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Abstract—We propose to use economic theories to construct shrinkage es-
timators that perform well when the theories’ empirical implications are
approximately correct but perform no worse than unrestricted estimators
when the theories’ implications do not hold. We implement this construc-
tion in various settings, including labor demand and wage inequality, and
estimation of consumer demand. We provide asymptotic and finite sample
characterizations of the behavior of the proposed estimators. Our approach
is an alternative to the use of theory as something to be tested or to be
imposed on estimates. Our approach complements uses of theory for iden-
tification and extrapolation.

I. Introduction

THERE are various ways economic theory might be put
to use in empirical microeconomics. A common role of

theory is to provide predictions with empirical content. These
predictions might be tested, using statistical tests controlling
size at conventional levels such as 5%. A theory that has
not been rejected is maintained. The predictions of a the-
ory (which has not been rejected) might then be imposed on
estimated parameters. Theory might further provide the as-
sumptions necessary to identify objects such as causal effects
or economic primitives, which would not be identified based
on observation alone. It might also be used to extrapolate to
counterfactual settings. Finally, theory may provide guidance
for researchers in terms of what questions to take to the data
in a way that is harder to formalize.

We propose a further, alternative use of economic theory
in empirical research. For the purposes of this paper, we con-
sider as “theory” any argument that leads to prior restrictions
on a parameter vector β, where β would be identified even
in the absence of these restrictions. We suggest a framework
for the construction of estimators that perform particularly
well when the empirical implications of a theory under con-
sideration are approximately correct. By “approximately cor-
rect,” we mean that deviations from the theory’s predictions
are of the same order of magnitude as the standard errors
of unrestricted estimates. Estimators constructed in the pro-
posed way tend to outperform estimators ignoring the the-
ory, regardless of what the true data-generating process is
and whether the theory is correct. Our approach provides an
alternative to the testing and imposition of theories. We will
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argue that it is well suited for theories that are only approx-
imately correct, as might be the case for many theories in
economics. If the restrictions implied by theory do not hold,
their rejection by tests is only a matter of sample size, and
their imposition might cause estimators to be biased and in-
consistent. Our approach is complementary to the roles of
theory in identification and in guiding the choice of research
questions.

Estimator construction. Our approach is based on estima-
tors shrinking toward the theory in a data-dependent way.
Our construction uses the empirical Bayes paradigm, which
requires a family of priors. We consider families of priors
for the parameters of interest, where the priors are centered
on the set of parameters consistent with the predictions of
the theory. These priors are further governed by a parameter
of dispersion, providing a measure for how well the theory
appears to describe the data. A prior with a dispersion of 0
would correspond to imposing the theory—an infinite dis-
persion to an uninformative prior, ignoring the theory and
estimating an unrestricted model.

Estimation proceeds in three steps. First, the parameters
of interest are estimated in an unrestricted way, ignoring the
predictions of economic theory. This yields noisy but con-
sistent preliminary estimates. This first step requires that the
parameters of interest are identified even when ignoring the
theory. Second, the hyperparameters governing the family
of priors are estimated. The hyperparameters include both
the parameters of the restricted model and the measure of
dispersion, where the latter provides a measure of model
fit. The hyperparameters can be estimated by maximizing
the marginal likelihood for the preliminary estimates or, al-
ternatively, by using a method-of-moments estimator, or by
minimizing Stein’s unbiased risk estimate. Third, “posterior
means” for the parameters of interest are calculated, condi-
tioning on the preliminary estimates and the estimated values
for the hyperparameters. These posterior means are shrinking
the preliminary estimates toward the restricted model.

Contributions. The main contribution of this paper is to
bring together economic theory with the tools of the empirical
Bayes paradigm in order to leverage economic theory for im-
proved estimation in a way that contrasts with the testing and
imposition approach. Empirical Bayes’ estimators were orig-
inally proposed by Robbins (1956); they are closely related
to shrinkage estimators as introduced by James and Stein
(1961) and characterized by Stein (1981). Parametric empir-
ical Bayes was introduced by Morris (1983). The empirical
Bayes estimators usually considered in the statistics litera-
ture shrink toward an arbitrary point in the parameter space,
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such as 0. We instead modify the construction to shrink to-
ward parameter sets consistent with economic theories such
as structural models of labor demand (as in Card, 2009) or
the theory of consumer choice (as in Blundell, Horowitz, &
Parey, 2017). The online supplementary appendix discusses
additional applications shrinking toward the predictions of
general equilibrium models of asset markets (as in Jensen,
Black, & Scholes, 1972), to structural discrete choice mod-
els of consumer demand (as in Train, 2009), or toward the
predictions of abstract theories of economic decision making
(as in McFadden, 2005).

In addition to proposing to use the restrictions implied
by economic theory to construct shrinkage estimators and
providing guidelines and examples for implementation, we
develop statistical theory results, characterizing the behavior
of the proposed estimators. Our estimators are related to but
different from the shrinkage estimators discussed in Hansen
(2016); our results complement those of Hansen (2016) in a
way discussed in greater detail in the online appendix.

Our approach stands in contrast to other approaches for es-
timating the parameters of interest, including (a) unrestricted
estimation, (b) estimation imposing the theory, (c) fully
Bayesian estimation, and (d) pretesting where the theory is
imposed if and only if it is not rejected. There are a num-
ber of advantages to our approach relative to these alterna-
tives. First, the resulting estimates are consistent; they con-
verge to the truth as samples get large, for any parameter
values, in contrast to estimation imposing the theory. Sec-
ond, the variance and mean squared error of the estimates
are smaller than under unrestricted estimation. Simulations,
finite sample characterizations, and asymptotic approxima-
tions show this is the case uniformly over most of the pa-
rameter space.1 Third, in contrast to a fully Bayesian ap-
proach, no tuning parameters (features of the prior) have to
be picked by the researcher. Fourth, our empirical Bayes
approach avoids the irregularities (poor mean squared er-
ror in intermediate parameter regions) associated with test-
ing theories and imposing them if they are not rejected (see
Leeb & Pötscher, 2005). Fifth, counterfactual predictions
and forecasts are driven by the data whenever the latter are
informative.

After introducing our approach in section II, we imple-
ment it in two economic contexts in section III. These con-
texts are distinguished in particular by the type of “theory”
considered, including parametric structural models of pro-
duction and labor demand and the general theory of con-
sumer demand. The applications in the appendix consider
general equilibrium models of financial markets, structural
models of preferences, and abstract theories of decision mak-
ing. Let us briefly sketch the settings we considered in this
paper.

1It is, however, possible to construct counterexamples when hyperparam-
eters are estimated by maximizing the marginal likelihood. See section
IVB.

Labor demand and wage inequality. Wage inequality has
increased significantly in most industrial countries since the
1980s. There is considerable disagreement over the relative
contribution to this increase of alternative factors, such as
technical change (Autor, Katz, & Kearney, 2008), migration
(Card, 2009), and institutional factors (Fortin & Lemieux,
1997). Some of these disagreements have methodological
roots. The workhorse method of estimating structural mod-
els of labor demand yields results that depend on the specific
model chosen and the implied substitutability patterns. Flex-
ible (unrestricted) estimation, on the other hand, results in
very noisy estimates. We propose instead estimating flexible
systems of labor demand, shrinking toward the predictions of
a canonical model such as the two-type constant elasticity of
substitution (CES) model. We apply this method to data from
the Current Population Survey (CPS) and the American Com-
munity Survey (ACS). We generally find negative but small
inverse elasticities of substitution. The explanatory power of
changes in labor supply for changes in relative wages appears
to be quite small, based on our estimates. The two-type CES
model does not fit our data very well.

