < ρ2.

Z (g) = limρ→0 Zρ(g)

This suggests that the simple plug-in estimator Z (ĝ) is asymptotically
inefficient relative to Ẑ .

This is only a heuristic argument, however: We can not exchange the
limits with respect to ρ and with respect to n to obtain the limit
distribution of Z (ĝ).
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Monte Carlo evidence

Monte Carlo evidence

Data generated by

Xi ∼iid Uni[0, 1]

γi |Xi ∼ fγ|X

Yi = g j(Xi ) + γi (8)

fγ|X is an appropriately centered and scaled uniform or normal
distribution.

Two functions g j :
1 with one root: g 1(x) = 0.5− x
2 with three roots: g 2(x) = 0.5− 5x + 12x2 − 8x3

g is estimated by
1 median regression
2 mean regression
3 0.9 quantile regression
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Monte Carlo evidence

Figure: Density of Ẑ in Monte Carlo experiments

uniform errors, median regression
g 1(x) = 0.5− x , Z(g 1) = 1
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Monte Carlo evidence

Figure: Density of Ẑ in Monte Carlo experiments

uniform errors, median regression
g 2(x) = 0.5− 5x + 12x2 − 8x3, Z(g 2) = 3
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Notes: This figure shows density plots of Ẑ from Monte Carlo
experiments with uniform errors and g identified by median regression, as
described in appendix ??. The upper graph shows the distribution from

four experiments with increasing samplesize n and correspondingly growing
variance of the residual γ, where the true parameter Z equals one.

Similarly for the lower graph, where Z = 3.
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Monte Carlo evidence

Table: Montecarlo rejection probabilities under a test of
asymptotic level α =5%.

n τ r P̂(ζ > zα) P̂(ζ < −zα)

400 0.065 0.179 0.05 0.01
800 0.059 0.194 0.03 0.02

1600 0.055 0.231 0.02 0.01
3200 0.052 0.290 0.02 0.01

400 0.065 0.268 0.03 0.02
800 0.059 0.292 0.01 0.02

1600 0.055 0.347 0.01 0.01
3200 0.052 0.434 0.01 0.02

Notes: The columns show in turn

sample size, regression bandwidth, error standard deviation,

and the rejection probabilities of one-sided tests.

The g are estimated by mean regression, the errors are uniformly distributed, and the
first 4 experiments are generated using g 1, the next 4 using g 2.

Maximilian Kasy (UC Berkeley) Inference on the number of equilibria 29 / 56



Generalizations

Generalizations

So far: no controls, one-dimensional X , inference on the total number of
roots.
We will now extend this to:

1 estimation controlling for covariates

2 higher dimensional systems

3 inference on the number of stable and unstable equilibria
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Generalizations

Conditioning on covariates

Consider functions g identified by

g(x ,w1) = argminy EW2

[
EY |X ,W [m(Y − y)|X = x ,W1 = w1,W2]

]
. (9)

The parameter of interest is Z (g(.,w1)).

Condition 9 can be rationalized by a structural model of the form:

Y = h(X ,W1, ε)

ε ⊥ (X ,W1)|W2 (“selection on observables”)

g(x ,w1) := argminy Eε [m(h(x ,w1, ε)− y)]]

W 2 serves as vector of controls variables.
If m(δ) = δ2, equation 9 identifies the average structural function.
This will be important in the discussion of games of incomplete
information.
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Generalizations

Estimate g by(
ĝ(x ,w1), ĝ ′(x ,w1)

)
= argmina,bM(a, b, x ,w1),

where M(a, b, x ,w1) =

1

n

∑
j

∑
i Kτ (Xi − x ,W1i − w1,W2i −W2j)m(Yi − a− b(Xi − x))∑

i Kτ (Xi − x ,W1i − w1,W2i −W2j)
. (10)

The paper states an asymptotic normality result for this context,
generalizing the previous one. Crucial steps of the proof:

1 To obtain a sequence of experiments, such that ĝ converges uniformly
to g while ĝ ′ has a non degenerate limiting distribution.

2 To obtain an approximation of ĝ ′ equivalent to equation 4.

This can be done using results on partial means from Newey (1994).
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Generalizations

Higher dimensional systems

Suppose g is a function from Rd to Rd .

We can define Ẑ as

Ẑ :=

∫
Lρ(ĝ)| det ĝ ′|. (11)

The paper states an asymptotic normality result for this context,
generalizing the previous one, with slower rates of convergence.
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Generalizations

Stable and unstable roots

Consider the number of “stable” and “unstable” roots, Z s and Zu:

Definition

Z s(g) := |{x ∈X : g(x) = 0 and g ′(x) < 0}|

and
Zu(g) := |{x ∈X : g(x) = 0 and g ′(x) > 0}|.

