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Introduction

The goal of many experiments is to inform policy choices:

1. Job search assistance for refugees:
• Treatments: Information, incentives, counseling, ...
• Goal: Find a policy that helps as many refugees as possible

to find a job.

2. Clinical trials:
• Treatments: Alternative drugs, surgery, ...
• Goal: Find the treatment that maximize the survival rate of patients.

3. Online A/B testing:
• Treatments: Website layout, design, search filtering, ...
• Goal: Find the design that maximizes purchases or clicks.

4. Testing product design:
• Treatments: Various alternative designs of a product.
• Goal: Find the best design in terms of user willingness to pay.
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Example

• There are 3 treatments d .

• d = 1 is best, d = 2 is a close second, d = 3 is clearly worse.
(But we don’t know that beforehand.)

• You can potentially run the experiment in 2 waves.

• You have a fixed number of participants.

• After the experiment, you pick the best performing treatment
for large scale implementation.

How should you design this experiment?

1. Conventional approach.

2. Bandit approach.

3. Our approach.
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Conventional approach

Split the sample equally between the 3 treatments,
to get precise estimates for each treatment.

• After the experiment, it might still be hard to distinguish whether
treatment 1 is best, or treatment 2.

• You might wish you had not wasted a third of your observations on
treatment 3, which is clearly worse.

The conventional approach is

1. good if your goal is to get a precise estimate for each treatment.

2. not optimal if your goal is to figure out the best treatment.
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Bandit approach

Run the experiment in 2 waves
split the first wave equally between the 3 treatments.
Assign everyone in the second (last) wave to
the best performing treatment from the first wave.

• After the experiment, you have a lot of information on the d that performed best
in wave 1, probably d = 1 or d = 2,

• but much less on the other one of these two.

• It would be better if you had split observations equally between 1 and 2.

The bandit approach is

1. good if your goal is to maximize the outcomes of participants.

2. not optimal if your goal is to pick the best policy.
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Our approach

Run the experiment in 2 waves
split the first wave equally between the 3 treatments.
Split the second wave between
the two best performing treatments from the first wave.

• After the experiment you have the maximum amount of information
to pick the best policy.

Our approach is

1. good if your goal is to pick the best policy,

2. not optimal if your goal is to estimate the effect of all treatments,
or to maximize the outcomes of participants.

Let θd denote the average outcome
that would prevail if everybody was assigned to treatment d .
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What is the objective of your experiment?
1. Getting precise treatment effect estimators, powerful tests:

minimize
∑
d

(θ̂d − θd)2

⇒ Standard experimental design recommendations.

2. Maximizing the outcomes of experimental participants:

maximize
∑
i

θDi

⇒ Multi-armed bandit problems.

3. Picking a welfare maximizing policy after the experiment:

maximize θd
∗
,

where d∗ is chosen after the experiment.
⇒ This talk.
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Preview of findings

• Optimal adaptive designs improve expected welfare.

• Features of optimal treatment assignment:
• Shift toward better performing treatments over time.
• But don’t shift as much as for Bandit problems:

We have no “exploitation” motive!

• Fully optimal assignment is computationally challenging in large samples.

• We propose a simple modified Thompson algorithm.
• Prove theoretically that it is rate-optimal for our problem.
• Show that it dominates alternatives in calibrated simulations.
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Setup and optimal treatment assignment

Modified Thompson sampling

Theoretical analysis

Calibrated simulations



Setup

• Waves t = 1, . . . ,T , sample sizes Nt .

• Treatment D ∈ {1, . . . , k}, outcomes Y ∈ {0, 1}.
• Potential outcomes Y d .

• Repeated cross-sections:
(Y 0

it , . . . ,Y
k
it ) are i.i.d. across both i and t.

• Average potential outcome:
θd = E [Y d

it ].

• Key choice variable:
Number of units ndt assigned to D = d in wave t.

• Outcomes:
Number of units sdt having a “success” (outcome Y = 1).
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Design objective and Bayesian prior

• Policy objective θd − cd .
• where d is chosen after the experiment,
• and cd is the unit cost of implementing policy d .