Consumer demand and the Slutsky condition. The price and
income elasticities of consumer demand are key parameters
for the design of taxes and other policies. The price and in-
come elasticity of gasoline demand, for instance, matter for
the effectiveness and incidence of potential taxes aiming to
reduce carbon emissions. A large literature considers the es-
timation of consumer demand; recent contributions to this
literature, including Dette, Hoderlein, and Neumeyer (2016)
and Blundell et al. (2017).

Assuming exogenous variation of prices and income, the
elasticities of demand can be estimated using local linear
quantile regression or related nonparametric methods. If de-
mand arises from utility maximization by consumers, then
compensated own-price elasticities of demand are nonposi-
tive. Dette et al. (2016) show that negative semidefiniteness
of compensated demand slopes holds not only for individual
demand functions but also for quantile demand functions.
This is a theoretical restriction on price and income elas-
ticities that could be imposed in order to improve estimator
precision, as in Blundell et al. (2017). We propose to instead
use an estimator that shrinks toward this theoretical restric-
tion. In our application to gasoline demand using the 2001
National Household Travel Survey (NHTS), unrestricted es-
timates of price elasticities violate this restriction for high
and low prices. The empirical Bayes estimator, by contrast,
yields elasticities that are close to 0 or negative over the entire
range of observed prices. Negative compensated elasticities
provide a good fit for our data.

Characterizations of estimator properties. In section IV,
we provide characterizations of the behavior of the pro-
posed estimators. We first show consistency and characterize
the mapping from unrestricted estimates to empirical Bayes
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estimates. Our key results in this section are theorems 1 and 2,
which provide complementary characterizations of the mean
squared error of the proposed estimators. Theorem 1 uses an
asymptotic approximation that is valid whenever the hyper-
parameters are estimated with small variance relative to the
parameters of interest. This approximation works well when
the dimension of hyperparameters is small, as in our applica-
tion to labor demand. Theorem 2 provides a characterization
of the mean squared error that does not rely on asymptotic ap-
proximations and instead uses Stein’s unbiased risk estimate.
This characterization assumes normality of unrestricted es-
timates but covers the case of theoretical restrictions, which
allow for high-dimensional hyperparameters, as in our ap-
plication to consumer demand where only inequality restric-
tions are imposed by theory. This characterization allows us
to prove uniform dominance of our estimator relative to the
unrestricted estimator, under certain conditions. Monte Carlo
simulations (in the online appendix) confirm the validity of
our characterizations of risk for realistic specifications.

Road map. The rest of this paper is structured as follows.
Section II discusses the empirical Bayes paradigm and in-
troduces our proposed construction of estimators. Section III
implements and adapts this construction to the economic set-
tings described above. Section IV develops statistical theory
for the estimators we consider, including consistency and
theoretical characterizations of their risk properties. Section
V concludes. The online appendix contains all proofs (ap-
pendix A), a discussion of related literature (appendix B), and
a discussion of empirical Bayes confidence sets, based on the
heuristic arguments of Laird and Louis (1987) (appendix C).
The appendix also contains additional applications, Monte
Carlo simulations, a geometric analysis of the proposed es-
timators, and some additional discussion of labor demand
systems.

II. Estimator Construction

Throughout this paper, we assume that there is a prelimi-
nary estimator β̂ of the parameter vector of interest, β, where
the preliminary estimator does not make use of restrictions
implied by economic theory. Economic theory is assumed
to provide overidentifying restrictions on β; for simplicity of
exposition, we focus on linear equality and inequality restric-
tions in this section, discussing briefly how smooth restric-
tions are asymptotically equivalent to linear restrictions. We
use these restrictions to construct an estimator β̂EB designed
to outperform β̂ if the restrictions are approximately correct
and to perform no worse than β̂ if they are not. In section
III, we then adapt this setting to our applications, detailing in
each case where the preliminary estimator and the theoretical
restrictions are coming from.

This section is structured as follows. We introduce the
setup in section IIA, review the general empirical Bayes ap-
proach in section IIB, and present our proposed empirical
Bayes estimator in section IIC.

A. Setup

Throughout this section, we consider as our object of inter-
est a J-vector β. We assume the availability of a preliminary,
unrestricted estimator,

β̂ ∼ N (β,V ), (1)

of β, with consistently estimable variance V . This assump-
tion implies that β is identified. The assumption of normality
is best thought of as an asymptotic approximation. We use
the assumption of normality in order to construct estimators
within the empirical Bayes paradigm. Most of our discussion
of the theoretical properties of these estimators will not use
normality. Asymptotically normal estimators β̂ might, for in-
stance, be obtained using linear regressions, Y = X · β + ε,
which might be estimated using ordinary least squares, in-
strumental variables, or panel variation, for example.

The second key ingredient to our setting is the availability
of overidentifying restrictions implied by economic theory.
In this section, we focus on the case where a theoretical model
implies that

β0 ∈ B0 = {b : R1 · b = 0, R2 · b ≤ 0}. (2)

Here B0 is the set of parameter vectors β0 satisfying the re-
strictions implied by theory, including a set of linear equality
restrictions, R1 · b = 0, and a set of linear inequality restric-
tions, R2 · b ≤ 0. The inequality is to be understood com-
ponentwise, and the matrices R1 and R2 are known. More
generally, shrinkage toward nonlinear smooth restrictions
(imposing that β0 lies in some smooth manifold) could be
considered. Theorem 1 in Hansen (2016) provides the type of
result needed for such a generalization, using a local asymp-
totic framework.

The results reviewed in chapter 7 of van der Vaart (2000)
imply that under sufficient regularity conditions and i.i.d.
asymptotics, the likelihood ratio process of any parametric
model converges to the likelihood ratio process of the nor-
mal means problem as considered here. Additionally, smooth
restrictions on the mean vector asymptotically become linear
restrictions on the local parameter. Under the framework of
local asymptotic normality, the assumptions we impose are
therefore without loss of generality. Rather than explicitly
invoking the apparatus of limiting experiments and local
asymptotic normality, the theoretical discussion in section IV
below will impose the normal means and linear restrictions
form of the limiting experiment directly.

B. General Empirical Bayes Estimation

Two approaches to estimation are commonly used in set-
tings of this kind: one imposing the restrictions of the theoret-
ical model and one leaving the model unrestricted. Estimation
based on the theoretical model has a small variance but yields
nonrobust conclusions and estimates that are biased and in-
consistent if the model is misspecified. Estimation using the
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unrestricted model is unbiased and consistent but leads to
estimates of large variance.

The paradigm of empirical Bayes estimation allows one
to cover a middle ground between these two approaches and
combines the advantages of both. An elegant exposition of
this approach can be found in Morris (1983). The parametric
empirical Bayes approach can be summarized as

Y |η ∼ f (Y |η), η ∼ π(η|θ), (3)

where Y are the observed data, both f and π describe
parametric families of distributions, and usually dim(θ) ≤
dim(η) − 2. Note that θ might include a subset of the pa-
rameters in η. The first equation describes the unrestricted
model for the distribution of the data given the full set of pa-
rameters η. The second equation describes a family of prior
distributions for η, indexed by the hyperparameters θ.

Estimation in the empirical Bayes paradigm proceeds in
two steps. First, we obtain an estimator of θ. This can be
done by considering the marginal likelihood of Y given θ,
which is calculated by integrating over the distribution of the
parameters η:

Y |θ ∼ g(Y |θ) :=
∫

f (Y |η)π(η|θ)dη. (4)

In models with suitable conjugacy properties, such as the one
we consider below, the marginal likelihood g can be calcu-
lated in closed form. A natural estimator for θ is obtained by
maximum likelihood:

θ̂ = argmax
θ

g(Y |θ). (5)

Other estimators for θ are conceivable and commonly used
as well. In the second step of empirical Bayes estimation, η

is estimated as the “posterior expectation”2 of η given Y and
θ, substituting the estimate θ̂ for the hyperparameter θ:

η̂ = E
[
η|Y, θ = θ̂

]
. (6)

The general empirical Bayes approach includes fully
Bayesian estimation as a special case if the family of priors
π contains just one distribution. This general approach also
includes unrestricted frequentist estimation as a special case,
when θ = η. The general approach finally includes structural
estimation when again θ = η, and the support of θ is restricted
to parameter values allowed by the structural model. We can
think of such support restrictions as imposition of dogmatic
prior beliefs in contrast to nondogmatic priors that have full
support.

