Causality and randomization

Maximilian Kasy

November 2, 2018

Introduction

This talk is based on

Kasy, M. (2016). Why experimenters might not always want to randomize, and what they could do instead. *Political Analysis*, 24(3):324–338.

- Causality is often defined by reference to Randomized Controlled Trials (RCTs).
- To what extent is randomization important? Are RCTs the best way to learn about causal effects?

Introduction

Some intuitions

- We don't add random noise to estimators or tests

 why add random noise to treatment assignments?
- 2. Identification requires controlled trials (CTs), but not randomized controlled trials (RCTs).
- Goal of treatment assignment is to "compare apples with apples."
 ⇒ Balance covariate distribution. (Not just balance of means!)

Introduction

Somewhat more formally

- Treatment assignment in an experiment is a decision problem.
- General result: For any decision problem, randomized procedures perform worse than deterministic procedures.
- More specific result:
 - Suppose the goal is to assign treatment to minimize the mean squared error of estimators of average treatment effects.
 - Then (non-random) assignments which make treatment and control groups as similar as possible (in terms of a well-defined metric) are optimal.
 - Random assignment generates unnecessary imbalances.

Roadmap

1. Review of definitions

- 2. Decision problems
- 3. Optimal treatment assignments
- 4. Arguments for randomization
- 5. Conclusion

A made-up history of causality

- 1. Pure probability theory:
 - Does not allow to talk about causality,
 - only joint distributions.
- 2. Causality in the sciences ("Gallilei"): Controlled experiments.
 - Additional concept: Exogenous variation.
 - Do the same thing
 - \Rightarrow same thing happens to the outcomes you measure.
 - Variation in experimental circumstances
 - \Rightarrow difference in observed outcomes \approx causal effect.

A made-up history of causality, continued

- 3. Causality in econometrics, biostatistics,... ("Fisher"):
 - Additional concept: Unobserved heterogeneity
 ⇒ Can never replicate experimental circumstances fully.
 - But we can still create experimental circumstances which are the same in expectation.
 - \Rightarrow Randomized experiments (or "quasi-experiments").
- 4. Most experiments in social science (and this talk):
 - Additional concept: **Observed heterogeneity**.
 - Random treatment assignment makes treatment and control group the same in expectation.
 - But they might randomly be very different ex-post.
 - We can do better: Make them similar in terms of observables!

Identification

- 1. Learning about underlying structures, causal mechanisms
- 2. from a population distribution.
- Example: Identify a causal effect by a difference in expectations if we have a randomized experiment.
 - Identification inverts the mapping
 - from underlying structures to a population distribution
 - implied by a model and identifying assumptions.

Structural objects

- Contested notion; my preferred definition:
- An object is structural, if it is **invariant** across relevant counterfactuals.
- Example: Dropping a ball from the tower of Pisa.
 - Acceleration is the same, no matter which floor you drop it from,
 - and also the same if you do this on the Eiffel tower.
 - Time to ground would not be the same,
 - and acceleration is not the same if you do this on the moon.

Treatment effects and potential outcomes

- I will focus without loss of generality on two "treatments:" D = 0 or D = 1.
- Units *i*, potential outcomes Y_i^0 and Y_i^1 , realized outcomes Y_i .
- Treatment effect for unit *i*: $Y_i^1 Y_i^0$.
- Average treatment effect:

$$ATE = E[Y^1 - Y^0].$$

Expectation averages over the population of interest.

The fundamental problem of causal inference

- We never observe both Y^0 and Y^1 at the same time
- One of the potential outcomes is always missing from the data.
- Treatment *D* determines which of the two we observe.

$$Y = D \cdot Y^1 + (1 - D) \cdot Y^0.$$

• Selection problem: In general

$$E[Y|D = 1] = E[Y^{1}|D = 1] \neq E[Y^{1}],$$

$$E[Y|D = 0] = E[Y^{0}|D = 0] \neq E[Y^{0}],$$

$$E[Y|D = 1] - E[Y|D = 0] \neq E[Y^{1} - Y^{0}] = ATE.$$

Randomization

• No selection $\Leftrightarrow D$ is random

$$(Y^0, Y^1) \perp D.$$

• In this case, the ATE is **identified**.

$$E[Y|D = 1] = E[Y^{1}|D = 1] = E[Y^{1}]$$

$$E[Y|D = 0] = E[Y^{0}|D = 0] = E[Y^{0}]$$

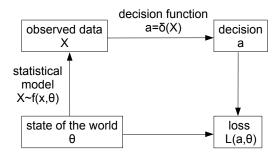
$$E[Y|D = 1] - E[Y|D = 0] = E[Y^{1} - Y^{0}] = ATE.$$

- Can ensure this by actually randomly assigning D
- Independence ⇒ comparing treatment and control actually compares "apples with apples" (ex ante).
- This gives empirical content to the notion of potential outcomes!

Roadmap

- 1. Review of definitions
- 2. Decision problems
- 3. Optimal treatment assignments
- 4. Arguments for randomization
- 5. Conclusion

General setup



Notions of risk

• **Risk function:** Expected loss, averaging over sampling distribution, function of state of the world:

$$R(\delta, \theta) = E_{\theta}[L(\delta(X), \theta)].$$

• **Bayes risk:** Average of risk function over some prior distribution (i.e., decision weights):

$$R(\delta,\pi) = \int R(\delta, heta)\pi(heta)d heta.$$

• Worst case risk: Maximum of risk function, over some set of θ , given $\delta(\cdot)$:

$$\overline{R}(\delta) = \sup_{ heta \in \Theta} R(\delta, heta).$$

Randomized decision procedures

- We can allow δ to depend on some randomization device *U*: $a = \delta(X, U)$, where $P(U = u | \theta, X) = p_u$ for u = 1, ..., k.
- Denote δ^u the deterministic decision rule $a = \delta(X, u)$.
- It follows from the definitions that

(Worst case risk is somewhat subtle – we will return.)

