
IDENTIFICATION IN A MODEL OF SORTING WITH SOCIAL
EXTERNALITIES AND THE CAUSES OF URBAN SEGREGATION

SUPPLEMENTARY APPENDIX

Maximilian Kasy

This supplementary appendix contains additional results, complementing those
discussed in “Identification in a model of sorting with social externalities”. Sec-
tion 1 discusses the relationship between demand- and hedonic slopes and prefer-
ences. Section 2 presents a dynamic model of the local housing market. Section
3, finally, presents results which decompose linear IV coefficients as weighted
averages of structurals slopes, with identified weights. This allows us to relate
the observable data distribution to equilibrium comparative statics.

1. PRICE SLOPES AND PREFERENCES

This section discusses the relationship between household preferences and de-
mand slopes as well as hedonic price gradients. We shall maintain the follow-
ing assumptions: Households are characterized by the triple (u(X,M,P ), uo, c),
where u is their continuously differentiable indirect utility dependent on neigh-
borhood characteristics, uo is the utility of their best outside option and c is
their type. Households locate in the given neighborhood iff u(X,M,P ) ≥ uo. The
outside utility uo is exogenously determined, i.e., constant in (X,M,P ). There
is a continuum of households of total mass M tot in the economy. The vector
(u, uX , uM , uP , u

o), evaluated at any (X,M,P ), has a continuous joint distribu-
tion. Dc is the mass of households that want to locate in the given neighborhood,

Dc = M tot · P(u ≥ uo, c).

Similarly E = M tot · P(u ≥ uo).
Since Rosen (1974), price slopes of the form P ∗X have often been used as es-

timates of household willingness to pay for X, which equals −uX/uP in the
notation used here. In the context of discrete choice models, it becomes evident
that price slopes are not necessarily equal to willingness to pay for infra-marginal
households. Proposition 1 and its corollary 1 show this in the present, nonpara-
metric, setup. They represent the price gradient as an appropriately weighted
average of willingness to pay of marginal households. If, however, there is a
continuum of similar outside options, all households in the neighborhood are
marginal and have identical willingness to pay, as illustrated by proposition 2.

Due to the possible presence of social externalities, uM 6= 0, price slopes may
also deviate from willingness to pay for X for marginal households. Price changes
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P ∗X must compensate for the change in composition, M∗X . This is made apparent
by defining a notion of counterfactual partial equilibrium, as a point of refer-
ence. Counterfactual partial equilibrium gives the price P+ that would prevail
if M were determined exogenously and need not equal D. In proposition 1, the
comparison of P ∗X and P+

X shows the bias in P ∗X relative to average marginal will-
ingness to pay for X, P+

X , due to externalities. This also suggests P+
X and P+

M as
empirical objects of interest in their own right. In the main paper, partial sorting
equilibrium was defined as the solution to equating total housing demand and
supply as well as composition and type specific demand. Counterfactual equi-
librium (M+(M,X), P+(M,X)) is defined as the solution to equating housing
demand and supply, while the argument M to the demand functions is exoge-
nously given and not necessarily equal to D:

Definition 1 (Counterfactual Partial Equilibrium) A counterfactual par-
tial equilibrium (M+, P+) given X and M solves the C + 1 equations

(1) M+ = D(X,M,P+)

(2) S(P+, X) =
∑
c

M+c.

Let (M+(X,M), P+(X,M)) denote the function mapping (X,M) into the coun-
terfactual partial equilibrium given (X,M).

Proposition 1 (Price gradients and marginal households’ utility) Under
assumptions maintained in this section, the slope of total housing demand with
respect to X is given by

EX = M tot · fu−u
o

(0) · E[uX |u = uo],

where fu−u
o

denotes the density of u−uo. Similarly for EM , EP , Dc
X , Dc

M , and
Dc
P . Assume additionally that partial sorting equilibrium is unique or assume

(M∗, P ∗) is a differentiable selection from the set of partial equilibria, and assume
SP = SX = 0. Then

P+
X = −E[uX |u = uo]

E[uP |u = uo]
,

P+
M = −E[uM |u = uo]

E[uP |u = uo]
,

and

P ∗X = P+
X + P+

MM
∗
X = −E[uX + uMM

∗
X |u = uo]

E[uP |u = uo]
.
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Proposition 1 expresses the price gradients as ratios of average marginal util-
ities among marginal households. Since one can rewrite any ratio of averages
as weighted average of ratios, the following corollary expresses the gradients as
average willingness to pay for X, where the average is taken with respect to a
reweighted distribution. The reweighting can be interpreted as a re-normalization
of household utility to a constant marginal disutility of P , which implies a rescal-
ing of the conditional density of marginal utilities among marginal households.

Corollary 1 (Price gradient as weighted average willingness to pay) Under
the assumptions of proposition 1, if uP < 0 for all households,

P+
X = Ẽ

[
−uX
uP

∣∣∣∣u = uo
]
,

where the expectation Ẽ is taken with respect to the density

fuX ,uP |u−u
0

(uX , uP |0) · uP
E[uP |u = u0]

.

Similarly for P+
M and P ∗X .

If, relative to proposition 1, we assume additionally that there is a continuum
of alternative location choices, as in hedonic models, tighter characterizations of
equilibrium prices and sorting follow. All households in a neighborhood become
marginal and have the same marginal willingness to pay.

Proposition 2 (Hedonic gradient given continuum of outside options)
In the setup considered in this section, assume additionally that uo is bounded
by the supremum of u(X,M,P ) over a set of outside options including an ε ball
around X, and the corresponding equilibria (M,P ) ∈ (M∗(x), P ∗(x)):

uo ≥ sup
x:||x−X||<ε

(M,P )∈(M∗(x),P∗(x))

u(x,M,P )

Then

(3) P ∗X = −uX + uMM
∗
X

uP

for all households choosing a neighborhood with given X.

