Optimal Pre-Analysis Plans: Statistical Decisions Subject to Implementability

Maximilian Kasy Jann Spiess

April 2024

Introduction

- Trial registration and pre-analysis plans (PAPs) have become a standard requirement for experimental research.
 - For clinical studies in medicine starting in the 1990s.
 - For experimental research in economics more recently.
- Standard justification: Guarantee validity of inference.
 - P-hacking, specification searching, and selective publication distort inference.
 - Tying researchers' hands prevents selective reporting.
 - Christensen and Miguel (2018); Miguel (2021).
- The widespread adoption of PAPs has not gone uncontested, however.
 - Coffman and Niederle (2015); Olken (2015); Duflo et al. (2020).

Open questions

- 1. Why do we need a commitment device? Standard decision theory has no time inconsistency!
- 2. How should the structure of PAPs look like? How can we derive optimal PAPs?

Key insight:

- Single-agent decision-theory cannot make sense of these debates.
- We need to consider multiple agents, conflicts of interest, and asymmetric information.

Our approach

- İmport insights from contract theory / mechanism design to statistics.
 - We consider (optimal) statistical decision rules subject to the constraint of implementability.
 - PAPs are generically necessary for implementation.
 - They allow to leverage researcher expertise while maintaining incentive compatibility of non-selective reporting.
- Our model:
 - 1. A decision-maker commits to a decision rule,
 - 2. then an analyst communicates a PAP,
 - 3. then observes the data, reports selected (!) statistics to the decision-maker,
 - 4. who then applies the decision rule.

Note: The model presented in this talk is different from that discussed in an earlier working paper on the same topic.

Introduction

Setup

Motivating example: Normal testing

Implementable decision functions

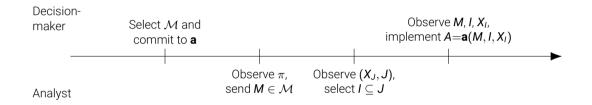
Hypothesis testing

Conclusion and outlook

Setup: Notation

- Two parties, decision-maker and analyst.
- Message *M* ("pre-analysis plan") sent from analyst to decision-maker.
- Data $X = (X_1, \ldots, X_n) \sim \mathsf{P}_{\theta}$.
 - Unknown parameter $\theta \in \Theta$.
- Index sets:
 - $K = \{1, \dots, n\}$ fixed, finite, commonly known.
 - $J \subset K$ subset of data available to the analyst, privately known.
 - $I \subset J$ subset of available data reported to the decision-maker.
- Decision $A \in \mathcal{A} \subseteq \mathbb{R}$.

Setup: Timeline



Discussion

- The analyst can withhold information, but they cannot lie.
- The components of X might represent different
 - hypothesis tests,
 - estimates,
 - subgroups,
 - outcome variables, etc.
- Possible model interpretations:
 - 1. Drug approval (pharma company vs. FDA).
 - 2. Hypothesis testing (researcher vs. reader).
 - 3. Publication decision (researcher vs. journal).

Introduction

Setup

Motivating example: Normal testing

Implementable decision functions

Hypothesis testing

Conclusion and outlook

Motivating example: Normal testing

- $K = \{1, 2\}.$
- $X_1, X_2 \sim N(\theta, 1)$.
- The analyst knows J, but the decision-maker does not.
- Null hypothesis $H_0: \theta \leq 0$.
- The analyst selectively reports, to get a rejection of the null.

Compare 5 testing rules

- 0. The optimal full data test (only available if $I = J = \{1, 2\}$).
- 1. The naive test (ignores selective reporting).
- 2. The conservative test (worst-case assumptions about unreported X_{ι}).
- 3. The optimal implementable test without a PAP.
- 4. The optimal implementable test with a PAP.

