Adaptive treatment assignment in experiments for policy choice

Maximilian Kasy Anja Sautmann

May 18, 2019

Introduction

The goal of many experiments is to inform policy choices:

- 1. Job search assistance for refugees:
 - Treatments: Information, incentives, counseling, ...
 - Goal: Find a policy that helps as many refugees as possible to find a job.
- 2. Clinical trials:
 - Treatments: Alternative drugs, surgery, ...
 - · Goal: Find the treatment that maximize the survival rate of patients.

3. Online **A/B testing**:

- Treatments: Website layout, design, search filtering, ...
- · Goal: Find the design that maximizes purchases or clicks.
- 4. Testing product design:
 - Treatments: Various alternative designs of a product.
 - Goal: Find the best design in terms of user willingness to pay.

Example

- There are 3 treatments *d*.
- d = 1 is best, d = 2 is a close second, d = 3 is clearly worse. (But we don't know that beforehand.)
- You can potentially run the experiment in 2 waves.
- You have a fixed number of participants.
- After the experiment, you pick the best performing treatment for large scale implementation.

How should you design this experiment?

- 1. Conventional approach.
- 2. Bandit approach.
- 3. Our approach.

Conventional approach

Split the sample equally between the 3 treatments, to get precise estimates for each treatment.

- After the experiment, it might still be hard to distinguish whether treatment 1 is best, or treatment 2.
- You might wish you had not wasted a third of your observations on treatment 3, which is clearly worse.

The conventional approach is

- 1. good if your goal is to get a precise estimate for each treatment.
- 2. not optimal if your goal is to figure out the best treatment.

Bandit approach

Run the experiment in **2 waves** split the first wave equally between the 3 treatments. Assign **everyone** in the second (last) wave to the **best performing treatment** from the first wave.

- After the experiment, you have a lot of information on the d that performed best in wave 1, probably d = 1 or d = 2,
- but much less on the other one of these two.
- It would be better if you had split observations equally between 1 and 2.

The bandit approach is

- 1. good if your goal is to maximize the outcomes of participants.
- 2. not optimal if your goal is to pick the best policy.

Our approach

Run the experiment in **2 waves** split the first wave equally between the 3 treatments. **Split** the second wave between the **two best performing** treatments from the first wave.

• After the experiment you have the maximum amount of information to pick the best policy.

Our approach is

- 1. good if your goal is to pick the best policy,
- 2. not optimal if your goal is to estimate the effect of all treatments, or to maximize the outcomes of participants.

Let θ^d denote the average outcome that would prevail if everybody was assigned to treatment d.

What is the objective of your experiment?

1. Getting precise treatment effect estimators, powerful tests:

$$\text{minimize} \sum_{d} (\hat{\theta}^{d} - \theta^{d})^2$$

 \Rightarrow Standard experimental design recommendations.

2. Maximizing the outcomes of experimental participants:

maximize
$$\sum_{i} \theta^{D_{i}}$$

 \Rightarrow Multi-armed bandit problems.

3. Picking a welfare maximizing policy after the experiment:

maximize θ^{d^*} ,

where d^* is chosen after the experiment. \Rightarrow This talk

Preview of findings

- Optimal adaptive designs improve expected welfare.
- Features of optimal treatment assignment:
 - Shift toward better performing treatments over time.
 - But don't shift as much as for Bandit problems: We have no "exploitation" motive!
- Fully optimal assignment is computationally challenging in large samples.
- We propose a simple modified Thompson algorithm.
 - Prove theoretically that it is rate-optimal for our problem.
 - Show that it dominates alternatives in calibrated simulations.

Setup and optimal treatment assignment

Modified Thompson sampling

Theoretical analysis

Calibrated simulations

Setup

- Waves $t = 1, \ldots, T$, sample sizes N_t .
- Treatment $D \in \{1, \dots, k\}$, outcomes $Y \in \{0, 1\}$.
- Potential outcomes Y^d.
- Repeated cross-sections: $(Y_{it}^0, \ldots, Y_{it}^k)$ are i.i.d. across both i and t.
- Average potential outcome:

$$\theta^d = E[Y_{it}^d].$$

- Key choice variable: Number of units n_t^d assigned to D = d in wave t.
- Outcomes:

Number of units s_t^d having a "success" (outcome Y = 1).

