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Introduction
• Standard supervised learning:

• How to control model complexity?
A: penalization / regularization / shrinkage.

• How to find the optimal amount of regularization?
A: Minimize cross-validation estimate of out-of-sample loss.

• How to evaluate estimators?
A: Expected out of sample loss.

• Standard theory: Worst-case regret.

• This talk: Risk function - more fine-grained picture!
Taking into account data-dependent tuning!

• Key idea in our paper: We can approximate risk by

• the mean squared error (MSE)

• of shrinkage estimators in the normal means model

• tuned using Stein’s unbiased risk estimate (SURE).
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Review: Penalized ERM-estimation with tuning

• Penalized empirical risk minimization (ERM) estimator (in local coordinates):

θ̂λn = argmin
θ

[
n∑

i=1

l(θ/
√
n,Zi

n) + λ · π(θ)

]
.

• Cross-validated tuning parameter (definition uses leave-one-out estimator):

λ∗
n = argmin

λ

∑
i

l(θ̂λ,−i
n /

√
n,Zi

n).

• Risk function of the tuned estimator:

E
[
l(θ̂λ

∗
n

n /
√
n,Z)

]
,

for Z an independent draw.
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Review: James-Stein shrinkage
• Shrinkage estimator: For θ̂ ∼ N(θ, Ik),

θ̂∗ =

(
1− (k − 2)

∥X∥2

)
· θ̂.

• Risk function (MSE): 1− 1
kE

[
(k−2)2

∥θ̂∥2

]
.

Denoting r = ∥θ0∥:
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Review: Stein’s unbiased risk estimate

• Suppose θ̂ ∼ N(θ0,Σ). Let

θ̂λ = θ̂ + gλ(θ̂),

gλ(θ) = argmin
g

1
2∥g∥

2 + λ · π(θ + g).

• Then

SURE(λ, θ̂,Σ) = trace(Σ) + ∥gλ(θ̂)∥2︸ ︷︷ ︸
In-sample loss

+2 · trace
(
∇gλ(θ̂) · Σ

)
︸ ︷︷ ︸

Overfitting penalty

.

is an unbiased estimator of the MSE of θ̂λ.
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• Special cases of SURE:
• Mallows’s Cp (for homoskedastic Gaussian linear regression).

• Akaike information criterion (for correctly specified unregularized parametric models).

• JS shrinkage can be obtained from Ridge, tuned by minimizing SURE.
(Up to a small degrees of freedom correction.)

θ̂∗ = θ̂λ
∗
,

λ∗ = argmin
λ

SURE(λ, θ̂,Σ).
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Asymptotic approximations
• Consider large n, fixed k, θ0 local to 0.

• Then:

1. Penalized ERM ≈ shrinkage in the normal means model.

2. Tuning using n-fold CV ≈ tuning using SURE.

3. Out of sample predictive error ≈ MSE.

• Our main result:
The risk function of tuned penalized ERM

converges to
the MSE of (generalized) JS shrinkage.

• Formally: Under suitable assumptions,

E
[
l(θ̂λ

∗
n

n /
√
n,Z)

]
→ 1

2E[∥θ̂∗ − θ0∥2].

7 / 21



Key steps

1. Influence function approximations of
• ERM (⇒ asymptotically normal),

• penalized ERM,

• leave-one-out estimators.

2. Taylor-approximation of CV
⇒ CV ≈ SURE.

3. ⇒ minimizer of CV ≈ minimizer of SURE

4. Approximation of average out-of-sample loss by squared error.
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Challenges

1. Convergence of penalized ERM estimators:
Standard empirical process results, plus arguments from convex analysis.

2. Uniformity of convergence of CV to SURE :
Need to deal with points of non-differentiability.
For Lasso: Restrict attention to a grid.

3. Multimodality of SURE / CV in λ:
Non-standard arguments, separately for Ridge and Lasso.
Show that the problem arises with sufficiently small probability.
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Examples of multi-modality of SURE
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• Examples for fixed (handpicked) values of θ̂ and Σ.

• L2 penalty (Ridge) and L1 penalty (Lasso).
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Influence function approximations
• Loss:

n∑
i=1

l(θ/
√
n,Zi

n) ≈ const.+ 1
2∥θ − θ̃n∥2,

where

θ̃n = θ0 +
1√
n

∑
i

Xi
n, Xi

n = −∇βl(θ0/
√
n,Zi

n).

• Asymptotic normality of ERM:

θ̂n →d θ̂ ∼ N(θ0,Σ).

• Penalized ERM:

θ̂λn ≈ θ̃λn = θ̃n + gλ(θ̃n).
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Influence function approximations for leave-one-out

• Leave-one-out (LOO) loss:∑
j ̸=i

l(θ/
√
n,Zn

j ) ≈ const.+ 1
2∥θ − θ̃−i

n ∥2,

where

θ̃−i
n = θ̃n − 1√

n
Xi

n.

• Penalized LOO estimator:

θ̂λ,−i
n ≈ θ̃−i

n + gλ(θ̃−i
n )

≈ θ̃λn − 1√
n
(I +∇gλ(θ̃n)) ·Xi

n.