2The quotation marks reflect the fact that this would be a posterior expec-
tation in the strict sense only if θ̂ had been chosen independent of the data
rather than estimated.

C. An Empirical Bayes Model for Our Setup

Let us now specialize the general empirical Bayes ap-
proach to the setting considered in this paper. We directly
model the distribution of the unrestricted estimator β̂. This
unrestricted estimator is then mapped to an empirical Bayes
estimator β̂EB. To construct a family of priors for β, we as-
sume that β is equal to a vector of parameters consistent with
the structural model plus noise of unknown variance.

Modeling β̂. We assume that the unrestricted estimator β̂

is normally distributed given the true coefficients, unbiased
for the true coefficient vector β, and has a variance V ,

β̂|β,V ∼ N (β,V ). (7)

This assumption can be justified by conventional asymp-
totics, letting the number n of cross-sectional units go to in-
finity in many applications of interest (as in Hansen, 2016).
We emphasize again that normality of β̂ is used only for es-
timator construction and is not imposed in our theoretical
discussion of its properties in section IV. We further assume
that we have a consistent estimator V̂ of V ,

V̂ · V −1 →p I,

where →p denotes convergence in probability.

Prior distributions. We next need to specify a family of
prior distributions. We model β as corresponding to the coef-
ficients of the structural model plus some disturbances, that
is,

β = β0 + ζ , ζ ∼ N (0, τ2 · I ), β0 ∈ B0. (8)

The term β0 ∈ B0 corresponds to a set of coefficients satis-
fying the structural model. The term ζ is equal to a random
J-vector with variance Var(ζ ) = τ2 · I .

If we were to set τ2 = 0, the empirical Bayes approach
would reduce to imposing the theoretical model. If we let τ2

go to infinity, we effectively recover the unrestricted model.
We consider τ2 to be a parameter to be estimated, however,
which measures how well the given theoretical model fits the
data. Note that this choice of a family of priors is not “correct”
or “incorrect” in an empirical setting; rather, it is a device for
the construction of an estimator.

Summarizing our setting in terms of the general notation
introduced in section IIB, we get

η = (β,V ), θ = (β0, τ2,V ),

β̂|η ∼ N (β,V ), β|θ ∼ N (β0, τ2 · I ). (9)

Solving for the empirical Bayes estimator. In order to obtain
estimators of β0 and τ2, consider the marginal distribution of
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β̂ given θ. This marginal distribution is normal,

β̂|θ ∼ N (β0, �(τ2,V )), (10)

where (leaving the conditioning on θ implicit)

�(τ2,V ) = Var
(
β̂
) = Var

(
E
[
β̂|η])+ E

[
Var

(
β̂|η)]

= τ2 · I + V.

Substituting the consistent estimator V̂ for V , we obtain the
empirical Bayes estimators of β0 and τ2 as the solution to the
maximum (marginal) likelihood problem:

(̂β0, τ̂2) = argmin
b0∈B0, t2≥0

log
(
det(�(t2, V̂ ))

)+ (̂β − b0)′

· �(t2, V̂ )−1 · (̂β − b0). (11)

If B0 is subject only to equality restrictions but no inequal-
ity restrictions, then we can simplify this optimization prob-
lem by concentrating out b0. Let M be a matrix, the columns
of which form a basis of the orthocomplement of R1, so that
R1 · M = 0 and rank(M ) + rank(R) = J . With this notation
and given t2, the optimal b0 takes the form of a GLS estimator
and is equal to

β̂0 = M · (M · �(t2, V̂ )−1 · M ′)−1 · M · �(t2, V̂ )−1 · β̂.

Substituting this expression into the objective function, we
obtain a function of t2 alone, which is easily optimized nu-
merically.

Given the unrestricted estimates β̂, as well as the estimates
β̂0 and τ̂2, we can finally obtain the posterior expectation of
β as

β̂EB = β̂0 +
(

I + 1

τ̂2
V̂

)−1

· (̂β − β̂0). (12)

This is the empirical Bayes estimator of the coefficient vector
of interest.

Discussion. It is instructive to relate the proposed empiri-
cal Bayes procedure to restricted estimation, where the theo-
retical model is imposed. The empirical Bayes estimator β̂EB

of β is not given by β̂0. Instead, we can think of it as an inter-
mediate point between β̂0 and the unrestricted estimator β̂.
The relative weights of these two are determined by the ma-
trices τ̂2 · I and V̂ . When τ̂2 is close to 0, we get β̂EB ≈ β̂0.
When τ̂2 is large, we get β̂EB ≈ β̂ (see equation [12]).

Our construction of a family of priors thus implies the
following: When the restricted model appears to describe
the data well, then our estimate of β will be close to what
is prescribed by the restricted model. When the restricted
model fits poorly, the estimator will essentially disregard it
and provide estimates close to the unrestricted ones. A key
point to note is that this is done in a data-dependent and

smooth way, in contrast to the discontinuity of pretesting
estimators such as

β̂PT = β̂0 + ψ · (̂β − β̂0),

ψ = 1
(
(̂β − β̂0)′V̂ −1(̂β − β̂0) > χ

)
,

where χ is the 1 − α critical value of the appropriate χ2

distribution.
The estimator β̂0 is very similar to the restricted estima-

tor of β obtained by directly imposing the theoretical con-
straints when estimating β. In both cases, we are considering
an orthogonal projection of the unrestricted estimator β̂ onto
the set B0 of estimates consistent with the theory. The pro-
jection is with respect to different norms, however. When
the restricted estimator is obtained by least squares regres-
sion of Y on X subject to linear constraints, the projection is
with respect to the norm ‖b‖β := (b′ · Var(X ) · b)1/2. In the
context of our empirical Bayes approach, the projection is
with respect to the norm ‖b‖β,EB = (b′ · �(t2, V̂ )−1 · b)1/2.

The two objective functions coincide (up to a multiplica-
tive constant) if (a) t2 = 0, so that the restricted model is
assumed to be correct, and (b) V̂ is estimated assuming
homoskedasticity.

Our approach is based on directly modeling the distribution
of the unrestricted estimator β̂. If β̂ contains the coefficients
of an OLS regression, there is a one-to-one mapping between
the dependent variables Y and the estimated coefficients and
residuals of the unrestricted model. To the extent that β̂ is a
sufficient statistic for β, our approach does not waste any in-
formation; this is true, in particular, for a standard parametric
linear or normal model.

Our framework implicitly assumes that there are more ob-
servations than parameters in the unrestricted model, so that
β̂ is well defined. Note, however, that with some minor mod-
ifications, more general cases could be accommodated by
allowing some components of β̂ to have infinite variances.
This could still be consistent with the restricted model being
identified, so that estimators of the hyperparameters τ2 and
β0, as well as the empirical Bayes estimator, β̂EB, remain well
defined.

Using SURE to estimate τ2. Our empirical Bayes estima-
tor uses the marginal likelihood to estimate both τ2 and
β0. The resulting estimator of τ2 behaves well when the
dimension of B0 is small relative to the dimension of β. When
the dimension of B0 is not small, the maximum likelihood
might choose a value of τ2 that is too small. The resulting
estimator β̂EB shrinks too aggressively toward B0. This is the
case, for instance, when B0 is constrained only by inequality
restrictions, as in our application to consumer demand.

