Habilitationsvortrag: Machine learning, shrinkage estimation, and economic theory

Maximilian Kasy

May 25, 2018
Recent years saw a boom of “machine learning” methods.

Impressive advances in domains such as
- Image recognition, speech recognition,
- playing chess, playing Go, self-driving cars …

Questions:
- Why and how do these methods work?
- Which machine learning methods are useful for what kind of empirical research in economics?
- Can we combine these methods with insights from economic theory?

This talk is based on
- Abadie and Kasy (2018), and
Machine learning successes
Outline

1 Brief summaries
 1 The risk of machine learning
 (Abadie and Kasy 2018)
 2 How to use economic theory to improve estimators
 (Fessler and Kasy 2018)

2 For both papers:
 1 Some math,
 2 empirical applications.

3 Conclusion
The risk of machine learning (Abadie and Kasy 2018)

- Many applied settings: Estimation of a large number of parameters.
 - Teacher effects, worker and firm effects, judge effects ...
 - Estimation of treatment effects for many subgroups
 - Prediction with many covariates

- Two key ingredients to avoid over-fitting, used in all of machine learning:
 - Regularized estimation (shrinkage)
 - Data-driven choices of regularization parameters (tuning)

- Questions in practice:
 1. What kind of regularization should we choose? What features of the data generating process matter for this choice?
 2. When do cross-validation or SURE work for tuning?

- We compare risk functions to answer these questions. (Not average (Bayes) risk or worst case risk!)
Recommendations for empirical researchers

1. Use regularization / shrinkage when you have many parameters of interest, and high variance (overfitting) is a concern.

2. Pick a regularization method appropriate for your application:
 - Ridge: Smoothly distributed true effects, no special role of zero
 - Pre-testing: Many zeros, non-zeros well separated
 - Lasso: Robust choice, especially for series regression / prediction

3. Use CV or SURE in high dimensional settings, when number of observations \gg number of parameters.
How to use economic theory to improve estimators (Fessler and Kasy 2018)

- Most regularization methods shrink toward 0, or some other arbitrary point.
- What if we instead shrink toward parameter values consistent with the predictions of economic theory?
- Most economic theories are only approximately correct. Therefore:
 - Testing them always rejects for large samples.
 - Imposing them leads to inconsistent estimators.
 - But shrinking toward them leads to uniformly better estimates.
- **Shrinking to theory** is an alternative to the standard paradigm of testing theories, and maintaining them while they are not rejected.
General construction of estimators shrinking to theory:

- Parametric empirical Bayes approach.
- Assume true parameters are theory-consistent parameters plus some random effects.
- Variance of random effects can be estimated, and determines the degree of shrinkage toward theory.

We apply this to:

1. Consumer demand shrunk toward negative semi-definite compensated demand elasticities.
2. Effect of labor supply on wage inequality shrunk toward CES production function model.
4. Expected asset returns shrunk toward Capital Asset Pricing Model.
The risk of machine learning (Abadie and Kasy 2018)

Roadmap:
1. Stylized setting: Estimation of many means
2. A useful family of examples: Spike and normal DGP
 - Comparing mean squared error as a function of parameters
3. Empirical applications
 - Neighborhood effects (Chetty and Hendren, 2015)
 - Arms trading event study (DellaVigna and La Ferrara, 2010)
 - Nonparametric Mincer equation (Belloni and Chernozhukov, 2011)
4. Uniform loss consistency of tuning methods
Stylized setting: Estimation of many means

- Observe \(n \) random variables \(X_1, \ldots, X_n \) with means \(\mu_1, \ldots, \mu_n \).
- Many applications: \(X_i \) equal to OLS estimated coefficients.
- Componentwise estimators: \(\hat{\mu}_i = m(X_i, \lambda) \), where \(m : \mathbb{R} \times [0, \infty] \mapsto \mathbb{R} \) and \(\lambda \) may depend on \((X_1, \ldots, X_n) \).
- Examples: Ridge, Lasso, Pretest.
Loss and risk

