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Overview

•Problem: Repeatedly choose policy parameters
to maximize social welfare, the weighted sum of utility.
•Vs. multi-armed bandits: Utility is not observed,
but needs to be indirectly inferred as equivalent variation.
•Vs. standard optimal tax theory:
Response functions need to be learned through policy choices.
•Proposed algorithm: Combine optimal tax theory, Gaussian process
priors, random Fourier features, and Thompson sampling.

Optimal taxation

• Individuals t arrive sequentially.
• They choose Yt ∈ R
subject to a linear tax rate Xt.
• Taxes owed: Yt · Xt.
•Response function: Yt = g(Xt,Ut).
•Average response function m(x) = E [g(x ,Ut)] = E [Yt|Xt = x ].

Social welfare

• Expected tax revenues: m(x) · x .
•Private welfare: − ∫ x

0 m(x ′)dx ′. (Envelope theorem⇒ consumer surplus!)
•Welfare weight λ⇒ social welfare

s(x) = m(x) · x − λ
∫ x

0
m(x ′)dx ′. (1)

Gaussian process prior and posterior

•Gaussian process prior:

m(·) ∼ GP(µ(·),C(·, ·)). (2)

•Posterior of social welfare:

E [s(x)|Yt,Xt] = ν(x) + Dt(x) ·
[
Ct + σ2I

]−1
· (Yt − µt),

Var(s(x)|Yt,Xt) = Var(s(x))− Dt(x) ·
[
Ct + σ2I

]−1
· D>t (x),

ν(x) = E [s(x)] = x · µ(x)− λ
∫ x

0
µ(x ′)dx ′,

D(x , x ′) = Cov(s(x),m(x ′))) = x · C(x , x ′)− λ ·
∫ t

0
C(x , x ′)dx .

ALGORITHM: THOMPSON SAMPLING FOR SOCIAL WELFARE

Require: The history of tax rates and individual responses, Xt−1,Yt−1.
Hyper-parameters ρ, τ 2, σ2.

1: Sample j = 1, . . . , k i.i.d. draws θj1 ∼ N(0, ρ) and θj0 ∼ U [0, 2π].
2: Calculate the matrix Φt−1 with entries

√
2τ 2

k cos(xt ′ · θj1 + θj0).
3: Sample one draw of the vector ω̂t from the distribution

N
((

ΦT
t−1Φt−1 + σ2I

)−1
· ΦT

t−1Yt−1,
(

ΦT
t−1Φt−1 + σ2I

)−1
· σ2

)
.

4: Set a starting value x = Xt−1.
5: while Convergence criterion for Newton’s method is not achieved do
6: Evaluate ŝ ′t(x) and ŝ ′′t (x) for ŝt(x) = ∑k

j=1 ω̂tj ·
[√

τ 2

k ψj(x)
]
, where

ψ′j(x) = φ′j(x) · x + (1− λ) · φj(x), φj(x) =
√

2 cos(x · θj1 + θj0)
ψ′′j (x) = φ′′j (x) · x + (2− λ) · φ′j(x), φ′j(x) = −

√
2θj1 sin(x · θj1 + θj0)

φ′′j (x) = −
√

2θ2
j1 cos(x · θj1 + θj0).

7: Update x ← x − ŝ ′t(x)
ŝ ′′t (x).

8: end while
9: return Xt = x .

Algorithm explained

1) Thompson sampling
• Sampling distribution of Xt := posterior distribution of x∗ = argmax x s(x).
• Implementation: Sample ŝt(·) from the posterior for s(·).
• Set Xt = argmax x ŝt(x).

2) Random Fourier features
• Sampling a function and maximizing it is numerically challenging.
•We can approximate by a ridge regression: For ωj i.i.d. N(0, 1),

m(x) ≈
k∑

j=1
ωj ·

[√
τ 2

k φj(x)
]
. (3)

• Implied social welfare:

s(x) =
k∑

j=1
ωj ·

[√
τ 2

k ψj(x)
]
, ψj(x) = φj(x) · x − λ

∫ x

0
φj(x ′)dx ′.

⇒Only need to obtain one draw of the ωj from the posterior,
and hold it constant during optimization of ŝt(x).
•How to find φj(x)? By Fourier transform of the squared-exponential kernel,
φj(x) =

√
2 cos(x · θj1 + θj0), with θj1 ∼ N(0, ρ) and θj0 ∼ U [0, 2π].

Simulations

Next steps (1): Basic income experiment

•With the NGO “Mein Grundeinkommen” in Germany.
•Participants will be assigned to different levels of transfer size and marginal
tax rate (3 × 3 combinations).
•Assignment shares will be updated in waves.
•A parametric model of responses might be used for Thompson.

Next steps (2): Lower and upper regret bounds

• This setting has some relationship to adaptive choice of reserve prices in
auctions, and to bilateral trade.
• Lower regret bounds for any algorithm, and upper bounds for specific
algorithms, will be derived for the stochastic and adversarial settings.