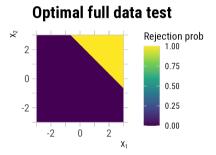
The optimal full data test

- Suppose availability and selective reporting were no concern.
- Then $X_1 + X_2$ is a sufficient statistic.
- By Neyman-Pearson, the uniformly most powerful test is given by

$$\mathbf{1}\left(X_1+X_2>\sqrt{2}\cdot z\right).$$

• Critical value:

$$z = \Phi^{-1}(1 - \alpha).$$



The naive test

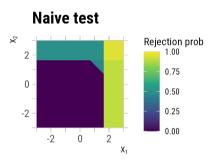
• Treat the reported data *I* as if there were no selective reporting.

$$\mathbf{a}_1(X_l, l) = \mathbf{1}\left(\sum_{\iota \in I} X_\iota > z \cdot \sqrt{|l|}\right).$$

• The analyst chooses *I* ⊂ *J* to maximize rejection,

 $\bar{\mathbf{a}}_1(X_J,J) = \max_{I \subset J} \mathbf{a}(X_I,I).$

• Such p-hacking violates size control!

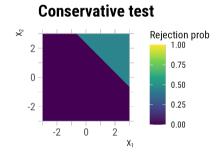


The conservative test

• Possible remedy: Worst-case assumptions about unreported components.

$$\mathbf{a}_{2}(X_{I}, I) = \mathbf{1} \left(X_{1} + X_{2} > \sqrt{2} \cdot z \text{ and } I = K \right).$$

- This test controls size.
- But it has low power.

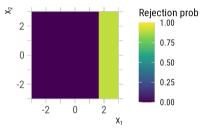


The optimal implementable test without PAP

- Requirements:
 - 1. Size control.
 - 2. Incentive compatibility.
 - 3. Maximizes expected power.
- Solution without a PAP:
 - 1. Pick a full-data test,
 - 2. make worst-case assumptions about unreported components.
- Choose the full-data test to maximize expected power.
- Here:

$$\mathbf{a}_{3}(X_{I}, I) = \mathbf{1}(X_{1} > z \text{ and } 1 \in I).$$

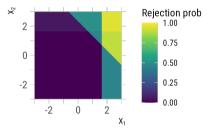
Optimal test without PAP

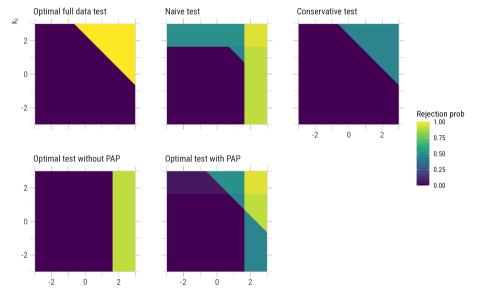


The optimal implementable test with PAP

- Allow an analyst message before seeing data.
- Solution with a PAP :
 - 1. Let the analyst pick a full-data test,
 - 2. make worst-case assumptions about unreported components.
- The analyst knows *J* when choosing the full-data test.

Optimal test with PAP

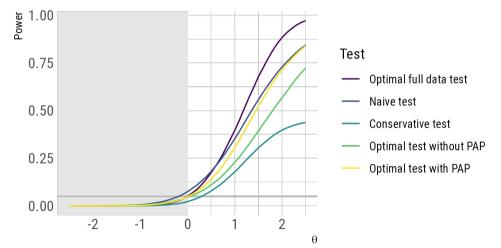




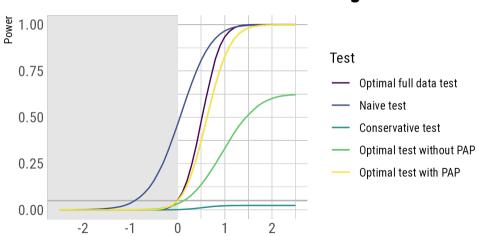
Rejection probabilities for different testing rules

Degrees of freedom n = 2

Power curves for different testing rules



Degrees of freedom n = 10



θ

Power curves for different testing rules

Introduction

Setup

Motivating example: Normal testing

Implementable decision functions

Hypothesis testing

Conclusion and outlook

Implementable decision functions

• A reduced-form decision function maps the full data into a decision a:

 $\bar{\mathbf{a}}(\pi, X_J, J)$

- A reduced-form decision function **ā** is **implementable**
 - if there exist a decision function **a**
 - with best responses M*, I*
 - such that

$$\bar{\mathbf{a}}(\pi, X_J, J) = \mathbf{a}(M^*, X_{I^*}, I^*).$$

• Assumption:

The analyst is an expected utility maximizer with utility

v(A)

for a (strictly) monotonically increasing function v.