• Prior
• θd ∼ Beta(αd

0 , β
d
0 ), independent across d .

• Posterior after period t: θd |mt , r t ∼ Beta(αd
t , β

d
t )

• Posterior expected social welfare
as a function of d :

SW (d) = E [θd |mT , rT ]− cd

=
αd
T

αd
T + βdT

− cd .

9 / 32



Optimal assignment: Dynamic optimization problem

• Solve for the optimal experimental design using backward induction.

• Denote by Vt the value function after completion of wave t.

• Starting at the end, we have

VT (mT , rT ) = max
d

(
αd

0 + rdT
αd

0 + βd0 + md
T

− cd
)
.

• Finite state and action space.
⇒ Can, in principle, solve directly for optimal rule using dynamic programming:
Complete enumeration of states and actions.
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Simple examples

• Consider a small experiment
with 2 waves, 3 treatment values (minimal interesting case).

• The following slides plot expected welfare
as a function of:

1. Division of sample size between waves, N1 + N2 = 10.
N1 = 6 is optimal.

2. Treatment assignment in wave 2, given wave 1 outcomes.
N1 = 6 units in wave 1, N2 = 4 units in wave 2.
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Dividing sample size between waves
• N1 + N2 = 10.
• Expected welfare as a function of N1.
• Boundary points ≈ 1-wave experiment.
• N1 = 6 (or 5) is optimal.
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Expected welfare, depending on 2nd wave assignment

After one success, one failure for each treatment.
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Expected welfare, depending on 2nd wave assignment

After one success in treatment 1 and 2, two successes in 3
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Expected welfare, depending on 2nd wave assignment

After one success in treatment 1 and 2, no successes in 3.
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Thompson sampling

• Fully optimal solution is computationally impractical.
Per wave, O(N2k

t ) combinations of actions and states.
⇒ simpler alternatives?

• Thompson sampling
• Old proposal by Thompson (1933).
• Popular in online experimentation.

• Assign each treatment with probability equal to
the posterior probability that it is optimal.

pdt = P

(
d = argmax

d ′
(θd

′ − cd
′
)|mt−1, r t−1

)
.

• Easily implemented: Sample draws θ̂it from the posterior, assign

Dit = argmax
d

(
θ̂dit − cd

)
.
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Modified Thompson sampling

• Agrawal and Goyal (2012) proved that Thompson-sampling is rate-optimal
for the multi-armed bandit problem.

• It is not for our policy choice problem!

• We propose two modifications:

1. Expected Thompson sampling:
Assign non-random shares pdt of each wave to treatment d .

2. Modified Thompson sampling:
Assign shares qdt of each wave to treatment d , where

qdt = St · pdt · (1− pdt ),

St =
1∑

d p
d
t · (1− pdt )

.

• These modifications

1. yield rate-optimality (theorem coming up), and
2. improve performance in our simulations.
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Illustration of the mapping from Thompson to modified Thompson
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Theoretical analysis
Thompson sampling – results from the literature

• In-sample regret (bandit objective):∑T
t=1 ∆d , where ∆d = maxd ′ θ

d ′ − θd .

• Agrawal and Goyal (2012) (Theorem 2): For Thompson sampling,

lim
T→∞

E

[∑T
t=1 ∆d

logT

]
≤

∑
d 6=d∗

1

(∆d)2

2

.

• Lai and Robbins (1985):
No adaptive experimental design can do better than this logT rate.

• Thompson sampling only assigns a share of units of order log(M)/M
to treatments other than the optimal treatment.
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Results from the literature continued

• This is good for in-sample welfare, bad for learning:
We stop learning about suboptimal treatments very quickly.

• Bubeck et al. (2011) Theorem 1 implies:
Any algorithm that achieves log(M)/M rate for in-sample regret
(such as Thompson sampling)
can at most achieve polynomial rate for our objective ∆d∗ .