This subsection concludes with a proposition characterizing local comparative
statics of average reservation prices among households in the neighborhood in
terms of average marginal willingness to pay of all households in the neighbor-
hood. This proposition will be central in the characterization of prices in the
dynamic model presented later. In this dynamic model, landowners will extract
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all surplus value generated by a match to a tenant, so that rents are equal to
household reservation prices. Formally, define the reservation price of a household
for living in the neighborhood, given X and M , as

P res = P res(X,M) := sup{P : u(X,M,P ) ≥ uo}.

Proposition 3 characterizes the dependence on X of average reservation prices,
conditional on locating in the neighborhood, i.e., conditional on P res ≥ P ∗.
Changes in X can, in principle, influence average reservation prices in three
ways: directly, through their effect on M , and through a reshuffling of residents.
The last may matter if, under the new X, households with higher reservation
prices crowd out the initial residents. The central message of proposition 3 is
that this effect is not of first-order importance if housing supply is inelastic, so
that the number of households in the neighborhood is constant, or if housing
demand is elastic, so that all households in the neighborhood have reservation
prices equal to P ∗.

Proposition 3 (Comparative statics of average reservation prices) Assume
partial sorting equilibrium is unique or assume (M∗, P ∗) is a differentiable se-
lection from the set of partial equilibria. Under the assumptions maintained in
this section

∂

∂X
E [P res|P res ≥ P ∗] = E [P resX + P resM M∗X |P res ≥ P ∗]

−
(

∂

∂X
logP (P res ≥ P ∗)

)
· (E [P res|P res ≥ P ∗]− P ∗) ,(4)

where P resX = −uX/uP and P resM = −uM/uP . In particular, if housing supply is
price inelastic and constant in X, i.e., SP = SX = 0, or if all households in the
neighborhood are marginal, i.e., E [P res|P res ≥ P ∗] = P ∗, then

(5)
∂

∂X
E [P res|P res ≥ P ∗] = E [P resX + P resM M∗X |P res ≥ P ∗] .

2. A DYNAMIC EXTENSION OF THE STATIC MODEL WITH SEARCH FRICTIONS

The model discussed in the main paper is static. We can think of it as describ-
ing an economy with negligible search frictions in which equilibrium is instan-
taneously achieved. Alternatively, it could be considered as describing the long
run steady state of an economy with frictions. However, explicitly considering
dynamics and frictions reveals additional sources of identification.

A well established literature in labor economics discusses the dynamics and
comparative statics of unemployment and wages in models with search frictions.
Its central presumption is that finding a job or an employee takes time and un-
employment is due to this search time. Pissarides (2000) provides an extensive
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overview of this literature. Wheaton (1990) applies the insights of this literature
to the housing market. The focus of either of these is the relationship between va-
cancies (unemployment) and prices. Wheaton (1990) in particular models hous-
ing vacancies as corresponding to the search time of households who decided to
move due to lifecylce events (shocks), found another place and now attempt to
sell their old home. The present section extends the basic sorting model of the
main paper using similar techniques as these papers.

Relative to the static model, the main extensions in the dynamic model are as
follows. There is an explicit, continuous time dimension, and exogenous location
characteristics X can change over time. Households that would like to move to
a different neighborhood are subject to search frictions. If they decide to search
for a new home, offers arrive at Poisson rate λ. Similarly, owners of vacant units
have to search for tenants and find them at rate µ. Households are maximizing
expected discounted utility, and make their search decisions in a forward looking
way. Due to search frictions, composition M changes continuously over time and
only reacts with delay to shocks in X. Finally, once a match is formed between
homeowner and household, they are in a situation of bilateral monopoly: By
breaking the match they both would have to search again, and thereby incur a
loss of utility. Therefore, they have to negotiate over the division of the surplus,
and rents are match-specific.

The purpose of this extension is twofold. First, the delayed adjustment of
composition M to changes in exogenous characteristics X generates indepen-
dent variation between X and M , contrary to the static case where M is es-
sentially a function of X. This allows, under certain conditions, to separately
identify household willingness to pay for X and for M . Second, the dynamic
structure provides a connection between multiplicity of equilibria in the static
sense, and multiplicity of equilibria in a dynamic sense. A test for the latter will
be constructed below.

This section presents a search model of the rental market for housing. Consid-
ering homeownership would add the additional complication of housing being an
asset in addition to being a consumption good. Under complete financial mar-
kets, the results derived for the rental market of housing immediately extend to
the more general case however, as will be discussed briefly at the end of this
section.

For simplicity of notation, household and time superscripts are mostly dropped.
As before, we consider one fixed neighborhood.

Assumption 1 (The local economy, dynamic setup)
• There are C types of households, c = 1, . . . ,C .
• Households can be in one of four states: Living in the neighborhood and

not searching, living in the neighborhood and searching for a place outside,
living outside and searching for a place in the neighborhood, living outside
and not searching for a place in the neighborhood.

• Housing units can be in one of two states, vacant or occupied by one house-
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hold.
• A neighborhood, at each point of time t ∈ R, is characterized by

1. the number of households of each type living in the neighborhood, M =
(M1, . . . ,MC )

2. an exogenous vector X of all other location characteristics and factors
influencing demand or supply.

• The time paths of X and M are piecewise differentiable.
• There is a match specific rental price P for each match between a unit and

a household.
• Households living outside searching for a place in the neighborhood, or liv-

ing in the neighborhood and searching for a place outside, find a match at
rate λ. Vacancies are matched to a household at rate µ. These rates can
vary over time but are constant across households and units.
• Vacant units and searching households are matched uniformly at random.

Assumption 2 (The household probprop)
• Households are characterized by their type c, their flow utility u(X,M,P )

of living in the given neighborhood, their discount rate r and the value of
their outside option V o. Except for type, all of these may depend on time
t. V o does not depend on X,M .
• Households have the choice between searching or not. They do so to maxi-

mize their expected discounted utility.
• There are no costs of search.
• There is a continuum of households of total mass M tot in the economy.