- **Compound squared error loss**: \(L(\hat{\mu}, \mu) = \frac{1}{n} \sum_i (\hat{\mu}_i - \mu_i)^2 \)
- **Empirical Bayes risk**:
 \(\mu_1, \ldots, \mu_n \) as **random effects**, \((X_i, \mu_i) \sim \pi,\)
 \[\bar{R}(m(\cdot, \lambda), \pi) = E_{\pi}[(m(X_i, \lambda) - \mu_i)^2]. \]
- **Conditional expectation**:
 \[\bar{m}_\pi^*(X) = E_{\pi}[\mu | X = x] \]
- **Theorem**: The empirical Bayes risk of \(m(\cdot, \lambda) \) can be written as
 \[\bar{R} = \text{const.} + E_{\pi}[(m(X, \lambda) - \bar{m}_\pi^*(X))^2]. \]
- \(\Rightarrow \) Performance of estimator \(m(\cdot, \lambda) \) depends on how closely it approximates \(\bar{m}_\pi^*(\cdot). \)
A useful family of examples: Spike and normal DGP

- Assume $X_i \sim N(\mu_i, 1)$.

- Distribution of μ_i across i:

 | Fraction p | $\mu_i = 0$ |
 | Fraction $1 - p$ | $\mu_i \sim N(\mu_0, \sigma_0^2)$ |

- Covers many interesting settings:
 - $p = 0$: smooth distribution of true parameters
 - $p \gg 0$, μ_0 or σ_0^2 large: sparsity, non-zeros well separated

- Consider ridge, lasso, pre-test, optimal shrinkage function.

- Assume λ is chosen optimally (will return to that).
Best estimator

- $p = 0.00$
- $p = 0.25$
- $p = 0.50$
- $p = 0.75$

- \circ is ridge, \times is lasso, \cdot is pretest
Applications

- **Neighborhood effects:**
 The effect of location during childhood on adult income
 (Chetty and Hendren, 2015)

- **Arms trading event study:**
 Changes in the stock prices of arms manufacturers following
 changes in the intensity of conflicts in countries under arms
 trade embargoes
 (DellaVigna and La Ferrara, 2010)

- **Nonparametric Mincer equation:**
 A nonparametric regression equation of log wages on
 education and potential experience
 (Belloni and Chernozhukov, 2011)
Estimated Risk

- Stein’s unbiased risk estimate \hat{R}
- at the optimized tuning parameter $\hat{\lambda}^*$
- for each application and estimator considered.

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>Ridge</th>
<th>Lasso</th>
<th>Pre-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>location effects</td>
<td>595</td>
<td>0.29</td>
<td>0.32</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\lambda}^*$</td>
<td>2.44</td>
<td>1.34</td>
</tr>
<tr>
<td>arms trade</td>
<td>214</td>
<td>0.50</td>
<td>0.06</td>
<td>-0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\lambda}^*$</td>
<td>0.98</td>
<td>1.50</td>
</tr>
<tr>
<td>returns to education</td>
<td>65</td>
<td>1.00</td>
<td>0.84</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$\hat{\lambda}^*$</td>
<td>0.01</td>
<td>0.59</td>
</tr>
</tbody>
</table>
Some theory: Estimating λ

Can we consistently estimate the optimal λ^*, and do almost as well as if we knew it?

Answer: Yes, for large n, suitably bounded moments.

We show this for two methods:

1. Stein’s Unbiased Risk Estimate (SURE) (requires normality)
2. Cross-validation (CV) (requires panel data)
Uniform loss consistency

- **Shorthand notation for loss:**
 \[L_n(\lambda) = \frac{1}{n} \sum_i (m(X_i, \lambda) - \mu_i)^2 \]

- **Definition:**
 Uniform loss consistency of \(m(., \hat{\lambda}) \) for \(m(., \bar{\lambda}^*) \):
 \[
 \sup_{\pi} P_{\pi} \left(\left| L_n(\hat{\lambda}) - L_n(\bar{\lambda}^*) \right| > \varepsilon \right) \to 0
 \]

 as \(n \to \infty \) for all \(\varepsilon > 0 \), where
 \[
 P_i \sim^{iid} \pi.
 \]
Minimizing estimated risk

- **Estimate** λ^* by minimizing estimated risk:
 \[
 \hat{\lambda}^* = \arg\min_{\lambda} \hat{R}(\lambda)
 \]

- Different estimators $\hat{R}(\lambda)$ of risk: CV, SURE

- **Theorem**: Regularization using SURE or CV is uniformly loss consistent as $n \to \infty$ in the random effects setting under some regularity conditions.

