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Introduction

• Trial registration and pre-analysis plans (PAPs) have become
a standard requirement for experimental research.

• For clinical studies in medicine starting in the 1990s.

• For experimental research in economics more recently.

• Standard justification: Guarantee validity of inference.
• P-hacking, specification searching, and selective publication distort inference.

• Tying researchers’ hands prevents selective reporting.

• Christensen and Miguel (2018); Miguel (2021).

• The widespread adoption of PAPs has not gone uncontested, however.
• Coffman and Niederle (2015); Olken (2015); Duflo et al. (2020).
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Open questions

1. Why do we need a commitment device?
Standard decision theory has no time inconsistency!

2. How should the structure of PAPs look like?
How can we derive optimal PAPs?

Key insight:
• Single-agent decision-theory cannot make sense of these debates.

• We need to consider multiple agents,
conflicts of interest, and asymmetric information.
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Our approach
• Import insights from contract theory / mechanism design to statistics.

• We consider (optimal) statistical decision rules
subject to the constraint of implementability.

• PAPs are generically necessary for implementation.

• They allow to leverage researcher expertise
while maintaining incentive compatibility of non-selective reporting.

• Our model:
1. A decision-maker commits to a decision rule,

2. then an analyst communicates a PAP,

3. then observes the data,
reports selected (!) statistics to the decision-maker,

4. who then applies the decision rule.

Note: The model presented in this talk is different from that discussed in an earlier
working paper on the same topic.
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Setup: Notation

• Two parties, decision-maker and analyst.

• Message M (“pre-analysis plan”) sent from analyst to decision-maker.

• Data X = (X1, . . . ,Xn) ∼ Pθ.
• Unknown parameter θ ∈ Θ.

• Index sets:
• K = {1, . . . , n} fixed, finite, commonly known.

• J ⊂ K subset of data available to the analyst, privately known.

• I ⊂ J subset of available data reported to the decision-maker.

• Decision A ∈ A ⊆ R.
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Setup: Timeline

Select M and
commit to a

Observe π,
send M ∈ M

Observe (XJ, J),
select I ⊆ J

Observe M, I, XI,
implement A=a(M, I,XI)

Decision-
maker

Analyst
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Discussion

• The analyst can withhold information,
but they cannot lie.

• The components of X might represent different
• hypothesis tests,

• estimates,

• subgroups,

• outcome variables, etc.

• Possible model interpretations:
1. Drug approval (pharma company vs. FDA).

2. Hypothesis testing (researcher vs. reader).

3. Publication decision (researcher vs. journal).
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Motivating example: Normal testing

• K = {1,2}.

• X1,X2 ∼ N(θ, 1).

• The analyst knows J, but the decision-maker does not.

• Null hypothesis H0 : θ ≤ 0.

• The analyst selectively reports, to get a rejection of the null.
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Compare 5 testing rules

0. The optimal full data test (only available if I = J = {1,2}).

1. The naive test (ignores selective reporting).

2. The conservative test (worst-case assumptions about unreported Xι).

3. The optimal implementable test without a PAP.

4. The optimal implementable test with a PAP.
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The optimal full data test

• Suppose availability and selective
reporting were no concern.

• Then X1 + X2 is a sufficient statistic.

• By Neyman-Pearson, the uniformly
most powerful test is given by

1
(
X1 + X2 >

√
2 · z

)
.

• Critical value:

z = Φ−1(1− α).
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The naive test

• Treat the reported data I as if there
were no selective reporting.

a1(XI, I) = 1

(∑
ι∈I

Xι > z ·
√

|I|

)
.

• The analyst chooses I ⊂ J to
maximize rejection,

ā1(XJ, J) = max
I⊂J

a(XI, I).

• Such p-hacking violates size control!
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The conservative test

• Possible remedy:
Worst-case assumptions about
unreported components.

a2(XI, I) = 1
(
X1 + X2 >

√
2 · z and I = K

)
.

• This test controls size.

• But it has low power.
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The optimal implementable test without PAP

• Requirements:
1. Size control.
2. Incentive compatibility.
3. Maximizes expected power.

• Solution without a PAP:
1. Pick a full-data test,
2. make worst-case assumptions

about unreported components.

• Choose the full-data test to
maximize expected power.

• Here:

a3(XI, I) = 1 (X1 > z and 1 ∈ I) .
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The optimal implementable test with PAP

• Allow an analyst message before
seeing data.

• Solution with a PAP :
1. Let the analyst pick a full-data test,
2. make worst-case assumptions

about unreported components.

• The analyst knows J when choosing
the full-data test.
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Degrees of freedom n = 2
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Degrees of freedom n = 10
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Implementable decision functions
• A reduced-form decision function maps the full data into a decision a:

ā(π,XJ, J)

• A reduced-form decision function ā is implementable
• if there exist a decision function a

• with best responses M∗, I∗

• such that

ā(π,XJ, J) = a(M∗,XI∗ , I∗).

• Assumption:
The analyst is an expected utility maximizer with utility

v(A)

for a (strictly) monotonically increasing function v.
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Analyst best responses

• The optimal report I∗ of the analyst satisfies

I∗ ∈ argmax
I⊆J

a(M,XI, I).