Denote the value of living in the given neighborhood by V = max(V s, V ns),
where V s and V ns are the values of searching and not searching, respectively.
Denote the time derivative of V by V̇ . The value functions are to be understood
as conditional expectations, given the information set at time t, as are their time
derivatives. Assumptions 1 and 2 imply

(6) rV s = u(X,M,P ) + λ(V o − V ) + V̇

and

(7) rV ns = u(X,M,P ) + V̇ .

A household living in the neighborhood wants to search for a place outside if
and only if V o > V , and V satisfies

(8) (r + λ)V = u(X,M,P ) + λmax(V o, V ) + V̇ .

Let us now turn to the landowners.



SUPPLEMENT - SORTING WITH SOCIAL EXTERNALITIES 7

Assumption 3 (The landowner’s probprop)
• Landowners are risk neutral, maximize their discounted stream of incomes

and are otherwise indifferent about the residents of their units. Their dis-
count rate is denoted by r.
• Owners of vacant units can and do search for renters among the pool of

households that search for a home in the given neighborhood.

Denote the value of an occupied unit by W = max(W s,Wns) where W s and
Wns are the values of the unit when the renting household is searching and
not searching, respectively. Denote the value of a vacant unit by W v. Under
assumptions 1 and 3, the value of an occupied unit where the renter is not
searching for a new place is characterized by

(9) rWns = P + Ẇ .

The value of an occupied unit with a searching renter is

(10) rW s = P + λ(W v −W ) + Ẇ .

The value of a vacant unit satisfies, finally,

(11) rW v = µ(Wnew −W v) + Ẇ v.

Note that the value of a match to the landowner is household specific, and
therefore Wnew, the expected value of a match with a new renter, is in general
different from the value of the current match, W . These values describe the
expected discounted revenue for a given unit.

Once a potential renter and a landowner holding a vacant unit meet, they have
to negotiate a rental contract.

Assumption 4 (Rent determination)
• The contract specifies rental payments. Contracts can be continuously rene-

gotiated.
• Each of the contract parties can unilaterally decide at any time to end the

contract and initiate search of the renting household, where this decision is
reversible. The renter can not be evicted before she has found a new place,
but can be committed to search.

• Rents are determined by Nash bargaining over the division of the surplus
relative to the outside option of searching (not searching)1, that is, current
rents maximize (V ns − V s)β(Wns −W s)(1−β), where β ∈ [0, 1] is the rela-
tive bargaining power of tenants.

1Note that the potential outside option of searching for a different home in the same neigh-
borhood is always strictly dominated. It leaves the household indifferent and the landowner
strictly worse off, since she foregos rents while searching for a new tenant.
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We have (V ns−V s)β(Wns−W s)(1−β) = λ(V −V o)β(W −W v)(1−β), and the
first order condition for the solution to Nash bargaining is

(12) (V − V o) = β [−uP (W −W v) + (V − V o)] .

If there exists a price P such that both V > V o and W > W v, then these con-
ditions must hold under the bargaining solution, no matter what β is. Search
happens if and only if there is no such P , and the search decision is always con-
sensual. This is a feature of any privately efficient contract. For households living
outside the neighborhood, the decision to search in this given neighborhood is
independent of β. Our last assumption pins down bargaining power β:

Assumption 5 (Bargaining power) All bargaining power lies with the landown-
ers, i.e., β = 0.

This assumption allows for a clean characterization of price dynamics, since all
changes in household utility will be compensated by price changes. If we were to
drop assumption 5, only a fraction 1−β of utility changes would be compensated
by price changes.

Readers familiar with the literature on search models of unemployment will
notice a central feature of these models missing in the assumptions just stated.
Neither λ and µ, nor housing supply, are explicitly modeled. Common practice
in the literature, for instance in the models reviewed in Pissarides (2000), is to
assume a matching technology where the rates λ and µ are a function of the
ratio of searching workers (households) to vacancies, and there is free entry of
firms (landlords). This is crucial in the context of search models of the labor
market that attempt to explain unemployment and vacancy rates. It also has
important implications for the speed of adjustment following shocks. As neither
vacancies nor variation in the speed of adjustment are of central concern in the
present context, exposition is simplified by not explicitly modeling intertemporal
variation in λ and µ.

2.1. Implications of the model

The rest of this section develops some central properties of the model described
by assumptions 1 through 5. First, the dynamics of composition are shown to
follow a differential equation of the form Ṁ = λ ·(D−M), where D is a dynamic
generalization of the demand function. If we specialize this to the two type case
and consider discrete intervals of time, then changes in composition m follow the
difference equation ∆m := m1 −m0 = κ · (d −m0), where κ is a rate derived
from λ.

Next, the reaction of prices to shocks in X is studied. In the short run, because
of search frictions, M is not affected by such shocks. Under assumptions 4 and
5, rents immediately adjust so that all surplus of the match is appropriated by
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landlords, and changes in rents correspond to household willingness to pay for
changes in X. In the long run, M does change however. Rental changes occurring
with delay correspond to household willingness to pay for this change in M .

Finally, the relationship between this dynamic model and the static model
studied so far is clarified. First, the long run comparative statics of M , as a
function of X, are the same as those of an appropriately defined corresponding
static model. Second, if search frictions are low and/or discount rates high, then
the dynamic model is approximated by the static model in a sense made precise
below.

The dynamics of composition
Under assumptions 1 and 2 we have, at each point in time, a set of households
of each type c that want to move out of the neighborhood, because for them
V o > V , and a corresponding outflow. Similarly, at each point in time there is
a set of households of each type c that want to move into the neighborhood,
because for them V ≥ V o, and a corresponding inflow. The net flow will equal λ
times the difference between the number of households that want to live in the
neighborhood, i.e., for which V ≥ V o, and those that do live in the neighbor-
hood, M . This motivates the following definition of demand D in the dynamic
model.

