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Introduction

e Standard supervised learning:
® How to control model complexity?
A: penalization / regularization / shrinkage.

® How to find the optimal amount of regularization?
A: Minimize cross-validation estimate of out-of-sample loss.

® How to evaluate estimators?
A: Expected out of sample loss.

® Standard theory: Worst-case regret.

® This talk: Risk function - more fine-grained picture!
Taking into account data-dependent tuning!

® Key idea in our paper: We can approximate risk by
® the mean squared error (MSE)
® of shrinkage estimators in the normal means model

® tuned using Stein’s unbiased risk estimate (SURE).
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Review: Penalized ERM-estimation with tuning

® Penalized empirical risk minimization (ERM) estimator (in local coordinates):

) = argznin [Z WO/n, ZL) + X 71'(9)] .

i=1

¢ Cross-validated tuning parameter (definition uses leave-one-out estimator):
Ay, = argmin Zl(é;}_i/\/ﬁ, Zi).
A i
® Risk function of the tuned estimator:
E U6 /v/n, 7)),
for Z an independent draw.
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Review: James-Stein shrinkage
e Shrinkage estimator: For 6 ~ N (6, I.),

= ()

® Risk function (MSE): 1 — %E [(l‘c‘g”zf}

Denoting 7 = ||6o]|:
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Review: Stein’'s unbiased risk estimate

e Suppose 6 ~ N(6p,Y). Let
0" =0+ g*0),
g*(0) = argmin §||g||> + X - 7 (0 + g).
g
® Then

SURE(X,0,%) = trace(2) + [|g*(0)]* +2 - trace (Vg)‘(é) : E) :
——

In-sample loss

Overfitting penalty

is an unbiased estimator of the MSE of 6.
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® Special cases of SURE:
® Mallows's C), (for homoskedastic Gaussian linear regression).

® Akaike information criterion (for correctly specified unregularized parametric models).

® JS shrinkage can be obtained from Ridge, tuned by minimizing SURE.
(Up to a small degrees of freedom correction.)

0" =0V,
A* = argmin SURE(\,6,%).
A
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Asymptotic approximations

o Consider large n, fixed k, 6y local to 0.

® Then:
1. Penalized ERM = shrinkage in the normal means model.

2. Tuning using n-fold CV & tuning using SURE.

3. Out of sample predictive error ~ MSE.

® Our main result:
The risk function of tuned penalized ERM
converges to
the MSE of (generalized) JS shrinkage.

® Formally: Under suitable assumptions,

E |10 /v/n. 2)| = $E[16" — 6.
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Key steps

1. Influence function approximations of
® ERM (= asymptotically normal),

® penalized ERM,

® |eave-one-out estimators.

2. Taylor-approximation of CV
= CV =~ SURE.

3. = minimizer of CV = minimizer of SURE

4. Approximation of average out-of-sample loss by squared error.
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Challenges

1. Convergence of penalized ERM estimators:
Standard empirical process results, plus arguments from convex analysis.

2. Uniformity of convergence of CV to SURE:
Need to deal with points of non-differentiability.
For Lasso: Restrict attention to a grid.

3. Multimodality of SURE / CV in \:
Non-standard arguments, separately for Ridge and Lasso.
Show that the problem arises with sufficiently small probability.
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Examples of multi-modality of SURE

Ridge Lasso
A A
8 41
3.8 1
w w
5 36| 5 6
3.4 1 41

0 20 40 A 0o 1 2 A
e Examples for fixed (handpicked) values of § and .

e L2 penalty (Ridge) and L! penalty (Lasso).
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Influence function approximations

® Loss:
Zn:l(e/\/ﬁ, Z%) = const. + 11|10 — 6,
i=1
where
On =t 75 2 Ko X, = =Vpl(0o/Vn, Z,).

® Asymptotic normality of ERM:
0, =% 0 ~ N(6,%).

® Penalized ERM:

0) ~ 0} =0, + ¢*(0,).

n
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Influence function approximations for leave-one-out

¢ Leave-one-out (LOO) loss:
> UO/v/n, Z}) = const. + 51|16 — 6,7,
JFi

where

® Penalized LOO estimator:

00+ 0
I = ST+ Vg ) - X

~
~

1
Vo

Local linear approximation of ¢g*: have to be careful for Lasso, which has kinks.
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Taylor expansion of CV

=S 7))
~ const. + % Z Héé’_l — o — VnX.|?

