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Introduction

The goal of many experiments is to inform policy choices:

1. Job search assistance for refugees:
• Treatments: Information, incentives, counseling, ...
• Goal: Find a policy that helps as many refugees as possible

to find a job.

2. Clinical trials:
• Treatments: Alternative drugs, surgery, ...
• Goal: Find the treatment that maximizes the survival rate of patients.

3. Online A/B testing:
• Treatments: Website layout, design, search filtering, ...
• Goal: Find the design that maximizes purchases or clicks.

4. Testing product design:
• Treatments: Various alternative designs of a product.
• Goal: Find the best design in terms of user willingness to pay.
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Example

• There are 3 treatments d .

• d = 1 is best, d = 2 is a close second, d = 3 is clearly worse.
(But we don’t know that beforehand.)

• You can potentially run the experiment in 2 waves.

• You have a fixed number of participants.

• After the experiment, you pick the best performing treatment
for large scale implementation.

How should you design this experiment?

1. Conventional approach.

2. Bandit approach.

3. Our approach.
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Conventional approach

Split the sample equally between the 3 treatments,
to get precise estimates for each treatment.

• After the experiment, it might still be hard to distinguish whether
treatment 1 is best, or treatment 2.

• You might wish you had not wasted a third of your observations on
treatment 3, which is clearly worse.

The conventional approach is

1. good if your goal is to get a precise estimate for each treatment.

2. not optimal if your goal is to figure out the best treatment.
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Bandit approach

Run the experiment in 2 waves
split the first wave equally between the 3 treatments.
Assign everyone in the second (last) wave to
the best performing treatment from the first wave.

• After the experiment, you have a lot of information on the d that performed best
in wave 1, probably d = 1 or d = 2,

• but much less on the other one of these two.

• It would be better if you had split observations equally between 1 and 2.

The bandit approach is

1. good if your goal is to maximize the outcomes of participants.

2. not optimal if your goal is to pick the best policy.
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Our approach

Run the experiment in 2 waves
split the first wave equally between the 3 treatments.
Split the second wave between
the two best performing treatments from the first wave.

• After the experiment you have the maximum amount of information
to pick the best policy.

Our approach is

1. good if your goal is to pick the best policy,

2. not optimal if your goal is to estimate the effect of all treatments,
or to maximize the outcomes of participants.

Let θd denote the average outcome
that would prevail if everybody was assigned to treatment d .
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What is the objective of your experiment?
1. Getting precise treatment effect estimators, powerful tests:

minimize
∑
d

(θ̂d − θd)2

⇒ Standard experimental design recommendations.

2. Maximizing the outcomes of experimental participants:

maximize
∑
i

θDi

⇒ Multi-armed bandit problems.

3. Picking a welfare maximizing policy after the experiment:

maximize θd
∗
,

where d∗ is chosen after the experiment.
⇒ This talk.
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Preview of findings

• Adaptive designs improve expected welfare.
• Features of the optimal treatment assignment:

• Shift toward better performing treatments over time.
• But don’t shift as much as for Bandit problems:

We have no “exploitation” motive!
• Asymptotically: Equalize power for comparisons

of each suboptimal treatment to the optimal one.

• Fully optimal assignment is computationally challenging in large samples.
• We propose a simple exploration sampling algorithm.

• Prove theoretically that it is rate-optimal for our problem,
because it equalizes power across suboptimal treatments.

• Show that it dominates alternatives in calibrated simulations.
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Literature

• Adaptive designs in clinical trials:
• Berry (2006), FDA (2018).

• Bandit problems:
• Gittins index (optimal solution to some bandit problems): Weber (1992).
• Regret bounds for bandit problems: Bubeck and Cesa-Bianchi (2012).
• Thompson sampling: Russo et al. (2018).

• Best arm identification:
• Rate-optimal (oracle) assignments: Glynn and Juneja (2004).
• Poor rates of bandit algorithms: Bubeck et al. (2011),
• Bayesian algorithms: Russo (2016).

Key references for our theory results.
• Empirical examples for our simulations:

• Ashraf et al. (2010),
• Bryan et al. (2014),
• Cohen et al. (2015).
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Setup

• Waves t = 1, . . . ,T , sample sizes Nt .

• Treatment D ∈ {1, . . . , k}, outcomes Y ∈ {0, 1}.
• Potential outcomes Y d .

• Repeated cross-sections:
(Y 0

it , . . . ,Y
k
it ) are i.i.d. across both i and t.

• Average potential outcome:
θd = E [Y d

it ].

• Key choice variable:
Number of units ndt assigned to D = d in wave t.

• Outcomes:
Number of units sdt having a “success” (outcome Y = 1).
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Treatment assignment, outcomes, state space

• Treatment assignment in wave t: nt = (n1
t , . . . , n

k
t ).

