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Introduction

Recent years saw a boom of “machine learning” methods.

Impressive advances in domains such as

Image recognition, speech recognition,
playing chess, playing Go, self-driving cars ...

Questions:

Why and how do these methods work?
Which machine learning methods are useful
for what kind of empirical research in economics?
Can we combine these methods
with insights from economic theory?

This talk is based on

Abadie and Kasy (2018), and
Fessler and Kasy (2018).
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Machine learning successes
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Outline

1 Brief summaries
1 The risk of machine learning

(Abadie and Kasy 2018)
2 How to use economic theory to improve estimators

(Fessler and Kasy 2018)

2 For both papers:
1 Some math,
2 empirirical applications.

3 Conclusion
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The risk of machine learning (Abadie and Kasy 2018)
Many applied settings: Estimation of a large number of
parameters.

Teacher effects, worker and firm effects, judge effects ...

Estimation of treatment effects for many subgroups

Prediction with many covariates

Two key ingredients to avoid over-fitting,
used in all of machine learning:

Regularized estimation (shrinkage)

Data-driven choices of regularization parameters (tuning)

Questions in practice:
1 What kind of regularization should we choose?

What features of the data generating process matter for this
choice?

2 When do cross-validation or SURE work for tuning?

We compare risk functions to answer these questions.
(Not average (Bayes) risk or worst case risk!)
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Recommendations for empirical researchers

1 Use regularization / shrinkage when you have many
parameters of interest, and high variance (overfitting) is a
concern.

2 Pick a regularization method appropriate for your application:
1 Ridge: Smoothly distributed true effects, no special role of zero
2 Pre-testing: Many zeros, non-zeros well separated
3 Lasso: Robust choice, especially for series regression /

prediction

3 Use CV or SURE in high dimensional settings, when number
of observations � number of parameters.
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How to use economic theory to improve estimators
(Fessler and Kasy 2018)

Most regularization methods shrink toward 0,
or some other arbitrary point.

What if we instead shrink toward parameter values
consistent with the predictions of economic theory?

Most economic theories are only approximately correct.
Therefore:

Testing them always rejects for large samples.
Imposing them leads to inconsistent estimators.
But shrinking toward them leads to uniformly better estimates.

Shrinking to theory is an alternative to the standard paradigm
of testing theories, and maintaining them
while they are not rejected.
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General construction of estimators shrinking to theory:

Parametric empirical Bayes approach.
Assume true parameters are theory-consistent parameters
plus some random effects.
Variance of random effects can be estimated,
and determines the degree of shrinkage toward theory.

We apply this to:
1 Consumer demand

shrunk toward negative semi-definite
compensated demand elasticities.

2 Effect of labor supply on wage inequality
shrunk toward CES production function model.

3 Decision probabilities
shrunk toward Stochastic Axiom of Revealed Preference.

4 Expected asset returns
shrunk toward Capital Asset Pricing Model.
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The risk of machine learning (Abadie and Kasy 2018)

Roadmap:

1 Stylized setting: Estimation of many means
2 A useful family of examples: Spike and normal DGP

Comparing mean squared error as a function of parameters

3 Empirical applications

Neighborhood effects (Chetty and Hendren, 2015)
Arms trading event study (DellaVigna and La Ferrara, 2010)
Nonparametric Mincer equation (Belloni and Chernozhukov,
2011)

4 Uniform loss consistency of tuning methods
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Stylized setting: Estimation of many means
Observe n random variables X1, . . . ,Xn with means µ1, . . . ,µn.

Many applications: Xi equal to OLS estimated coefficients.

Componentwise estimators: µ̂i = m(Xi ,λ ), where
m : R× [0,∞] 7→ R and λ may depend on (X1, . . . ,Xn).

Examples: Ridge, Lasso, Pretest.
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Loss and risk

Compound squared error loss: L(µ̂,µ) = 1
n ∑i (µ̂i −µi )

2

Empirical Bayes risk:
µ1, . . . ,µn as random effects, (Xi ,µi )∼ π,

R̄(m(·,λ ),π) = Eπ [(m(Xi ,λ )−µi )
2].

Conditional expectation:

m̄∗π(x) = Eπ [µ|X = x ]

Theorem: The empirical Bayes risk of m(·,λ ) can be written
as

R̄ = const.+Eπ

[
(m(X ,λ )− m̄∗π(X ))2

]
.

⇒ Performance of estimator m(·,λ ) depends on how closely it
approximates m̄∗π(·).
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A useful family of examples: Spike and normal DGP

Assume Xi ∼ N(µi ,1).

Distribution of µi across i :

Fraction p µi = 0
Fraction 1−p µi ∼ N(µ0,σ

2
0 )

Covers many interesting settings:

p = 0: smooth distribution of true parameters
p� 0, µ0 or σ2

0 large: sparsity, non-zeros well separated

Consider ridge, lasso, pre-test, optimal shrinkage function.