Analyst best responses

• The optimal report *I** of the analyst satisfies

$$I^* \in \operatorname*{argmax}_{I \subseteq J} \mathbf{a}(M, X_I, I).$$

• The optimal message *M** satisfies

$$M^* \in \underset{M}{\operatorname{argmax}} \operatorname{E}[v(\mathbf{a}(M, I^*, X_{I^*}))|\pi].$$

Preview of implementability results

- Without PAPs, implementability is equivalent to **monotonicity** in *J*: Reporting more can only increase the decision.
- With PAPs, implementability only requires monotonicity in J conditional on the analyst signal.
 ⇒ Can leverage analyst expertise!
- Implementation can use different approaches:
 - 1. Truthful **revelation** of the analyst signal.
 - 2. **Delegation** to the analyst, letting them choose a decision function from a constrained set.
- For binary actions, the set of implementable decision functions is a **convex polytope**.
- Truthful revelation is closely related to proper scoring.

Implementability without PAPs

Proposition

If no pre-analysis messages **M** are allowed, a reduced-form decision function $\bar{\mathbf{a}}(\pi, X_J, J)$ is implementable iff

- 1. $\bar{\mathbf{a}}$ does not depend on π , and
- 2. ā is monotonic in J,

 $\bar{\mathbf{a}}(X_{I},I) \leq \bar{\mathbf{a}}(X_{J},J)$

for almost all X, J and all $I \subseteq J$.

Proof

- 1. Suppose that both conditions hold.
 - Set $\mathbf{a}(X_{I}, I) = \bar{\mathbf{a}}(X_{I}, I)$.
 - Incentive compatibility of $I^* = J$ follows.
- 2. Consider a decision function $\bar{\mathbf{a}}$ that is implementable by \mathbf{a} .
 - Since I* is an analyst best-response to this decision function a,

$$\bar{\mathbf{a}}(\pi, X_J, J) = \max_{I \subseteq J} \mathbf{a}(X_I, I).$$

• The maximum over subsets of *J* (weakly) increases in *J*.

Note: The revelation principle does not directly apply here, due to partial verifiability!

Implementability with PAPs

Theorem

A reduced-form decision function $\bar{\mathbf{a}}$ is implementable iff both of the following conditions hold:

1. Truthful PAP

For almost all π and all π' ,

$$\mathsf{E}[\mathsf{v}(\bar{\mathbf{a}}(\pi',\mathsf{X}_J,J))|\pi] \leq \mathsf{E}[\mathsf{v}(\bar{\mathbf{a}}(\pi,\mathsf{X}_J,J))|\pi].$$

2. Monotonicity

For almost all π , **X**, **J**, and all $I \subseteq J$

 $\bar{\mathbf{a}}(\pi, X_{I}, I) \leq \bar{\mathbf{a}}(\pi, X_{J}, J)$

Revelation and delegation

Proposition

A reduced-form decision rule **ā** can be implemented iff:

1. Implementation by truthful revelation

It can be implemented with a decision rule **a** for which

 $\mathbf{a}(\pi, X_J, J) = \mathbf{\bar{a}}(\pi, X_J, J).$

2. Implementation by delegation

It can be implemented with a decision rule **a** for which

$$\mathbf{a}(b, X_J, J) = b(X_J, J),$$

where b is restricted to lie in some set \mathcal{B} .