An alternative to maximization of the marginal like-
lihood for choosing hyperparameters is minimization of
Stein’s unbiased risk estimate. Denote β̂EB(τ2) = β̂0 +(
I + 1

τ2 V̂
)−1 · (̂β − β̂0), where β̂0 = argminb0∈B0 (̂β − b0)′ ·
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�(τ2, V̂ )−1 · (̂β − b0) as before. Let

g(̂β) = β̂ − β̂EB(τ2)

SURE(τ2) = trace
(
V̂
)+∥∥g(̂β)

∥∥2 + 2 · trace
(∇g(̂β) · V̂

)
.

(13)

It follows from theorem 1 in Stein (1981) that SURE(τ2) is an
unbiased estimator of the mean squared error of the estimator
β̂EB(τ2) when β̂ ∼ N (β, V̂ ). Choosing τ̂2 as the minimizer
of SURE(τ2) yields an estimator β̂EB (̂τ2) with small mean
squared error. We use this approach in our application to
consumer demand in section IIIB.

III. Applications

We now turn to two applications of our proposed approach.
These applications are chosen from the fields of (a) labor de-
mand and wage inequality, and (b) consumer demand and
estimation of price and income elasticities. The online ap-
pendix discusses additional applications to (c) financial asset
returns and the capital asset pricing model, (d) multinomial
logit and mixed multinomial logit models of discrete choice
in panel data, and (e) economic choice and general theories
of decision making, such as utility maximization.

Applications a to c are covered by the normal-linear frame-
work introduced in section II, up to some minor modifica-
tions. Applications d and e demonstrate the possibility of
extensions to nonlinear settings. In each of these settings, we
construct estimators shrinking toward an economic theory,
where the meaning of “economic theory” differs across ap-
plications, ranging from parametric structural models of pro-
duction or of preferences, to the theory of utility-maximizing
consumer choice, to general equilibrium models of financial
markets, to abstract theories of decision making.

A. Labor Demand and Wage Inequality

In our first application, we consider estimation of labor
demand systems. Such systems are commonly estimated in
the literature on skill-biased technical change (Autor et al.,
2008) and on the impact of immigration (Card, 2009). Esti-
mation of such demand systems involves high-dimensional
parameters to the extent that we want to allow for flexible
interactions between the supply of many types of workers.
In this application, the “theory” that we propose shrinking
to corresponds to models of wage determination consistent
with wages equal to marginal productivity where output is
determined by a constant elasticity of substitution (CES) or
nested CES production function.

A.1 Setup.

Suppose there are J types of workers, j = 1, . . . , J , de-
fined, for instance, by their level of education and their po-

tential experience. Consider a cross-section of labor markets
i = 1, . . . , n.3 Let Yi j be the average log wage for workers of
type j in labor market i, and let Xi j be the log labor supply of
workers of this type in this market. Denote Yi = (Yi1, . . . ,YiJ )
and Xi = (Xi1, . . . , XiJ ). We are interested in the structural
relationship between labor supply and wages, that is, in the
inverse demand function.

CES-production functions, structural and unrestricted esti-
mation. The majority of contributions to the field impose a
structural model, based on the assumptions of a parametric
aggregate production function of a CES or nested CES form,
a small number of labor types, and wages equal to marginal
productivity.4 These assumptions motivate regressions of the
following form (see Autor et al., 2008, and Card, 2009):

Yi j − Yi j′ = γ j j′ + θ0 · (Xi j − Xi j′ ) + εi j j′ . (14)

Equation (14) can be rewritten in a numerically equivalent
way as a fixed-effects regression with restrictions across
coefficients:

Yi j = αi + γ j +
∑

j′
β j j′Xi j′ + εi j,

β ∈ B0 = {b : b = θ0 · M}, M = I − 1
J E , (15)

where β is a J × J matrix of coefficients, I is the identity
matrix, E is a matrix of 1s, and M is the demeaning matrix,
projecting RJ on the subspace of vectors of mean 0. To ver-
ify this equivalence, take the difference Yi j − Yi j′ based on
equation (15). This equivalence is familiar from difference-
in-differences regressions, which can equivalently be written
in fixed-effects form or in differenced form.

Rather than imposing the strong assumptions implied by
the CES production function model or its generalizations, we
could instead consider a linear specification with a large num-
ber of types J and unrestricted own- and cross-elasticities.
That is, we could estimate equation (15), using least squares,
without imposing any cross-restrictions on the parameters
β j j′ . Relative to this model, the CES production function
restricts the J2-dimensional parameter β to lie in a one-
dimensional subspace B0. Note, however, that equation (15) is
not identified without further restrictions. Given the presence
of the fixed effects αi, we cannot pin down the effect of la-
bor supply on the overall level of wages. Adding an arbitrary
vector to all rows of β and adjusting the αi accordingly yields
an observationally equivalent model. Differencing equation
(15) across types j, however, yields a model that is identi-
fied. Let � be a (J − 1) × J matrix, which subtracts the first

3We adopt cross-sectional notation for simplicity; similar arguments apply
to time series or panel data.

4The CES production function takes the form fi(Ni1, . . . , NiJ ) =(∑J
j=1 γ jN

θ0+1
i j

)1/(θ0+1)
, where Ni j = exp(Xi j ). Details are reviewed in the

supplementary appendix.
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entry from each component of a J vector, � = (−e, IJ−1),
and define the differenced matrix of coefficients δ = � · β.
We will consider δ as our main object of interest and estimate
the unrestricted regression

� · Yi = � · γ + δ · Xi + � · εi. (16)

There are J · (J − 1) free slope parameters to be estimated
in the matrix δ. Relative to this general linear fixed-effects
model, the CES production function imposes δ = � · (θ0 ·
M ) = θ0 · �, which implies J2 − J − 1 additional restric-
tions. The equation holds because � · M = �.

A.2 Empirical Bayes Estimators.

Empirical Bayes estimation, shrinking toward the J-type CES
model. We next adapt the general approach introduced in
section II to the estimation of labor demand. We discuss two
cases. We first consider shrinkage toward the CES model
for the same set of types over which the unrestricted model
is estimated. This CES model is nested in the unrestricted
model. We then discuss shrinkage of an unrestricted model
with many types toward the CES model for only two types.
When types are defined based on college or no college, this
two-type model is the canonical model of the literature on
skill-biased technical change (Acemoglu & Autor, 2011).
Similar estimators are easily constructed for other models
of production, such as the nested CES model advocated by
Card (2009).

Some minor modifications of the approach introduced in
section II are necessary. In particular, the coefficients of in-
terest δ that we now consider are in matrix form. We denote
the vectorized version of δ, stacking the columns on top of
each other, by δ↑ = vec(δ), and similarly for other matrices.
Furthermore, a family of priors is most naturally specified for
β while estimation is for δ = � · β. We model the coefficient
matrix β as corresponding to the coefficients of the structural
CES model plus some disturbances, that is,

β = θ0 · M + ζ , ζ↑ ∼ N (0, τ2I ).

Differencing this model yields

δ = � · β = θ0 · � + � · ζ .

The variance of the second term, reflecting “prior uncer-
tainty,” is given by Var((� · ζ )↑) = τ2 · P ⊗ I , where P :=
� · �′ = IJ−1 + EJ−1 and ⊗ is the Kronecker product of ma-
trices. This implies a prior variance of the unrestricted OLS
estimator δ̂↑ equal to

�(τ2,V ) = Var
(
δ̂↑
) = τ2 · P ⊗ I + V.

Substituting a consistent estimator V̂ for V , we obtain the
empirical Bayes estimators of θ0 and τ2 as solutions to the
maximum (marginal) likelihood problem

(̂θ0, τ̂2) = argmin
h0,t2

log
(
det(�(t2, V̂ ))

)+ (̂δ↑ − h0 · �↑)′

· �(t2, V̂ )−1 · (̂δ↑ − h0 · �↑).