• Averages (over U) are not as good as best cases. Thus

$$R(\delta,\pi) \ge \min_{u} R(\delta^{u},\pi)$$

 $\overline{R}(\delta) \ge \min_{u} \overline{R}(\delta^{u}).$

Randomized decision procedures

• We just proved the following theorem.

Theorem (Optimality of deterministic decisions)

Consider a general decision problem. Let $R^*(\cdot)$ equal $R(\cdot,\pi)$ or $\overline{R}(\cdot)$. Then:

- 1. The optimal risk $R^*(\delta^*)$, when considering only deterministic procedures is no larger than the optimal risk when allowing for randomized procedures.
- 2. If the optimal deterministic procedure is unique, then it has strictly lower risk than any non-trivial randomized procedure.

Roadmap

- 1. Review of definitions
- 2. Decision problems

3. Optimal treatment assignments

- 4. Arguments for randomization
- 5. Conclusion

Optimal treatment assignments

Setup

1. Sampling:

Random sample of *n* units baseline survey \Rightarrow vector of covariates X_i

- Treatment assignment: binary treatment assigned by D_i = d_i(X, U)
 X matrix of covariates; U randomization device
- 3. Realization of outcomes: $Y_i = D_i Y_i^1 + (1 - D_i) Y_i^0$
- 4. Estimation: estimator $\hat{\beta}$ of the (conditional) average treatment effect, $\beta = \frac{1}{n} \sum_{i} E[Y_{i}^{1} - Y_{i}^{0} | X_{i}, \theta]$
 - The theorem implies: The optimal d(X, U) does not depend on U.
 - But how do we get the optimal **d**?

Optimal treatment assignments

Sketch of solution

• Key object: Conditional expectation of potential outcomes,

$$f(x,d) = E[Y^d | X = x].$$

- Bayesian approach: Prior distribution over f(·, ·).
 Possibly informed by earlier data.
- Estimator: E.g. difference in means,

$$\widehat{\beta} = \frac{1}{n_1} \sum_i D_i Y_i - \frac{1}{n_0} \sum_i (1 - D_i) Y_i.$$

• Loss: Squared estimation error,

$$(\widehat{\beta}-\beta)^2.$$

Optimal treatment assignments

Discrete optimization

- Risk $R(\boldsymbol{d}, \boldsymbol{\beta} | \boldsymbol{X})$: Expected loss, i.e. mean squared error.
- Straightforward to write down in closed form. Formalizes the notion of "balance."
- The optimal design solves

$$\max_{\mathbf{d}} R(\mathbf{d}, \beta | \mathbf{X}).$$

- With continuous or many discrete covariates, the optimum is unique, and thus randomization is strictly dominated.
- Absent covariates, all units look the same. In this case, the optimum is not unique, and randomization does not hurt.
- Possible optimization algorithms:
 - 1. Search over random d,
 - 2. greedy algorithm,
 - 3. simulated annealing.

Roadmap

- 1. Review of definitions
- 2. Decision problems
- 3. Optimal treatment assignments
- 4. Arguments for randomization
- 5. Conclusion

Arguments for randomization

Identification

- In the beginning I showed identification of the ATE with random assignment.
- Is the ATE still identified without randomization?
- Yes, for controlled assignment!

Proposition (Conditional independence)

Suppose that (X_i, Y_i^0, Y_i^1) are i.i.d. draws from the population of interest, which are independent of U. Then any treatment assignment of the form $D_i = d_i(X_1, ..., X_n, U)$ satisfies conditional independence,

$$(Y_i^0, Y_i^1) \perp D_i | X_i.$$

This is true, in particular, for deterministic treatment assignments of the form $D_i = d_i(X_1, ..., X_n)$.

Arguments for randomization

Adversarial audience

• I did not formally define worst-case risk for randomized procedures before. The definition I implicitly used was

$$\bar{R}(\delta, U) = \sup_{\theta \in \Theta} R(\delta(\cdot, U), \theta).$$

Worst-case θ is chosen "after" realization of U.

• Possible alternative definition:

$$\bar{R}(\delta) = \sup_{\theta \in \Theta} \left(\sum_{u=1}^{k} p_u \cdot R(\delta(\cdot, u), \theta) \right)$$

- Worst-case θ is chosen "before" realization of U.
- In this case, random strategies can be optimal.
- Has been justified by reference to adversarial audience.
- Assumes that audience doesn't care about imbalanced covariates, as long as they are the product of randomness.
- Note: Conditional on knowledge of audience, experimental estimates are biased!

Arguments for randomization

Randomization inference

- Randomization inference requires randomization.
- Randomization inference tests strong null hypotheses of the form $Y_i^1 = Y_i^0$ for all *i*.
- By our theorem, randomization inference can not be the solution to any decision problem.
- Compromise approach: Randomize only among treatment assignments that yield low expected mean squared error.

Conclusion

- Causality requires exogenous variation.
- In social and life sciences, there is unobserved heterogeneity.
- Randomization makes treatment and control groups the same *in expectation*.
- In practice there is also observed heterogeneity.
- We get better estimates of causal effects by balancing covariate distributions.
- Identification of causal effects relies on controlled trials (CTs), not randomized controlled trials (RCTs).

A web-app for implementing the proposed optimal designs is available at

https://maxkasy.github.io/home/treatmentassignment/

Thank you!