Definition 2 (Demand in the dynamic model) Denote by Dc the mass of
households of type c for which V ≥ V o:

Dc = M tot · P(V ≥ V o, c)

Proposition 4 (Dynamics of composition) Make assumptions 1, 2, 3 and
4. Then

(13) Ṁ = λ · (D −M),

where Ṁ is the expected time derivative of M .

The following result specializes to a two-type model and describes changes of
composition m over discrete time intervals.

Proposition 5 (Dynamics of composition in the two-type model) Make
the assumptions of proposition 4, as well as the assumption that there are only
two types of households and that d = d(m,X). Then the change in m from time
0 to time 1 is given by

(14) ∆m := m1 −m0 = κ · (d(m,X)−m0)

for some m,X at a time in [0, 1], where

(15) κ = 1− exp

(
−
∫ 1

0

λ · D
1 +D2

M1 +M2
ds

)
> 0.
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The determination of prices
Under assumption 5, the landowner appropriates all surplus from the match, and
equation 12 implies that the participation constraint for the renter is binding at
all times, i.e., V = V o. By equation 7, the household specific rental price is then
determined by

(16) u(X,M,P ) = rV o − V̇ o,

where X, M , and V o are given to the household and landowner. This implies in
turn that changes in rents must directly reflect willingness to pay for changes in
X and M , for any household that lives in the neighborhood. This is reflected in
the following propositions 6 and 7. Proposition 6 additionally uses the fact that
composition M is constant in the short run.

Proposition 6 (Short run comparative statics of prices) Make assumptions
1, 2, 3, 4, specifying the dynamic model, and 5 on bargaining power.
Assume that X = x before time 0, X = x + ξ for a jump ξ after time 0, and
(u, V o) is continuously differentiable with respect to time for all households.

Then ∂
∂ξ limt→0+ E[P ] = E

[
−uXuP

]
where the expectation is taken over the set of

households living in the neighborhood at time t = 0.

We recover short-run comparative statics of prices in response to changes in
X and M which look similar to the ones in the static model in the absence of
social externalities and with inelastic housing supply. In the static model, the
neighborhood rental gradient P+

X equals the average marginal willingness to pay
of marginal households, according to corollary 1, whereas here the match specific
rent gradient PX equals the marginal willingness to pay of any given household.
In the static case, marginal households had to be kept indifferent by changes
in X and P ∗ for demand to be constant. In the present case, all households
have to be kept indifferent by changes in X and P , since by the assumption on
bargaining power all households are marginal, in the sense that their utility is
equal to their reservation utility.

As households re-sort across neighborhoods, however, prices adjust further for
two reasons. First, holding outside options as well as X and M constant, some
households will want to move in which have a willingness to pay for the given bun-
dle (X,M) which is higher than the willingness to pay of the current residents.
Second, composition M will adjust over time, and influence the households’ val-
uation of the neighborhood. If housing supply is constant or all households are
marginal, the first reason can be ignored to first order, however. This follows
from proposition 3. As a consequence, long run effects of changes in X on rents
P reflect the sum of the willingness to pay for X and of the willingness to pay
for the change in M induced by X.

Proposition 7 (Long run comparative statics of prices) Make assumptions
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1, 2, 3, 4, specifying the dynamic model, and 5 on bargaining power. Assume that
housing supply is constant or all households are marginal.
Assume that X = x before time 0, X = x + ξ for a jump ξ after time 0, and
(u, V o) is constant for all households. Denote M lr = limt→∞M , where it is as-
sumed that this limit exists.

Then ∂
∂ξ limt→∞E[P ] = E

[
−uX+uMM

lr
ξ

uP

]
, where the expectation is taken over

the set of households living in the neighborhood at time t = 0.

Demand in the dynamic and the static model
D, as given by definition 2, equals the number of households for which V ≥ V o.
In the static model, under the assumption of household utility maximization, D
was equal to the number of households for which u ≥ uo. How do these notions
of demand relate to each other? To connect the dynamic model to our discussion
of the static model, the following definition is useful. It derives a static model
from the given dynamic model. Equilibrium prices in the static model correspond
to cut-off prices, below which landlords do not accept a tenant in the dynamic
model in steady state. The utility of households’ outside option, uo, is implic-
itly given by V o. Corresponding static demand, finally, is equal to the mass of
households for which flow utility u is bigger than outside utility uo. As shown
in proposition 8, the static model defined in this way describes the long run
comparative statics of composition in the dynamic model. Proposition 9 implies
that it also approximates the short run behavior of the dynamic model in the
case of low search frictions or high discount rates.

Definition 3 (The corresponding static model) Under assumptions 1, 2,
3, 4 and 5, the corresponding static model is defined as follows: Let uo := rV o−
V̇ o. Let P res = max{P : u(X,M,P ) ≥ uo} be the reservation price for each
household. Let P ∗ be the “cut-off” price below which landowners in the dynamic
model would not accept a tenant in steady state. As will be shown, this cut-off is
given by

(17) P ∗ =
rµ

r + µ
Es[P res|P res > P ∗],

where the expectation Es is taken over the set of households searching for a place
in the neighborhood. This equation implicitly defines the corresponding static
housing supply.
The corresponding static demand of type c is equal to

(18) D̃c = M tot · P(u(X,M,P ∗) > uo|C = c) = M tot · P(P res > P ∗|C = c)

for all c. Let Ẽ =
∑
c D̃

c. Denote the equilibrium (set) of this corresponding
static model by (M∗, P ∗).
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Proposition 8 (Long run comparative statics of composition) Make as-
sumptions 1, 2, 3, 4, specifying the dynamic model, and 5 on bargaining power.
Assume that λ is uniformly bounded away from zero for t > 0, and that X and
(u, uo) is constant over time for all households.
If M lr := limt→∞M exists, then M lr ∈ M∗, i.e., composition converges to an
equilibrium composition of the corresponding static model.