~ const. + 1Y |60+ 9N0n) = S (I + V9 (0n)) - X, =60 — VX, |

zeé’ﬂ‘
~ const. + 5 Z g @) + 2D (Vg (6n) - X}, X1)
i

~ const. + ||g* ( 0) |12 + 2 - trace(Vg* (6,) - £,,)
= const. + SURE(), 0, f]n),
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Uniform convergence of CV

® Suppose that
. [R}5;0)|| _
lsl—0xen [0

for (Lebesgue) almost every 6, where
RMN6;0) = g0 + ) — g*(6) — Vg (0) - 6.
® Then (assuming regularity conditions) the n-fold crossvalidation criterion satisfies

sup |CVn(A) — SURE(), 6, %) =P 0.
AEA
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Dealing with multi-modality: Ridge

® Penalty m(0) = 16 - A~!- 0, where A is positive definite. =

g*(0) =Cx -0, Vg (0) = Cy, Cr=(GA+D
® Thus
SURE(),0,%) = trace(X) + ||Cy - 0]|* + 2trace (Cy - 2).

® Change of coordinates, with slight abuse of notation:
For R =|0|| and v = 6/R,

SURE(\, R,v) := SURE(),6,%).
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SURE for Ridge

1. For every 0,

lim sup |[SURE(M, 6, %) — SURE(),0,%)| =0
0'—0

2. SURE()\, R,v) is strictly supermodular in A and R. This implies:
2.1 AM(R,v) = argmin ycp+ SURE(A, R, v) is monotonically decreasing in R, given v.

2.2 A(R,v) has at most countably many discontinuities, as a function of R, given v.

3. Fix v and R such that A() is continuous in R at (R,v), and let A = A\(R,v).
Then supermodularity implies that the minimum of SURE is well separated:
For any € > 0,

inf  SURE(\R,v) — SURE(\, R,v) > 0.
AERT\[A—€,A+€]
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Almost everywhere continuity for Ridge

® Define

w=(0,A), lwll = 11611 + sup |A(N)]
® For almost every 6, the mapping from w to

- —1
gA(e,A)(e) — <mA + ]> -0, where

A0, A) = min (argr)\nin [SURE(X,0,%) + A(A)]) :

is continuous at w = (#,0) with respect to the norm ||w]].

® Continuous mapping theorem, uniform integrability
= convergence of risk.
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Dealing with multi-modality: Lasso

® Penalty w(0) = ||[A~1- 0|1, where A is an invertible matrix.

® Denote R () = A1 (0 + ¢*(0)) =

hM0) = argmin 1||A-h— ]2 + X [|h:.
h

e Solution:
hy(0) = (A5 A7) [AL0 — Ayl
where
* n; = sign(hy}),
* J={j:n; #0}.
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SURE for Lasso

1. As a function of \, the graph of SURE(\, R, v) consists of at most 3*
segments on which 1 and J = {j : ; # 0} are constant, and

SURE(M\, R,v) = const. + A2. n'( f]AJ)*an,

2. Let A1, A2, ..., A (m < 3F) be the local minimizers of SURE(), 1,v).
Then R- A, R \a,..., R- )\, are the local minimizers of SURE(\, R, v).

3. Let A(R,v) = argmin g+ SURE(X, R,v). Then
°* \MR,v)=R- >\j(R)r

® where j(R) € {1,2,...,m} is a monotonically decreasing.

4. Fix v and R such that A(-) is continuous in R at (R,v), and let A = A\(R,v) be
such that n # 0. Then the minimum of SURF is well separated: For any
€>0,

inf  SURE(\ R,v) — SURE()\, R,v) > 0.
AERT\[A—¢,A\+¢€]
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Conclusion

® Majority of supervised learning methods:
® Empirical risk minimizers

® with regularization

® tuned using cross-validation.

® We show:
® Such methods behave approximately like (generalized) James-Stein shrinkage:

® Uniform dominance relative to un-regularized estimators.

® Largest gains for: Large k, small ||6].
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Open issues and limitations

® QOur asymptotic result for Lasso holds for a fixed grid A.
® Extension to sequence of grids?

® More refined argument to cover the case A = R?
® QOur approximations hold for fixed k, large n.
® = We can leverage asymptotic normality.

® But what about the over-parametrized case k > n?
Important in deep learning!

® Risk = average loss for point prediction.

® Conformal inference:
Turns point prediction into predictive intervals with guaranteed coverage.

® Can we map our risk results into results about average size of predictive sets?
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Thank you!
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