Given t2, the optimal h0 is equal to θ̂0 = (� · �(t2, V̂ )−1 ·
�′)−1 · � · �(t2, V̂ )−1 · δ̂↑. Substituting this expression into
the objective function, we obtain a function of t2 alone that
we optimize numerically. Given the unrestricted estimates δ̂,
as well as the estimates β̂0 and τ̂2, we obtain the empirical
Bayes estimator of δ as

δ̂EB
↑ = θ̂0 × �↑ + P ⊗ I ×

(
P ⊗ I + 1

τ̂2
V̂

)−1

× (̂δ↑ − θ̂0 × �↑). (17)

Empirical Bayes estimation, shrinking toward the two-type
CES model. The approach just described assumes that the
structural model that we are shrinking to is the CES model
with types j = 1, . . . , J . In practice, we might want to shrink
toward a CES model with more aggregated types, such as the
canonical model (Acemoglu & Autor, 2011) with just two
types k of workers, where k = 1 denotes those with some
college or more and k = 2 denotes those with high school or
less.

To nest the two-type model in a setting with J types, de-
note the aggregate type k corresponding to type j by k j and
denote the aggregate labor supply of this type by Ñik . Define
Xi j = log(Ni j/Ñik j ) and X̃ik = log(Ñik ). Using this notation,
we can nest the canonical CES model in the following re-
gression specification, which includes regressors for both the
disaggregated types j and the aggregated types k:

Yi j − Yi1 = (γ j − γ1) +
∑

j′
δ j j′Xi j′ + θ0 · (X̃ik j − X̃i1)

+ (εi j − εi1). (18)

In this setting, the matrix δ captures the additional effect of
labor supply on relative wages beyond the effect already taken
care of by the term θ0 · (X̃ik j − X̃i1).

The canonical CES model implies the restriction δ = 0.
The unrestricted approach estimates versions of this equa-
tion with δ left fully flexible. Our empirical Bayes approach
applied to this setting takes as its point of departure a first-
stage unrestricted estimator (̂δ, θ̃0) of (δ, θ0), with estimated
covariance matrix V̂ . We then consider the family of priors
δ↑ ∼ N (0, τ2 · P ⊗ I ), where, as before, θ0 and τ2 are hyper-
parameters. Denote the variance of the unrestricted estimators
given θ0 and τ2 by

�(τ2,V ) = Var
(
(̂δ↑, θ̃0)

) =
(

τ2 · P ⊗ I 0

0 0

)
+ V.
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The conditional mean is given by (0, θ0). We obtain the em-
pirical Bayes estimators of θ0 and τ2 as solutions to the max-
imum (marginal) likelihood problem:

(̂θ0, τ̂2) = argmin
h0,t2

log
(
det(�(t2, V̂ ))

)+ (̂δ↑, θ̃0 − h0)′

· �(t2, V̂ )−1 · (̂δ↑, θ̃0 − h0)′.

Given t2, the optimal h0 is equal to θ̂0 = (e · �(t2, V̂ )−1 ·
e′)−1 · e · �(t2, V̂ )−1 · (̂δ↑, θ̃0), where e = (0, . . . , 0, 1).
Substituting this expression into the objective function, we
obtain a function of t2 alone that we optimize numerically.
We finally obtain the empirical Bayes estimator of δ as

δ̂EB
↑ = (̂τ2 · P ⊗ I, 0) · �(̂τ2, V̂ )−1 · (̂δ↑, θ̃0 − h0)′. (19)

A.3 Empirical Application.

We now turn to our empirical application, studying labor
demand in the United States. We use data that have been stud-
ied in the literature on the impact of immigration on native
wages and the impact of skill-biased technical change (see
Card, 2009; Autor et al., 2008; Acemoglu & Autor, 2011).
We study the impact of historical changes of the labor force
composition on relative wages. Rather than imposing one or
the other of the models proposed in the literature (four-type
CES, nested two-type CES), we allow for arbitrary patterns
of substitutability across a larger number of types but use
our empirical Bayes methodology to shrink to the canonical
two-type CES model.

Data. Our analysis is based on the American Community
Survey (ACS) data and Current Population Survey (CPS) data
used in much of the literature. We build two aggregate data
sets. The first is a state-level panel for the years 1960, 1970,
1980, 1990, and 2000 using the CPS, and 2006 using the
ACS. Our construction of this data set builds on the specifica-
tions and the code provided by Borjas, Grogger, and Hanson
(2012). The second data set is a national annual time series
for the years 1963 to 2008 using the March CPS. Here we
build on the specifications and code provided by Acemoglu
and Autor (2011), including their precleaning of the data.

For both data sets, we restrict the sample to individuals
aged between 25 and 64 and with fewer than 49 years of po-
tential experience. We drop all self-employed or institution-
alized workers. Labor supply for any given type of workers is
defined as total hours worked. When calculating average log
wages for any given type, we further restrict the sample to
full-time workers (employed at least 40 weeks and working
at least 35 hours per week) who are men. Our main analysis
classifies workers into eight types, by education (high school
dropouts, high school graduates, some college, and college
graduates), and potential experience (less than 20 years and
20 years or more).

FIGURE 1.—LOG RELATIVE WAGES IN THE UNITED STATES:
TWO TYPES OF WORKERS

(Top) U.S. time series of log relative wages and log relative labor supply between workers with more than a
high school education and those with high school or less. (Bottom) The same information after subtracting
a linear trend in time with a kink point in 1992. Calculations are based on the March CPS. For details, see
section IIIA. This figure replicates similar figures in Autor et al. (2008) and Acemoglu and Autor (2011).

Results. We first replicate results from the literature. The
leading specification in the literature considers two types of
workers: those with more than a high school education and
those with high school or less. Log relative wages of these two
types are regressed on their log relative labor supply using
national time series data for the United States and controlling
for a linear trend with a kink point in 1992 (see Autor et al.,
2008; Acemoglu & Autor, 2011). Running this regression,
we replicate the estimate of −0.64 for the inverse elasticity
of substitution reported by Acemoglu and Autor (2011). The
corresponding time series are shown in figure 1, where the
first graph shows the actual series and the second shows the
residualized series after controlling for a kinked time trend.

We next estimate the same parameter using our state-level
panel, controlling for time and state fixed effects. We find an
elasticity of substitution of the same sign but much smaller
magnitude: −0.06, with a standard error of 0.04. We do not
wish to take a stance on what causes this divergence of find-
ings between the time series and the state panel but will pro-
ceed with obtaining our main estimates from the panel data.
Using the panel might be preferable to the extent that it al-
lows us to control for business cycle variation and secular
time trends using time fixed effects.

We now turn to our analysis using more disaggregated
types of workers, classifying workers into eight types by level
of education and potential experience. The top-left graph in
figure 2 shows the historical evolution of the log of the wages
of all types relative to the wage of high school dropouts with
less than twenty years of potential experience. Clearly, there
are patterns in the evolution of wages not captured by the clas-
sification into just two types. In particular, inequality across
subtypes is rising over time, but in a nonlinear manner.
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FIGURE 2.—LOG RELATIVE WAGES IN THE UNITED STATES: ACTUAL EVOLUTION AND COUNTERFACTUAL CHANGES

Log wages of different types of workers relative to wages of high school dropouts with less than twenty years of experience. The top left panel shows the actual historical evolution of relative wages, whereas the
remaining panels show predicted counterfactual wages holding demand constant, based on the historical evolution of relative labor supply and alternative estimators of demand. Details are discussed in section IIIA.

The remaining graphs in this figure show the predicted
(counterfactual) evolution of wages as implied by alternative
estimates of labor demand (based on the state panel) and the
historical evolution of labor supply (based on the national
time series). Table D.1 in the online appendix shows the cor-
responding coefficient estimates.