Proposition 9 (Low-friction limit of the dynamic model) Make assump-
tions 1, 2, 3 and 4. Define uo as uo = (r+λ)V o− V̇ o−λmax(V, V o). Assume u
and uo are continuous in time and bounded. Then, for V, V o, u and uo evaluated
at time t0,

lim
V − V o∫∞

t0
e−

∫ t
t0

(r+λ)dsdt
= u− uo

as r+ λ→∞ uniformly in a neighborhood of t0, if r+ λ remains bounded away
from 0 uniformly on [t0,∞).

Proposition 9 says that, if discount rates are large or search frictions low, then
relative values are approximately equal to relative flow utilities. Similarly, if u
and uo are constant over time, relative values equal relative flow utilities. If ei-
ther of these is the case uniformly across households, then dynamic demand D is
approximately equal to demand in the corresponding static model D̃. It is in this
sense that the static model can be regarded as an approximation to the dynamic
model in the cases of either “myopic” behavior (high discount rates), low search
frictions (high λ) or steady state (constant u).

Home ownership
So far we have been discussing the market for housing rentals. What about home
ownership? Under an assumption of perfect financial markets a no-arbitrage
condition between either renting and holding financial assets or home-ownership
must hold. In particular, we could extend the above model assuming that at each
point in time a landowner can decide to sell her unit to the tenant or to another
potential landowner, if the latter agrees. The price for such a (potential) sale into
ownership is P. Agreement on such a sale requires that each party is indifferent
between holding financial assets and home ownership. Such indifference implies
the asset equation

(19) rP = P + Ṗ,

where r is now a market rate of return. Tenant households could at the same
time be landowners, for instance for units previously occupied. The interest rate
r implicitly already incorporates a risk premium and a compensation for depre-
ciation.
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The focus of the present paper is identification of the determinants of the
consumption value u. This consumption value conceptually maps more closely to
rental prices P rather than home values P, since decisions about homeownership
reflect both consumption and investment considerations. This explains our focus
on rental prices.

3. DECOMPOSITION REPRESENTATIONS OF LINEAR IV COEFFICIENTS

In this section, a series of representations of linear IV coefficients in terms of
weighted average slopes is developed. These results resemble closely the LATE
representations introduced by Imbens and Angrist (1994). The distinguishing
feature of the results presented here is that all weights are defined in terms
of observable and identifiable quantities, as opposed to first stage structural
slopes (in the binary case, compliance versus noncompliance). This allows to
describe the distribution of any observable covariates for the population over
which structural slopes are averaged to obtain the linear IV coefficients. In the
terminology of Imbens and Angrist (1994), we don’t know who the compliers are
but we do know how they look like. Results similar in spirit were used by Kling
(2001).

The first set of results is stated for a random coefficient, cross-sectional setup.
These results suggest to plot densities of covariates with respect to a reweighted
distribution, and to plot conditional IV coefficients in the case of linear IV with
controls. Then, these results are generalized to the fully non-parametric panel
difference case, which is the setup relevant for the present paper.

Proposition 10 (Crossectional IV, random coefficient case) Assume that

(20) Y i = αi + βiXi

and assume Cov(Z,α) = 0. Then

βIV =
Cov(Y, Z)

Cov(X,Z)
= E

[
βi · ω

]
for a weighting function

ω =
X(Z − E[Z])

E[X(Z − E[Z])]
.

Proposition 11 (Crossectional OLS with controls, random coefficient case)
Assume that

(21) Y i = X1,iβ1,i +X2,iβ2,i + ε

for a scalar X1 and a vector X2. Assume X1 ⊥ (β, ε)|X2, and E[X2,iβ2,i+ε|X2]
is linear in X2. Then the coefficient on X1 in OLS regression of Y on X is in
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expectation equal to

β1,OLS = E

[
E[β1,i|X2]

E[X1e|X2]

E[X1e]

]
,

where e is the residual from OLS regression of X1 on X2.

Proposition 12 (Crossectional IV with controls, random coefficient case)
Assume that

(22) Y i = X1,iβ1,i +X2,iβ2,i + ε

for a scalar X1 and a vector X2. Assume Z ⊥ (β2, ε)|X2 for a scalar instrument
Z, and E[X2,iβ2,i + ε|X2] is linear in X2. Denote by e the residual of OLS
regression of Z on X2.

Then the coefficient on X1 in IV regression of Y on X, instrumented by
(Z,X2), is in expectation equal to

β1,IV =
E[Y e]

E[X1e]
= E

[
E[β1,iX1e|X2]

E[X1e]

]
= E

[
β1,i · ω

]
for a weighting function

ω =
X1e

E[X1e]
.

These propositions give a LATE representation of IV coefficients. In the setup
of proposition 12, the following two exercises seem instructive:

Suggestion 1: Plot the distribution of covariates (in particular of components
of X2), reweighted by ω. In the terminology of Imbens and Angrist (1994), this
gives the distribution of covariates for the set of compliers.

Suggestion 2: Calculate conditional IV given (components of) X2: Let Ê
denote some flexible (“nonparametric”) estimator of the conditional expectation.
For components of X2, plot (nonparametric) regressions of

β̂IV (X2) :=
Ê
[
Y e|X2

]
Ê [X1e|X2]

on these components. The estimator β̂IV (X2) converges to a conditional weighted
average of the structural slope β2,

E

[
β1 X1e

E[X1e|X2]

∣∣∣∣X2

]
.

In, practice, however, such estimates of βIV (X2) might be poorly behaved. If

the denominator, Ê
[
X1e|X2

]
, has positive mass around 0, then β̂IV (X2) might



SUPPLEMENT - SORTING WITH SOCIAL EXTERNALITIES 15

not have a finite expectation. In that case, it can still be insightful to plot the
“conditional reduced form” estimator Ê

[
Y e|X2

]
.

