
Rationalizing Pre-Analysis Plans:
Statistical Decisions Subject to Implementability

Maximilian Kasy Jann Spiess

August 20, 2022

Abstract

Pre-analysis plans (PAPs) are a potential remedy to the publication of spu-
rious findings in empirical research, but they have been criticized for their costs
and for preventing valid discoveries. In this article, we analyze the costs and
benefits of pre-analysis plans by casting pre-commitment in empirical research
as a mechanism-design problem. In our model, a decision-maker commits to
a decision rule. Then an analyst chooses a PAP, observes data, and reports
selected statistics to the decision-maker, who applies the decision rule. With
conflicts of interest and private information, not all decision rules are imple-
mentable. We provide characterizations of implementable decision rules, where
PAPs are optimal when there are many analyst degrees of freedom and high
communication costs. These PAPs improve welfare by enlarging the space of
implementable decision functions. This stands in contrast to single-agent statis-
tical decision theory, where commitment devices are unnecessary if preferences
are consistent across time.
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1 Introduction

Background and motivation When writing their papers, researchers might cherry-
pick the findings that they report. Cherry-picking can distort the inferences that we
can draw from published findings, and has led some to argue that “most published
findings are false” (Ioannidis, 2005). As a potential remedy, PAPs have become a
precondition for the publication of experimental research in economics, for both field
experiments and lab experiments.1

Pre-analysis plans in their ideal form enable valid inference by specifying a full
mapping from the data to the set of statistics that are reported. By tying the analyst’s
hands, PAPs prevent the cherry-picking of results, and might provide a remedy for
the distortions introduced by unacknowledged multiple hypothesis testing. This is
the justification of PAPs that is most commonly invoked. As Gelman (2017) argues,
pre-analysis plans play the same role for frequentist notions of bias and size control
as randomized controlled trials play for causality – they are necessary for the very
definition of these notions: The notion of the size of a statistical test depends on
knowing the test decision for all counterfactual realizations of the data, not just for
the observed realization. The same is true for the notion of the bias of an estimator.
An ideal PAP specifies these counterfactual decisions and estimates.

The widespread adoption of pre-analysis plans has not gone uncontested, however,
as evidenced by Coffman and Niederle (2015), Olken (2015), and Duflo et al. (2020),
who discuss the costs and benefits of pre-analysis plans in experimental economics
from a practitioners’ perspective. PAPs have been criticized for putting a dispropor-
tionate burden on researchers and limiting their ability to learn interesting hypotheses
from the data. For example, Duflo et al. (2020) argue that “an ex-post requirement of
strict adherence to pre-specified plans, or the discounting of non-pre-specified work,
may mean that some experiments do not take place, or that interesting observations
and new theories are not explored and reported,” and in their “call for moderation”
suggest that exploratory analysis should be published alongside results based on a
PAP. Drawing on a survey of researchers, Miguel (2021), on the other hand, argues
that many researchers also appreciate the benefits of PAPs in protecting them from
pressures by funders and implementation partners, and in enforcing greater clarity of
research designs.

In this article, we aim to clarify the costs and benefits of pre-analysis plans by
modeling statistical inference as a mechanism-design problem. To motivate this ap-
proach, note that in single-agent statistical decision theory rational decision-makers,
if their preferences are consistent over time, have no need for the commitment device
that is provided by a PAP. This holds in particular when a single decision-maker
aims to construct tests that control size, or estimators that are unbiased; they have

1Just as in the case of randomized experiments, the adoption of PAPs in economics follows their
prior adoption in clinical research; see for instance the guidelines of the FDA on PAPs, (Food and
Drug Administration, 1998).
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no reason to “cheat themselves.” The situation is different, however, when there
are multiple agents with conflicting interests, or when preferences are not consistent
across time.

Setup In our model, we consider the interaction between a decision-maker and an
analyst with private information and conflicting interests. One example of such a
conflict of interest is between a researcher (analyst) who wants to reject a hypothesis,
and a reader of their research (decision-maker) who has an interest in a valid statistical
test of that same hypothesis; the relevant decision here is whether to reject the null
hypothesis. Another example is the conflict of interest between a researcher (analyst)
who wants to get published, and a journal (decision-maker) that only wants to publish
studies on effects that are large enough to be interesting; the relevant decision here
is whether to publish a study. A third example is the conflict of interest between a
pharmaceutical company (analyst) who wants to sell drugs, and a medical regulatory
agency (decision-maker) who wants to protect patient health; the relevant decision
here is whether to approve a drug.

The mechanism-design approach that we propose takes the perspective of a decision-
maker who wants to implement a statistical decision rule. Not all rules are imple-
mentable, however, when the analyst has divergent interests and private information.
This mechanism-design perspective allows us to stay close to standard statistical the-
ory, while taking into account the constraints that come from the social dimension
of research. The analyst in our model observes a vector of binary data Xi, such as
the outcomes of different hypothesis tests, with a distribution governed by the pa-
rameter θ. The analyst selectively reports the data Xi to the decision-maker. The
decision-maker then makes a binary decision. While the analyst always wants a pos-
itive decision (“acceptance”), the decision-maker would like to only accept when the
parameter of interest θ exceeds a given threshold. Additionally, the analyst incurs a
communication cost that is increasing in the number of reported components i; this
communication cost creates private information. In this baseline model with binary
data, we characterize the set of implementable statistical decision rules, and analyze
the problem of finding an optimal implementable decision rule.

Main results We first restrict attention to the set of symmetric decision rules.
For such rules acceptance only depends on the number of successes (Xi = 1) and
failures (Xi = 0). When communication costs and/or researcher degrees of freedom
(number of components i available to the analyst) are low enough, the first best
rule is directly implementable. This rule applies an optimal cutoff on the number
of successes – if a sufficient number of components Xi equals 1, the decision-maker
accepts. When communication costs and/or researcher degrees of freedom are very
high, on the other hand, no symmetric rule without a PAP delivers positive utility to
both analyst and decision-maker. For intermediate parameter values, a second-best
rule is implementable without a PAP. This rule applies a cutoff on the number of
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successes, where the cutoff is distorted downwards relative to the first best. Intuitively,
the decision-maker tolerates a certain degree of distorted inference in order to ensure
analyst participation.

A PAP allows the decision-maker to break the symmetry between components. By
ignoring all components i outside the PAP, she can maximize her expected utility by
effectively reducing the number of components available to the analyst (the researcher
degrees of freedom), down to the optimal value. At this optimal value, the maximum
possible amount of information is communicated by the analyst, without the need to
distort the cutoff applied in a way that reduces decision-maker utility.

After our analysis of the symmetric case, we characterize the full set of imple-
mentable decision rules in our model. We show that these rules have acceptance
regions which are given by the union of acceptance regions for “simple” rules. Simple
rules accept only outcome vectors which take a given set of values on a given subset of
their components. In general, searching for an optimal decision rule by enumeration
of all implementable rules (that is, of all unions of simple rules) is computationally
infeasible, since the space of implementable decision rules is too large. We there-
fore consider a greedy algorithm to optimize over implementable decision rules. The
greedy algorithm does not always attain the global optimum, but it achieves welfare
which outperforms the symmetrical rules discussed above.

Implications In our model, there is a role for PAPs under some conditions. In
particular, if the analyst has many choices (degrees of freedom) for her analysis, and
if communication costs are high (there is a lot of private information), then PAPs
can improve the welfare (statistical risk) of the decision-maker. If, on the other hand,
the analyst faces a smaller number of choices and private information is limited, the
decision-maker might be better off without requiring a PAP.

Our model clarifies a motive for pre-analysis plans beyond the goal of achiev-
ing valid inference. The pre-analysis plan overcomes a conflict of interest between
decision-maker and analyst. If there was no conflict of interest, then a pre-analysis
plan would not be necessary to ensure valid inference. If there is a conflict of interest,
then the decision-maker will still be able to interpret the analyst’s choices correctly in
equilibrium, but the lack of a PAP will lead to inefficient outcomes, as the decision-
maker is forced to (correctly) make conservative assumptions about analyst behavior.

Our interpretation of statistical inference as a mechanism-design problem con-
nects the structure of pre-analysis plans to the set of implementable decision rules.
In this interpretation, the availability of pre-analysis plans enlarges the space of im-
plementable rules. The choice of an optimal pre-analysis plan then boils down to the
optimization problem of finding an optimal decision rule among the implementable
ones. We discuss fully optimal as well as computationally feasible approximately
optimal choices.

Note also that in our model, commitment is somewhat subtle: There is no ana-
lyst commitment as such. However the decision-maker might commit to a response
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function, which might condition on a message (PAP) sent by the analyst before ob-
serving the data. This allows the decision-maker to create a commitment device for
the analyst; whether or not doing so is optimal is a central question of our analysis.

Model variations In Sections 4.1 through 4.6 we consider a number of variations
and extensions of our baseline model. These extension cover statistical hypothesis
testing, the estimation and selection of multiple parameters, settings without commit-
ment by the decision-maker, and settings with additional private or ex-ante unknown
information, as well as different cost structures. The set of implementable decision
rules takes a similar form in all of those cases. Let us sketch some of these extensions.

The extension to hypothesis testing in Section 4.1 most closely relates to common
interpretations of pre-analysis plans. Here, the binary data in our model can be
thought of as the outcomes of individual tests. The analyst’s decision is then which
of these outcomes to report, while the decision-maker decides when to reject the joint
hypothesis. The decision-maker aims to maximize power subject to size control, while
the analyst always wants a rejection of the null. In this setting, no non-trivial testing
rule that controls size exists when communication costs and/or researcher degrees of
freedom are very high. A PAP allows to reduce the researcher degrees of freedom
down to the optimal point, with maximal power subject to size control.

In another extension in Section 4.4, we present a case where the analyst has
additional private information about which components of the data are actually in-
formative. When the decision-maker lacks this information, it becomes important
that the analyst formulates the pre-analysis plan, instead of the decision-maker. This
provides a justification for the common practice where an analyst files a pre-analysis
plans, while a decision-maker checks the analyst’s adherence to the plan.

In Section 4.5, we consider what happens when the number of components avail-
able to the analyst is unknown to the decision-maker. We show that such uncertainty
over researcher degrees of freedom can have implications which are similar to the
implications of communication costs: PAPs are optimal when the uncertainty is large
enough.

We furthermore discuss settings with multiple parameters θi in Section 4.2, set-
tings without decision-maker commitment in Section 4.3, and settings where the
decision-maker rather than the analyst bears the cost of communication in Section 4.6.

Related literature Our article speaks, first, to the current debates around pre-
registration – and other possible reforms – in empirical economics and other social-
and life-sciences; cf. Coffman and Niederle (2015), Olken (2015), Duflo et al. (2020),
and Miguel (2021).