• The optimal message M∗ satisfies

M∗ ∈ argmax
M

E[v(a(M, I∗,XI∗))|π].
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Preview of implementability results
• Without PAPs, implementability is equivalent to monotonicity in J:

Reporting more can only increase the decision.

• With PAPs, implementability only requires monotonicity in J
conditional on the analyst signal.
⇒ Can leverage analyst expertise!

• Implementation can use different approaches:
1. Truthful revelation of the analyst signal.

2. Delegation to the analyst, letting them choose a decision function
from a constrained set.

• For binary actions, the set of implementable decision functions
is a convex polytope.

• Truthful revelation is closely related to proper scoring.
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Implementability without PAPs

Proposition

If no pre-analysis messages M are allowed,
a reduced-form decision function ā(π,XJ, J) is implementable iff
1. ā does not depend on π, and

2. ā is monotonic in J,
ā(XI, I) ≤ ā(XJ, J)

for almost all X, J and all I ⊆ J.
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Proof

1. Suppose that both conditions hold.
• Set a(XI, I) = ā(XI, I).

• Incentive compatibility of I∗ = J follows.

2. Consider a decision function ā that is implementable by a.
• Since I∗ is an analyst best-response to this decision function a,

ā(π,XJ, J) = max
I⊆J

a(XI, I).

• The maximum over subsets of J (weakly) increases in J.

Note: The revelation principle does not directly apply here, due to partial verifiability!
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Implementability with PAPs

Theorem

A reduced-form decision function ā is implementable iff
both of the following conditions hold:
1. Truthful PAP

For almost all π and all π′,

E[v(ā(π′,XJ, J))|π] ≤ E[v(ā(π,XJ, J))|π].

2. Monotonicity
For almost all π, X, J, and all I ⊆ J

ā(π,XI, I) ≤ ā(π,XJ, J)
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Revelation and delegation

Proposition
A reduced-form decision rule ā can be implemented iff:
1. Implementation by truthful revelation

It can be implemented with a decision rule a for which

a(π,XJ, J) = ā(π,XJ, J).

2. Implementation by delegation
It can be implemented with a decision rule a for which

a(b,XJ, J) = b(XJ, J),

where b is restricted to lie in some set B.
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Hypothesis testing

• Null hypothesis θ ∈ Θ0.

• Rejection probability A ∈ [0, 1].

⇒ w.l.o.g. v(A) = A.

• Size control at level α ∈ (0, 1):

sup
π,θ∈Θ0,J⊆{1,...,n}

E[ā(π,XJ, J)|θ, π, J] ≤ α.

• Expected power:
E[ā(π,XJ, J)].
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Preview of optimal implementable tests

• Implementable tests are montonic,
so that size control only binds for the full data.

• The optimal test
• maximizes expected power,

• subject to size control

• and implementability.

• This test can be implemented as follows:
• Ask the analyst to choose a full-data test that controls size.

• For any report, assume the worst about the unreported components.

• The analyst problem of choosing the optimal full data test
is a (simple) linear program.
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Implementing the optimal test by delegation

Theorem

• The test with maximal expected power

• subject to implementability and size control

• can be implemented by requiring the analyst to communicate
a full-data test t which satisfies, for all θ ∈ Θ0,

E[t(X)|θ] ≤ α

• and then implementing the test

b(XI, I) = min
X′; X′

I=XI
t(X′).
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Sketch of proof

• Anything that can be implemented can be implemented by delegation.

• Implementable rules are monotonic.

• Monotonic rules satisfy size control iff they satisfy full-data size control.

• Subject to this constraint, analyst and decision-maker are aligned.

• Expected power given full-data size control and monotonicity is maximized by

b(XI, I) = min
X′; X′

I=XI
t(X′).
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The analyst’s problem as a linear program

max
b

∫
b(XJ, J)dPπ(X, J), (Interim expected power)

s.t.
∫

b(X,K)dPθ0(X) ≤ α, (Size control)

b(XJ, J) ∈ [0, 1] ∀ J,X, (Support)
b(XJ, J) ≤ b(X,K) ∀ J,X. (Monotonicity)
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The optimal test when the analyst knows J

Proposition
• Suppose that the analyst observes J before specifying the PAP.

• Then there exists a solution b to the analyst’s problem
such that b(XK ,K) = b(XJ, J) for all values of X.

• Any solution of the analyst’s problem that is of this form furthermore satisfies
that

b(XK ,K) =

{
1 when dPπ(XJ, J) > κJ · dPθ0(XJ, J)
0 when dPπ(XJ, J) < κJ · dPθ0(XJ, J)

.

for some critical value κ.
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Example revisited
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Discussion
• Conflicts of interest, private information.
⇒ Not all decision rules are implementable.

• Mechanism design: Optimal implementable rules.

• Statistical reporting: Partial verifiability.
1. No lying about reported statistics.

2. Private information about which statistics were available.

• Pre-analysis plans:
• No role in single-agent decision-theory.

• But increase the set of implementable rules in multi-agent settings.

• We characterize
1. implementable rules,

2. optimal implementable hypothesis tests.
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Thank you!
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