The following propositions extend the previous results to the panel-difference
case.

Proposition 13 (Panel difference IV, random coefficient case) Assume that

(23) Y it = αit + βitXit

for t ∈ {0, 1}, and assume ∆Z ⊥ (∆α+ ∆β ·Xi,1).2 Then

βIV,∆ :=
Cov(∆Y,∆Z)

Cov(∆X,∆Z)
= E

[
βi,0 · ω

]
for a weighting function

ω =
∆X(∆Z − E[∆Z])

E[∆X(∆Z − E[∆Z])]
.

Proposition 14 (Panel difference IV, nonparametric case) Assume that

(24) Y it = g(Xit, εit)

for t ∈ [0, 1], and assume

∆Z ⊥
∫ 1

0

gε(X
it, εit) · εt dt.

Then

βIV,∆ :=
Cov(∆Y,∆Z)

Cov(∆X,∆Z)
= E [gX · ω]

for a weighting function

ω =
Xt(∆Z − E[∆Z])

E[Xt(∆Z − E[∆Z])]
.

All expectations here are taken over the product distribution of the crosssectional
distribution over the i and the uniform distribution over the time interval [0, 1].

Proposition 15 (Panel difference IV, nonparametric case, if exclusion is violated)
Assume that

(25) Y it = g(X1,it, X2,it, εit)

2That is, ∆Z is uncorrelated with the counterfactual change in Y which would have occurred
if X had stayed constant.
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for t ∈ [0, 1], and assume

∆Z ⊥
∫ 1

0

gε(X
it, εit) · εt dt.

Then

βY 1,IV,∆ :=
Cov(∆Y,∆Z)

Cov(∆X1,∆Z)
= E

[
gX1 · ω1

]
+R

for weighting functions (j = 1, 2)

ωj =
Xj
t (∆Z − E[∆Z])

E[Xj
t (∆Z − E[∆Z])]

and an error term

R = E

[
gX2 · X

2
t

X1
t

· ω
]

= E[gX2ω2] ·β21,IV,∆ = E[gX2ω2] · Cov(∆X2,∆Z)

Cov(∆X1,∆Z)
.

All expectations here are taken over the product distribution of the crosssectional
distribution over the i and the uniform distribution over the time interval [0, 1].

Suggestion 3: Bound the error term by making a-priori assumptions giving
bounds on E[gX2ω2]. Estimate β21,IV,∆ = Cov(∆X2,∆Z)/Cov(∆X1,∆Z) di-
rectly from the data.

This appendix concludes with a characterization of cross-sectional linear IV
in a triangular system, where the weights in this proposition are now expressed
in terms of first stage structural slopes.

Proposition 16 (Cross-sectional linear IV in nonparametric triangular systems)
Consider the triangular system Y = g(X, ε), X = h(Z, η), Z ⊥ (ε, η), where all
variables are continuously distributed and g, h are continuously differentiable.
Then

βIV =
Cov(Y,Z)

Cov(X,Z)
= E [gx(X, ε)ω(Z, η)]

for a weighting function ω which is given, up to normalization, by

ω(z, η) = const. · hz(z, η)

f(z)
· (E[Z|Z > z]− E[Z|Z ≤ z])P(Z > z)P(Z ≤ z).

The constant is such that E[ω] = 1.



SUPPLEMENT - SORTING WITH SOCIAL EXTERNALITIES 17

3.1. Application

The formal results just stated show that linear instrumental variables estimates
describe the local average treatment effect (LATE) for the subpopulations for
which the instruments do affect the treatment. What are the characteristics of
these subpopulations of neighborhoods for our instruments? The decomposition
results of this section can be used to shed some light on this question. In particu-
lar, the IV coefficient controlling for covariates can be decomposed as a weighted
average of structural slopes over the sampling population, where the weights ω
are identifiable and are given by

ω =
∆m · e

E[∆m · e]
.

In this expression, ∆m is the regressor of interest and e is the residual of a
regression of the instrument on the controls.

We shall now apply this to the data analyzed in the main paper. Figures 1
through 3 show the unweighted density of the initial Hispanic share across neigh-
borhoods for the sample used, as well as this density reweighted by ω, for weights
ω corresponding to the various instruments. They furthermore show plots of es-
timates of the “conditional first stage” and “conditional reduced form,” E[ω|m]
and E[∆Y · e|m], where ∆Y corresponds to the change of various outcomes of
interest. The plots of the reweighted densities are particularly instructive. They
show that the specification using the subgroup instrument estimates a LATE for
neighborhoods with a medium to high initial Hispanic share, using the spatial in-
strument yields a LATE for neighborhoods with lower Hispanic shares (although
still upweighting higher shares relative to the population), and the dynamic
instrument estimates a LATE for neighborhoods somewhere in between. The
conditional expectation estimates for higher values of m should be interpreted
with caution, as they are quite imprecisely estimated due to limited support of
Hispanic share in the right tail.

The graphs of the conditional reduced form of price responses, E[∆P · e|m]
for the spatial and dynamic instrument, when compared to the conditional first
stage, E[ω|m], are somewhat worrisome. They suggest significant variation of
the conditional IV coefficient given m over the range of m. This does not imply
invalidity of the instrument, but it cautions to be careful when extrapolating the
willingness-to-pay results to different populations.