• Outcomes of wave t: st = (s1
t , . . . , s

k
t ).

• Cumulative versions:

Mt =
∑
t′≤t

Nt′ , mt =
∑
t′≤t

nt , r t =
∑
t′≤t

st .

• Relevant information for the experimenter in period t + 1
is summarized by mt and r t .

• Total trials for each treatment, total successes.
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Design objective and Bayesian prior
• Policy objective θd

∗
T .

• where d∗
T is chosen after the experiment.

• Prior
• θd ∼ Beta(αd

0 , β
d
0 ), independent across d .

• Posterior after period t: θd |mt , r t ∼ Beta(αd
t , β

d
t )

αd
t = αd

0 + rdt

βd
t = βd

0 + md
t − rdt .

• Posterior expected social welfare
as a function of d :

SWT (d) = E [θd |mT , rT ],

=
αd
T

αd
T + βdT

,

d∗T ∈ argmax
d

SWT (d).
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Regret

• True optimal treatment: d (1) ∈ arg maxd ′ θ
d ′ .

• Policy regret when choosing treatment d :

∆d = θd
(1) − θd .

• Maximizing expected social welfare is equivalent to minimizing the expected
policy regret at T ,

E [∆d |mT , rT ] = θd
(1) − SWT (d)

• In-sample regret: Objective considered in the bandit literature,

1
M

∑
i ,t

∆Dit .

Different from policy regret ∆d∗T !
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Thompson sampling
• Thompson sampling

• Old proposal by Thompson (1933).
• Popular in online experimentation.

• Assign each treatment with probability equal to
the posterior probability that it is optimal.

pdt = P

(
d = argmax

d ′
θd
′ |mt−1, r t−1

)
.

• Easily implemented: Sample draws θ̂it from the posterior, assign

Dit = argmax
d

θ̂dit .

• Expected Thompson sampling
• Straightforward modification for the batched setting.
• Assign non-random shares pdt of each wave to treatment d .
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Exploration sampling

• Agrawal and Goyal (2012) proved that Thompson-sampling is rate-optimal
for the multi-armed bandit problem.

• It is not for our policy choice problem!

• We propose the following modification.

• Exploration sampling:
Assign shares qdt of each wave to treatment d , where

qdt = St · pdt · (1− pdt ),

St =
1∑

d p
d
t · (1− pdt )

.

• This modification

1. yields rate-optimality (theorem coming up), and
2. improves performance in our simulations.
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Illustration of the mapping from Thompson to exploration sampling
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The rate-optimal assignment: Lemma 1
Denote the estimated success rate of d at time T by θ̂dT =

1+rdT
2+md

T

.

The rate of convergence to zero of expected policy regret

R(T) =
∑
d

∆d · P
(

argmax
d ′

θ̂d
′

T = d

)
is equal to the slowest rate of convergence Γd across d 6= d (1)

for the probability of d being estimated to be better than d (1).

Lemma

• Assume that the optimal policy d (1) is unique. Suppose that for all d

lim
T→∞

− 1

NT
logP

(
θ̂dT > θ̂d

(1)

T

)
= Γd .

• Then

lim
T→∞

(
− 1

NT
log R(T)

)
= min

d 6=d (1)
Γd .
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The rate-optimal assignment: Lemma 2

From Glynn and Juneja (2004):

• Characterize Γd as a function of the treatment allocation share for each d , q̄d .

• The posterior probability pdT of d being optimal converges at the same rate Γd .

Lemma

Suppose that q̄dT = md
T/(NT ) converges to q̄d for all d, with q̄d

(1)
= 1/2. Then

1. limT→∞− 1
NT logP

(
θ̂dT > θ̂d

(1)

T

)
= Γd , and

2. plimT→∞− 1
NT log pdT = Γd ,

where
Γd = Gd(q̄d)

for a function Gd : [0, 1]→ R
that is finitely valued, continuous, strictly increasing in q̄d , and satisfies Gd(0) = 0.
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The rate-optimal assignment: Lemma 3

• Characterize the allocation of observations across the treatments d which
maximizes the rate of R(T).

• Our main result shows that exploration sampling converges to this allocation.

Lemma

The rate-optimal allocation q̄, subject to the constraint q̄d
(1)

= 1/2, is given by the
unique solution to the system of equations∑

d 6=d (1)

q̄d = 1/2 and Gd(q̄d) = Γ∗ > 0 for all d 6= d (1) (1)

for some Γ∗. No other allocation, subject to the constraint q̄d
(1)

= 1/2, can achieve a
faster rate of convergence of R(T) than Γ∗.
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Thompson sampling – results from the literature

• In-sample regret (bandit objective):∑T
t=1 ∆d , where ∆d = maxd ′ θ

d ′ − θd .