Design objective and Bayesian prior

- Policy objective $\theta^d c^d$.
 - where d is chosen after the experiment,
 - and c^d is the unit cost of implementing policy d.
- Prior
 - $\theta^d \sim Beta(\alpha_0^d, \beta_0^d)$, independent across d.
 - Posterior after period t: $\theta^d | \boldsymbol{m}_t, \boldsymbol{r}_t \sim Beta(\alpha^d_t, \beta^d_t)$
- Posterior expected social welfare

as a function of d:

$$SW(d) = E[\theta^d | \boldsymbol{m}_T, \boldsymbol{r}_T] - c^d$$
$$= \frac{\alpha_T^d}{\alpha_T^d + \beta_T^d} - c^d.$$

Optimal assignment: Dynamic optimization problem

- Solve for the optimal experimental design using backward induction.
- Denote by V_t the value function after completion of wave t.
- Starting at the end, we have

$$\mathcal{V}_{T}(\boldsymbol{m}_{T}, \boldsymbol{r}_{T}) = \max_{d} \left(\frac{lpha_{0}^{d} + r_{T}^{d}}{lpha_{0}^{d} + eta_{0}^{d} + m_{T}^{d}} - c^{d}
ight).$$

• Finite state and action space.

 \Rightarrow Can, in principle, solve directly for optimal rule using dynamic programming: Complete enumeration of states and actions.

Simple examples

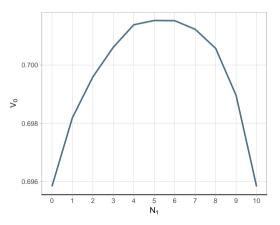
• Consider a small experiment

with 2 waves, 3 treatment values (minimal interesting case).

- The following slides plot expected welfare as a function of:
 - 1. Division of sample size between waves, $N_1 + N_2 = 10$. $N_1 = 6$ is optimal.
 - 2. Treatment assignment in wave 2, given wave 1 outcomes.
 - $N_1 = 6$ units in wave 1, $N_2 = 4$ units in wave 2.

Dividing sample size between waves

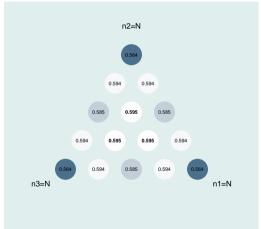
- $N_1 + N_2 = 10.$
- Expected welfare as a function of N_1 .
- Boundary points pprox 1-wave experiment.
- $N_1 = 6$ (or 5) is optimal.



Expected welfare, depending on 2nd wave assignment

After one success, one failure for each treatment.

 $\alpha = (2, 2, 2), \beta = (2, 2, 2)$

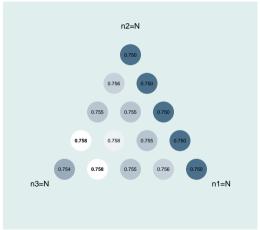


Light colors represent higher expected welfare.

Expected welfare, depending on 2nd wave assignment

After one success in treatment 1 and 2, two successes in 3

 $\alpha = (2, 2, 3), \beta = (2, 2, 1)$

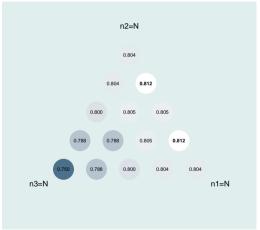


Light colors represent higher expected welfare.

Expected welfare, depending on 2nd wave assignment

After one success in treatment 1 and 2, no successes in 3.

 $\alpha = (3, 3, 1), \beta = (1, 1, 3)$



Light colors represent higher expected welfare.

Setup and optimal treatment assignment

Modified Thompson sampling

Theoretical analysis

Calibrated simulations

Thompson sampling

• Fully optimal solution is computationally impractical. Per wave, $O(N_t^{2k})$ combinations of actions and states. \Rightarrow simpler alternatives?

• Thompson sampling

- Old proposal by Thompson (1933).
- Popular in online experimentation.
- Assign each treatment with probability equal to the posterior probability that it is optimal.

$$p_t^d = P\left(d = rgmax_{d'} \left(heta^{d'} - c^{d'}
ight) | oldsymbol{m}_{t-1}, oldsymbol{r}_{t-1}
ight).$$