APPENDIX A: PROOFS

Section 1

Proof of proposition 1 :
Plugging 1 into 2 and differentiating w.r.t. X gives

SX + SPP
+
X =

∑
c

M+c
X =

∑
c

(DcX +DcPP
+
X ) = EX + EPP

+
X .
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Figure 1.— Decomposition of the subgroup instrumental variable
estimate

Density and reweighted density of initial Hispanic share
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Notes: These graphs decompose the IV estimate based the subgroup instrument shown in

table ??, according to proposition 12. The top row shows a kernel estimate of the density of

initial Hispanic share across neighborhoods in the sample, as well as this density reweighted

to give the distribution among the population for which the LATE is estimated. The bottom

row shows kernel estimates of the conditional expectation of the weight ω, as well as the

“conditional reduced form”, ∆M2 · e.
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Figure 2.— Decomposition of the spatial instrumental variable
estimate

Density and reweighted density of initial Hispanic share
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Notes: These graphs replicate those of figure 1 for the spatial instrument, and display

conditional reduced forms for the additional outcome variables M1 and P .
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Figure 3.— Decomposition of the dynamic instrumental variable
estimate

Density and reweighted density of initial Hispanic share
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Notes: These graphs replicate those of figure 1 for the dynamic instrument, where the

conditional reduced form is for the outcome variable P .
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Inelastic supply SP = 0 and constancy SX = 0 imply

P+
X = −

EX

EP
.

Analogously,

P+
M = −

EM

EP

and

P ∗X = −
EX + EMM

∗
X

EP
.

By the assumption of household utility maximization and iterated expectations, we can write
E = Mtot · E[P(u ≥ uo|uX)]. Denote fu−u

o|uX the conditional density of u − uo given uX .
We get

1

Mtot
EX = E

[
∂

∂X
P(u− uo ≥ 0|uX)

]
= E

[
uXf

u−uo|uX (0|uX)
]

=

∫
uX

fu−u
o,uX (0, uX)

f(uX)
f(uX)duX = fu−u

o
(0)E[uX |u = uo].

Similarly for EM and EP and for D. �

Proof of Corollary 1:
Immediate from proposition 1, once we check that this density integrates to one and is non-
negative. �

Proof of proposition 2:
u(X,M∗(X), P ∗(X)) ≥ uo implies the first order condition

uX + umM
∗
X + uPP

∗
X = 0

for all the households choosing the given neighborhood. �

Proof of proposition 3:
For simplicity of notation, the superscript res will be omitted from reservation prices in this
proof. Furthermore, assume for the moment that there are no social externalities, i.e., uM = 0.
The general case is completely analogous. By iterated expectations we can write

E[P |P ≥ P ∗] = E[E[P · 1(P ≥ P ∗)|PX ]]/P(P ≥ P ∗).

In integral notation, the conditional expectation is given by

E[P · 1(P ≥ P ∗)|PX ] =

∫ ∞
P∗

Pf(P |PX)dP.

Differentiating this conditional expectation gives

∂

∂X
E[P ·1(P ≥ P ∗)|PX ] = PX ·P(P ≥ P ∗|PX) +P ∗ · (PX −P ∗X) · fP−P

∗|PX (0|PX).

The second term is due to the change in the boundaries of integration. Hence

∂

∂X
E[P · 1(P ≥ P ∗)] = E[PX1(P ≥ P ∗)] + P ∗ · E[PX − P ∗X |P = P ∗] · fP−P

∗
(0).

Similarly

∂

∂X
P(P ≥ P ∗) = E[PX − P ∗X |P = P ∗] · fP−P

∗
(0).
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Collecting terms then gives
∂

∂X
E[P |P ≥ P ∗] =

(
E[PX1(P ≥ P ∗)] + P ∗

∂

∂X
P(P ≥ P ∗)

)
/P(P ≥ P ∗)

− E[P |P ≥ P ∗]
∂

∂X
P(P ≥ P ∗)/P(P ≥ P ∗)

= E[PX |P ≥ P ∗]

−
(

∂

∂X
log P (P ≥ P ∗)

)
· [E [P res|P ≥ P ∗]− P ∗] .

Finally, inelastic housing supply implies that, in equilibrium, the number of households must
be constant, i.e., P (P ≥ P ∗) does not depend on X. �

Section 2
Proof of Proposition 4:

We can divide households of type c into four classes, depending on whether or not they live
in the neighborhood (indexed by 1 and o) and depending on whether the want to stay (s) or
to move (m) into or out of the neighborhood. Denote these classes by Dc,1,s, . . . , Dc,o,m. By
definition Mc = Dc,1,s + Dc,1,m and Dc = Dc,1,s + Dc,o,m. A fraction λ of those that want
to move will be successful per time unit, giving

Ṁc = λ
(
Dc,o,m −Dc,1,m

)
= λ

(
(Dc,1,s +Dc,o,m)− (Dc,1,s +Dc,1,m)

)
= λ (Dc −Mc) .

�

Proof of Proposition 5:
Recalling the definitions m = M1/(M1 +M2) and d = D1/(D1 +D2), and using the result of
the previous proposition,

ṁ =
∂m

∂M
Ṁ = λ ·

∂m

∂M
· (D −M) = λ̆ · (d−m),

where

λ̆ := λ ·
∂m
∂M
· (D −M)

d−m
= λ ·

D1 +D2

M1 +M2
.

The second equality in this expression follows from

∂m
∂M
· (D −M)

d−m
=

1
(M1+M2)2

(
M2,−M1

)
·
(
D1 −M1, D2 −M2

)′
D1

D1+D2 − M1

M1−M2

=
D1 +D2

M1 +M2
.

By assumption ??, the price and scale elasticities of both types are identical and hence d =
d(X,m). Therefore ṁ = λ̆ · (d(X,m)−m).

Taking the time path of d and λ̆ as given, the solution to this differential equation can be
written as

mt = m0e−
∫ t
0 λ̆ds +

∫ t

0
λ̆de−

∫ t
s λ̆duds.