Assume λ is chosen optimally (will return to that).
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Best estimator
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Applications

Neighborhood effects:
The effect of location during childhood on adult income
(Chetty and Hendren, 2015)

Arms trading event study:
Changes in the stock prices of arms manufacturers following
changes in the intensity of conflicts in countries under arms
trade embargoes
(DellaVigna and La Ferrara, 2010)

Nonparametric Mincer equation:
A nonparametric regression equation of log wages on
education and potential experience
(Belloni and Chernozhukov, 2011)
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Estimated Risk

Stein’s unbiased risk estimate R̂

at the optimized tuning parameter λ̂ ∗

for each application and estimator considered.

n Ridge Lasso Pre-test

location effects 595 R̂ 0.29 0.32 0.41

λ̂ ∗ 2.44 1.34 5.00

arms trade 214 R̂ 0.50 0.06 -0.02

λ̂ ∗ 0.98 1.50 2.38

returns to education 65 R̂ 1.00 0.84 0.93

λ̂ ∗ 0.01 0.59 1.14
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Some theory: Estimating λ

Can we consistently estimate the optimal λ ∗,
and do almost as well as if we knew it?

Answer: Yes, for large n, suitably bounded moments.

We show this for two methods:
1 Stein’s Unbiased Risk Estimate (SURE)

(requires normality)
2 Cross-validation (CV)

(requires panel data)
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Uniform loss consistency

Shorthand notation for loss:

Ln(λ ) = 1
n ∑

i

(m(Xi ,λ )−µi )
2

Definition:
Uniform loss consistency of m(., λ̂ ) for m(., λ̄ ∗):

sup
π

Pπ

(∣∣∣Ln(λ̂ )−Ln(λ̄
∗)
∣∣∣> ε

)
→ 0

as n→ ∞ for all ε > 0, where

Pi ∼iid
π.
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Minimizing estimated risk

Estimate λ ∗ by minimizing estimated risk:

λ̂
∗ = argmin

λ

R̂(λ )

Different estimators R̂(λ ) of risk: CV, SURE

Theorem: Regularization using SURE or CV
is uniformly loss consistent
as n→ ∞ in the random effects setting
under some regularity conditions.

Contrast with Leeb and Pötscher (2006)!
(fixed dimension of parameter vector)

Key ingredient: uniform laws of larger numbers to get
convergence of Ln(λ ), R̂(λ ).
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How to use economic theory to improve estimators
(Fessler and Kasy 2018)

Goal: constructing estimators shrinking to theory.

Preliminary unrestricted estimator:

β̂ |β ∼ N(β ,V )

Restrictions implied by theoretical model:

β
0 ∈ B0 = {b : R1 ·b = 0, R2 ·b ≤ 0}.

Empirical Bayes (random coefficient) construction:

β = β
0 + ζ ,

ζ ∼ N(0,τ2 · I ),
β
0 ∈ B0.
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Solving for the empirical Bayes estimator

Marginal distribution of β̂ given β0,τ
2:

β̂ |β0,τ
2 ∼ N(β

0,τ2 · I +V )

Maximum likelihood estimation of β0,τ
2 (tuning):

(β̂
0, τ̂2) = argmin

b0∈B0, t2≥0
log
(

det
(

τ
2 · I + V̂

))
+ (β̂ −b0)′ ·

(
τ
2 · I + V̂

)−1
· (β̂ −b0).

“Bayes” estimation of β (shrinkage):

β̂
EB = β̂

0 +

(
I +

1

τ̂2
V̂

)−1
· (β̂ − β̂

0).
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Application 1: Consumer demand

Consumer choice and the restrictions on compensated demand
implied by utility maximization.

High dimensional parameters if we want to estimate demand
elasticities at many different price and income levels.

Theory we are shrinking to:

Negative semi-definiteness of compensated quantile demand
elasticities,
which holds under arbitrary preference heterogeneity by Dette
et al. (2016).

Application as in Blundell et al. (2017):

Price and income elasticity of gasoline demand,
2001 National Household Travel Survey (NHTS).
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Unrestricted demand estimation
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Empirical Bayes demand estimation
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Application 2: Wage inequality

Estimation of labor demand systems, as in literatures on

skill-biased technical change, e.g. Autor et al. (2008),
impact of immigration, e.g. Card (2009).

High dimensional parameters if we want to allow for flexible
interactions between the supply of many types of workers.

Theory we are shrinking to:

wages equal to marginal productivity,
output determined by a CES production function.

Data: US State-level panel for the years 1960, 1970, 1980,
1990, and 2000 using the Current Population Survey, and
2006 using the American Community Survey.
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Counterfactual evolution of US wage inequality
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Summary

Machine learning and related methods are driven by
shrinkage/regularization and tuning.

Which regularization performs best depends on the
application / distribution of underlying parameters.

Cross-validation and SURE have strong guarantees to yield
almost optimal tuning.

Estimation using shrinkage/regularization and tuning performs
better than unregularized estimation, for every
data-generating process!!

The improvements are largest around the points that we are
shrinking to.

We can shrink to restrictions implied by economic theory to
get large improvements if theory is approximately correct.
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Thank you!
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