Our article also contributes to a literature that spans statistics, econometrics
and economic theory, and which models statistical inference in multi-agent settings.
Drawing on classic references (Tullock, 1959; Sterling, 1959; Leamer, 1974), Glaeser
(2006) considers the role of incentives in empirical research. A recent fast-growing
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strand of this literature explicitly models estimation and testing within multiple-agent
models with conflicts of interest and private information. This includes Chassang
et al. (2012); Tetenov (2016); Di Tillio et al. (2021, 2017); Spiess (2018); Henry and
Ottaviani (2019); McCloskey and Michaillat (2020); Libgober (2020); Yoder (2020);
Williams (2021); Abrams et al. (2021); Viviano et al. (2021). In this literature, Baner-
jee et al. (2020); Frankel and Kasy (2022); Andrews and Shapiro (2021); Gao (2022)
consider the communication of scientific results to an audience with priors, informa-
tion, or objectives that might differ from the sender’s. Gao (2022), in particular,
considers a sender who aims to convince a receiver of a good state in order to obtain
a higher action by selectively disclosing data. Relative to these contributions, we
focus on the role of implementability as a constraint on statistical decision theory
that rationalizes pre-analysis plans.

Our work also relates to the literature on persuasion in economic theory. Glazer
and Rubinstein (2004) consider a model similar to ours, but restrict verifiability to
only one component and do not allow for communication before data are observed.
The literature on Bayesian persuasion, as initiated by Kamenica and Gentzkow (2011)
and reviewed in Kamenica (2019), similarly considers a sender with information un-
available to a receiver, where sender and receiver have divergent objectives. In con-
trast to our model, Bayesian persuasion considers sender commitment rather than
receiver commitment, and focuses on the maximization of sender welfare. Our model
also differs in that the signal space of the analyst is restricted to a subset of the com-
ponents, implying that the concavification argument central to Bayesian persuasion
does not apply. 2 Mathis (2008) studies models of persuasion with partial certi-
fiability, and provides conditions for the existence of separating equilibria, i.e., full
information revelation. These models require continuous types and actions, costless
information transmission, and do not allow for receiver commitment. Separating equi-
libria in these models are analogous to the case in our model where first-best rules
can be implemented.

Roadmap The rest of this article is structured as follows. Section 2 presents our
formal baseline model. Section 3 characterizes implementable and optimal rules in
this model. Section 4 discusses variations of our baseline model with different decision-
maker objectives (frequentist hypothesis testing, multi-parameter settings) as well as
alternative information and cost structures.

2A variation of the Bayesian persuasion model allows for signal-dependent costs for the sender (as
in our model); cf Gentzkow and Kamenica (2014). Under posterior separability (a condition which is
not satisfied in our model), the concavification approach generalizes to the costly persuasion model.
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2 Setup

There are two agents, an analyst and a decision-maker. The analyst observes a vector
X = (X1, . . . , Xn̄), where Xi ∈ {0, 1}. The analyst can then report a subvector XI to
the decision-maker, where I ⊂ {1, . . . , n̄}. The decision-maker in turn has to make
a binary decision a ∈ {0, 1} based on this report. We will sometimes describe the
decision a = 1 as “acceptance.”

Distribution and prior The components Xi are i.i.d. draws from a Bernoulli

distribution, Xi
iid∼ Ber(θ). Analyst and decision-maker share a common Beta prior

over θ, θ ∼ Beta(α, β). The number of components n̄ is known to both analyst and
decision-maker.

Objectives The analyst’s objective is given by

uan = a− c · |I|, (1)

where |I| is the size of the reported set, and c is the cost to the analyst of communi-
cating one component j of X to decision-maker.

The decision-maker’s objective is given by

ud-m = a · (θ − θ). (2)

θ is a commonly known parameter determining the minimum value of θ beyond which
the decision-maker would like to choose a = 1.

Pre-analysis plans and timeline The analyst might specify a PAP before observ-
ing the data X. For our purposes, a PAP consists of a list of indices J ⊆ {1, . . . , n̄}
which the analyst chooses and reports to the decision-maker.

The timeline of our model is as follows. The decision-maker first commits to a
decision rule determining a as a function of analyst reports (J, I,XI). Before ob-
serving any data, the analyst then reports a PAP, that is, a (possibly empty) subset
J ⊆ {1, . . . , n̄} of components. The analyst next observes X, chooses I = I(X), and
reports (I,XI). Finally the decision rule a = a(J, I,XI) is applied and utilities are
realized.

Implementability We next define implementability without PAPs; the role of
PAPs in implementability is elaborated in Section 3 below. Consider a general re-
duced form mapping3 ā(x) from x to a, where x is a possible realization of X. We

3Here, we assume that all mappings are deterministic. We discuss extensions to randomized
mappings, and define implementability of randomized rules, when we consider frequentist testing in
Section 4.1.

7



say that the mapping ā(x) is implementable if there exist mappings I(x) and a(I, xI)
such that for all x

ā(x) = a(I(x), xI(x)) and I(x) ∈ argmax
I

a(I, xI)− c · |I|. (3)

That is, it is optimal for the analyst to actually report I(X) when observing X = x,
for all x. This incentive-compatibility condition implies in particular that I(x) ∈
argmin I{|I| : a(I, xI) = 1} whenever ā(x) = 1, and I(x) = ∅ else. It also implies
that |I(x)| ≤ 1/c for all x. Our goal will be to find implementable mappings ā(x)
that maximize the expected decision-maker utility E[ud-m].

Discussion of assumptions The model sketched here is chosen to describe the
minimal interesting case of statistical inference as a mechanism design problem.
This model leads to an extension of classical statistical decision theory, where im-
plementability constrains the set of feasible decision rules.

Our model has two agents with conflicting interests. The decision-maker would
like to only choose a = 1 if θ exceeds θ, while the analyst would always prefer a = 1.
The model also has analyst private information; the analyst observes X while the
decision-maker only observes the reported components XI . It is the combination of
these two model features that generates a potential role for a commitment device,
that is, for a pre-analysis plan. The data available to the analyst take the form of
i.i.d. binary indicators Xi. We can think of these as the outcomes of statistically
independent hypothesis tests of the same hypothesis, an interpretation we expand on
when we explicitly model joint frequentist testing in Section 4.1. The analyst decides
which of these tests to report. We will drop the assumption of i.i.d. draws Xi in
several model extensions considered later.

The PAP J constitutes “cheap talk” in our baseline model, and it might in prin-
ciple be chosen by the decision-maker rather than the analyst. In an extension of
the model where the analyst possesses prior private information, this ceases to be
the case, however. The PAP in this baseline model serves as a symmetry-breaking
device, differentiating components i which are a-priori exchangeable. In Section 4.4,
we explicitly model additional private information of the researcher that makes it
optimal for the researcher to choose J .

Interpretations We have described our model in terms of a generic analyst and
decision-maker. There are several alternative interpretations of this model. We might
think of the model as describing the conflict of interest between an analyst who
always wants to reject some hypothesis, and a reader of their research who wants a
valid statistical test of that same hypothesis. In this case, the decision a is whether
to reject the hypothesis. We will consider frequentist hypothesis testing in greater
detail in Section 4.1 below.

We might also think of the model as describing the conflict of interest between
a researcher who wants to get published (in order to get tenure, for instance), and

8



a journal that only wants to publish studies on effects that are large enough to be
interesting; the relevant decision a here is whether to publish a study.

We might lastly think of the model as describing the conflict of interest between
a pharmaceutical company who wants to sell drugs, and a medical regulatory agency
(such as the Food and Drug Administration) who wants to protect patient health. In
this case, the decision a is whether to approve a drug.

Notation We will use the following notation. The number of successes among the
subset of components I is given by s(XI) =

∑
i∈I Xi, and the number of successes

among all components is s(X) =
∑

iXi. We similarly write t(XI) =
∑

i∈I(1−Xi), and
t(X) =

∑
i(1−Xi) for the number of failures. The maximal number of components

the analyst is willing to report is denoted n̄max,

n̄max = max {n : 1− cn ≥ 0} = b1/cc , (4)

where b·c denotes rounding down to the next integer. The number of successes (com-
ponents such that Xi = 1) that the decision-maker needs to see among n compo-
nents in order to be willing to accept, absent implementability constraints, is denoted
sopt(n). This is the optimal (first best) cutoff. The minimal cutoff for the number of
successes below which the decision-maker prefers the outside option of never accepting
is denoted smin(n). Formally,

sopt(n) = min
{
s : E[θ

∣∣s(X{1,...,n}) = s] ≥ θ
}

, and

smin(n) = min
{
s : E[θ

∣∣s(X{1,...,n}) ≥ s] ≥ θ
}
. (5)

Since we have assumed a Beta prior, we have E[θ
∣∣s(X) = s] = α+s

α+β+n
, and therefore

sopt(n) = dθ · (α + β + n)− αe , where d·e denotes rounding up to the next integer.
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3 Analysis

In this section, we characterize solutions to the model introduced in Section 2. Specif-
ically, we characterize decision rules which are optimal for the decision-maker subject
to the constraint of implementability. To build intuition before discussing the general
case, we start by considering the special case n̄ = 3. For this special case we show
that for some parameter values a symmetric cutoff rule without pre-specification is
optimal, while for other values a rule based on a pre-analysis plan dominates. In
particular, unless the cost c is small, the unconstrained efficient mapping ā(x) is not
implementable.

We next consider general values of n̄, but focus on decision rules which are sym-
metric, in the sense that they depend only on the reported number of components
|I| and the number of reported successes s(XI). Such rules can implement the un-
constrained efficient solution when the reporting cost c is low enough or the number
of analyst degrees of freedom n̄ is small, but not otherwise. For larger values of n̄
the decision-maker needs to distort the cutoff s down, relative to the first-best cutoff
sopt(n̄), in order to ensure analyst participation. This results in reduced decision-
maker welfare. When n̄ is too large, no symmetric decision rule can ensure positive
welfare for the decision-maker.

In this symmetric case, we next turn to decision rules based on pre-analysis
plans. These rules are such that the decision-maker ignores all components which
are not part of the pre-specified set J . We show that such decision rules based on
pre-analysis plans dominate symmetric rules when the reporting cost c is large or the
number of analyst degrees of freedom n̄ is too big. Such pre-analysis plans allow the
decision-maker to reduce the effective number of components n̄ that the analyst can
consider. The decision-maker can reduce n̄ down to the value that results in maximal
expected decision-maker welfare, and avoids distorted acceptance cutoffs.

Lastly, we consider the general model without symmetry restrictions. We prove
that the implementable decision rules are exactly the rules which accept for values of
X in sets which are given by unions of cylinder sets. These cylinder sets correspond to
the acceptance regions for PAPs pre-specifying the maximal number of components,
n̄max. We discuss feasible greedy choices from this general set of implementable rules
in some examples.