We can define smooth approximations of these parameters as follows:

Z s
ρ (g(.), g ′(.)) :=

∫
X

Lρ(g(x))|g ′(x)|1(g ′(x) < 0)dx

Zu
ρ (g(.), g ′(.)) :=

∫
X

Lρ(g(x))|g ′(x)|1(g ′(x) > 0)du
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Identification and inference for games and for difference equations

Static games of incomplete information

Assume:

Two players i , two actions a, observations indexed by j .

We observe an i.i.d. sample of (a1,j , a2,j , sj), the players’ realized
action and the public information of the game.

ai ,j ∈ {0, 1} for i = 1, 2 and s ∈ Rk .

σi (s) := E [ai |s]: rational expectation beliefs of player −i about the
expected action of player i .

gi (σ−i , s) := E [ai |σ−i , s]: average response of player i (averaging
over private information of i).

Bayesian Nash Equilibrium: σi (s) = gi (σ−i (s), s) for i = 1, 2.
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Identification and inference for games and for difference equations

Figure: Response functions and Bayesian Nash Equilibria
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Identification and inference for games and for difference equations

If one component of s is excluded from gi , we can identify
gi (σ−i , si ) = E [ai |σ−i , si ], since there is independent variation of σ−i and
si .

Bayesian Nash Equilibria are solutions to

g(σ1, s) = g1(g2(σ1, s), s)− σ1.

The following procedure is a nonparametric variant of the procedure
proposed by Bajari, Hong, Krainer, and Nekipelov (2006).

1 Estimate beliefs by local linear mean regression:(
σ̂(s), σ̂′(s)

)
= argminb,c

∑
j

Kτ (sj − s) (ai ,j − b − c(sj − s))2
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Identification and inference for games and for difference equations

2 Estimate average response functions by local linear mean regression,
again: (

ĝi (σ̄−i , si ), ĝ ′i (σ̄−i , si )
)

=

argminb,c

∑
j

Kτ (σ̂−i,j − σ̄−i , si,j − si ) (ai,j − b − c (σ̂−i,j − σ̄−i , si,j − si ))2

3 Plugging ĝ2 into ĝ1, both estimated by 2, yields the following
estimator of g ,

ĝ(σ̄1, s) = Ê
[
a1

∣∣∣σ̂2 = Ê [a2|σ̂1 = σ̄1, s2] , s1

]
− σ̄1.

4 Perform inference on the number of Bayesian Nash Equilibria given s,
Z (g(., s)), using

Ẑ = Zρ
(

(ĝ(., s), ĝ ′1(., s)
)
.

Maximilian Kasy (UC Berkeley) Inference on the number of equilibria 38 / 56



Identification and inference for games and for difference equations

We can again show asymptotic normality for an appropriate sequence of
experiments. The following sequence works. It shrinks response functions
to the diagonal.

sj ,n ∼iid fs(.) (12)

ai ,j ,n|sj ,n ∼ Bin(σi ,n(sj ,n)) (13)

σi ,n(s) = gi ,n(σ−i ,n(s), si ) (14)

g1,n(σ2, s1) =
1

rn
g1,0(σ2, s1) +

(
1− 1

rn

)
σ2 (15)

g−1
2,n (σ2, s2) =

1

rn
g−1

2,0 (σ2, s2) +

(
1− 1

rn

)
σ2 (16)

This setup implies

rngn(σ1, s)→ g1,0(σ1, s1)− g−1
2,0 (σ1, s2).
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Identification and inference for games and for difference equations

Stochastic difference equations

∆Xi ,t+1 = Xi ,t+1 − Xi ,t = g(Xi ,t , εi ,t) (17)

We can show:

1 The number of roots of g allows to characterize the qualitative
dynamics of the stochastic difference equation in terms of equilibrium
regions.

2 If we find only one root in cross-sectional quantile regressions of ∆X
on X , this implies that there is only one stable root for a family of
conditional average structural functions.

Maximilian Kasy (UC Berkeley) Inference on the number of equilibria 40 / 56



Identification and inference for games and for difference equations

Figure: Qualitative dynamics of stochastic difference equations
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Identification and inference for games and for difference equations

If there are unstable equilibria structurally, then quantile regressions should
exhibit multiple roots.
Assume:

∆X = g(X , ε).

First order stochastic dominance: P(g(x ′, ε) ≤ Q|X ) is non-increasing
as a function of X , holding x ′ constant.

Global stability: g(inf X , ε) > 0, g(sup X , ε) < 0 for all ε.

Then:

Proposition (Unstable equilibria in dynamics and quantile regressions)

If Q∆X |X (q|X ) has only one root X for all q, then

E

[
∂

∂X
g(X , ε)

∣∣∣∣∆X = 0,X

]
≤ 0

for all X , where (0,X ) is in the support of (∆X ,X ).
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Application

Application to data on neighborhood composition

Data: Those used for analysis of neighborhood composition dynamics
by Card, Mas, and Rothstein (2008)

Neighborhood Change Database (NCDB): aggregates US census
variables to the level of census tracts, matching observations from the
same geographic area over time.

