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Outline

e Variational auto-encoders.
e Self-prediction with a “bottleneck.”

® Encoder and decoder models.

e Diffusion models.
e Special case of hierarchical autoencoders.

® Fix the encoder model: Just add normal noise.

® Alternative ways of estimating the decoder model.

e Conditioning and guidance.
® Same as before, but conditioning on prompts.

e Can over-emphasize examples which fit a prompt.
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Takeaways

e What transformers have achieved for language generation,
diffusion models have achieved for image generation.

e The basic idea is simple:
1. Add normal noise to images in a data-base.

2. Predict the de-noised image from the noisy one.
3. Do so in multiple rounds.
4. Then generate images by starting with pure noise.

e Conditioning predictions on (encodings of) text labels
yields image generation based on text prompts.
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Setup

i.i.d. observables: x (e.g., images).

Latent variables: z.

Goal: Model the distribution p(x).

Decoder model: pg(x|2).

Encoder model: g4(z|x).

Marginal (prior) for z: p(z).
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The decoder as a generative model

® Given 6, it is easy to sample from p(x):
1. Obtain a draw of z ~ p(z).

2. Then obtain a draw from pg(x|z).

e Maximum likelihood estimation:
Given the sample of observed x;, find 6 to maximize

Y ogpo() = Log ( [ palxiz)p(z)dz ).

e Problem: The integral is too hard to compute for interesting models
(e.g., neural networks).
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Decomposing the likelihood

e By definition of conditional probabilities, for arbitrary z:

|0gP6(X)=Iog< b o 2) %(zx))

gy (2]x)
o (POXIP@) | (90(z0)
= g< 9o (2l )*' g(pe(zm)'

¢ Taking expectations of this over g4 (z|x), for arbitrary ¢, gives:

eorn)= =i [on(Pien )+ € s ()

L(9,0;x) (Evidence lower bound) D (94 (z|x)|lPe(z|x)) (KL divergence)

po(x|z)p

|~~~
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Estimating the model by maximizing the ELBO

¢ Rearranging the likelihood decomposition:

L(¢,6:x) = logpe(x) — Dki(gs(2IX)[IPe(2]X))-

e Maximizing the ELBO L(¢,0;x) wrt 8 and ¢ is equivalent to simultaneously
1. Maximizing logpg(x).

2. Minimizing Dk, (45 (21%)|1Pe (/X))
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How to maximize the ELBO
e We can decompose the ELBO further:

= Ezvgy(ei l08Po(XI2)] = Ezogy(a [.Og <q«; ((zzr)x))]

(Reconstruction term) D1 (q¢(2Ix)[|Ip(2))  (Prior matching term)

e The expectations can easily be approximated using simulation.
* Suppose gy(2z|x) = Nty (x), X4 (x)).
e A differentiable estimate of the expectations averages over draws of
Zj =ty (X) + To(x)"? - g,
for fixed draws & ~ N(0, /).
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Hierarchical autoencoders

e Straightforward generalization: Denote x° = x,

Hierarchy of multiple latent variables x',x2, ..., xT.
e Encoder and decoder models for each layer:
qe(x'xT) po(x'Ix'*7).

e E| BO for this hierarchical model:

p (XO:T)
L(9,6:%) = Earq,(0710) {'og <<7¢9(X”!X)>]
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Diffusion models

Simplification: g4 is a known distribution gq.

In particular:
XX~ N(Vor - X1 (1= o) - ).

For a7 =[1_, ot =~ 0, we get

xT|x0 ~ N(\/ar-x°, (1—ar)-1)- ~ N(0,1).

Furthermore
xTTx0 xt ~ N(at-xP + bt xt et 1),

for constants at, bt, ¢! that are easy to calculate.
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Estimating diffusion models

e | eading terms in ELBO for diffusion models are of the form
Eyt-ateoy | Die (0¢ 70X Ipo (61X ) |

e Recall g(xt~1x%,x!) is a normal distribution.

e For such normal distributions with known variance, minimizing Dy, is
equivalent to predicting the mean

Ep"x%xt] = at-x + bt xt,

based on x!.
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Three equivalent prediction targets

e Goal: predict E[x*"|x% x!] = a'-x% + b!- x!, based on x!.

e Three equivalent approaches:

1. Predict x% based on x!
Plug into at-x? 4+ bt - xt.

2. Predict & based on xt,

where xt = /& - X0 +1— 04 - &.

3. Predict Vlogp(x!) based on x!.
Recall Tweedie's formula:

EX°xY] = x'+(1— &) - Viogp(x}).
e All three prediction targets can be predicted using neural networks.

e Approach 3 leads to an interpretation of denoising as gradient flow.
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Conditioning

e Typically, in generative Al, the goal is not to learn p(x), but instead p(x|y).
e |eading example: y is a text prompt, or LLM encoding thereof.

e |Immediate extension of our previous approach:
Learn conditional predictions of xt~1 given x! and y.

e Works, but leads to generated x that might not be
‘clear-cut” representations of y.
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Classifier guidance

® By Bayes'rule,

t t
Viogp(x'ly) = Vlog (W) — Viogp(x') + Vlogp(y|).

e Can learn the score of the conditional model
by learning the score of the unconditional model, and a classifier.

e To generate more clear-cut examples, overweight the classifier in gradient flow:

Viogp(x') +v- Viogp(y|x')

fory>1
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