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Introduction

Recent years saw a boom of “machine learning” methods.
Impressive advances in domains such as
e Image recognition, speech recognition,
e playing chess, playing Go, self-driving cars ...
Questions:
e Why and how do these methods work?
e Which machine learning methods are useful
for what kind of empirical research in economics?
e Can we combine these methods
with insights from economic theory?
This talk is based on

o Abadie and Kasy (2018), and
o Fessler and Kasy (2018).
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Machine learning successes
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Outline

© Brief summaries
@ The risk of machine learning
(Abadie and Kasy 2018)
@ How to use economic theory to improve estimators
(Fessler and Kasy 2018)
@ For both papers:
@ Some math,
@ empirirical applications.

© Conclusion
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The risk of machine learning (Abadie and Kasy 2018)

@ Many applied settings: Estimation of a large number of
parameters.
o Teacher effects, worker and firm effects, judge effects ...
e Estimation of treatment effects for many subgroups
e Prediction with many covariates

@ Two key ingredients to avoid over-fitting,
used in all of machine learning:
o Regularized estimation (shrinkage)

o Data-driven choices of regularization parameters (tuning)

@ Questions in practice:
© What kind of regularization should we choose?
What features of the data generating process matter for this
choice?
@ When do cross-validation or SURE work for tuning?

@ We compare risk functions to answer these questions.
(Not average (Bayes) risk or worst case risk!)
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Recommendations for empirical researchers

@ Use regularization / shrinkage when you have many
parameters of interest, and high variance (overfitting) is a
concern.

@ Pick a regularization method appropriate for your application:

@ Ridge: Smoothly distributed true effects, no special role of zero

@ Pre-testing: Many zeros, non-zeros well separated

© Lasso: Robust choice, especially for series regression /
prediction

© Use CV or SURE in high dimensional settings, when number
of observations > number of parameters.
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How to use economic theory to improve estimators
(Fessler and Kasy 2018)

@ Most regularization methods shrink toward 0,
or some other arbitrary point.

@ What if we instead shrink toward parameter values
consistent with the predictions of economic theory?
@ Most economic theories are only approximately correct.
Therefore:
e Testing them always rejects for large samples.
e Imposing them leads to inconsistent estimators.
e But shrinking toward them leads to uniformly better estimates.
@ Shrinking to theory is an alternative to the standard paradigm
of testing theories, and maintaining them
while they are not rejected.



@ General construction of estimators shrinking to theory:

o Parametric empirical Bayes approach.
o Assume true parameters are theory-consistent parameters
plus some random effects.
e Variance of random effects can be estimated,
and determines the degree of shrinkage toward theory.
@ We apply this to:
@ Consumer demand
shrunk toward negative semi-definite
compensated demand elasticities.
@ Effect of labor supply on wage inequality
shrunk toward CES production function model.
@ Decision probabilities
shrunk toward Stochastic Axiom of Revealed Preference.
© Expected asset returns
shrunk toward Capital Asset Pricing Model.
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The risk of machine learning (Abadie and Kasy 2018)

Roadmap:

@ Stylized setting: Estimation of many means
@ A useful family of examples: Spike and normal DGP

e Comparing mean squared error as a function of parameters
© Empirical applications

o Neighborhood effects (Chetty and Hendren, 2015)

o Arms trading event study (DellaVigna and La Ferrara, 2010)

o Nonparametric Mincer equation (Belloni and Chernozhukov,
2011)

@ Uniform loss consistency of tuning methods
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Stylized setting: Estimation of many means

@ Observe n random variables Xi,..., X, with means ui,..., .

@ Many applications: X; equal to OLS estimated coefficients.

e Componentwise estimators: [I; = m(X;,1), where
m: R x [0,00] = R and A may depend on (Xi,...,Xp,).

@ Examples: Ridge, Lasso, Pretest.
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Loss and risk

e Compound squared error loss: L(u,u) = %Z,(ﬁ; —u;)?

@ Empirical Bayes risk:
Ui,...,Un as random effects, (X;, ;) ~ ,

R(m(-,4), ) = Ex[(m(Xi, ) — i)?]-
o Conditional expectation:
Mz(x) = Ex[u|X = x]

@ Theorem: The empirical Bayes risk of m(-,A) can be written
as
R = const. + Ex[(m(X, 1) — m}(X))?].

@ = Performance of estimator m(-,1) depends on how closely it
approximates m(+).
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A useful family of examples: Spike and normal DGP

Assume X; ~ N(u;,1).

Distribution of u; across i:

Fraction p ui=0
Fraction 1—p u;~ N(.umﬁg)

Covers many interesting settings:

e p=0: smooth distribution of true parameters
o p>>0, U or 6f large: sparsity, non-zeros well separated

Consider ridge, lasso, pre-test, optimal shrinkage function.