We will study the dynamics of minority share in a neighborhood.

This paper
1 runs local linear quantile regressions
2 of the change in minority share on initial minority share in a

neighborhood
3 separately for each MSA and decade
4 and performs inference on the number of roots.

Maximilian Kasy (UC Berkeley) Inference on the number of equilibria 43 / 56



Application

This figure shows local linear quantile regressions
of the change in neighborhood minority share 1970-1980
on initial minority share 1970
for the .2, .5 and .8th conditional quantile.

Chicago, 1970-1980

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.2 0.4 0.6 0.8 1

 
.2
.5
.8

Maximilian Kasy (UC Berkeley) Inference on the number of equilibria 44 / 56



Application

This figure shows the density
of the distribution of minority share across neighborhoods
(not weighted by neighborhood size)

Chicago, 1970
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Application

This figure shows, again, local linear quantile regressions
of the change in neighborhood minority share 1970-1980
on initial minority share 1970
for the .2, .5 and .8th conditional quantile.

Los Angeles, 1970-1980
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Application

This figure shows the density
of the distribution of minority share across neighborhoods
(not weighted by neighborhood size)

LA, 1970
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Application

Selected results

Table: .95 confidence sets for Z (g) for selected MSAs by quantile,
change in minority share

MSA 70s
q = .2 q = .5 q = .8

Atlanta, GA MSA [1,1] [1,1] [0,0]
Boston, MA-NH PMSA [0,1] [0,1] [0,1]
Chicago, IL PMSA [0,1] [0,1] [0,1]
Detroit, MI PMSA [1,2] [0,1] [0,1]
Los Angeles-Long Beach, CA PMSA [1,1] [1,1] [0,1]
New York, NY PMSA [0,1] [0,1] [0,0]
San Francisco, CA PMSA [1,1] [0,1] [0,1]
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Application

Selected results

Table: .95 confidence sets for Z (g) for selected MSAs by quantile,
change in minority share

MSA 80s
q = .2 q = .5 q = .8

Atlanta, GA MSA [2,3] [0,0] [0,0]
Boston, MA-NH PMSA [0,1] [0,1] [0,0]
Chicago, IL PMSA [2,2] [0,1] [0,1]
Detroit, MI PMSA [0,1] [0,1] [0,1]
Los Angeles-Long Beach, CA PMSA [0,1] [0,1] [0,1]
New York, NY PMSA [0,0] [0,0] [0,0]
San Francisco, CA PMSA [0,0] [0,1] [0,0]
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Application

Discussion

There is not much evidence of Z exceeding 1.

The data indicate a general rise in minority shares that is largest for
neighborhoods with intermediate initial share, but not to the extent of
leading to tipping behavior.

Proposition 3: No multiple roots in quantile regressions ⇒ no
multiple equilibria in the underlying structural relationship.

I would conclude that tipping is not a widespread phenomenon in US
ethnic neighborhood composition (in contrast to Card, Mas, and
Rothstein (2008)).
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Cautionary remarks

Potential causes of bias in the estimated number of equilibria:

Range of integration:

If a root lies right on the boundary of the chosen range of integration,
it enters Zρ as 1/2 only.
Extending the range of integration beyond the unit interval might lead
to an upward bias, if extrapolated regression functions intersect with
the horizontal axis.
There might be roots of g in the unit interval but beyond the support
of the data (not an issue here).

If the bandwidth parameter ρ is chosen too large, this might bias the
estimated number of equilibria downwards.
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Conclusion

Summary and conclusion

The paper proposes an inference procedure for the number of roots of
functions nonparametrically identified using conditional moment
restrictions

based on a smoothed plug-in estimator of the number of roots which
is super-consistent under i.i.d. asymptotics,

but asymptotically normal under non-standard asymptotics,

and asymptotically efficient relative to the “naive” plug-in estimator.

Maximilian Kasy (UC Berkeley) Inference on the number of equilibria 52 / 56



Conclusion

The results are extended to cover:

covariates as controls,
higher dimensional domain and range,
and inference on the number of equilibria with various stability
properties.

Two theoretical applications were discussed:

static games of incomplete information
stochastic difference equations

In an empirical application to neighborhood composition dynamics in
the United States, no evidence of multiplicity of equilibria is found.
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Conclusion

Potential further applications

household level poverty traps

intergenerational mobility

efficiency wages

macro models of economic growth

financial market bubbles (herding)

market entry

social norms

The Matlab/Octave code written for this paper is available upon request.
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Conclusion

Thanks for your time!
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