• Easily implemented: Sample draws $\widehat{ heta}_{it}$ from the posterior, assign

$$D_{it} = \operatorname*{argmax}_{d} \left(\hat{ heta}_{it}^d - c^d
ight).$$

Modified Thompson sampling

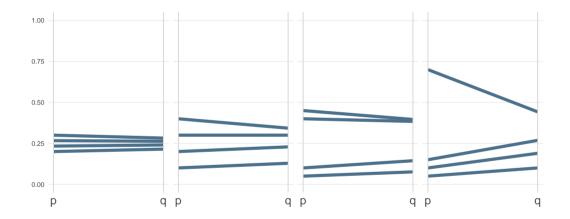
- Agrawal and Goyal (2012) proved that Thompson-sampling is rate-optimal for the multi-armed bandit problem.
- It is not for our policy choice problem!
- We propose two modifications:
 - 1. Expected Thompson sampling: Assign non-random shares p_t^d of each wave to treatment d.
 - 2. Modified Thompson sampling:

Assign shares q_t^d of each wave to treatment d, where

$$egin{aligned} q_t^d &= S_t \cdot p_t^d \cdot (1-p_t^d), \ S_t &= rac{1}{\sum_d p_t^d \cdot (1-p_t^d)}. \end{aligned}$$

- These modifications
 - 1. yield rate-optimality (theorem coming up), and
 - 2. improve performance in our simulations.

Illustration of the mapping from Thompson to modified Thompson



Setup and optimal treatment assignment

Modified Thompson sampling

Theoretical analysis

Calibrated simulations

Theoretical analysis

Thompson sampling - results from the literature

- In-sample regret (bandit objective): $\sum_{t=1}^{T} \Delta^{d}$, where $\Delta^{d} = \max_{d'} \theta^{d'} \theta^{d}$.
- Agrawal and Goyal (2012) (Theorem 2): For Thompson sampling,

$$\lim_{T \to \infty} E\left[\frac{\sum_{t=1}^{T} \Delta^{d}}{\log T}\right] \leq \left(\sum_{d \neq d^{*}} \frac{1}{(\Delta^{d})^{2}}\right)^{2}$$

Lai and Robbins (1985):

No adaptive experimental design can do better than this log T rate.

• Thompson sampling only assigns a share of units of order log(M)/M to treatments other than the optimal treatment.

Results from the literature continued

- This is good for in-sample welfare, bad for learning: We stop learning about suboptimal treatments very quickly.
- Bubeck et al. (2011) Theorem 1 implies: Any algorithm that achieves log(M)/M rate for in-sample regret (such as Thompson sampling) can at most achieve **polynomial rate** for our objective Δ^{d*}.
- By contrast (easy to show): Any algorithm that assigns shares converging to non-zero shares for each treatment achieves **exponential rate** for our objective.
- Our result (next slide): Modified Thompson sampling achieves the (constrained) best exponential rate.

Modified Thompson sampling

Proposition

Assume fixed wave size $N_t = N$.

As $T \to \infty$, modified Thompson satisfies:

- 1. The share of observations assigned to the best treatment converges to 1/2.
- 2. All the other treatments d are assigned to a share of the sample which converges to a non-random share \bar{q}^d . \bar{q}^d is such that the posterior probability of d being optimal goes to 0 at the same exponential rate for all sub-optimal treatments.
- 3. No other assignment algorithm for which statement 1 holds has average regret going to 0 at a faster rate than modified Thompson sampling.

Sketch of proof

Our proof draws heavily on Russo (2016). Proof steps:

 $1. \ \mbox{Each treatment}$ is assigned infinitely often.

 $\Rightarrow p_T^d$ goes to 1 for the optimal treatment and to 0 for all other treatments.

- 2. Claim 1 then follows from the definition of modified Thompson.
- Claim 2: Suppose p^d_t goes to 0 at a faster rate for some d. Then modified Thompson sampling stops assigning this d. This allows the other treatments to "catch up."
- 4. Claim 3: Balancing the rate of convergence implies efficiency. This follows from an efficiency bound for best-arm-selection in Russo (2016).

Calibrated simulations

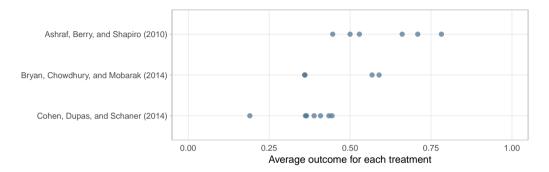
- Simulate data calibrated to estimates of 3 published experiments.
- Set θ equal to observed average outcomes for each stratum and treatment.
- Total sample size same as original.