3.1 Examples where n̄ = 3

In this section we show by example that in our model the form of the optimal decision
rule depends on parameter values. For some parameter values, the decision rule is
implementable using a PAP. For other parameter values, a symmetric decision rule is
optimal and implements the first-best reduced-form decision rule. We illustrate these
different scenarios in Figure 1. Throughout this section, we consider the special case
of our model where n̄ = 3 and c = 0.4, so that n̄max = 2.
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Figure 1: Solutions for n̄ = 3 and n̄max = 2

Notes: This panel shows different possible reduced form mappings from X = (X1, X2, X3) to ā(X),
where realizations of X such that ā(X) = 1 are marked by darker nodes. The vertical axis corre-
sponds to the number of successes s(X). The leftmost figure shows the infeasible rule which only
accepts for X = (1, 1, 1); this rule cannot be implemented when n̄max < 3. The second figure shows
the decision rule implemented by the PAP registering components J = {1, 2}, and accepting for two
reported successes among these. This is optimal when sopt(3) = 3 and sopt(2) = 2. The third figure
shows the symmetric cutoff rule accepting for 2 successes or more. This is optimal when sopt(3) = 2.

Case I: Symmetric cutoff rule is optimal Suppose that θ is such that

E[θ] < θ < E[θ|s(X) = 2].

For the uniform prior with α = β = 1, for instance, this holds whenever θ ∈].5, .6[.
Then sopt(3) = 2. The unconstrained efficient solution is given by

ā(X) = 1(s(X) ≥ 2).

This solution can be implemented by

a(J, I,XI) = 1(s(XI) ≥ 2),

without requiring a PAP.

Case II: PAP is optimal Suppose now instead that θ is such that

E[θ|s(X) = 2] < E[θ|s(X) ≥ 2] < θ < E[θ|s(X{1,2}) = 2] < E[θ|s(X) = 3].

For the uniform prior with α = β = 1, for instance, this holds whenever θ ∈].7, .75[.
Then sopt(3) = 3 and sopt(2) = 2. The unconstrained efficient solution is given by

ā(X) = 1(s(X) = 3).
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This rule is illustrated on the left of Figure 1. There is no incentive compatible
implementation of this solution, however, since n̄max = 2. The PAP solution for
J = {1, 2},

a(J, I,XI) = 1(I = J = {1, 2}, s(XI) = 2),

yields positive expected welfare E[ud-m] > 0, and is indeed the constrained optimal
solution in this case. This solution is illustrated in the middle of Figure 1. No
symmetric decision rule of the form a(J, I,XI) = 1(s(XI) > s) which respects the
analyst reporting constraint yields positive expected decision-maker welfare for this
example, because E[θ|s(X) ≥ 2] < θ by assumption.

3.2 Symmetric decision rules

We next return to the model with a general number of components n̄, but we re-
strict our attention in this section to symmetric decision rules, which are invariant
to permutations of the components 1, . . . , n̄. For such decision rules, we can write
(overloading notation)

a(J, I,XI) = a(s(XI), t(XI)), (6)

where t(XI) = |I| − s(XI). In words, acceptance only depends on the number of
successes among the reported components, and on the number of failures. Such
decision rules ignore the pre-analysis plan, should the analyst report one. Below, we
generalize this approach to rules based on pre-analysis plans which require symmetry
only among the pre-specified components J , while ignoring all other components.

In the following we characterize optimal symmetric decision rules using the mechanism-
design approach sketched in Section 2. We first characterize the set of all reduced-
form decision rules ā(·) which are implementable by symmetric decision rules. We
then describe the optimal symmetric decision rules subject to the constraint of imple-
mentability. Thereafter, we consider the special case of a uniform prior, which allows
us to derive analytic solutions which can be plotted (cf. Figure 2). We then show
that the qualitative comparative statics exhibited by the solution for the uniform case
do, in fact, hold more generally.

Implementable rules As a first step, the following lemma characterizes the reduced-
form decision rules ā(X) which are implementable by symmetric decision rules of the
form a(s(XI), t(XI)). It is worth emphasizing that the set of implementable decision
rules is independent of decision-maker preferences, by construction. This will allow
us to consider other decision-maker objectives in Section 4 below, for instance ob-
jectives corresponding to frequentist testing with size control, referring to the same
implementability results derived in this section. The condition on c in the following
lemma avoids indifference of the analyst.
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Lemma 1 (Symmetrically implementable rules). Assume that (1/c) /∈ N, and con-
sider decision rules of the form a(s(XI), t(XI)). ā(·) is a reduced-form decision rule
implementable by such a rule a(·) if and only if it is of the form

ā(X) = 1(s(X) ∈ S), (7)

where S is a union of intervals of length at least n̄− n̄max.4

This Lemma implies in particular that if a decision rule is implementable and
symmetric and accepts for s(X) = n̄, then it also has to accept for any value of S in
the interval [n̄max, n̄].

Optimal rules The following proposition derives the optimal implementable sym-
metric decision rule. This decision rule applies a cutoff which is illustrated by the bold
blue line in the left panel of Figure 2. Note that the first-best reduced-form rule (which
neglects the constraint of implementability) is given by ā(X) = 1(s(XI) ≥ s(n̄)). This
first-best decision rule is implementable iff n̄max ≥ sopt(n̄).

Proposition 1 (The optimal symmetric rule). If n̄max ≥ smin(n̄), the optimal reduced-
form decision rule that is symmetrically implementable takes the form

ā(X) = 1(s(X) ≥ min(sopt(n̄), n̄max)), (8)

and can be implemented by

a(s(XI), t(XI)) = 1(s(XI) ≥ min(sopt(n̄), n̄max)). (9)

If n̄max < smin(n̄), then the optimal symmetrically implementable decision rule is
given by a(s(XI), t(XI)) ≡ 0.

Uniform prior Assume now additionally that the prior for θ is uniform, so that
the parameters of the prior Beta distribution are given by α = β = 1. The number
of successes S, which generally has a Beta-Binomial distribution in our model, has
a discrete uniform distribution on {0, 1, . . . , n̄} in this special case. The following
identities are then immediate.

P (s(X) ≥ s) =
n̄+ 1− s
n̄+ 1

, E[θ|s(X) = s] =
1 + s

2 + n̄
, E[θ|s(X) ≥ s] =

1

2 + n̄
· 2 + s+ n̄

2
.

We can now derive the optimal symmetric decision rule in closed form, combining
Proposition 1 with these identities.

4Note that intervals in the set of integers that are of length k are of cardinality k + 1.
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Figure 2: Symmetric cutoff without PAP, uniform prior

Notes: This figure plots the solution described in Corollary 1, for the case where θ = .7 and c = .1.
The left figure shows the optimal cutoff sopt(n̄) and the minimal cutoff smin(n̄) (the two upward
sloping lines), the maximal number of components reported by the analyst n̄max (the horizontal
line), and then the actual cutoff (bold, in blue). The right figure plots the decision-maker’s expected
utility, as a function of n̄. The vertical grey line indicates the number of components at which
the analyst reporting constraint starts to bind; here, this is also the number of components which
maximizes expected decision-maker utility.

Corollary 1 (Uniform distribution). Suppose that α = β = 1. Then the optimal
reduced-form symmetric decision rule, and the corresponding expected decision-maker
welfare, are given by

ā(X) = 1(s(X) ≥ min(sopt(n̄), n̄max)) · 1
(
n̄max ≥ smin(n̄)

)
,

E[ud-m] =

(
2+ min(sopt(n̄), n̄max) + n̄

(2+n̄)2
− θ
)
·
(
n̄+1−min(sopt(n̄), n̄max)

n̄+1

)
· 1
(
n̄max ≥ smin(n̄)

)
,

where

sopt(n̄) = dθ · (2 + n̄)− 1e , smin(n̄) = dθ · (4 + 2n̄)− 2− n̄e , n̄max = b1/cc .

Three regimes Figure 2 plots the solution described in Corollary 1, for the case
where θ = .7 and c = .1. This figure shows that the optimal symmetric cutoff rule
is determined by one of three regimes, depending on the value of n̄ relative to c.
For n̄ small enough (given c), sopt(n̄) is less than n̄max, and the first best decision
can be implemented by using the cutoff sopt(n̄). For n̄ large, we have that smin(n̄)
is greater than n̄max, and there is no cutoff that would guarantee both analyst and
decision-maker participation; acceptance never occurs. For intermediate values of
n̄, we have that n̄max lies between smin(n̄) and sopt(n̄). The decision-maker then uses
the cutoff n̄max, which is just small enough to ensure analyst participation, while still
guaranteeing positive expected welfare to the decision-maker.
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The decision-maker’s expected welfare behaves correspondingly. For small n̄, wel-
fare is increasing in n̄, since the Blackwell-informativeness of X = (X1, . . . , Xn̄) is
increasing in n̄. For large n̄, expected welfare equals 0, since no symmetric rule exists
that can give positive expected welfare to both the analyst and the decision-maker.
For intermediate n̄, welfare is decreasing in n̄. The reason is that the cutoff is in-
creasingly distorted downward, relative to the decision-maker optimum, in order to
ensure analyst participation.

These considerations generalize; they do not depend on the uniform prior for θ,
as shown by the following corollary.

Corollary 2 (Comparative statics of decision-maker welfare for symmetric rules).
Consider expected welfare E[ud-m] of the decision-maker for the optimal symmetric
decision rule, as a function of n̄, holding all other parameters of the model constant.
Then the following holds true:

1. For n̄ = 0,
E[ud-m] = 0.

2. For n̄ small enough
so that sopt(n̄) = dθ · (α + β + n̄)− αe ≤ n̄max = b1/cc ,
E[ud-m] is increasing in n̄.

3. For intermediate values of n̄,
if there exists a value of n̄ such that smin(n̄) ≤ min(n̄, n̄max),
E[ud-m] > 0.

4. For n̄ large enough
so that smin(n̄) > n̄max = b1/cc ,
E[ud-m] = 0.

Pre-analysis plans The preceding analysis suggests that, when n̄ is large, it might
beneficial for the decision-maker to somehow reduce the number of components n̄, that
is, to reduce the analyst degrees of freedom. This is exactly what a pre-analysis plan
allows them to achieve.

Generalizing our analysis for symmetric rules, consider now rules which are sym-
metric among the pre-registered and reported components i ∈ I ∩ J , while ignoring
all other components, so that

a(J, I,XI) = a(|J |, s(XI∩J), t(XI∩J)). (10)

Proposition 2 (Optimal PAP when full pre-specification is required). Suppose that
sopt(n̄) ≥ n̄max. Consider decision rules of the form a(|J |, s(XI∩J), t(XI∩J)). An
optimal decision rule of this form is given by

a(|J |, s(XI∩J), t(XI∩J)) = 1 (|J | = n̄∗ and s(XI∩J) ≥ n̄max) , (11)
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where
n̄∗ = argmax

n
E[1(s(X{1,...,n}) ≥ n̄max) · (θ − θ)]. (12)

An immediate consequence of this result is the following case distinction. If
s(n̄) ≤ n̄max, then the first-best reduced-form decision rule can be implemented,
and is given by ā(X) = 1(s(X) ≥ s(n̄)). If s(n̄) > n̄max, then the first-best is not
implementable, and symmetric decision rules are dominated by decision rules requir-
ing a pre-analysis plan. The optimal pre-analysis plans of Proposition 2 reduce the
effective number of components available to the analyst down to the optimal num-
ber, corresponding to the peak of the expected decision-maker utility as shown in
Figure 2. The pre-analysis plan effectively acts as a symmetry-breaking device that
expands the set of implementable symmetric decision rules (where symmetry applies
only to the pre-specified components).