- Contrast with Leeb and Pötscher (2006)!
 (fixed dimension of parameter vector)

- Key ingredient: uniform laws of larger numbers to get convergence of $L_n(\lambda), \hat{R}(\lambda)$.
Goal: constructing estimators shrinking to theory.

Preliminary unrestricted estimator:

\[\hat{\beta} | \beta \sim N(\beta, V) \]

Restrictions implied by theoretical model:

\[\beta^0 \in B^0 = \{ b : R_1 \cdot b = 0, R_2 \cdot b \leq 0 \} \]

Empirical Bayes (random coefficient) construction:

\[\beta = \beta^0 + \zeta, \]
\[\zeta \sim N(0, \tau^2 \cdot I), \]
\[\beta^0 \in B^0. \]
Solving for the empirical Bayes estimator

- Marginal distribution of $\hat{\beta}$ given β_0, τ^2:

$$\hat{\beta} | \beta_0, \tau^2 \sim N(\beta_0, \tau^2 \cdot I + V)$$

- Maximum likelihood estimation of β_0, τ^2 (tuning):

$$(\hat{\beta}^0, \hat{\tau}^2) = \arg\min_{b^0 \in B^0, \tau^2 \geq 0} \log \left(\det \left(\tau^2 \cdot I + \hat{V} \right) \right)$$

$$+ (\hat{\beta} - b^0)' \cdot \left(\tau^2 \cdot I + \hat{V} \right)^{-1} \cdot (\hat{\beta} - b^0).$$

- “Bayes” estimation of β (shrinkage):

$$\hat{\beta}^{EB} = \hat{\beta}^0 + \left(I + \frac{1}{\hat{\tau}^2} \hat{V} \right)^{-1} \cdot (\hat{\beta} - \hat{\beta}^0).$$
Application 1: Consumer demand

- Consumer choice and the restrictions on compensated demand implied by utility maximization.
- High dimensional parameters if we want to estimate demand elasticities at many different price and income levels.
- Theory we are shrinking to:
 - Negative semi-definiteness of compensated quantile demand elasticities,
 - which holds under arbitrary preference heterogeneity by Dette et al. (2016).
- Application as in Blundell et al. (2017):
 - Price and income elasticity of gasoline demand,
 - 2001 National Household Travel Survey (NHTS).
Unrestricted demand estimation

- Log demand
- Income elasticity of demand
- Price elasticity of demand
- Compensated price elasticity of demand
Empirical Bayes demand estimation

- Price elasticity of demand
 - Restricted estimator
 - Unrestricted estimator
 - Empirical Bayes

- Income elasticity of demand
 - Restricted estimator
 - Unrestricted estimator
 - Empirical Bayes
Application 2: Wage inequality

- Estimation of labor demand systems, as in literatures on
 - skill-biased technical change, e.g. Autor et al. (2008),

- High dimensional parameters if we want to allow for flexible interactions between the supply of many types of workers.

- Theory we are shrinking to:
 - wages equal to marginal productivity,
 - output determined by a CES production function.

Counterfactual evolution of US wage inequality
Summary

- Machine learning and related methods are driven by shrinkage/regularization and tuning.
- Which regularization performs best depends on the application / distribution of underlying parameters.
- Cross-validation and SURE have strong guarantees to yield almost optimal tuning.
- Estimation using shrinkage/regularization and tuning performs better than unregularized estimation, for every data-generating process!!
- The improvements are largest around the points that we are shrinking to.
- We can shrink to restrictions implied by economic theory to get large improvements if theory is approximately correct.
Thank you!