Ashraf, N., Berry, J., and Shapiro, J. M. (2010). Can higher prices stimulate product use? Evidence from a field experiment in Zambia. *American Economic Review*, 100(5):2383–2413

Bryan, G., Chowdhury, S., and Mobarak, A. M. (2014). Underinvestment in a profitable technology: The case of seasonal migration in Bangladesh. *Econometrica*, 82(5):1671–1748

Cohen, J., Dupas, P., and Schaner, S. (2015). Price subsidies, diagnostic tests, and targeting of malaria treatment: evidence from a randomized controlled trial. *American Economic Review*, 105(2):609–45

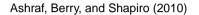
Calibrated parameter values

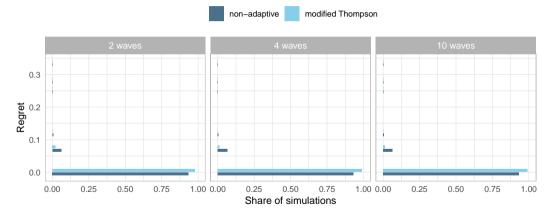


- Ashraf et al. (2010): 6 treatments, evenly spaced.
- Bryan et al. (2014): 2 close good treatments, 2 worse treatments (overlap in picture).
- Cohen et al. (2015): 7 treatments, closer than for first example.

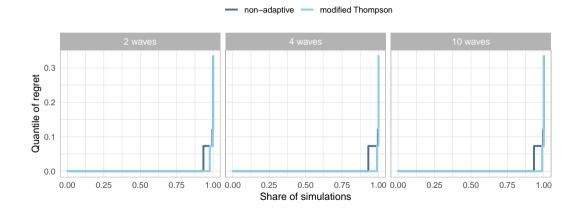
Plots of simulation results

- Compare modified Thompson to non-adaptive assignment.
- Full distribution of regret. (Difference between $\max_d \theta^d$ and θ^{d^*} for the d^* chosen after the experiment.)
- 2 representations:
 - $\frac{1.}{\text{Share of simulations with any given value of regret.}}$
 - 2. Quantile functions (Inverse of) integrated histogram.
- Histogram bar at 0 regret equals share optimal.
- Integrated difference between quantile functions is difference in average regret.
- Uniformly lower quantile function means 1st-order dominated distribution of regret.

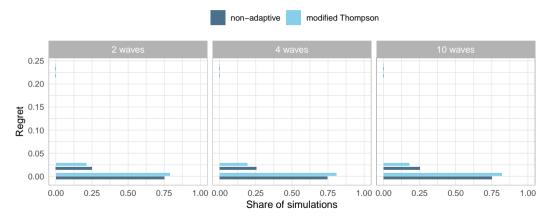


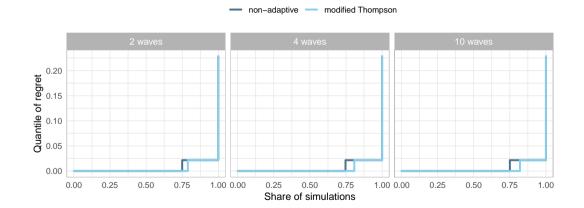


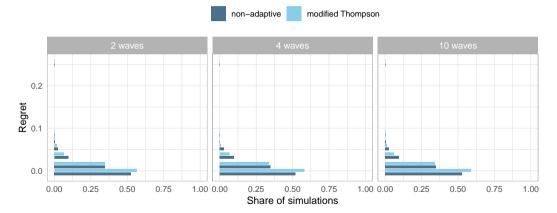
26 / 32

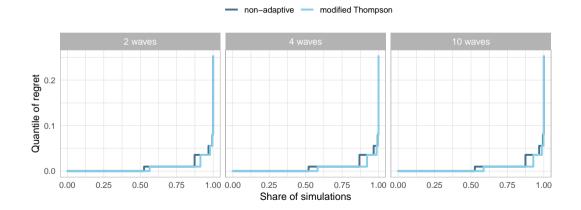


Bryan, Chowdhury, and Mobarak (2014)









Conclusion

- Different objectives lead to different optimal designs:
 - 1. Treatment effect estimation / testing: Conventional designs.
 - 2. In-sample regret: Bandit algorithms.
 - 3. Post-experimental policy choice: This talk.
- If the experiment can be implemented in multiple waves, adaptive designs for policy choice
 - 1. significantly increase welfare,
 - 2. by focusing attention in later waves on the best performing policy options,
 - 3. but not as much as bandit algorithms.
- Implementation of our proposed procedure is easy and fast, and easily adapted to new settings:
 - Hierarchical priors,
 - non-binary outcomes...

Thank you!