• Agrawal and Goyal (2012) (Theorem 2): For Thompson sampling,

lim
T→∞

E

[∑T
t=1 ∆d

logT

]
≤

∑
d 6=d∗

1

(∆d)2

2

.

• Lai and Robbins (1985):
No adaptive experimental design can do better than this logT rate.

• Thompson sampling only assigns a share of units of order log(M)/M
to treatments other than the optimal treatment.
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Results from the literature continued

• This is good for in-sample welfare, bad for learning:
We stop learning about suboptimal treatments very quickly.

• Bubeck et al. (2011) Theorem 1 implies:
Any algorithm that achieves log(M)/M rate for in-sample regret
(such as Thompson sampling)
can at most achieve polynomial convergence for policy regret!

• By contrast (easy to show): Any algorithm that assigns shares
converging to non-zero shares for each treatment
achieves exponential convergence for our objective.

• Our result (next slide): Exploration sampling achieves the
(constrained) best exponential rate.
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Exploration sampling is rate optimal

Theorem

Consider exploration sampling in a setting with fixed wave size Nt = N ≥ 1. Assume
that θd

(1)
< 1 and that the optimal policy d (1) is unique. As T →∞, the following

holds:

1. The share of observations q̄d
(1)

T assigned to the best treatment
converges in probability to 1/2.

2. The share of observations q̄dT assigned to treatment d
converges in probability to a non-random share q̄d for all d 6= d (1).

q̄d is such that − 1
NT log pdt →p Γ∗

for some Γ∗ > 0 that is constant across d 6= d (1).

3. Expected policy regret converges to 0 at the same rate Γ∗, that is,
− 1

NT log R(T)→p Γ∗.

No other assignment shares q̄d exist for which q̄d
(1)

= 1/2
and R(T) goes to 0 at a faster rate than Γ∗.
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Sketch of proof

Our proof draws on several Lemmas of Glynn and Juneja (2004) and Russo (2016).
Proof steps:

1. Each treatment is assigned infinitely often.
⇒ pdT goes to 1 for the optimal treatment and to 0 for all other treatments.

2. Claim 1 then follows from the definition of exploration sampling.

3. Claim 2: Suppose pdt goes to 0 at a faster rate for some d .
Then exploration sampling stops assigning this d .
This allows the other treatments to “catch up.”

4. Claim 3: Balancing the rate of convergence implies efficiency.
This follows from the Lemmas discussed before.
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Calibrated simulations

• Simulate data calibrated to estimates of 3 published experiments.

• Set θ equal to observed average outcomes for each stratum and treatment.

• Total sample size same as original.

Ashraf, N., Berry, J., and Shapiro, J. M. (2010). Can higher prices stimulate product use? Evidence from a field
experiment in Zambia.
American Economic Review, 100(5):2383–2413

Bryan, G., Chowdhury, S., and Mobarak, A. M. (2014). Underinvestment in a profitable technology: The case of
seasonal migration in Bangladesh.
Econometrica, 82(5):1671–1748

Cohen, J., Dupas, P., and Schaner, S. (2015). Price subsidies, diagnostic tests, and targeting of malaria
treatment: evidence from a randomized controlled trial.
American Economic Review, 105(2):609–45
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Calibrated parameter values

Ashraf, Berry, and Shapiro (2010) Bryan, Chowdhury, and Mobarak (2014) Cohen, Dupas, and Schaner (2015)
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Treatment arms labeled 1 up to 7:

• Ashraf et al. (2010): Kw 300 - 800 price for water disinfectant.

• Bryan et al. (2014): Migration incentives - cash, credit, information, and control.

• Cohen et al. (2015): Price of Ksh 40, 60, and 100 for malaria tablets, each with
and without free malaria test, and control of Ksh 500.
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Summary of simulation findings

• With two waves, relative to non-adaptive assignment:
• Thompson reduces average policy regret by 15-58 %,
• exploration sampling by 21-67 %.

• Similar pattern for the probability of choosing the optimal treatment.
• Gains increase with the number of waves, given total sample size.

• Up to 85% for exploration sampling with 10 waves for Ashraf et al. (2010).

• Gains largest for Ashraf et al. (2010),
followed by Cohen et al. (2015),
and smallest for Bryan et al. (2014).