Introduction

Setup

Motivating example: Normal testing

Implementable decision functions

Hypothesis testing

Conclusion and outlook

Hypothesis testing

- Null hypothesis $\theta \in \Theta_0$.
- Rejection probability $A \in [0, 1]$.
- \Rightarrow w.l.o.g. v(A) = A.
 - Size control at level $\alpha \in (0, 1)$:

$$\sup_{\pi,\theta\in\Theta_0, J\subseteq\{1,\dots,n\}} \mathsf{E}[\bar{\mathbf{a}}(\pi, X_J, J)|\theta, \pi, J] \leq \alpha.$$

• Expected power:

 $\mathsf{E}[\bar{\mathbf{a}}(\pi, \mathbf{X}_J, \mathbf{J})].$

Preview of optimal implementable tests

• Implementable tests are montonic, so that size control only binds for the full data.

• The optimal test

- maximizes expected power,
- subject to size control
- and implementability.
- This test can be implemented as follows:
 - Ask the analyst to choose a full-data test that controls size.
 - For any report, **assume the worst** about the **unreported components**.
- The **analyst** problem of choosing the optimal full data test is a (simple) **linear program**.

Implementing the optimal test by delegation

Theorem

- The test with maximal expected power
- subject to implementability and size control
- can be implemented by requiring the analyst to communicate a full-data test **t** which satisfies, for all $\theta \in \Theta_0$,

 $\mathsf{E}[t(X)|\theta] \leq \alpha$

• and then implementing the test

$$b(X_I,I)=\min_{X';\ X'_I=X_I}t(X').$$

Sketch of proof

- Anything that can be implemented can be implemented by delegation.
- Implementable rules are monotonic.
- Monotonic rules satisfy size control iff they satisfy full-data size control.
- Subject to this constraint, analyst and decision-maker are aligned.
- Expected power given full-data size control and monotonicity is maximized by

$$b(X_I,I)=\min_{X';\ X'_I=X_I}t(X').$$

The analyst's problem as a linear program

$$\begin{split} \max_{b} \int b(X_{J},J) d \, \mathsf{P}_{\pi}(X,J), & (\text{Interim expected power}) \\ \text{s.t.} & \int b(X,K) d \, \mathsf{P}_{\theta_{0}}(X) \leq \alpha, & (\text{Size control}) \\ & b(X_{J},J) \in [0,1] & \forall J,X, & (\text{Support}) \\ & b(X_{J},J) \leq b(X,K) & \forall J,X. & (\text{Monotonicity}) \end{split}$$

The optimal test when the analyst knows J

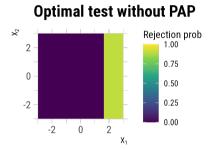
Proposition

- Suppose that the analyst observes J before specifying the PAP.
- Then there exists a solution **b** to the analyst's problem such that $b(X_K, K) = b(X_J, J)$ for all values of **X**.
- Any solution of the analyst's problem that is of this form furthermore satisfies that

$$b(X_{\mathcal{K}},\mathcal{K}) = \begin{cases} 1 & \text{when } d \operatorname{P}_{\pi}(X_J,J) > \kappa_J \cdot d \operatorname{P}_{\theta_0}(X_J,J) \\ 0 & \text{when } d \operatorname{P}_{\pi}(X_J,J) < \kappa_J \cdot d \operatorname{P}_{\theta_0}(X_J,J) \end{cases}$$

for some critical value κ .

Example revisited



Optimal test with PAP

30/31

Introduction

Setup

Motivating example: Normal testing

Implementable decision functions

Hypothesis testing

Conclusion and outlook

Discussion

- Conflicts of interest, private information.
 ⇒ Not all decision rules are implementable.
- Mechanism design: Optimal implementable rules.
- Statistical reporting: Partial verifiability.
 - 1. No lying about reported statistics.
 - 2. Private information about which statistics were available.
- Pre-analysis plans:
 - No role in single-agent decision-theory.
 - But increase the set of implementable rules in multi-agent settings.
- We characterize
 - 1. implementable rules,
 - 2. optimal implementable hypothesis tests.

Thank you!