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Introduction

• This talk is based on

Kasy, M. (2016). Why experimenters might not always want
to randomize, and what they could do instead.
Political Analysis, 24(3):324–338.

• Causality is often defined by reference to
Randomized Controlled Trials (RCTs).

• To what extent is randomization important?
Are RCTs the best way to learn about causal effects?
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Introduction
Some intuitions

1. We don’t add random noise to estimators or tests
– why add random noise to treatment assignments?

2. Identification requires controlled trials (CTs),
but not randomized controlled trials (RCTs).

3. Goal of treatment assignment is to
“compare apples with apples.”
⇒ Balance covariate distribution.
(Not just balance of means!)
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Introduction
Somewhat more formally

• Treatment assignment in an experiment is a decision problem.

• General result: For any decision problem, randomized
procedures perform worse than deterministic procedures.

• More specific result:
• Suppose the goal is to assign treatment to minimize the mean

squared error of estimators of average treatment effects.
• Then (non-random) assignments which make treatment and

control groups as similar as possible (in terms of a well-defined
metric) are optimal.

• Random assignment generates unnecessary imbalances.
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Roadmap

1. Review of definitions

2. Decision problems

3. Optimal treatment assignments

4. Arguments for randomization

5. Conclusion



Review of definitions
A made-up history of causality

1. Pure probability theory:
• Does not allow to talk about causality,
• only joint distributions.

2. Causality in the sciences (“Gallilei”):
Controlled experiments.

• Additional concept: Exogenous variation.
• Do the same thing
⇒ same thing happens to the outcomes you measure.

• Variation in experimental circumstances
⇒ difference in observed outcomes ≈ causal effect.
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Review of definitions
A made-up history of causality, continued

3. Causality in econometrics, biostatistics,... (“Fisher”):
• Additional concept: Unobserved heterogeneity
⇒ Can never replicate experimental circumstances fully.

• But we can still create experimental circumstances which are
the same in expectation.
⇒ Randomized experiments (or “quasi-experiments”).

4. Most experiments in social science (and this talk):
• Additional concept: Observed heterogeneity.
• Random treatment assignment makes treatment and control

group the same in expectation.
• But they might randomly be very different ex-post.
• We can do better: Make them similar in terms of observables!
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Review of definitions
Identification

1. Learning about underlying structures, causal mechanisms

2. from a population distribution.

3. Example:
Identify a causal effect
by a difference in expectations
if we have a randomized experiment.

• Identification inverts the mapping

• from underlying structures to a population distribution

• implied by a model and identifying assumptions.

6 / 21



Review of definitions
Structural objects

• Contested notion; my preferred definition:

• An object is structural, if it is invariant across relevant
counterfactuals.

• Example: Dropping a ball from the tower of Pisa.
• Acceleration is the same, no matter which floor you drop it

from,
• and also the same if you do this on the Eiffel tower.
• Time to ground would not be the same,
• and acceleration is not the same if you do this on the moon.
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Review of definitions
Treatment effects and potential outcomes

• I will focus without loss of generality on two “treatments:”
D = 0 or D = 1.

• Units i , potential outcomes Y 0
i and Y 1

i , realized outcomes Yi .

• Treatment effect for unit i : Y 1
i −Y 0

i .

• Average treatment effect:

ATE = E [Y 1−Y 0].

• Expectation averages over the population of interest.
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Review of definitions
The fundamental problem of causal inference

• We never observe both Y 0 and Y 1 at the same time

• One of the potential outcomes is always missing from the
data.

• Treatment D determines which of the two we observe.

Y = D ·Y 1 + (1−D) ·Y 0.

• Selection problem: In general

E [Y |D = 1] = E [Y 1|D = 1] 6= E [Y 1],

E [Y |D = 0] = E [Y 0|D = 0] 6= E [Y 0],

E [Y |D = 1]−E [Y |D = 0] 6= E [Y 1−Y 0] = ATE .
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Review of definitions
Randomization

• No selection ⇔ D is random

(Y 0,Y 1)⊥ D.

• In this case, the ATE is identified.

E [Y |D = 1] = E [Y 1|D = 1] = E [Y 1]

E [Y |D = 0] = E [Y 0|D = 0] = E [Y 0]

E [Y |D = 1]−E [Y |D = 0] = E [Y 1−Y 0] = ATE .

• Can ensure this by actually randomly assigning D

• Independence ⇒ comparing treatment and control actually
compares “apples with apples” (ex ante).

• This gives empirical content to the notion of potential
outcomes!
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Decision problems
General setup

state of the world
θ

observed data
X

decision
a

 loss
  L(a,θ)

decision function
a=δ(X)

statistical
model

X~f(x,θ)
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Decision problems
Notions of risk

• Risk function: Expected loss, averaging over sampling
distribution, function of state of the world:

R(δ ,θ) = Eθ [L(δ (X ),θ)].

• Bayes risk: Average of risk function over some prior
distribution (i.e., decision weights):

R(δ ,π) =
∫

R(δ ,θ)π(θ)dθ .

• Worst case risk: Maximum of risk function, over some set of
θ , given δ (·):

R(δ ) = sup
θ∈Θ

R(δ ,θ).
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Decision problems
Randomized decision procedures

• We can allow δ to depend on some randomization device U:
a = δ (X ,U), where P(U = u|θ ,X ) = pu for u = 1, . . . ,k .