• For in-sample regret, Thompson is best,
followed closely by exploration sampling.
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Ashraf, Berry, and Shapiro (2010)

Statistic 2 waves 4 waves 10 waves

Average policy regret
exploration sampling 0.0017 0.0010 0.0008
expected Thompson 0.0022 0.0014 0.0013
non-adaptive 0.0051 0.0050 0.0051

Share optimal
exploration sampling 0.978 0.987 0.989
expected Thompson 0.971 0.981 0.982
non-adaptive 0.933 0.935 0.933

Average in-sample regret
exploration sampling 0.1126 0.0828 0.0701
expected Thompson 0.1007 0.0617 0.0416
non-adaptive 0.1776 0.1776 0.1776

Units per wave 502 251 100
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Bryan, Chowdhury, and Mobarak (2014)

Statistic 2 waves 4 waves 10 waves

Average policy regret
exploration sampling 0.0045 0.0041 0.0039
expected Thompson 0.0048 0.0044 0.0043
non-adaptive 0.0055 0.0054 0.0054

Share optimal
exploration sampling 0.792 0.812 0.820
expected Thompson 0.777 0.795 0.801
non-adaptive 0.747 0.748 0.749

Average in-sample regret
exploration sampling 0.0655 0.0386 0.0254
expected Thompson 0.0641 0.0359 0.0205
non-adaptive 0.1201 0.1201 0.1201

Units per wave 935 467 187
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Cohen, Dupas, and Schaner (2015)

Statistic 2 waves 4 waves 10 waves

Average policy regret
exploration sampling 0.0070 0.0063 0.0060
expected Thompson 0.0074 0.0065 0.0061
non-adaptive 0.0086 0.0087 0.0085

Share optimal
exploration sampling 0.567 0.586 0.592
expected Thompson 0.560 0.582 0.589
non-adaptive 0.526 0.524 0.529

Average in-sample regret
exploration sampling 0.0489 0.0374 0.0314
expected Thompson 0.0467 0.0345 0.0278
non-adaptive 0.0737 0.0737 0.0737

Units per wave 1080 540 216
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Implementation in the field

• NGO Precision Agriculture for Development (PAD),
and Government of Odisha, India.

• Enrolling rice farmers into customized advice service by mobile phone.

• Waves of 600 farmers called through automated service; total of 10K calls.

• Outcome: did the respondent answer the enrollment questions?
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Outcomes and posterior parameters

Treatment Outcomes Posterior
Call time SMS alert md

T rdT rdT/m
d
T mean SD pdT

10am - 903 145 0.161 0.161 0.012 0.009
10am 1h ahead 3931 757 0.193 0.193 0.006 0.754
10am 24h ahead 2234 400 0.179 0.179 0.008 0.073
6:30pm - 366 53 0.145 0.147 0.018 0.011
6:30pm 1h ahead 1081 182 0.168 0.169 0.011 0.027
6:30 pm 24h ahead 1485 267 0.180 0.180 0.010 0.126
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Assignment shares over time
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Extension: Covariates and treatment targeting

• Suppose now that

1. We additionally observe a (discrete) covariate X .
2. The policy to be chosen can target treatment by X .

• How to adapt exploration sampling to this setting?

• Solution: Hierarchical Bayes model,
to optimally combine information across strata.

• Example of a hierarchical Bayes model:

Y d |X = x , θdx , (αd
0 , β

d
0 ) ∼ Ber(θdx)

θdx |(αd
0 , β

d
0 ) ∼ Beta(αd

0 , β
d
0 )

(αd
0 , β

d
0 ) ∼ π,

• No closed form posterior, but can use Markov Chain Monte Carlo to sample from
posterior.
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MCMC sampling from the posterior
Combining Gibbs sampling & Metropolis-Hasting

• Iterate across replication draws ρ:
1. Gibbs step: Given αρ−1 and βρ−1,

• draw θdx ∼ Beta(αd
ρ−1 + sdx , βd

ρ−1 +mdx − sdx).

2. Metropolis step: Given βρ−1 and θρ,

• draw αd
ρ ∼ (symmetric proposal distribution).

• Accept if an independent uniform is less than the ratio
of the posterior for the new draw, relative to the posterior for αd

ρ−1.
• Otherwise set αd

ρ = αd
ρ−1.

3. Metropolis step: Given θρ and αρ,
• proceed as in 2, for βd

ρ .

• This converges to a stationary distribution such that

P

(
d = argmax

d ′
θd
′x |mt , r t

)
= plim

R→∞

1
R

R∑
ρ=1

1

(
d = argmax

d ′
θd
′x
ρ

)
.
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Conclusion
• Different objectives lead to different optimal designs:

1. Treatment effect estimation / testing: Conventional designs.
2. In-sample regret: Bandit algorithms.
3. Post-experimental policy choice: This talk.

• If the experiment can be implemented in multiple waves, adaptive designs for
policy choice

1. significantly increase welfare,
2. by focusing attention in later waves on the best performing policy options,
3. but not as much as bandit algorithms.
4. Asymptotically: Equalize power for comparisons

of each suboptimal treatment to the optimal one.

• Implementation of our proposed procedure is easy and fast,
and easily adapted to new settings:
• Hierarchical priors,
• non-binary outcomes...

• Interactive dashboard for treatment assignment:
https://maxkasy.shinyapps.io/exploration_sampling_dashboard/

35 / 35

https://maxkasy.shinyapps.io/exploration_sampling_dashboard/


Thank you!
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