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Artificial intelligence as (automatic) decision-making

• The purpose of artificial intelligence (AI) is the construction of systems
that autonomously make decisions.

• Such systems
1. receive a sequence of inputs (percepts),

2. process them, and

3. make decisions interacting with their environment.

• The goal is to maximize a stream of rewards
(or minimize a stream of losses).
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Machine learning as one approach to AI

• There are different approaches to AI.

• Previous decades: Expert systems.
Encode human knowledge in databases.

• Modern AI has had breakthroughs with an alternative approach:
Learn from data using statistics.
⇒Machine Learning!

• This approach becomes ever more successful as

1. more data and

2. more computational power

become available.
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Different branches of machine learning

• Supervised learning:
Predict outcomes from observed features.

• Unsupervised learning:
Learn simplified representations of unstructured data.

• Active learning:
Adaptive decision making, while learning which actions work better.

• Reinforcement learning:
Current actions affect the evolution of the environment.
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Supervised learning
• Objective: Minimize the error rate of predictions.

• Applications: Predict
• Description of image from image itself.
• Written text from recorded sound.
• Translated sentence from original sentence.
• Likelihood of repaying from loan applicant characteristics.

• Methods for supervised learning:
• Deep learning (neural nets).
• Lasso regressions.
• Random forests.
• ....
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Active learning

• Objective: Achieve good average welfare over time.

• Repeated decision-making.

• Each decision has a dual purpose:

1. Achieve good outcomes now (“exploitation”).

2. Learn what works for future decisions (“exploration”).

• Good algorithms balance the two in just the right way.

• Most common version: “Multi-armed bandits.”

• Alternative: “Exploration sampling.”
Learning quickly what policy is best.
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Application I: Job search assistance for refugees in Jordan
• Jordan 2019, International Rescue Committee.

• Participants: Syrian refugees and Jordanians.
• Main locations: Amman and Irbid.
• Sample size: 3770.

• Context: Jordan compact.
Gave refugees the right to work in low-skilled formal jobs.
• 4 Treatments:

1. Cash: 65 JOD (91.5 USD).
2. Information: On (i) how to interview for a formal job,

and (ii) labor law and worker rights.
3. Nudge: A job-search planning session and SMS reminders.
4. Control group.

• Conditioning variables for treatment assignment: 16 strata, based on
1. nationality (Jordanian or Syrian),
2. gender,
3. education (completed high school or more), and
4. work experience (having experience in wage employment).
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Locations
Irbid Amman
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Assignment probabilities over time
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Application II: Agricultural extension service for farmers in India

• India, 2019.
NGO Precision Agriculture for Development.
• Context: Enrolling rice farmers into customized advice service by mobile phone.

[...] to build, scale, and improve mobile phone-based agricultural exten-
sion with the goal of increasing productivity and income of 100 million
smallholder farmers and their families around the world.

• Sample: 10,000 calls,
divided into waves of 600.
• 6 treatments:

• The call is pre-announced via SMS 24h before, 1h before, or not at all.
• For each of these, the call time is either 10am or 6:30pm.

• Outcome: Did the respondent answer the enrollment questions?
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Rice farming in India
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Assignment shares over time
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Application III: Matching refugees to host locations (simulations)
• Data for all refugees resettled by HIAS

between January 2011 and December 2019.

• 8 demographic groups (types) based on
• prime working age (25-54),
• gender,
• English-speaking.

• 17 affiliates (locations), with capacity constraints.

• Outcome Yjt: Employed within 90 days of arrival.

• Simulations:
• Calibrate success rates Θj for each type/affiliate combination.
• Take actual capacity constraints.
• Counterfactual matching using Thompson sampling.
• Form posteriors using a hierarchical Bayesian model.
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Simulated employment by year
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Simulated employment by type
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Pitfalls we encountered
1. Wrong outcome variable (Jordan experiment):

• We targeted formal employment, 1 month after the intervention.
⇒ Little effect

• It would have been better to target all employment at a longer horizon.

2. Wrong sample size / small effects:
• If effects are too small, the algorithm can’t adapt.
• Benefits of adaptivity would have emerged later.

3. Wrong aggregation (refugee relocation):
• Our simulations maximize total employment.
• That led to a decline in employment for young non-English speakers.
• The algorithm gave the best locations to those with the best prospects.

⇒ CHOOSE THE OUTCOME THAT YOU ARE MAXIMIZING WISELY!
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Thank you!
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