This gives mt as a weighted average of initial m0 and d in the time interval from 0 to t. Letting

κ = 1 − e−
∫ 1
0 λ̆ds and (m,X) some appropriate intermediate values in the time interval [0, 1]

the claim follows. �

Proof of Proposition 6:

From equation 16 it is immediate that, for any given household, PX,m =
(uX ,uM )
−uP

. By assump-

tion, due to search frictions, M has a smooth time path and in particular ∂
∂ξ

limt→0+ M = 0. �
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Proof of Proposition 7: For any given household, it can be shown as in proposition 6

that PX,m = −
uX+uMMlr

ξ

uP
. To prove the claim we have to show, that resorting of households

according to willingness to pay has no first order effect on the average reservation price within
the neighborhood. But this follows immediately from proposition 3. �

Proof of Proposition 8:
First, M ∈ M∗ are the only constant solutions of the differential equation 13: Any stable
solution must imply M = D. By constancy of X,M and u, uo, V̇ = 0 and V = u/r, V o = uo/r.

Hence V > V o if and only if u > uo, and D is equal to demand D̃ in the corresponding static
model. A landlord accepts a tenant if and only if W for this tenant is greater than W v , i.e., if

P = rW ≥ rW v =
rµ

r + µ
E [Pnew] .

By random matching E [Pnew] = Es[P res|P res > P ∗], and hence D equals to demand D̃ of
the corresponding static model.
The claim follows, since any limit of a converging path must satisfy Ṁ = 0. �

Proof of Proposition 9:
Let w.l.o.g. t0 = 0. If we denote V max = max(V o, V ) and impose a transversality condition,
we can solve equation 8 for V and get

(26) V =

∫ ∞
0

e−
∫ t
0 (r+λ)ds [u(X,M,P ) + λV max] dt.

This is again to be understood as a conditional expectation given the information set at time
0. A similar equation holds for V o.
Equation 26 implies

V − V o =

∫ ∞
0

e−
∫ t
0 (r+λ)ds [u− uo] dt

and hence

(27)
V − V o∫∞

0 e−
∫ t
0 (r+λ)dsdt

=

∫ ∞
0

wt [u− uo] dt,

where we denote

wt :=
φt∫∞

0 φtdt

for φt = e−
∫ t
0 (r+λ)ds The weights wt integrate to one. Let ε > 0 be such that r+ λ > C1 and∣∣(u1,t − u2,t)− (u1,0 − u2,0)

∣∣ < δ on the interval [0, ε], and assume r + λ > C2 on [0,∞). We
get

(28)

∣∣∣∣(u1,0 − u2,0)−
∫ ∞

0
wt [u− uo] dt

∣∣∣∣ < C3δ + (1− C3) sup
t

(u− uo)

for C3 =
∫ ε
0 w

tdt. Some algebraic manipulation yields

C3 =
1

1 + φε∫ ε
0 φ

tdt

∫∞
ε φtdt

φε

.

By r + λ > C1 on [0, ε]∫ ε

0
φtdt > φε

∫ ε

0
eC

1[ε−t]dt =
φε

C1

[
eC

1ε − 1
]
.
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By r + λ > C2 on [ε,∞)∫ ∞
ε

φtdt < φε
∫ ∞
ε

e−C
2[t−ε]dt =

φε

C2
.

Hence, as C1ε→∞

C3 >
1

1 + C1C2

eC
1ε−1

→ 1.

The claim now follows from equation 28. �

Section 3
Proof of proposition 10:

Since Cov(αi, Z) = 0, we have Cov(Y, Z) = Cov(βiX,Z) = E[βiX(Z − E[Z])] �

Proof of proposition 11:

By the Frisch-Waugh theorem, β1,OLS =
E[Y e]

E[X1e]
, where e is the residual from OLS regression

of X1 on X2. By linearity of E[X2,iβ2,i + ε|X2] and independence of β2,i, εi and (X1,i, X2,i),
E[Y e] = E[β1,iX1,ie]. By independence of β1,i and (X1,i, X2,i), E[β1,iX1,ie|X2,i] = E[β1,i|X2]E[X1e|X2].
The claim then follows from iterated expectations. �

Proof of proposition 12:

β1,IV =
E[Y e]

E[X1e]
follows again from the Frisch-Waugh theorem, applied to the two-stage least-

squares representation of β1,IV , and E[Y e] = E[β1,iX1,ie] from linearity of E[X2,iβ2,i+ε|X2]
and conditional independence Z ⊥ (β2, ε)|X2. �

Proof of proposition 13:
Immediate from proposition 10, with differences replacing levels. �

Proof of proposition 14:
Under appropriate smoothness assumptions, we can write

∆Y =

∫ 1

0
(gX(Xit, εit) ·Xt + gε(X

it, εit) · εt) dt.

By exogeneity of the instrument, we then get

Cov(∆Y,∆Z) = E

[∫ 1

0
gX(Xit, εit) ·Xt dt(∆Z − E[∆Z])

]
== E [gX · ω] .

�

Proof of proposition 15:
This is an immediate extension of proposition 14. �

Proof of proposition 16:
First, consider the covariance of X and Z. Denote µ(Z) := E[X|Z] = E[h(Z, η)|Z]. Then

Cov(X,Z) = E[µ(Z)(Z − E[Z])] =

∫ ∞
−∞

∫ z

−∞
µz(z̃)(z − E[Z])f(z)dz̃dz =

=

∫ ∞
−∞

µz(z̃)

∫ ∞
z̃

(z − E[Z])f(z)dzdz̃

=

∫ ∞
−∞

µz(z̃) (E[Z|Z > z]− E[Z|Z ≤ z])P(Z > z)P(Z ≤ z)dz̃dz =

= E [hz(Z, η)ω̃(Z)] ,
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where

ω̃(z) :=
1

f(z)
(E[Z|Z > z]− E[Z|Z ≤ z])P(Z > z)P(Z ≤ z).

Similarly,

Cov(Y, Z) = E [gx(X, ε)hz(Z, η)ω̃(Z)] .

The assertion follows from βIV =
Cov(Y,Z)
Cov(X,Z)

. �
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