3.3 General implementable decision rules

In the previous section we considered symmetric decision rules, as well as symmet-
ric rules with a PAP. We now return to fully general rules. The following lemma
characterizes the set of implementable reduced-form decision rules ā(x). This lemma
generalizes Lemma 1 discussed above, where we considered reduced-form rules imple-
mentable by symmetric rules.

Lemma 2. The implementable reduced-form decision rules ā(x) are exactly those that
are of the form

ā(x) = 1(x ∈ ∪kCIk,wk
), (13)

for some set of {(Ik, wk)}, where CI,w are the cylinder sets

CI,w = {x : xI = w}, (14)

and |Ik| = n̄max for all k.

This lemma shows that the set of values of x for which we get ā(x) = 1 is necessar-
ily given by a union of sets of the form CI,w = {x : xI = w}, if ā(·) is implementable.
These are cylinder sets; they fix the value of x on a subset of components I, to the
values specified by w. Furthermore, the size of I is (at most) n̄max – the cylinder sets
pin down (at most) n̄max components.

To gain some intuition, consider again the example where n̄ = 3 but n̄max = 2, as
discussed in Section 3.1 and depicted in Figure 1. In this example, the cylinder sets
of Lemma 2 correspond to edges of the cube shown in Figure 1. The set {(1, 1, 1)}
is not implementable (infeasible), since it is not a union of such edges. The sets
{x : x1 = x2 = 1} (corresponding to a pre-analysis plan), and {x : s(x) ≥ 2}
(corresponding to the symmetric cutoff rule) however, are implementable, as they
can be written as a union of edges.
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Brute-force optimization The optimal decision rule (from the decision-maker’s
point of view) maximizes the expected utility E[ud-m] subject to the constraint of
implementability. In light of Lemma 2, we can write this problem as a problem of
maximizing over implementable sets A = {x : a(x) = 1},

max
A∈A

∑
x∈A

ωx, where A = {A : A = ∪kCIk,wk
}, (15)

CI,w = {x : xI = w}, and ωx = P (x) · (E[θ|s(X) = s(x)]− θ) .

This problem can, in, principle, be solved by brute-force enumeration of all possible
sets A (there are a finite number), maximizing the corresponding expected decision-
maker utility.

In practice, however, enumeration quickly becomes computationally infeasible,
due to the large number of possible sets A. There are

(
n̄

n̄max

)
possible subsets I, and

for each of those 2n̄
max

possible values of w. The number of possible cylinder sets CI,w
(not taking advantage of symmetries in the problem), thus is given by

(
n̄

n̄max

)
· 2n̄max

.
The first term grows as n̄n̄

max
, for fixed n̄max; the second term grows exponentially

in n̄max. The size of A , finally, grows as 2 to the power of the number of possible
cylinder sets CI,w.

Greedy optimization This observation suggests other approaches to optimization.
We consider the following greedy algorithm: Start with the empty set A = ∅. At each
step of the algorithm, augment A by a set CI,w, where w is a vector of ones, and I
is chosen among all possible subsets of 1, . . . , n̄, in order to yield the largest increase
of E[ud-m]. This step is further simplified by using the fact that all components not
considered yet by A are symmetric, so we do not need to consider all of them. The
algorithm stops when no more set I can be found which leads to an increase of E[ud-m].

This greedy algorithm leads to reasonable results in the numerical examples dis-
cussed in Appendix A.1. It is not guaranteed to find the global optimum, however.
The underlying reason is a lack of supermodularity in the combinatorial optimization
problem. Convergence of the greedy algorithm to the global optimum requires the
absence of complementarities: Augmenting A by two sets CI,w and CI′,w′ should lead
to a lower increase of E[ud-m] then the sum of increases from augmenting A by either
of the two sets separately. This does not always hold, as shown in an example in
Appendix A.1, where the greedy algorithm does not find the global optimum. That
said, in the examples we considered, it appears that the solution found by the greedy
algorithm still performs quite well, and better than simpler alternatives.
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4 Model variations and extensions

In this section, we discuss several variations and extensions of our baseline model.
We first consider alternative decision-maker objectives, while maintaining the same
analyst objective and information structure as before. This immediately implies that
the same reduced form decision functions ā(·) are implementable as in the baseline
model; in particular Lemma 1 and Lemma 2 above continue to describe the set of sym-
metrically implementable decision functions, and the set of implementable decision
functions, respectively. We then consider alternative information and cost structures.
For the sake of exposition, we restrict our attention throughout to symmetric cutoff
rules, as in Proposition 1, where symmetry is possibly restricted to the pre-registered
components.

Before discussing the specific model variations in greater detail, let us briefly
preview and discuss the purpose of introducing each of these variations and extensions.

In Section 4.1 we replace the decision-maker objective with a frequentist testing
problem, where the goal is to maximize power subject to a constraint on the size of a
test. This extension shows that our qualitative conclusions hold up when we replace
decision-maker utility maximization by frequentist testing.

In Section 4.2, we replace the decision-maker objective with the objective ud-m(a) =
a ·
∑

i∈I (θi − θ), where now there is a different parameter θi corresponding to each
component Xi of the data, but these parameters are ex-ante correlated. This exten-
sion shows that our qualitative conclusions again hold up when we allow for multiple
parameters, as long as they are not statistically independent in the prior.

In Section 4.3, we drop the assumption of decision-maker commitment. We show
that the optimal symmetrically implementable rules derived in Proposition 1 are sus-
tained by a perfect Bayesian equilibrium in this model without commitment. More-
over, these rules are optimal from the decision-maker’s point of view, among the
symmetrically implementable perfect Bayesian equilibria.

In Section 4.4, we allow for the possibility of additinoal asymmetric information
between the decision-maker and the analyst, in terms of the available set of hy-
potheses. This extension implies that it is better for the analyst (rather than the
decision-maker) to choose the PAP, while all other conclusions from the baseline
model continue to hold.

In Section 4.5, we allow for the possibility that the number of components n̄
(degrees of freedom) is unknown to both the analyst and the decision-maker ex-ante.
This extension shows that uncertainty over n̄ provides an additional rationale for
PAPs that is separate from costs of communication.

In Section 4.6, we assume that the decision-maker, rather than the analyst, bears
the cost c · |I| of communication. For this model variation, implementability is not a
binding constraint. Our qualitative conclusions again continue to hold, nonetheless,
for the implied decision problem.
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4.1 Frequentist testing

In the baseline model, we interpreted the function a as the decision rule of a decision-
maker who aims to maximize the expectation of their utility ud-m. Alternatively, we
could interpret a as the testing decision of a reader based on evidence XI presented
by an analyst, where the components Xi are themselves the outcomes of statistically
independent hypothesis tests. This is the perspective we take in this section.

Assumptions Consider the same model as outlined in Section 2, except that now
the decision-maker wants to test the null hypothesis θ ≤ θ, for some significance level
θ, e.g. θ = .05. Since, by assumption, Xi ∼ Ber(θ), this implies that Xi itself is a
valid test that controls size for the hypothesis θ ≤ θ. Any statistical test Xi can be
written in this form after suitable re-parametrization: We can replace the original
underlying parameter by θ, which is defined as the rejection probability of the test.

Tests with higher power can be obtained by combining the evidence from multiple
components Xi. We next discuss the construction of first-best and implementable
testing rules. We require that these rules satisfy the size constraint, and we aim
to maximize power. Note that the analyst’s incentives are the same as before. It
immediately follows that the (symmetrically) implementable non-randomized tests
ā(X) are exactly those described by Lemma 1 and Lemma 2.

The first-best rule We start by characterizing the first-best testing rule, sidestep-
ping the question of implementability. The number of successes S = s(X) is a suffi-
cient statistic for θ. Furthermore, s(X) satisfies the monotone likelihood ratio prop-
erty. We can therefore apply Theorem 3.4.1 in Lehmann and Romano (2006), which
shows that

ā(X) = 1(s(X) + U ≥ stest(n̄)), (16)

where U is distributed Uniform([0, 1]), is a uniformly most powerful test for the
null θ ≤ θ. Here U is a tie-braking device to ensure exact size control, despite the
discreteness of the test-statistic s(X).5

The ex-ante probability conditional on θ that such a test, using a cutoff s, rejects
the null is given by

p(θ; n̄, s) = E[ā(X)|θ] = P (s(X) + U ≥ s|θ)

=
n̄∑

j=dse

(
n̄

j

)
θj(1− θ)n̄−j + (dse − s) ·

(
n̄

j

)
θ(dse−1)(1− θ)n̄+1−dse.

The last term reflects the probability of rejection due to the tie-breaking device. For
any θ under the null, that is for θ ≤ θ, this probability is bounded above by p(θ; n̄, s).

5Allowing for more general forms of randomization can increase the set of implementable testing
rules. Such more general randomized tests are considered in Proposition 3 below, and in the context
of a numerical example in Appendix A.2.
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Figure 3: Power curves for different sample sizes

Notes: This figure illustrates the value of increased sample size for the first-best rule by showing the
power curves for different values of n, for θ = .1 and the test of Equation (16).

The critical value stest(n̄) is given by the unique value which yields size control,6

p(θ; n̄, stest(n̄)) = θ. (17)

This equation assumes that the cutoff defining the null hypothesis (θ on the left hand
side), and thus the size of each of the Xi as tests of this null, is the same as the size
of the joint test (θ on the right hand side). In principle these two cutoffs could be
different. The following immediately generalizes to the case with different cutoffs.

Blackwell dominance implies that a larger value of n̄, when using the cutoff stest(n̄),
leads to a more powerful test. Specifically, p(θ; n̄, stest(n̄)) is monotonically increasing
in n̄ for θ > θ, and is decreasing in n̄ for θ < θ. Figure 3 illustrates this point for
θ = .1 and different values of n̄.

Non-randomized symmetrically implementable tests and PAPs We next
consider optimal symmetric testing rules subject to implementability. If stest(n̄) ≤
n̄max, the first-best testing rule of Equation 16 can be directly implemented, without a
PAP. If stest(n̄) > n̄max, this is not the case. Furthermore, if we restrict our attention
to non-randomized and symmetrically implementable rules, as in Section 3.2, we
obtain a stark negative result: No non-trivial symmetric non-randomized tests that
control size exist, in this case. This illustrates the common intuition that PAPs are
necessary for size control in statistical testing.

Our proof of this claim builds directly on the implementability results from Sec-
tion 3.2. In order to define implementability for randomized rules, we assume that

6Using Chernoff’s inequality, stest(n̄) can be bounded as follows, resulting in alternative valid
but conservative critical values: stest(n̄) ≤ θn̄+

√
−3 log(θ)

√
θn̄.
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any randomization device U is drawn by the decision-maker and known to the analyst
before they choose I. Conditional on U , all previous definitions and results apply.