• By contrast (easy to show): Any algorithm that assigns shares
converging to non-zero shares for each treatment
achieves exponential rate for our objective.

• Our result (next slide): Modified Thompson sampling achieves the
(constrained) best exponential rate.
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Modified Thompson sampling

Proposition

Assume fixed wave size Nt = N.
As T →∞, modified Thompson satisfies:

1. The share of observations assigned to the best treatment converges to 1/2.

2. All the other treatments d are assigned to a share of the sample which converges
to a non-random share q̄d . q̄d is such that the posterior probability of d being
optimal goes to 0 at the same exponential rate for all sub-optimal treatments.

3. No other assignment algorithm for which statement 1 holds has average regret
going to 0 at a faster rate than modified Thompson sampling.
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Sketch of proof

Our proof draws heavily on Russo (2016). Proof steps:

1. Each treatment is assigned infinitely often.
⇒ pdT goes to 1 for the optimal treatment and to 0 for all other treatments.

2. Claim 1 then follows from the definition of modified Thompson.

3. Claim 2: Suppose pdt goes to 0 at a faster rate for some d .
Then modified Thompson sampling stops assigning this d .
This allows the other treatments to “catch up.”

4. Claim 3: Balancing the rate of convergence implies efficiency.
This follows from an efficiency bound for best-arm-selection in Russo (2016).
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Calibrated simulations

• Simulate data calibrated to estimates of 3 published experiments.

• Set θ equal to observed average outcomes for each stratum and treatment.

• Total sample size same as original.

Ashraf, N., Berry, J., and Shapiro, J. M. (2010). Can higher prices stimulate product use? Evidence from a field
experiment in Zambia.
American Economic Review, 100(5):2383–2413

Bryan, G., Chowdhury, S., and Mobarak, A. M. (2014). Underinvestment in a profitable technology: The case of
seasonal migration in Bangladesh.
Econometrica, 82(5):1671–1748

Cohen, J., Dupas, P., and Schaner, S. (2015). Price subsidies, diagnostic tests, and targeting of malaria
treatment: evidence from a randomized controlled trial.
American Economic Review, 105(2):609–45
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Calibrated parameter values

Cohen, Dupas, and Schaner (2014)

Bryan, Chowdhury, and Mobarak (2014)

Ashraf, Berry, and Shapiro (2010)

0.00 0.25 0.50 0.75 1.00

Average outcome for each treatment

• Ashraf et al. (2010): 6 treatments, evenly spaced.

• Bryan et al. (2014): 2 close good treatments, 2 worse treatments
(overlap in picture).

• Cohen et al. (2015): 7 treatments, closer than for first example.
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Plots of simulation results

• Compare modified Thompson to non-adaptive assignment.

• Full distribution of regret.
(Difference between maxd θ

d and θd
∗

for the d∗ chosen after the experiment.)

• 2 representations:

1. Histograms
Share of simulations with any given value of regret.

2. Quantile functions
(Inverse of) integrated histogram.

• Histogram bar at 0 regret equals share optimal.

• Integrated difference between quantile functions is
difference in average regret.

• Uniformly lower quantile function means
1st-order dominated distribution of regret.
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Policy Choice and Regret Distribution

2 waves 4 waves 10 waves
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Policy Choice and Regret Distribution

2 waves 4 waves 10 waves
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Policy Choice and Regret Distribution
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Policy Choice and Regret Distribution
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Policy Choice and Regret Distribution
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Conclusion

• Different objectives lead to different optimal designs:

1. Treatment effect estimation / testing: Conventional designs.
2. In-sample regret: Bandit algorithms.
3. Post-experimental policy choice: This talk.

• If the experiment can be implemented in multiple waves, adaptive designs for
policy choice

1. significantly increase welfare,
2. by focusing attention in later waves

on the best performing policy options,
3. but not as much as bandit algorithms.

• Implementation of our proposed procedure is easy and fast,
and easily adapted to new settings:

• Hierarchical priors,
• non-binary outcomes...
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Thank you!
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