@ Assume A is chosen optimally (will return to that).
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Best estimator

o is ridge, x is lasso, - is pretest
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Applications

@ Neighborhood effects:
The effect of location during childhood on adult income
(Chetty and Hendren, 2015)

e Arms trading event study:
Changes in the stock prices of arms manufacturers following
changes in the intensity of conflicts in countries under arms
trade embargoes
(DellaVigna and La Ferrara, 2010)

e Nonparametric Mincer equation:
A nonparametric regression equation of log wages on
education and potential experience
(Belloni and Chernozhukov, 2011)
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Estimated Risk

@ Stein’s unbiased risk estimate R

@ at the optimized tuning parameter A*

o for each application and estimator considered.

n Ridge Lasso Pre-test
location effects 505 R | 0.29 0.32 0.41
A% | 244 134 500
arms trade 214 R 0.50 0.06 -0.02
2| 098 150 238
returns to education 65 R 1.00 0.84 0.93
2| 001 059 1.14

15 /27



Some theory: Estimating A

@ Can we consistently estimate the optimal A%,
and do almost as well as if we knew it?

@ Answer: Yes, for large n, suitably bounded moments.

@ We show this for two methods:

@ Stein's Unbiased Risk Estimate (SURE)
(requires normality)

@ Cross-validation (CV)
(requires panel data)

16
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Uniform loss consistency

@ Shorthand notation for loss:

Ln(A) = § Y (m(X;, A) = i)?
o Definition: R _
Uniform loss consistency of m(.,A) for m(.,A*):

Lo(R) = La(A%)] > e) -0

supP,r(
T

@ as n— o for all € >0, where

Pi N"d T.

17 /27



Minimizing estimated risk

e Estimate A* by minimizing estimated risk:

o~

A* = argmin R(1)
A

e Different estimators I$(7L) of risk: CV, SURE

@ Theorem: Regularization using SURE or CV
is uniformly loss consistent
as n — oo in the random effects setting
under some regularity conditions.

e Contrast with Leeb and Pétscher (2006)!
(fixed dimension of parameter vector)

o Key ingredient: uniform laws of larger numbers to get
convergence of Ly(1), R(A).
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How to use economic theory to improve estimators
(Fessler and Kasy 2018)

@ Goal: constructing estimators shrinking to theory.

@ Preliminary unrestricted estimator:
BIB ~ N(B.V)
@ Restrictions implied by theoretical model:
B2eB®={b: R-b=0, Ry-b<0}.
e Empirical Bayes (random coefficient) construction:
B=B"+C,

¢~ N(0,72-1),
B e B
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Solving for the empirical Bayes estimator

@ Marginal distribution of //3\ given Bo, T2
B1Bo, 7% ~ N(B%, 721+ V)

e Maximum likelihood estimation of Bg, 72 (tuning):

(507?2) = argmin log (det (12 I+ \7))
BOeBO, t2>0
1

(B0 (214 V) (B 1),

e “Bayes” estimation of B (shrinkage):

~ ~ o~ 71 ~ -~
pre =B+ (14 5V) -5
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Application 1: Consumer demand

@ Consumer choice and the restrictions on compensated demand
implied by utility maximization.

@ High dimensional parameters if we want to estimate demand
elasticities at many different price and income levels.
@ Theory we are shrinking to:
o Negative semi-definiteness of compensated quantile demand
elasticities,
e which holds under arbitrary preference heterogeneity by Dette
et al. (2016).
@ Application as in Blundell et al. (2017):

e Price and income elasticity of gasoline demand,
e 2001 National Household Travel Survey (NHTS).
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Unrestricted demand estimation
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Empirical Bayes demand estimation

price elasticity of demand

restricted estimator
unrestricted estimator
empirical Bayes
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Application 2: Wage inequality

@ Estimation of labor demand systems, as in literatures on
o skill-biased technical change, e.g. Autor et al. (2008),
e impact of immigration, e.g. Card (2009).
@ High dimensional parameters if we want to allow for flexible
interactions between the supply of many types of workers.
@ Theory we are shrinking to:
e wages equal to marginal productivity,
e output determined by a CES production function.
@ Data: US State-level panel for the years 1960, 1970, 1980,
1990, and 2000 using the Current Population Survey, and
2006 using the American Community Survey.
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Counterfactual evolution of US wage inequality

Historical evolution

2-type CES model
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Summary

@ Machine learning and related methods are driven by
shrinkage/regularization and tuning.

@ Which regularization performs best depends on the
application / distribution of underlying parameters.

@ Cross-validation and SURE have strong guarantees to yield
almost optimal tuning.

e Estimation using shrinkage/regularization and tuning performs
better than unregularized estimation, for every
data-generating process!!

@ The improvements are largest around the points that we are
shrinking to.

@ We can shrink to restrictions implied by economic theory to
get large improvements if theory is approximately correct.
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Thank you!



	Introduction
	The risk of machine learning
	Using theory to improve estimators