Proposition 3.

1. If stest(n̄) ≤ n̄max then the symmetric cutoff rule a(I,XI) = 1(s(XI) + U ≥
stest(n̄)) implements a uniformly most powerful test based on X, subject to size
control.

2. If bstest(n̄)c > n̄max then no uniformly most powerful test is implementable.

3. Furthermore, if stest(n̄) > n̄max and θ < .5, then no non-randomized symmetric
decision rule of the form a(s(XI), t(XI)) exists which implements a test that
controls size under the null and has positive power under any alternative.

It immediately follows, in analogy to Proposition 2, that a PAP provides value by
ensuring size control for a non-trivial non-randomized and symmetric test whenever
stest(n̄) > n̄max. Furthermore, in light of the monotonicity of power noted above, the
optimal choice for the size |J | of the PAP is given by

max{n̄ : stest(n̄) ≤ n̄max}. (18)

Summary and implications The application of our model to hypothesis test-
ing shows that the take-aways from the previous section extend: When analyst and
decision-maker have misaligned preferences, and analyst degrees of freedom n̄ and/or
the cost of communication c are sufficiently high, then a pre-analysis plan improves
“welfare” – in this case, size and power. The optimal PAP delivers both size control
and non-trivial power.

4.2 Multiple parameters

We next consider a variation of our baseline model where instead of one parameter
θ governing the distribution of all the Xi, we have separate parameters θi for each
outcome. A possible interpretation of this model is the drug-approval process, where
the i correspond to different sub-populations, and θi describes the effectiveness of the
drug for sub-population i. The medical authority’s objective is to approve the drug
for subpopulations where it is effective, but not for other sub-populations. A key
feature of the following model is that the parameters θi are a-priori dependent; this
dependency is captured by a hierarchical Bayesian model. This dependency implies
that selective reporting distorts the posterior for the reported components; absent
such dependency the model would be separable across components.
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Assumptions Consider a variation of our baseline model where there are parame-
ters θi for every i. Suppose that the joint distribution of data and parameters is given
by the hierarchical model:

Xi|θ1, . . . θn̄, θ̄ ∼ Ber(θi) (19)

θi|θ̄ ∼ Beta(mθ̄,m(1− θ̄))
θ̄ ∼ Beta(α, β).

Assume that the Xi and the θi are conditionally independent across i, and m is
common knowledge. Suppose that the decision-maker’s objective is given by

ud-m(a) = a ·
∑
i∈I

(θi − θ) , (20)

while the analyst’s utility is as before. The latter implies again that the (symmet-
rically) implementable decision rules ā(X) are exactly those described by Lemma 1
and Lemma 2.

The data generating process in this model reduces to our baseline model when we
take the limit m → ∞; in this limit, the θi are perfectly correlated. Decision-maker
utility in this limit, however, is multiplied by |I|, relative to the baseline model.

The first-best rule By integrating out the θi, we immediately get Xi|θ̄
iid∼ Ber(θ̄)

and thus s(X)|θ̄ ∼ Bin(n̄, θ̄), so that

E[θ̄|s(X)] =
α + s(X)

α + β + n̄
.

By the law of iterated expectations, and by conditional independence of θi and s(X)
given θ̄,

E[θi|X] = E[θi|Xi, s(X)] = E
[
E[θi|Xi, θ̄]|Xi, s(X)

]
= E

[
mθ̄ +Xi

m+ 1

∣∣∣Xi, s(X)

]
=

1

m+ 1

[
m · α + s(X)

α + β + n̄
+Xi

]
.

The posterior mean of θi given the full data is thus linear in the total number of
successes s(X) and in the component-specific value Xi. From this expression for the
posterior mean, it is immediate that the first-best decision rule, for the decision-maker,
is given by

I(X) = {i : Xi = 1}
ā(X) = 1(s(X) ≥ smult(n̄))

smult(n̄) = min{s : E[θi|Xi = 1, s(X) = s] ≥ θ}

=
⌈

(m+1)θ−1
m

· (α + β + n̄)− α
⌉
. (21)
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Notice that now, in contrast to the baseline model, the reporting rule I(X) directly
enters decision-maker utility; the decision-maker wants only successes to be reported.
This first-best decision rule is implementable iff smult(n̄) ≤ n̄max. smult(n̄) is increasing
in n̄ as long as (m+ 1)θ ≥ 1.

Symmetric cutoff rules and PAPs Consider now a general symmetric cutoff rule
of the form a = 1(s(XI) ≥ s). As before, the analyst’s best response is to only report
successes, where

|I(X)| = s(XI(X)) = s · 1(s(X) ≥ s, n̄max ≥ s).

It immediately follows that E[ud-m] = 0 when n̄max < s. When n̄max ≥ s, then

E[ud-m] = s ·
(
E[E[θi|Xi = 1, θ̄]|s(X) ≥ s]− θ

)
· P (s(X) ≥ s)

= s ·
(

1

m+ 1

[
m · α + E[s(X)|s(X) ≥ s]

α + β + n̄
+ 1

]
− θ
)
· P (s(X) ≥ s).

By the same argument as in the proof of Proposition 1, it is optimal for the decision-
maker to choose a cutoff s = min(smult(n̄), n̄max), as long as expected decision-maker
utility for this cutoff is positive, and to never accept for larger n̄. Furthermore, since
E[ud-m] is decreasing in n̄ beyond some point, it is optimal to use a PAP to reduce n̄
to the utility maximizing value, as in Proposition 2.

Uniform prior Assume now that the prior for θ̄ is uniform, so that α = β = 1. As
before, it follows that s(X) is uniform on {0, . . . , n̄}, and we can calculate

E[ud-m] = s ·
(

1

m+ 1

[
m · α + (s+ n̄)/2

α + β + n̄
+ 1

]
− θ
)
· n̄+ 1− s

n̄+ 1
. (22)

Figure 4 plots an example of this solution. Note that relative to our baseline model,
the effect of selective reporting on decision-maker utility is attenuated in this model.
In the plot, this is reflected in decision-maker utility going to 0 more slowly, and
remaining positive even for relatively large n̄, despite considerable distortion of s
relative to the optimum.

Summary and implications When the analyst observes measurements from dif-
ferent parameters that come from a joint prior, then the decision-maker is still more
likely to approve the analyst’s submission when more successes are submitted, and the
conclusions from the main model extend. Specifically, when analyst degrees of free-
dom n̄ and/or the cost of communication c are sufficiently high, then a pre-analysis
plan improves welfare. However, the effect of misalignment and communication cost is
now attenuated since only the selected components enter the decision-maker’s payoff,
rather than the overall parameter.
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Figure 4: Symmetric cutoff, multiple parameters, uniform prior

Notes: This figure plots the solution described in Equation 22, for the case where θ = .7, c = .1,
and m = 3. The figure on the left shows the optimal cutoff smult(n̄) (the upward sloping line), the
maximal number of components n̄max reported by the analyst (the horizontal line), and then the
actual cutoff (bold, in blue). The figure on the right plots the decision-maker’s expected utility, as
a function of n̄. The vertical grey line indicates the number of components at which the analyst
reporting constraint starts to bind; this is also the number of components which maximizes expected
decision-maker utility.

4.3 No commitment

Throughout, we have assumed that the decision-maker is able to commit to a decision
rule a(·). As it turns out, the optimal cutoff rule derived in Proposition 1, and
the corresponding rule with pre-registration characterized in Proposition 2, can be
maintained without commitment, as well. Put differently, these rules are supported
by a perfect Bayes Nash equilibrium. The same is true for a range of other cutoff
rules.

Assumptions Consider the same model as outlined in Section 2, except that now
the timeline is given as follows. Before observing any data, the analyst reports a
PAP, that is, a subset J ⊆ {1, . . . , n̄} of components. The analyst then observes X,
chooses I = I(X), and reports (I,XI). Then the decision-maker observes (J, I,XI)
and updates their beliefs. Based on these updated beliefs, the decision-maker chooses
a to maximize the expectation of ud-m, and then utilities are realized.

Proposition 4. Consider the decision rule a(s(XI), t(XI)) = 1(s(XI) ≥ s), and an
analyst response I(X) such that s(XI(X)) = |I(X)| = s · 1(s(X) ≥ s).

• This decision rule a(·), and any analyst response of this form, are sustained by
a perfect Bayesian equilibrium if and only if s ∈ [smin(n̄), n̄max].

• Among these equilibria, the highest decision-maker expected utility is achieved

24



when s = min(sopt(n̄), n̄max), and the highest analyst expected utility is achieved
when s = smin(n̄).

The proof of Proposition 4 immediately extends to the case of pre-registration, as
shown by the following corollary:

Corollary 3. Consider the decision rule a(J, I,XI) = 1(|J | = n and s(XI∩J) ≥ s),
for some n ≤ n̄, and an analyst response J, I(X) such that |J | = n, I(X) ⊆ J ,
s(XI(X)) = |I(X)| = s · 1(s(XJ) ≥ s). This decision rule a(·), and any analyst
response of this form, are sustained by a perfect Bayesian equilibrium if and only if
s ∈ [smin(n), n̄max].

One point worth emphasizing about both these results is that perfect Bayesian
equilibrium does not constrain decision-maker beliefs conditional on off-equilibrium
(zero probability) reports by the analyst. Pessimistic off-equilibrium beliefs, leading
to a = 0, can therefore sustain many different decision-maker response functions, and
the corresponding equlibria. A natural refinement of perfect Bayesian equilibrium
in our setting would require consistency of beliefs with verifiable knowledge, based
on the reported XI . The most pessimistic off-equlibrium belief consistent with this
refinement implies that s(X) = s(XI), so that a = 1 whenever s(XI) ≥ sopt(n̄).
This refinement does not substantively affect either result as long as s ≤ sopt(n̄)
(for Proposition 4) or n̄max < sopt(n̄) (for Corollary 3): Under these conditions, the
additional constraints imposed by this refinement already hold for all the proposed
equilibria.

Summary and implications Our baseline model assumes commitment of the
decision-maker to a decision rule a(·). We believe that this is a reasonable assump-
tion for statistical methodology in academic research, where strong norms constrain
acceptable reporting behavior. We also believe that this is an accurate description
of settings such as the drug approval process, where legal rules constrain the medical
authority’s approval decisions.

Proposition 4 shows that our conclusions are, however, also robust to settings
where the decision-maker cannot credibly commit. The optimal symmetric decision
rules derived in Proposition 1 are sustained by a perfect Bayesian equilibrium absent
commitment. Furthermore, they are optimal for the decision-maker among all sym-
metric rules which can arise in equilibrium. Analogous statements hold for the case
with pre-registration, as in Corollary 3.

4.4 Unknown set of components and analyst private infor-
mation

In the model considered thus far, there was no reason for the analyst, rather than the
decision-maker, to be the party choosing the PAP J . Furthermore, it was assumed
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that the set of available components i is known to both analyst and decision-maker
ex-ante.