The top-right graph of figure 2 shows counterfactual wages
as implied by the two-type CES model. For this model, by
construction, relative wages of subtypes remain fixed. The
rising supply of college graduates, combined with the esti-
mated inverse elasticity of −0.06, implies a modest compres-
sion of relative wages over time. The actually observed rising
inequality would accordingly be due to demand factors.

The bottom-left graph is based on OLS estimation of the
unrestricted model. These estimates suggest, as does the
structural model, that labor supply changes have induced a
compression of wages over the initial three decades of our pe-
riod. Some additional patterns emerge, however. First, shifts
in labor supply induced a widening of inequality over the
most recent two decades. Second, these shifts also induced,
over the initial three decades, a compression of wages be-
tween different workers with high school diplomas or less
and a widening between those with more than a high school
education. These effects appear to be reversed more recently.

The bottom-right graph is based on our preferred empiri-
cal Bayes estimator. As suggested by theory and confirmed
by visual inspection, these counterfactual predictions inter-
polate between those of the structural model and those of
the unrestricted model. They are designed to balance bias
and variance in a data-driven way. The predicted counter-
factual changes of wages derived from these estimates are
qualitatively similar to the unrestricted model but of reduced
magnitude.

The estimated τ̂2, our measure of model fit, is of a some-
what larger magnitude than the variance of the OLS co-
efficient estimates. This implies some, but not excessive,
shrinkage toward the restricted estimates, thus leading to
qualitatively similar conclusions of unrestricted and empir-
ical Bayes predictions. This also suggests that the two-type
CES model does not provide a particularly good fit to our
panel data.

B. Consumer Demand and the Slutsky Condition

In our second application, we consider consumer choice
and the restrictions on compensated demand implied by util-
ity maximization. In this application, we build on a rich lit-
erature on demand estimation, and more specifically on the
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recent contributions of Dette et al. (2016) and Blundell et al.
(2017).5 Utility maximization by consumers implies that the
matrix of slopes of compensated demand is symmetric and
negative semidefinite. Consider quantile demand functions,
where quantiles are across a population of consumers with
arbitrary preference heterogeneity. Dette et al. (2016) have
shown that negative semidefiniteness of compensated de-
mand slopes holds not only for individual demand functions
but also for quantile demand functions.

This application involves high-dimensional parameters to
the extent that we are interested in estimating demand elastic-
ities at many different price and income levels. In this appli-
cation, the theoretical restrictions that we propose shrinking
to implies negative semidefiniteness of compensated quantile
demand elasticities—in particular, nonpositive compensated
own price elasticities.

B.1 Setup.

Suppose that we have data on a set of consumers i =
1, . . . , n, where we observe the log quantity Yi of a good
(gasoline, in our application) purchased by each consumer i.
Consumer i is faced with a price Pi for the good under consid-
eration and has income (total expenditures) Wi. Our goal is to
estimate the price elasticity of demand for gasoline at multi-
ple price and income levels. To simplify our discussion, we
assume that prices and incomes are statistically independent
of unobserved preference heterogeneity across consumers.
Controlling for covariates or using control functions as in Im-
bens and Newey (2009) would yield immediate extensions to
the endogenous case.

Unrestricted estimator. Let qπ(p, w) be the π quantile of
Yi given Pi = p,Wi = w, where the quantile is across the dis-
tribution of consumers i and across the distribution of prices
for other goods. Our goal is to estimate the (uncompensated)
price elasticity β

p
j of the quantile demand function qπ(p, w)

at a series of price levels p1, . . . , pJ and a given income level
w, as well as the corresponding income elasticity βw

j :

β
p
j = ∂ log qπ(p j, w)

∂ log p
, βw

j = ∂ log qπ(p j, w)

∂ log w
.

We can get an unrestricted estimator of the price elasticity
β

p
j and the income elasticity βw

j using local linear quantile
regression,

(̂α j, β̂
p
j , β̂

w
j ) = argmin

a,bp,bw

∑
i

Kh(log Pi − log p j, logWi − log w)

· ρπ(Yi − a − bp · (log Pi − log p j ) − bw

· (logWi − log w)), (20)

5In another recent contribution to this literature, Hausman and Newey
(2016) discuss a partial identification approach based on theoretical restric-
tions.

where Kh is a kernel function of bandwidth h (we use the
Epanechnikov kernel) and ρπ(e) = (π − 1(e < 0)) · e.6 We
estimate the variance V of β̂ = (̂βp

j , β̂
w
j )J

j=1, jointly across
all j, using the bootstrap. The variance of α̂ j is negligible
relative to V under standard asymptotics, which is also true
numerically in our application.

Negative compensated demand slopes. Recall the classic
consumer choice problem, as discussed in chapter 3 of Mas-
Colell, Whinston, and Green (1995). Let �X i be the k vector of
goods demanded by consumer i, whereYi = log Xi1 and�Pi the
corresponding k vector of prices. Denote Pi = �Pi1. Assume
that �X i = �X i(�Pi,Wi), where

�X i(�P, w) = argmax
x

ui(x) s.t . x · �P ≤ w,

where ui is a continuous and locally nonsatiated utility func-
tion that represents a strictly convex preference relation.
Define

Si(�P, w) := ∂�P
�X i(�P, w) + ∂w

�X i(�P, w) · �X i(�P, w)′.

The k × k matrix Si(�P, w) collects the slopes of compen-
sated (Hicksian) demand for consumer i. By propositions
3.G.2 and 3.G.3 in Mas-Colell et al. (1995), the matrix
Si(�P, w) is negative semidefinite, and symmetric, and it sat-
isfies S(�P, w)�P = 0. Negative semidefiniteness implies, in
particular, that the diagonal elements of Si(�P, w), correspon-
ding to the compensated own-price elasticities of demand, are
nonpositive.

Absent restrictions on heterogeneity, it is not possible to
identify the slopes of any individual consumer’s demand
function. With exogeneous variation of P and w, we can,
however, identify quantiles qπ(p, w) of demand for good 1
across consumers given the price of good 1 and given income.
Under some regularity conditions, theorem 1 in Dette et al.
(2016) implies that

Sπ,1(p, w) := ∂pqπ(p, w) + ∂wqπ
1 (p, w) · qπ(p, w) ≤ 0.

Underlying this result is the fact that the slopes of the quantile
demand function qπ(p, w) are equal to the average of indi-
vidual demand slopes conditional on Xi1(p, w) = qπ(p, w).
Rewritten in terms of elasticities, we get the inequality

∂log p1 log qπ(p, w) + ∂log w log qπ(p, w)

· qπ(p, w)p/w ≤ 0. (21)

This is the quantile analog of the condition that compensated
own-price elasticities are negative. Equation (21) is the key
theoretical restriction that we use in this section in the con-
struction of our empirical Bayes estimator.

6For implementation of quantile regression, we use the code provided by
Koenker (2005).
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B.2 Empirical Bayes Estimation.

Written in terms of the slope parameters of our quan-
tile regressions, equation (21) can be expressed as β =
(βp

j , β
w
j )J

j=1 ∈ B0,

B0 = {b : bp
j + bw

j · (α j p j/w) ≤ 0 ∀ j}. (22)

We estimate β using the empirical Bayes estimator β̂EB,
which is constructed as follows. This estimator shrinks the
unrestricted estimator β̂ toward β̂0 ∈ B0. The hyperparame-
ter τ2 is chosen to minimize Stein’s unbiased risk estimate
(SURE):

β̂0(τ2) = argmin
b0∈B0

(̂β − b0)′ · (τ2I + V̂ )−1 · (̂β − b0)

β̂EB(τ2) = β̂0(τ2) +
(

I + 1

τ2
V̂

)−1

· (̂β − β̂0(τ2))

g(̂β) = β̂ − β̂EB(τ2)

SURE(τ2) = ∥∥g(̂β)
∥∥2 + 2 · trace

(∇g(̂β) · V̂
)

τ̂2 = argmin SURE(τ2)

β̂EB = β̂EB (̂τ2). (23)

Local linear quantile regression, which we use in the first
stage, also relies on shrinkage. This first stage shrinks to-
ward smooth functions, with more shrinkage for larger band-
widths. In principle, the bandwidth h and our hyperparameter
τ2 could be chosen jointly to optimize estimator performance.
In our application, however, we rely on a rule of thumb to
choose h and focus on a conditionally optimal choice of τ2.