• Denote δ u the deterministic decision rule a = δ (X ,u).

• It follows from the definitions that

R(δ ,θ) = p1 ·R(δ 1,θ) + . . .+ pk ·R(δ k ,θ),
R(δ ,π) = p1 ·R(δ 1,π) + . . .+ pk ·R(δ k ,π)

R(δ ) = p1 ·R(δ 1) + . . .+ pk ·R(δ k).

(Worst case risk is somewhat subtle – we will return.)

• Averages (over U) are not as good as best cases. Thus

R(δ ,π)≥min
u

R(δ
u,π),

R(δ )≥min
u

R(δ
u).
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Decision problems
Randomized decision procedures

• We just proved the following theorem.

Theorem (Optimality of deterministic decisions)

Consider a general decision problem.
Let R∗(·) equal R(·,π) or R(·). Then:

1. The optimal risk R∗(δ ∗), when considering only deterministic
procedures is no larger than the optimal risk when allowing for
randomized procedures.

2. If the optimal deterministic procedure is unique, then it has
strictly lower risk than any non-trivial randomized procedure.
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Optimal treatment assignments
Setup

1. Sampling:
Random sample of n units
baseline survey ⇒ vector of covariates Xi

2. Treatment assignment:
binary treatment assigned by Di = di (X ,U)
X matrix of covariates; U randomization device

3. Realization of outcomes:
Yi = DiY

1
i + (1−Di )Y

0
i

4. Estimation:
estimator β̂ of the (conditional) average treatment effect,
β = 1

n ∑i E [Y 1
i −Y 0

i |Xi ,θ ]

• The theorem implies:
The optimal d (X ,U) does not depend on U.

• But how do we get the optimal d?
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Optimal treatment assignments
Sketch of solution

• Key object: Conditional expectation of potential outcomes,

f (x ,d) = E [Y d |X = x ].

• Bayesian approach: Prior distribution over f (·, ·).
Possibly informed by earlier data.

• Estimator: E.g. difference in means,

β̂ =
1

n1
∑
i

DiYi −
1

n0
∑
i

(1−Di )Yi .

• Loss: Squared estimation error,

(β̂ −β )2.
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Optimal treatment assignments
Discrete optimization

• Risk R(d ,β |X ): Expected loss, i.e. mean squared error.

• Straightforward to write down in closed form.
Formalizes the notion of “balance.”

• The optimal design solves

max
d

R(d ,β |X ).

• With continuous or many discrete covariates, the optimum is
unique, and thus randomization is strictly dominated.

• Absent covariates, all units look the same. In this case, the
optimum is not unique, and randomization does not hurt.

• Possible optimization algorithms:

1. Search over random d,
2. greedy algorithm,
3. simulated annealing.

17 / 21



Roadmap

1. Review of definitions

2. Decision problems

3. Optimal treatment assignments

4. Arguments for randomization

5. Conclusion



Arguments for randomization
Identification

• In the beginning I showed identification of the ATE with
random assignment.

• Is the ATE still identified without randomization?

• Yes, for controlled assignment!

Proposition (Conditional independence)

Suppose that (Xi ,Y
0
i ,Y

1
i ) are i.i.d. draws from the population of

interest, which are independent of U. Then any treatment
assignment of the form Di = di (X1, . . . ,Xn,U) satisfies conditional
independence,

(Y 0
i ,Y

1
i )⊥ Di |Xi .

This is true, in particular, for deterministic treatment assignments
of the form Di = di (X1, . . . ,Xn).
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Arguments for randomization
Adversarial audience

• I did not formally define worst-case risk for randomized
procedures before. The definition I implicitly used was

R̄(δ ,U) = sup
θ∈Θ

R(δ (·,U),θ).

Worst-case θ is chosen “after” realization of U.
• Possible alternative definition:

R̄(δ ) = sup
θ∈Θ

(
k

∑
u=1

pu ·R(δ (·,u),θ)

)
.

• Worst-case θ is chosen “before” realization of U.
• In this case, random strategies can be optimal.
• Has been justified by reference to adversarial audience.
• Assumes that audience doesn’t care about imbalanced

covariates, as long as they are the product of randomness.
• Note: Conditional on knowledge of audience, experimental

estimates are biased!
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Arguments for randomization
Randomization inference

• Randomization inference requires randomization.

• Randomization inference tests strong null hypotheses of the
form Y 1

i = Y 0
i for all i .

• By our theorem, randomization inference can not be the
solution to any decision problem.

• Compromise approach: Randomize only among treatment
assignments that yield low expected mean squared error.

20 / 21



Conclusion

• Causality requires exogenous variation.

• In social and life sciences, there is unobserved heterogeneity.

• Randomization makes treatment and control groups the same
in expectation.

• In practice there is also observed heterogeneity.

• We get better estimates of causal effects by balancing
covariate distributions.

• Identification of causal effects relies on controlled trials (CTs),
not randomized controlled trials (RCTs).
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A web-app for implementing the proposed optimal designs is
available at

https://maxkasy.github.io/home/treatmentassignment/

Thank you!

https://maxkasy.github.io/home/treatmentassignment/
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