We next discuss two extensions of the baseline model where there is additional
hidden information. In the first extension, the number of available components is
common knowledge, but the analyst has private information about the identity of
the available components at the time of choosing a PAP. This version of the model
rationalizes the role of the analyst in determining the PAP J , while leaving all other
conclusions unchanged. In the second extension, considered in Section 4.5, neither
analyst nor decision-maker know the available number of components n̄ at the time
of committing to a PAP, and the decision-maker does not know n̄ at the time of
choosing a.

Assumptions Suppose that the assumptions of the baseline model hold, except
that availability of components i is determined by a vector W ∈ {0, 1}n̄. After
choosing J , the analyst observes the vector X ′ = (W1X1, . . . ,Wn̄Xn̄), and chooses a
set I of coordinates of X ′ to report. The decision-maker’s decision rule is of the form
a(J, I,X ′I).

The number of available components, n̄′ = |W |, is common knowledge of the
decision-maker and the analyst. The analyst additionally knows W ex-ante, while
the decision-maker does not. The decision-maker’s prior over W given n̄′ is uniform
over all permutations of the components i, i.e., P (W = w|θ,X) = 1(|w| = n̄′)

/(
n̄
n̄′

)
.

The first-best rule Denote s(X ′) =
∑

iWiXi. The decision-maker’s first-best
decision rule, if they could observe the full vector X ′, is given by

ā(X ′) = 1

(
α + s(X ′)

α + β + n̄′
≥ θ

)
. (23)

As in the baseline model, this rule is only implementable if sopt(n̄′) ≤ n̄max, where
sopt(·) is defined as before.

Symmetric cutoff rules and PAPs Suppose that the decision-maker applies a
symmetric cutoff rule of the form

a(J, I,X ′I) = 1(s(X ′I) ≥ s).

From the decision-maker’s perspective, this setting looks just like the baseline model
for n̄′ components (rather than n̄). As in the baseline model, the analyst will report
a subset of components I such that |I| = s(X ′I) = s iff s(X ′) ≥ s and n̄max ≥ s;
otherwise the analyst will report I = ∅.

Symmetric reduced form cutoff rules of the form ā(X ′) = 1(s(X ′) ≥ s) are there-
fore implementable for n̄max ≥ s. Decision-maker expected welfare for such imple-
mentable rules is given by

E[(θ − θ) · 1(s(X ′) ≥ s)].
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This has exactly the same form as in our baseline model, with s(X ′) taking the role
of s(X), and n̄′ taking the role of n̄. All results from the baseline model thus carry
over. In particular, Proposition 1 and Proposition 2, where we derived the optimal
symmetric rule and the optimal PAP when full pre-specification is required, apply
verbatim, after replacing n̄ by n̄′. The optimal PAP, to be chosen by the analyst, has
size |J | such that decision-maker utility is maximized, which might be less than n̄′

whenever the latter is large, or when the cost c is large.

Summary and implications The structure of pre-analysis plans from the baseline
model remains intact when the analyst has private information. However, while in
the baseline model the decision-maker could have chosen the pre-analysis plan, now
it needs to be the analyst who has to pick the PAP J . Expected welfare would be
strictly lower if the decision-maker were to select J , since the PAP reflects which
components are (more) informative about the hypothesis of interest. The variables
Wi might be interpreted as a stylized description of private information available to
the analyst, regarding either the validity of alternative identification approaches i, or
the expected standard errors of alternative estimators i.

4.5 Unknown number of components

In the previous subsection we considered a variant of our model where the analyst
has private information about the identity of informative components. Now we con-
sider a variant where they have private information about the number of informative
components, with very different implications. In particular we find that such private
information about n̄ can rationalize PAPs even in the absence of a communication
cost c.

Assumptions Consider the same model as outlined in Section 2, except that now
the timeline is as follows. Neither decision-maker nor analyst know the available
number of components n̄ before the analyst commits to a PAP. Before observing any
data or n̄, the analyst reports a PAP, that is, a set J ⊆ {1, 2, . . .} of components.
The analyst then observes n̄ and X, chooses I = I(X), and reports (I,XI). Then the
decision-maker observes (J, I,XI), but not n̄, and updates their beliefs, about both
n̄ and θ. Based on these updated beliefs, the decision-maker chooses a to maximize
the expectation of ud-m, and then utilities are realized.
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Assume that θ ∼ Beta(α, β), Xi|θ
iid∼ Ber(θ) and that n̄ ⊥ θ,X1, X2, . . .. Then

P (s(X) = s|n̄) =

(
n̄

s

)
B(α + s, β + n̄− s)

B(α, β)
,

P (n̄|s(X)) = P (s(X)|n̄) · P (n̄)/P (S), and

E[θ|s(X)] = E[E[θ|s(X), n̄]|s(X)] = E

[
α + s(X)

α + β + n̄

∣∣∣∣s(X)

]
= (α + s(X)) · E

[
1

α + β + n̄

∣∣∣∣s(X)

]
. (24)

The last expectation averages over the distribution P (n̄|s(X)). This expectation is
in general decreasing in s(X). Because of this effect, reducing the prior dispersion of
the number of components available to the analyst, by means of a PAP, can increase
decision-maker welfare, by making s(X) a more informative signals about θ, relative
to the unrestricted case.

Symmetric cutoff rules and PAPs The following Proposition 5 provides an
example with private information about n̄, where a PAP increases decision-maker
welfare, even when the cost of communication c equals 0. This example requires that
there is sufficient prior dispersion of n̄.

Proposition 5. Suppose that n̄ has two points of support n̄1 < n̄2 which it takes
with equal probability, and that c = 0. Suppose that the decision-maker uses a cutoff
rule of the form a(I,XI) = 1(s(XI) ≥ s). Then there exist values for n̄1, n̄2 such
that E[ud-m] is strictly larger with a PAP restricting the analyst to only the first n̄1

components than with no PAP.

Summary and implications When the number of components is unknown and
we restrict decision rules to simple cutoff rules, then there is an additional role for
pre-analysis plans, which is not driven by the cost of communication c. Specifically, a
PAP can increase welfare by restricting the analyst to only reporting components that
are available with high probability. If there is no such PAP, then the decision-maker
would have to discount the report by the analyst to account for the possibility of a
higher number of components being available, even in the state of the world where
this possibility is not realized.

4.6 Decision-maker bears the cost of communication

In this section, we consider a variation of our baseline model where the decision-maker,
rather than the analyst, bears the cost of communication, c · |I|. Implementability
becomes trivial in this model variation, so that we can focus on the decision-maker’s
decision problem. Nevertheless, the qualitative conclusions from the baseline model
again carry over.
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Assumptions Consider the model introduced in Section 2, except that the analyst
and decision-maker’s objectives are given by

uan = a, (25)

ud-m = a · (θ − θ)− c · |I|.

Relative to the model of Section 2, this shifts the cost c · |I| from the analyst to the
decision-maker.

Symmetric cutoff rules and PAPs Consider a symmetric cutoff rule of the form
a = 1(s(XI) ≥ s). We assume (as a matter of tie-breaking) that the analyst will
report s(XI) = s successes if and only if s(X) ≥ s.7 That is, we assume that they
report no more components than necessary for acceptance. Using the law of iterated
expectations, conditioning on s(X), the decision-maker’s expected utility is then given
by

E[ud-m] = P (s(X) ≥ s) · (E[θ|s(X) ≥ s]− θ − c · s) .

The optimal cutoff s = sdc(n̄) maximizes this expected utility. Using this optimal
cutoff, expected decision-maker utility is, again, not monotonic in n̄; cf. Figure 5
below for the uniform prior case. As a consequence, PAPs can again improve welfare
by allowing the decision-maker to reduce n̄ down to an interior optimum.

Uniform prior Assume now that the prior for θ is uniform, so that α = β = 1.
Using the expressions derived in Section 3 for this case, we can write E[ud-m] (for
general s) more explicitly as

E[ud-m] =
n̄+ 1− s
n̄+ 1

·
(

1

2 + n̄
· 2 + s+ n̄

2
− θ − c · s

)
,

and the marginal return to decreasing the cutoff from s+ 1 to s is given by

P (s(X) = s) · (E[θ|s(X) = s]− θ − c · (s+ 1)) + P (s(X) ≥ s) · c

=
1

n̄+ 1
·
(

1 + s

2 + n̄
− θ − c · (s+ 1)

)
+
n̄+ 1− s
n̄+ 1

· c.

The optimal cutoff s = sdc(n̄) is given by

sdc(n̄) = min

{
s : E[θ

∣∣s(X) = s] ≥ θ + c

(
s+ 1− P (s(X) ≥ s)

P (s(X) = s)

)}
(26)

=

⌈
(θ − c · n̄) · (2 + n̄)− 1

1− 2 · c · (2 + n̄)

⌉
.

7A model variation where the analyst pays an arbitrarily small fraction of the cost c · |I| would
ensure this.
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Figure 5: Decision-maker bears the cost, symmetric cutoff rules and uniform prior

Notes: This figure plots the solution described in Equation 26, for the case where θ = .7, and
different values of c. The figure on the left shows the optimal threshold sdc(n̄) of the decision-maker,
taking into account the cost c, for different values of c. For the case c = 0, we obtain the first-best
optimal cutoff sopt(n̄) from the baseline model.
The figure on the right plots the decision-maker’s expected utility, as a function of n̄, for the same
values of c. Dots mark out the respective maximizers and maxima of ud-m. The optimal PAP reduces
n̄ to these maximizers.

Relative to sopt(n̄) in our baseline model, this definition of sdc(n̄) replaces θ by θ +

c
(
s+ 1− P (s(X)≥s)

P (s(X)=s)

)
. To see that the condition Equation 26 based on the marginal

return is sufficient for an optimum, note that E[θ
∣∣s(X) = s] is increasing in s, while

s+ 1− P (s(X)≥s)
P (s(X)=s)

is decreasing in this specific case. For c = 0, we recover sopt(n̄) from
the baseline model for the case of a uniform prior.

Summary and implications When the decision-maker bears the cost of commu-
nication, the structure of the game and its solution remains similar. The decision-
maker will still ask the analyst to submit only successes, but not more than required
for acceptance. For large values of n̄, or large cost c, a PAP can again improve
decision-maker utility.
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Figure 6: Greedy solution for n̄ = 4

Notes: The lines plot the conditional acceptance probability P (a(X) = 1|s(X) = s) as a function
of s, for each of the steps of the greedy algorithm, starting from the bottom. Brighter hues
correspond to higher decision-maker utility; the best decision rule corresponds to the second step
of the algorithm.

A Further numerical examples

In this appendix, we illustrate some further subtleties of our analysis in the context
of several numerical examples.