B.3 Empirical Application.

We implement this approach in order to estimate the price
and income elasticity of gasoline demand. We use the data
and sample construction of Blundell et al. (2017); details can
be found in their discussion, which we briefly summarize
here. The data are from the 2001 National Household Travel
Survey (NHTS). Heterogeneity is reduced by restricting the
sample to households with a white respondent, two or more
adults, at least one child under age 16, and at least one driver.
Households in the most rural areas and in Hawaii are dropped,
as are households with missing relevant variables or without a
gasoline-based vehicle. The resulting sample contains 3,640
observations.

We first present unrestricted estimates using local linear
quantile regression, with bandwidths equal to the standard
deviation of log price and log income, respectively, and with
log p j ranging over eighty grid points in the observed range
of values for log price. The income levels w considered are
at the .25, .5, and .75 quantiles of the income distribution in
the sample. We focus on the median demand function, corre-

sponding to π = .5. For the local linear quantile regressions,
we choose the bandwidth for both log p and log w equal to
their respective sample standard deviations. The joint vari-
ance of the resulting estimates is estimated using the boot-
strap, resampling 1,000 times.

Figure 3 plots the resulting estimates for log gasoline de-
mand, the budget share of gasoline, the price elasticity βp, and
the compensated price elasticity β

p
j + βw

j · (α j p j/w), each as
a function of price p j . The figure also shows 95% confidence
bands, based on the bootstrapped standard errors. The esti-
mates for log demand shown are similar to the unrestricted
estimates of figure 1 in Blundell et al. (2017), where they
use spline regression instead of local linear regression. Our
estimates are somewhat larger than the estimates from the
literature reviewed in Hoderlein and Vanhems (2010). This
is not surprising since for expositional reasons, we are not
attempting to address the endogeneity of prices here, which
might be responsible for these differences (see section V in
Blundell et al., 2017).

The budget share (α j p j/w) of gasoline among total expen-
ditures is fairly small for most price and income levels (the
median budget share equals 0.026), and the income elasticity
βw

j is less than .5 in most cases, so that the compensated elas-
ticity is quite close to the uncompensated elasticity β

p
j . The

theoretical restriction implied by utility maximization is that
the compensated elasticity is nonpositive. This restriction is
violated for our unrestricted estimates for low and high price
levels for all income levels. The restriction is satisfied for our
unrestricted estimates at intermediate price levels.

Figure 4 again plots estimates of price elasticities and in-
come elasticities as a function of the price, for our three in-
come levels separately. This figure shows (a) unrestricted
estimates β̂ (the same as in figure 3), (b) restricted esti-
mates β̂0, subject to the theoretical restriction on compen-
sated price elasticities, and (c) empirical Bayes estimates
shrinking toward the theoretical restriction. The restricted es-
timates are equal to the unrestricted estimates for price levels
p j where the unrestricted estimates of compensated elastic-
ities are already nonpositive. The empirical Bayes estimates
are intermediate between the unrestricted and restricted es-
timates. The optimal shrinkage parameter τ2 is estimated
using SURE in order to minimimize mean squared error.
We obtain estimates of 0.48, 0.32, and 0.38 for low, middle,
and high incomes, respectively. This results in estimates that
are closer to the restricted estimates than to the unrestricted
ones.

IV. The Empirical Bayes Estimator, Its Mean Squared
Error, and Uniform Dominance

In this section, we characterize the behavior of the empir-
ical Bayes estimator introduced in section II. We start with
some basic properties. We show, in particular, consistency
of the estimator, demonstrate how counterfactual predic-
tions combine theory and available evidence in a data-driven,
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FIGURE 3.—MEDIAN GASOLINE DEMAND

This figure shows unrestricted estimates of gasoline demand and the corresponding price and income elasticities across a range of price levels, based on local linear quantile regression. The thin lines are 95% confidence
bands based on the bootstrap.

intuitive way, and rewrite the estimator in canonical coordi-
nates. The rest of this section is dedicated to characterizing
the risk function (mean squared error, MSE) of β̂EB.

The desirability of using our proposed estimator β̂EB

hinges on the claim that it delivers more precise estimates
(estimates with lower MSE) relative to the unrestricted
estimator β̂. We justify this claim by characterizing the
mean squared error of β̂EB using two complementary ap-
proaches. The first approach uses an asymptotic approxima-
tion, assuming that the dimension J of β is large relative
to the dimension of the hyperparameters. For such high-
dimensional estimation settings, the variability of the esti-
mated hyperparameters (̂β0, τ̂2) is small relative to the vari-
ability of β̂. We can therefore approximate (̂β0, τ̂2), which
maximize the marginal likelihood, by (β0, τ2), which max-
imize the expected marginal likelihood. With this approx-
imation, β̂EB becomes a linear function of β̂, and we can
write its MSE as a simple sum of variance and squared bias
terms.

The second approach uses Stein’s unbiased risk estimate
(SURE) to prove uniform dominance relative to β̂ for fixed J .
This approach takes into account the variability of (̂β0, τ̂2).
This approach extends the classic proof of uniform domi-
nance of the James-Stein shrinkage estimator to the case of
shrinkage toward more general linear equality and inequality
restrictions.

These two approaches toward characterizing the MSE of
our estimator are complementary and nonnested. While the
first approach relies on a large-J approximation, it does not
require normality of β̂or restrict the form ofV = Var(̂β) or the
form of the theoretical restrictions B0. The second approach
does not rely on approximations, but it requires normality of
β̂, and we restrict our attention to the normalized case V = I .

Recall the form of the estimator introduced in section II,

(̂β0, τ̂2) = argmin
b0∈B0,t2

log
(
det(�(t2, V̂ ))

)+ (̂β − b0)′

· �(t2, V̂ )−1 · (̂β − b0),
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FIGURE 4.—EMPIRICAL BAYES ESTIMATOR OF MEDIAN GASOLINE DEMAND ELASTICITIES

This figure shows unrestricted, restricted, and empirical Bayes estimates of gasoline demand, where empirical Bayes shrinks unrestricted estimates toward the restriction of nonpositive compensated price elasticities.

B0 = {b : R1 · b = 0, R2 · b ≤ 0},

β̂EB = β̂0 +
(

I + 1

τ̂2
V̂

)−1

· (̂β − β̂0), (24)

where β̂, V̂ , and B0 are known and �(τ2, V̂ ) = τ2 · I + V̂ .
We consider this estimator for the remainder of this section
and assume throughout that Eβ[̂β] = β (the unrestricted es-
timator is unbiased) and Varβ (̂β) = V = V̂ (the variance is
known). We use subscript β to emphasize that expectation
and variance are taken for a given, nonrandom β over the
sampling distribution of β̂. We do not impose normality of β̂

until section IVC.

A. Consistency and Data-Driven Predictions

The empirical Bayes estimator of β is consistent as sample
size n goes to infinity. If V̂ →p 0; then β̂EB and β̂ become
asymptotically equivalent. Consistency of β̂EB therefore fol-
lows immediately from consistency of unrestricted estima-
tion. This contrasts with the inconsistency of restricted esti-
mators in the misspecified case (β /∈ B0), which converge to
some β0 ∈ B0.

