Fairness, equality, and power in algorithmic decision making

Rediet Abebe Maximilian Kasy

February 2021

Introduction

- Public debate and the computer science literature:
 Fairness of algorithms, understood as the absence of discrimination.
- We argue: Leading definitions of fairness have three limitations:
 - 1. They legitimize inequalities justified by "merit."
 - 2. They are narrowly bracketed; only consider differences of treatment within the algorithm.
 - 3. They only consider between-group differences.
- Two alternative perspectives:
 - 1. What is the causal impact of the introduction of an algorithm on **inequality**?
 - 2. Who has the **power** to pick the objective function of an algorithm?

Fairness in algorithmic decision making - Setup

• Binary treatment *W*, treatment return *M* (heterogeneous), treatment cost *c*. Decision maker's objective

$$\mu = E[W \cdot (M - c)].$$

- All expectations denote averages across individuals (not uncertainty).
- *M* is unobserved, but predictable based on features *X*.
 For m(x) = E[M|X = x], the optimal policy is

$$w^*(x) = \mathbf{1}(m(X) > c).$$

Examples

- Bail setting for defendants based on predicted recidivism.
- Screening of job candidates based on predicted performance.
- Consumer credit based on predicted repayment.
- Screening of tenants for housing based on predicted payment risk.
- Admission to schools based on standardized tests.

Fairness

Inequality

Power

Case study

Definitions of fairness

- Most definitions depend on three ingredients.
 - 1. Treatment W (job, credit, incarceration, school admission).
 - 2. A notion of merit M (marginal product, credit default, recidivism, test performance).
 - 3. Protected categories A (ethnicity, gender).
- I will focus, for specificity, on the following definition of fairness:

$$\pi = E[M|W = 1, A = 1] - E[M|W = 1, A = 0] = 0$$

"Average merit, among the treated, does not vary across the groups a." This is called "predictive parity" in machine learning, the "hit rate test" for "taste based discrimination" in economics.

• "Fairness in machine learning" literature: Constrained optimization.

$$w^*(\cdot) = \underset{w(\cdot)}{\operatorname{argmax}} E[w(X) \cdot (m(X) - c)] \quad \text{subject to} \quad \pi = 0.$$

Fairness and \mathscr{D} 's objective

Observation

Suppose that W, M are binary ("classification"), and that

1. m(X) = M (perfect predictability), and

2. $w^*(x) = \mathbf{1}(m(X) > c)$ (unconstrained maximization of \mathscr{D} 's objective μ). Then $w^*(x)$ satisfies predictive parity, i.e., $\pi = 0$.

In words:

- If \mathscr{D} is a firm that is maximizing profits and observes everything then their decisions are fair by assumption.
 - No matter how unequal the resulting outcomes within and across groups.
- Only deviations from profit-maximization are "unfair."

Three normative limitations of "fairness" as predictive parity

1. They legitimize and perpetuate **inequalities justified by "merit."** Where does inequality in *M* come from?

- They are narrowly bracketed. Inequality in W in the algorithm, instead of some outcomes Y in a wider population.
- 3. Fairness-based perspectives **focus on categories** (protected groups) and ignore within-group inequality.

 \Rightarrow We consider the impact on inequality or welfare as an alternative.

Three normative limitations of "fairness" as predictive parity

- 1. They legitimize and perpetuate **inequalities justified by "merit."** Where does inequality in *M* come from?
- They are narrowly bracketed. Inequality in W in the algorithm, instead of some outcomes Y in a wider population.

3. Fairness-based perspectives **focus on categories** (protected groups) and ignore within-group inequality.

 \Rightarrow We consider the impact on inequality or welfare as an alternative.

Three normative limitations of "fairness" as predictive parity

- 1. They legitimize and perpetuate **inequalities justified by "merit."** Where does inequality in *M* come from?
- They are narrowly bracketed. Inequality in W in the algorithm, instead of some outcomes Y in a wider population.
- 3. Fairness-based perspectives **focus on categories** (protected groups) and ignore within-group inequality.
- \Rightarrow We consider the impact on inequality or welfare as an alternative.

Fairness

Inequality

Power

Case study

The impact on inequality or welfare as an alternative

• Outcomes are determined by the **potential outcome equation**

$$Y = W \cdot Y^1 + (1 - W) \cdot Y^0.$$

• The realized outcome distribution is given by

$$p_{Y,X}(y,x) = \left[p_{Y^0|X}(y,x) + w(x) \cdot \left(p_{Y^1|X}(y,x) - p_{Y^0|X}(y,x)\right)\right] \cdot p_X(x).$$

• What is the impact of $w(\cdot)$ on a **statistic** ν ?

$$\nu = \nu(p_{Y,X}).$$

Examples: Variance, quantiles, between group inequality.

When fairness and equality are in conflict

- Fairness is about **treating** people of the same "**merit**" independently of their **group** membership.
- Equality is about the (counterfactual / causal) **consequences** of an algorithm for the distribution of **welfare** of different **people**.

Examples when they are in conflict:

- Increased surveillance / better prediction algorithms: Lead to treatments more aligned with "merit" Good for fairness, bad for equality.
- 2. Affirmative action / **compensatory interventions** for pre-existing inequalities: Bad for fairness, good for equality.

Power

- Both fairness and equality are about differences between people who are **being treated**.
- Elephant in the room:
 - Who is on the **other side** of the algorithm?
 - Who gets to be the decision maker \mathscr{D} who gets to pick the objective function μ ?
- Political economy perspective:
 - Ownership of the means of prediction.
 - Data and algorithms.

Fairness

Inequality

Power

Case study

Case study

- Compas risk score data for recidivism.
- From Pro-Publica's reporting on algorithmic discrimination in sentencing.

Mapping our setup to these data:

- A: race (Black or White),
- W: risk score exceeding 4,
- M: recidivism within two years,
- Y: jail time,
- X: race, sex, age, juvenile counts of misdemeanors, fellonies, and other infractions, general prior counts, as well as charge degree.

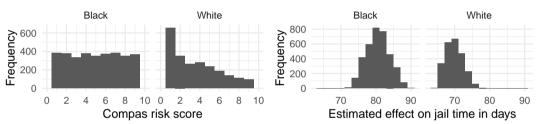
Counterfactual scenarios

Compare three scenarios:

- 1. "Affirmative action:" Adjust risk scores ± 1 , depending on race.
- 2. Status quo.
- 3. Perfect predictability: Scores equal 10 or 1, depending on recidivism in 2 years.

For each: Impute counterfactual

- W: Counterfactual score bigger than 4.
- Y: Based on a causal-forest estimate of the impact on Y of risk scores, conditional on the covariates in X.
- This relies on the assumption of conditional exogeneity of risk-scores given X. Not credible, but useful for illustration.



Compas risk scores

Estimated effect of scores

Table: Counterfactual scenarios, by group

	Black			White		
Scenario	(Score>4)	Recid (Score>4)	Jail time	(Score>4)	Recid (Score>4)	Jail time
Aff. Action	0.49	0.67	49.12	0.47	0.55	36.90
Status quo	0.59	0.64	52.97	0.35	0.60	29.47
Perfect predict.	0.52	1.00	65.86	0.40	1.00	42.85

Table: Counterfactual scenarios, outcomes for all

Scenario	Score>4	Jail time	IQR jail time	SD log jail time
Aff. Action	0.48	44.23	23.8	1.81
Status quo	0.49	43.56	25.0	1.89
Perfect predict.	0.48	56.65	59.9	2.10

Thank you!