A.1 The greedy algorithm

To illustrate the structure of optimal decision rules in the general case of our baseline
model, as discussed in Section 3.3, let us consider some numerical examples. Suppose
that n̄ = 4, n̄max = 2, and θ = 0.6. The case n̄ = 4 is the minimal one where
the complications discussed below arise. This example illustrates that the optimal
solution is not always given by a symmetric cutoff rule for a subset of components,
as in Proposition 2.

For any reduced-form decision rule ā(x), we can plot P (a(X) = 1|s(X) = s);
this function summarizes all the information relevant for decision-maker expected
welfare. Figure 6 does so for a sequence of implementable decision rules ā(x). The
bottom line corresponds to the minimal implementable rule, ā(X) = 1(X1 = X2 = 1).
The top line corresponds to the cutoff rule ā(X) = 1(s(X) ≥ 2). The intermediate
lines correspond to steps of a greedy algorithm for finding the utility-maximizing
implementable rule.

As can be seen from Figure 6, in this example the best step of the greedy algorithm
is the second step, which corresponds to the decision rule

ā(X) = 1(X1 = X2 = 1 or X3 = X4 = 1).
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The expected decision-maker utility for the minimal implementable rule, ā(X) =
1(X1 = X2 = 1) (the first step of the greedy algorithm, which can be implemented
using a PAP), is equal to 0.05. The expected decision-maker utility for the minimal
cutoff rule, ā(X) = 1(s(XI) ≥ 2) (the last step of the greedy algorithm), is equal to
0.04. The expected decision-maker utility for the second step of the greedy algorithm,
ā(X) = 1(X1 = X2 = 1 or X3 = X4 = 1), is equal to 0.053̇.

The first-best rule is a(X) = 1(s(XI) ≥ 3) in this example, since sopt = 3.
However, this first-best rule is not feasible with n̄max = 2; we cannot avoid including
realizations with only two successes in any non-empty acceptance set. The optimal
solution therefore trades off adding additional (utility-increasing) realizations with
three successes against adding additional (utility-decreasing) realizations with only
two. In this case, the optimal solution is reached by the greedy algorithm after two
steps, at which point all realizations with positive utility are accepted. Adding more
elements to the acceptance-set cannot be optimal since it only adds realizations with
negative utility.

Suppose now instead that n̄ = 4, n̄max = 1, and θ = 0.2. In this case, sopt(n̄) = 1,
and the first-best cut-off rule ā(X) = 1(s(X) ≥ 1) is actually implementable. The
greedy algorithm, however, does not find this rule. Instead, it chooses the rule that
always accepts ā(X) ≡ 1 as its solution. This example illustrates that the greedy
algorithm is not guaranteed to find the global optimum.

A.2 PAPs with randomized tests

Allowing for randomized rules may increase the space of implementable decision rules,
going beyond our characterization in Section 3. In particular, in the testing example
of Section 4.1, non-trivial symmetrical randomized cutoff rules may be available even
for stest(n̄) > n̄max. However, pre-analysis plans with symmetrical cutoff rules can
still increase power even when decision rules can include randomization.

To illustrate this point in a simple example, consider the case n̄ = 2, and assume
that stest(n̄) = 1.5, n̄max = 1, and θ < .5. In this case, there is no non-trivial non-
randomized symmetrical decision rule on the full sample that ensures size control.
However, provided that 1/2 < c < 1

2−θ , the symmetric randomized rule

a(I,XI) ∼ Ber

(
1

2− θ
· 1(s(XI) ≥ 1)

)
is implementable and has (non-trivial) power θ · 2−θ

2−θ , which exceeds θ iff θ > θ. At
the same time, the PAP that restricts the analyst to reporting the first component
only, has first-best power θ, and improves over any implementable symmetric rule on
the full sample.
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B Proofs

Section 3

Proof of Lemma 1. Consider a decision rule of the form a(s(XI), t(XI)). We show
that the corresponding reduced form rule ā(·) takes the claimed form. Let I(·) be
a best response of the researcher to the decision rule a(·), and let ā(·) be the cor-
responding reduced-form rule. Let x be such that ā(x) = 1. Then |I(x)| ≤ n̄max

– otherwise the researcher would prefer reporting I = ∅. Denote s = s(xI(x)) and
t = t(xI(x)). We get s + t ≤ n̄max and a(s, t) = 1. It follows that ā(x′) = 1 for
all x′ such that s(x′) ∈ [s, n̄ − t]. This holds because for any such x′, there exists a
report I with |I| ≤ n̄max for which s(x′I) = s and t(x′I) = t, and thus a = 1. Since
c−1 /∈ N, the researcher strictly prefers acceptance to non-acceptance in this case.
Since s+ t ≤ n̄max the interval [s, n̄− t] has length at least n̄− n̄max, so we can take
the union over such intervals to obtain the claim.

Consider now reversely a reduced form decision rule ā(x) of the form described
in the statement of the lemma. It remains to show that there is some decision rule
a(s, t) which implements ā(x). It is without loss of generality to assume that S is a
union of intervals of length exactly equal to n̄− n̄max. Let s and n̄− t be the upper
and lower bounds of such an interval, so that s+ t = n̄max. Choose a(s, t) = 1 for all
points (s, t) corresponding to one of the intervals constituting S, and a(s, t) = 0 for
all other points. It is easily verified that a(·) implements ā(·).

Proof of Proposition 1. By Lemma 1, we can exactly implement the reduced-form
decision rules

ā(X) = 1(S ∈ S)

with each interval in S at least of length n̄ − n̄PC , where S = s(X). For such an ā,
the expected utility of the journal is

E[ā(X)(θ − θ)] = E[1(S ∈ S)(E[θ|S]− θ)]

=
n̄∑
s=0

1(s ∈ S)P (S = s) (E[θ|S = s]− θ)

=

sopt(n̄)−1∑
s=0

1(s ∈ S)P (S = s)

<0︷ ︸︸ ︷
(E[θ|S = s]− θ)

+
n̄∑

s=sopt(n̄)

1(s ∈ S)P (S = s) (E[θ|S = s]− θ)︸ ︷︷ ︸
≥0

.

Now suppose that S is optimal. It follows, first, that there is no interval in S that is
fully included in [0, sopt(n̄)), since dropping such an interval can only increase utility.
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As a consequence, whenever S 6= ∅, there must be some s ∈ S such that s ≥ sopt(n̄).
Second, S will include all s with sopt(n̄) ≤ s ≤ n̄ or be empty. To see this, suppose
that there are two s, s′ with sopt(n̄) ≤ s, s′ ≤ n̄, |s − s′| = 1, s ∈ S but s′ /∈ S. If
that is the case, then we can extend the interval that includes s to also include s′ and
obtain higher utility. Taken together, these claims imply that S = ∅ or S = [s, n̄]
with s ≤ n̄max, where s maximizes

E[ā(X)(θ − θ)] =
n̄∑
s=s

P (S = s) (E[θ|S = s]− θ)︸ ︷︷ ︸
<0⇔ s<sopt(n̄)

.

This, combined with the monotonicity of E[θ|S = s] in s, yields

S =

{
∅, smin > n̄max,

[min(n̄max, sopt(n̄)), n̄], otherwise,

as claimed.

Proof of Corollary 1. Immediate from the identities for the uniform distribution de-
scribed in Section 3.2, and Proposition 1.

Proof of Corollary 2.

1. This holds trivially, given our assumption that E[θ] < θ.

2. Proposition 1 implies that whenever sopt(n̄) ≤ n̄max, the reduced form decision
rule ā(X) = 1(S ≥ sopt(n̄)) implements the first-best acceptance decision. The
claim then follows from the fact that X{1,...,n̄+1} is Blackwell more informative
than X{1,...,n̄}.

3. Proposition 1 implies that whenever smin(n̄) ≤ min(n̄, n̄max), E[ā(X)] > 0 and
E[ud-m] > 0. This holds for some values of n̄, under the given assumption.

4. Again by Proposition 1, if n̄ is such that n̄max < smin(n̄), then E[ud-m] = 0.
Since E[θ

∣∣S ≥ s] is decreasing in n̄ (for given s), and since limn̄→∞E[θ
∣∣S ≥ s] =

E[θ] < θ (where the latter holds by assumption), it follows that E[ud-m] = 0 for
n̄ large enough.

Proof of Proposition 2. Take first J as given, i.e., not a choice variable for either
the researcher or the journal. Conditional on J , the result of Proposition 1 applies.
In particular, the optimal implementable decision rule that is symmetric given J (as
required by Proposition 2) can be implemented by a(s(XI∩J), t(XI∩J)) = 1(s(XI∩J) ≥
min(sopt(|J |), n̄max)) if n̄max < smin(|J |), and otherwise by a ≡ 0.

Consider now the choice of J . The journal can effectively choose J for the re-
searcher, as long as expected researcher utility is non-negative, by setting a(J ′, I,XI) =
0 for J ′ 6= J . Expected journal utility, given the optimal symmetric rule conditional
on J , is a function of |J |. By Corollary 2, expected decision-maker utility E[ud-m] is
increasing in |J | as long as sopt(|J |) ≤ n̄max. The claim follows.
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Proof of Lemma 2. Suppose that ā(x) is implementable. Implementability requires
that there exist functions I(x), a(I, xI) which implement ā(x), such that I(x) is an
incentive compatible reporting function.

Consider now some value of x such that ā(x) = 1. Let I = I(x) and w = xI(x).
The participation condition implies I ≤ n̄max for all x – otherwise the researcher
would always prefer to report I = ∅. Incentive compatibility then requires that for all
x′ such that x′I = w, we have a(I(x′), x′I(x′)) = a(I, x′I) = 1; otherwise the researcher

would have an incentive to report I, x′I rather than I(x′), x′I(x′). We therefore get that

CI,w ⊆ {x : ā(x) = 1}.

This implies that ā(x) is of the form ā(x) = 1(x ∈ ∪kCIk,wk
), since we can find such

an I and w for any x ∈ {x : ā(x) = 1}.
Lastly, for any I such that |I| < n̄max, we can write CI,w as a union of CI′,w′ with

|I ′| = n̄max, and it follows that all implementable ā are of the form claimed in the
theorem.

Reversely suppose now that ā(x) is of the form ā(x) = 1(x ∈ ∪kCIk,wk
) with |Ik| =

n̄max. We have to show that ā(x) is implementable. To see this, choose an arbitrary
mapping x→ j such that x ∈ CIk,wk

for all x ∈ ∪kCIk,wk
, and define I(x) = Ik for such

x, and I(x) = ∅ for all other x. Let furthermore a(I, xI) = maxk 1(I = Ik, xIk = wk).
We claim that this choice implements ā(x). Implementation is immediate, given the
definition. The same holds for the condition |I(x)| ≤ n̄max.

Incentive compatibility remains to be shown. For all x such that ā(x) = 1, the
researcher has no incentive to deviate, since the size of reporting sets I(x′) is the
same for all reporting sets that lead to acceptance. For all x such that ā(x) = 0,
on the other hand, there exists no Ik, wk such that xIk = wk and thus there is no
mis-reporting that could lead to acceptance. The claim follows.