Local linear approximation of gλ: have to be careful for Lasso, which has kinks.
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Taylor expansion of CV

CVn(λ) =
∑
i

l(θ̂λ,−i
n /

√
n,Zi

n)

≈ const.+ 1
n

∑
i

∥θ̂λ,−i
n − θ0 −

√
nXi

n∥2

≈ const.+ 1
n

∑
i

∥ θ̃n + gλ(θ̃n)− 1√
n
(I +∇gλ(θ̃n)) ·Xi

n︸ ︷︷ ︸
≈θ̂λ,−i

n

−θ0 −
√
nXi

n∥2

≈ const.+ 1
n

∑
i

∥gλ(θ̃n)∥2 + 2
n

∑
i

⟨∇gλ(θ̃n) ·Xi
n, X

i
n⟩

≈ const.+ ∥gλ(θ̂n)∥2 + 2 · trace(∇gλ(θ̂n) · Σ̂n)

= const.+ SURE(λ, θ̂, Σ̂n),
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Uniform convergence of CV

• Suppose that

lim
∥δ∥→0

sup
λ∈Λ

∥∥Rλ(δ; θ)
∥∥

∥δ∥
= 0

for (Lebesgue) almost every θ, where

Rλ(δ; θ) = gλ(θ + δ)− gλ(θ)−∇gλ(θ) · δ.

• Then (assuming regularity conditions) the n-fold crossvalidation criterion satisfies

sup
λ∈Λ

∣∣∣CVn(λ)− SURE(λ, θ̂n,Σ)
∣∣∣ →p 0.
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Dealing with multi-modality: Ridge

• Penalty π(θ) = 1
2θ ·A

−1 · θ, where A is positive definite. ⇒

gλ(θ) = Cλ · θ, ∇gλ(θ) = Cλ, Cλ = ( 1λA+ I)−1.

• Thus

SURE(λ, θ,Σ) = trace(Σ) + ∥Cλ · θ∥2 + 2 trace (Cλ · Σ) .

• Change of coordinates, with slight abuse of notation:
For R = ∥θ̂∥ and ν = θ̂/R,

SURE(λ,R, ν) := SURE(λ, θ̂,Σ).
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SURE for Ridge

1. For every θ,

lim
θ′→θ

sup
λ

|SURE(λ, θ′,Σ)− SURE(λ, θ,Σ)| = 0

2. SURE(λ,R, ν) is strictly supermodular in λ and R. This implies:

2.1 λ(R, ν) = argmin λ∈R+ SURE(λ,R, ν) is monotonically decreasing in R, given ν.

2.2 λ(R, ν) has at most countably many discontinuities, as a function of R, given ν.

3. Fix ν and R such that λ(·) is continuous in R at (R, ν), and let λ̄ = λ(R, ν).
Then supermodularity implies that the minimum of SURE is well separated:
For any ϵ > 0,

inf
λ∈R+\[λ̄−ϵ,λ̄+ϵ]

SURE(λ,R, ν)− SURE(λ̄, R, ν) > 0.
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Almost everywhere continuity for Ridge

• Define

w = (θ,∆) , ∥w∥ = ∥θ∥+ sup
λ

|∆(λ)|

• For almost every θ, the mapping from w to

gλ̃(θ,∆)(θ) =
(

1
λ̃(θ,∆)

A+ I
)−1

· θ, where

λ̃(θ,∆) = min

(
argmin

λ
[SURE(λ, θ,Σ) +∆(λ)]

)
,

is continuous at w = (θ, 0) with respect to the norm ∥w∥.

• Continuous mapping theorem, uniform integrability
⇒ convergence of risk.
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Dealing with multi-modality: Lasso

• Penalty π(θ) = ∥A−1 · θ∥1, where A is an invertible matrix.

• Denote hλ(θ) = A−1(θ + gλ(θ)) ⇒

hλ(θ) = argmin
h

1
2∥A · h− θ∥2 + λ · ∥h∥1.

• Solution:
hλJ(θ) = (A′

JAJ)
−1 · [A′

Jθ − ληJ ],

where
• ηj = sign(hλ

j ),

• J = {j : ηj ̸= 0}.
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SURE for Lasso
1. As a function of λ, the graph of SURE(λ,R, ν) consists of at most 3k

segments on which η and J = {j : ηj ̸= 0} are constant, and

SURE(λ,R, ν) = const.+ λ2 · η′J(A′
JAJ)

−1ηJ .

2. Let λ1, λ2, . . . , λm (m ≤ 3k) be the local minimizers of SURE(λ, 1, ν).
Then R · λ1, R · λ2, . . . , R · λm are the local minimizers of SURE(λ,R, ν).

3. Let λ(R, ν) = argmin λ∈R+ SURE(λ,R, ν). Then
• λ(R, ν) = R · λj(R),

• where j(R) ∈ {1, 2, . . . ,m} is a monotonically decreasing.

4. Fix ν and R such that λ(·) is continuous in R at (R, ν), and let λ̄ = λ(R, ν) be
such that η ̸= 0. Then the minimum of SURE is well separated: For any
ϵ > 0,

inf
λ∈R+\[λ̄−ϵ,λ̄+ϵ]

SURE(λ,R, ν)− SURE(λ̄, R, ν) > 0.
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Conclusion

• Majority of supervised learning methods:
• Empirical risk minimizers

• with regularization

• tuned using cross-validation.

• We show:
• Such methods behave approximately like (generalized) James-Stein shrinkage:

• Uniform dominance relative to un-regularized estimators.

• Largest gains for: Large k, small ∥θ∥.
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Open issues and limitations

• Our asymptotic result for Lasso holds for a fixed grid Λ.
• Extension to sequence of grids?

• More refined argument to cover the case Λ = R?

• Our approximations hold for fixed k, large n.
• ⇒ We can leverage asymptotic normality.

• But what about the over-parametrized case k > n?
Important in deep learning!

• Risk ≈ average loss for point prediction.
• Conformal inference:

Turns point prediction into predictive intervals with guaranteed coverage.

• Can we map our risk results into results about average size of predictive sets?
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Thank you!
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