Section 4

Lemma 3. p(θ; n̄, stest(n̄)) is (weakly) monotonically increasing in n̄ for θ > θ, and
is (weakly) monotonically decreasing in n̄ for θ < θ.

Proof of Lemma 3. Consider the problem of testing the null θ ≤ θ against the al-
ternative θ > θ, based on observation of XI , where I = {1, . . . , n̄} is non-random.
A sufficient statistic for θ is given by s(XI), which satisfies the monotone likelihood
ratio property. Therefore, a uniformly most powerful test of the null is given by Equa-
tion 16; cf. Theorem 3.4.1 in Lehmann and Romano (2006). This implies in particular
that the alternative test which ignores Xn̄ and applies (16) based on s(X{1,...,n̄−1}) has
uniformly weakly lower power. The claim for θ > θ follows. The claim for θ ≤ θ can
be shown by switching the role of null and alternative hypotheses.
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Proof of Proposition 3. The first claim immediately follows from our discussion of
the first-best rule in Section 4.1.

For the second claim, note that any uniformly most powerful test (UMPT) has
to control size for θ ≤ θ, and has to have maximal power for any given θ′ > θ. For
any possibly randomized test, denote by ā(x) the probability of rejecting the null
conditional on X = x. Denote further

β(ā(·), θ) =
∑
x

θs(x)(1− θ)n̄−s(x) · ā(x)

the probability that the test ā(·) rejects given parameter θ. Fix now some θ′ > θ.
Any UMPT has to solve maxā(·) β(ā(·), θ′) subject to β(ā(·), θ) ≤ θ, and subject to
ā(x) ∈ [0, 1] for all x. Equivalently, any UMPT has to maximize the Lagrangian
L (ā(·)) = β(ā(·), θ′) − λβ(ā(·), θ), subject to ā(x) ∈ [0, 1] for all x, where λ is the
multiplier on the size constraint. Writing δ(s) = θ′s(1 − θ′)n̄−s − λθs(1 − θ)n̄−s, we
have

L (ā(·)) =
∑

x∈{0,1}n̄
δ(s(x)) · ā(x),

where the sign of δ(s) is monotonically increasing in s (equivalently, the likelihood
of the sufficient statistic s(X) satisfies the monotone likelihood ratio property). This
Lagrangian can be maximized separately for each x, which immediately implies that
the solution has to satisfy ā(x) = 1 if δ(s(x)) > 0 and ā(x) = 0 if δ(s(x)) < 0. Hence,
there is some integer s such that a(x) = 1 for s(x) > s and a(x) = 0 for s(x) < s. For
the size constraint to be binding at θ, β(ā(·), θ) = θ, we must have that s = bstest(n̄)c
by the definition of stest in Equation 17.

Let us next consider the set of implementable randomized tests. Recall that we
assume that any randomization device U used by the test is realized and common
knowledge before the start of the game. Conditional on U , implementability is as
characterized in Lemma 2. The implementable randomized rules are therefore given
by the set of convex combinations of non-randomized rules that satisfy the conditions
of Lemma 2.

To prove that no UMPT is implementable, we need to show that our characteriza-
tions of UMPT and of implementable tests are incompatible. Consider any mixture
of non-randomized implementable tests ā(x;u) such that ā(x) = E[ā(x;U)]. Sup-
pose that ā(x) is a UMPT. Then ā(x) = 0 for all x such that s(x) < bstest(n̄)c, and
ā(x) = 1 for all x such that s(x) > bstest(n̄)c. This can only be true if the same
conditions hold almost surely (in U) for ā(x;U). But no non-randomized test of this
form is implementable, by Lemma 2. Therefore, the randomized test ā(x) is not
implementable, which shows the claim.

To show the third claim, recall that Lemma 1 implies that for any symmetric
test of the form a(s(XI), t(XI)), ā(·) is of the form ā(X) = 1(s(X) ∈ S ), where S is
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a union of intervals of length at least n̄− n̄max. We can immediately discard the case
S = ∅, as it does not allow for power strictly bigger than size. The lowest possible
size of a non-trivial test is achieved when S = [s, s + n̄− n̄max] consists of only one
such interval.

We show that no test which rejects for s(X) ∈ S , where S is an interval of length
n̄ − n̄max, can control size, under the stated assumptions. The number of successes
S = s(X) follows a Binomial distribution conditional on θ. This distribution is
unimodal, so that the (conditional) probability mass function of S is monotonic on
either side of its mode. This implies that any interior rejection interval of length
n̄− n̄max cannot minimize the rejection probability; shifting such an interval by one
unit to either the left or the right has to (weakly) reduce the rejection probability,
otherwise we would have a contradiction to unimodality. The rejection probability
E[ā(X)] is therefore minimized when either S = [n̄max, n̄], or S = [0, n̄ − n̄max].
The first choice does not control size if stest(n̄) > n̄max. The second choice leads to
a rejection probability that is at least as large as that for the first choice, whenever
θ ≤ θ ≤ 0.5. The claim follows.

Proof of Proposition 4. Consider first the decision-maker beliefs. Bayesian updating
given the analyst response implies P (θ|XI , I) = P (θ|s(X) ≥ s) when s(XI(X)) = s,
and P (θ|X, IX) = P (θ|s(X) < s) when s(XI(X)) = 0.

Consider next the decision-maker best response. For s(XI(X)) = 0, we necessarily
have a = 0; this follows from E[θ|s(X) ≤ s] < E[θ] < θ. For s(XI(X)) = s, we have
a = 1 iff s ≥ smin(n̄); this follows from the definition of smin(n̄). For s(XI(X)) /∈ {0, s}
we can assume a = 0; this follows since we can assume arbitrary off-equilibrium path
beliefs.

Let us now turn to the best action of the analyst, given X. If s(X) < s, all possible
actions result in a = 0. The best possible response of the analyst is I(X) = ∅. If
s(X) ≥ s, the analyst utility maximizing response is such that s(XI(X)) = s if
s ≤ n̄max, and I(X) = ∅ otherwise.

The claim of the proposition regarding equilibria follows. The claim regarding
decision-maker and analyst utility is immediate.

Proof of Corollary 3. This proof is based on the same argument as the proof of
Proposition 4. Consider first the decision-maker beliefs. Bayesian updating given
the analyst response implies P (θ|XI , I) = P (θ|s(XJ) ≥ s) when s(XI(X)) = s, and
P (θ|XI , I) = P (θ|s(XJ) < s) when s(XI(X)) = 0.

Consider next the decision-maker best response. For s(XI(X)) = 0, we necessarily
have a = 0; this follows from E[θ|s(XJ) ≤ s] < E[θ] < θ. For s(XI(X)) = s, we have
a = 1 iff s ≥ smin(n) (recall n = |J |); this follows from the definition of smin(n). For
s(XI(X)) /∈ {0, s} we can assume a = 0; this follows since we can assume arbitrary
off-equilibrium path beliefs.

Let us now turn to the best action of the analyst, given X. If s(XJ) < s, all
possible actions result in a = 0. The best possible response of the analyst is I(X) = ∅.
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If s(XJ) ≥ s, the analyst utility maximizing response is such that s(XI(X)) = s if
s ≤ n̄max, and I(X) = ∅ otherwise.

Lastly, it is always optimal for the analyst to preregister a set J such that |J | = n;
this results in non-negative expected utility, while any other choice results in E[uan] =
0.

The claim of the corollary regarding equilibria follows.

Proof of Proposition 5. We prove the claim by finding n̄1, n̄2 such that (i) for a PAP
that restricts the analyst to only use observations J = {1, . . . , n̄1}, the decision-maker
has utility greater than 1

2
E[(θ−θ)+], and (ii) without a PAP, for any symmetric cutoff

rule, the decision-maker has utility less than 1
2
E[(θ−θ)+]. From this the claim follows.

To see (i), note that for every η > 0 there exists some n̄1 such that the PAP
that restricts the analyst to only use observations J = {1, . . . , n̄1} has utility at least
(1 − η)E[(θ − θ)+]. To see this, consider the rule a(XI , I) = 1(s(XI∩J) ≥ θ · n̄1).
For almost all (fixed) θ, we have that P (s(XJ)/n̄1 ≥ θ|θ) → 1(θ ≥ θ) by the (weak)
law of large numbers, as n̄1 → ∞. Hence, E[a(XI , I)(θ − θ)] = E[P (s(XJ)/n̄1 ≥
θ|θ)(θ − θ)]→ E[(θ − θ)+], as n̄1 →∞, by the dominated convergence theorem.

Let us now show (ii). Consider a symmetric cutoff rule with cutoff s. For S = s(X)
we can write

P (S ≥ s|θ) =
1

2
(P (S ≥ s|θ, n̄ = n̄1) + P (S ≥ s|θ, n̄ = n̄2)) .

For all δ, ε > 0 and n̄1 there exists some M ≥ 1 such that, for all n̄2 with n̄2− n̄1 ≥M
we have that

1. P (S ≥ s|θ, n̄ = n̄1) = 0 for all s > n̄1, and

2. P (S ≥ s|θ, n̄ = n̄2) > 1− ε for all s ≤ n̄1 and θ > δ.

The first claim is immediate. The second claim follows from Chebyshev’s inequality,
using Var(S/E[S|θ, n̄2]|θ, n̄2) = 1−θ

θn̄2
≤ 1−δ

δM
. For such δ, ε, n̄1 and any n̄2 ≥ M + n̄1 it

then follows from the two claims that

P (S ≥ s|θ) =
1

2
P (S ≥ s|θ, n̄ = n̄2) ≤ 1

2
for all s > n̄1,

P (S ≥ s|θ) ≥ 1

2
(P (S ≥ s|θ, n̄ = n̄1) + 1− ε) ≥ 1− ε

2
for all s ≤ n̄1 and θ > δ.

In words, either a = 1 with probability 1 whenever n̄ = n̄1 (this happens for large
cutoffs), or a = 0 with probability close to 1 whenever n̄ = n̄2 (this happens for small
cutoffs) – (almost) independently of θ.
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Hence, for any cutoff rule of the form a(S) = 1(S ≥ s),

E[ud-m] = E[a(S)(θ − θ)] = E[(θ − θ) · 1(S ≥ s)] =

≤ min
(
E[(θ − θ)+ · P (S ≥ s|θ)],

E[(θ − θ)+]− E[(θ − θ)− · P (S ≥ s|θ)]
)

≤

{
1
2
E[(θ − θ)+] ≤ 1

2
E[(θ − θ)+], s > n̄1,

E[(θ − θ)+]− P (θ > δ)E[(θ − θ)−|θ > δ]1−ε
2
, s ≤ n̄1.

Choose now some η ∈ (0, 1
2
) and ε, δ > 0 with 1−ε

2
P (θ > δ)E[(θ − θ)−|θ > δ] >

ηE[(θ− θ)+]. For the resulting choices of n̄1 and n̄2 above, the PAP on the restricted
set yields strictly better utility than any cutoff rule.
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