Proposition 1 (Consistency). Consider the empirical Bayes
estimator defined in equation (24). Assume that β̂ →p β and
V̂ →p 0 as n → ∞. Then β̂EB →p β as n goes to infinity.
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The proof of this proposition and all the following results
can be found in supplementary appendix A. The proof of
consistency relies on the fact that β̂EB ≈ β̂ if V̂ ≈ 0.

The formula for β̂EB given in equation (24) shows that
the empirical Bayes estimator interpolates between the un-
restricted estimator β̂ and the structural estimator β̂0. Sup-
pose we are interested in making a prediction of the form
ŷ = x · β̂EB. Heuristically, we would like our prediction to
be based on the data alone (neglecting the structural model)
whenever the data by themselves do allow us to make a pre-
cise prediction. When a prediction of counterfactuals based
on the data alone would be imprecise, we would like to
leverage the theoretical model. The following proposition
shows that this is exactly how the empirical Bayes estimator
behaves.

Proposition 2 (Counterfactual Predictions). Consider the
empirical Bayes estimator defined in equation (24). Consider
the prediction at x, ŷ = x · β̂EB, and assume that V̂ is non-
singular. Then

∣∣̂y − x · β̂
∣∣ ≤

√
xV̂ x

τ̂
· ‖̂β‖,

and
∣∣̂y − x · β̂0

∣∣ ≤ τ̂ ·
√

xV̂ −1x · ‖̂β‖.

The first inequality of proposition 2 tells us that empir-
ical Bayes predictions are close to unrestricted predictions
whenever the standard deviation of the latter,

√
xV̂ x, is small

relative to the measure of model fit τ̂. The second inequality
tells us that empirical Bayes predictions are close to predic-
tions using the structural model when the reverse situation
holds. To gain intuition for this result, rearrange equation
(24):

β̂EB = β̂ + V̂ · (̂τ2 · I + V̂
)−1 · (̂β0 − β̂).

Consider a point x such that x · V̂ · x′ ≈ 0, which implies
x · V̂ ≈ 0. For such a point x, we get

x · β̂EB = x ·
[̂
β + V̂ · (̂τ2 · I + V̂

)−1 · (̂β0 − β̂)
]

≈ x · β̂.

This suggests that for points x with small variance of the un-
restricted prediction ŷ = x · β̂, the predicted value ŷ using
empirical Bayes is close to the predicted value using un-
restricted estimation—and thus also close to the predicted
value using the true coefficients β, as the latter is estimated
with small variance. This insight is relevant in particular
when considering historical counterfactuals (How much did
past changes in labor supply affect wage inequality?), that
might rely on variation which is actually observed in the
data.

Canonical coordinates. The variance matrix V̂ need not
be diagonal in general. This matrix is, however, symmetric
and positive semidefinite. We can therefore always find some
orthonormal matrix O such that

V̂ = O · diag(v j ) · O′.

Expressing both β̂ and β̂EB in terms of coordinates corre-
sponding to the columns of O, it is then without loss of gen-
erality to assume V̂ = diag(v j ). Quadratic estimation error is
invariant under such an orthonormal change of coordinates
as well. Under the assumption that V̂ = diag(v j ), the empir-
ical Bayes estimator is given by a component-wise weighted
average of β̂0 and β̂:

β̂EB
j =

(
v j

τ̂2 + v j

)
· β̂0

j +
(

τ̂2

τ̂2 + v j

)
· β̂ j . (25)

The hyperparameters β0 and τ2 are estimated by maximizing
the marginal log likelihood, which now simplifies to

(̂β0, τ̂2) = argmin
b0∈B0,τ2

1
J ·
∑

j

⎛⎜⎝log(τ2 + v j ) +
(̂
β j − b0

j

)2

τ2 + v j

⎞⎟⎠.

(26)

Writing β̂EB in canonical coordinates makes transparent
how our estimator differs from the family of estimators that
Hansen (2016) considered which, in our setting take the form(

1 − λ̂
) · β̂0 + λ̂ · β̂,

so that each component of β̂ is shrunk by the same factor
λ̂. Our estimator allows for a more flexible form of shrink-
age, where precisely estimated components of β̂ (components
with small v j) are not shrunk by much, whereas imprecisely
estimated components are shrunk substantially toward the
predictions of the theoretical model.

B. Large J Characterization of the MSE

One of the main arguments for using an empirical Bayes
approach such as the one proposed in this paper is that it
performs well in terms of risk (MSE). We might expect such
favorable performance since our estimator is a close relative
of the James-Stein shrinkage estimator, which is well known
to uniformly dominate the unrestricted estimator for dimen-
sion J ≥ 3.

We now proceed to characterize the risk of our estimator
for large J . The key argument in our characterization is that
variability of (̂β0, τ̂2) can be neglected for large J when calcu-
lating the MSE. We formalize this argument in theorem 1. We
then discuss the properties of the asymptotic approximation



HOW TO USE ECONOMIC THEORY TO IMPROVE ESTIMATORS 695

to risk obtained in this way and compare it to an oracle-
optimal choice of (β0, τ2).

Mean squared error. Our goal is to characterize the
squared error of the empirical Bayes estimator, SE (̂βEB, β) =
1
J ‖̂βEB − β‖2, and the corresponding MSE: given β,

MSE (̂βEB, β) = Eβ

[
1
J ‖̂βEB − β‖2

]
= Eβ

⎡⎣ 1
J ·

J∑
j=1

(̂
βEB

j − β j
)2

⎤⎦ .

The mean squared error is the most common criterion for
evaluating the performance of estimators in the theory of
point estimation (see chapter 7 in Casella & Berger, 2001).
The MSE is equal to the variance of the estimator plus the
square of its bias. Estimators with good performance in terms
of MSE trade off bias and variance. This is familiar from
nonparametric estimation in econometrics and central to the
more recent literature on machine learning. Depending on
context, other loss functions might sometimes be appropriate.

In order to obtain our desired characterizations, we con-
sider an asymptotic approximation where J becomes large,
such that β̂0 and τ̂2 converge in probability. Let β̂EB(b0, τ2)
be the empirical Bayes estimator for given (nonrandom) hy-
perparameters (b0, τ2),7 and let MSE(̂βEB(b0, τ2), β) be the
corresponding mean squared error.

Assume without loss of generality that V̂ = V = diag(v j ),
so that our estimator takes the form of equations (25) and (26).
With this assumption, the MSE given b0 and τ2 can be written
as a sum of variance and squared bias terms:

MSE(̂βEB(b0, τ2), β) = 1
J

·
J∑

j=1

[(
τ2

τ2 + v j

)2

· v j +
(

v j

τ2 + v j

)2

· (β j − b0
j )

2

]
.

(27)

Define (β0, τ∗2) to be the maximizer of the expected marginal
log likelihood or, equivalently, the minimizer of the expecta-
tion of equation (26):

(β0, τ∗2) = argmin
b0∈B0,τ2

1
J

·
J∑

j=1

⎡⎢⎣log(τ2 + v j ) +
(
β j − b0

j

)2
+ v j

τ2 + v j

⎤⎥⎦ .

7Actually, β̂EB(b0, τ2 ) is the Bayes estimator for the prior β ∼ N (b0, τ2I ).

The following theorem shows that as J becomes large, we can
approximate the loss (squared error) of the empirical Bayes
estimator β̂EB by the risk (MSE) of the infeasible estimator
using the limiting pseudo-true values of (β0, τ∗2). The theo-
rem is based on an assumption that β, V , and B0 are drawn
from a random coefficient distribution as J goes to infinity.
We state and discuss this assumption immediately after stat-
ing our result.

Theorem 1. Consider the empirical Bayes estimator of
equations (25) and (26). Under assumption 1,

SE (̂βEB, β) − MSE (̂βEB(β0, τ∗2), β) →p 0 as J → ∞.

Assumption 1 (random coefficient sequence). For the esti-
mator defined by equations (25) and (26), assume that B0 is
of the form

B0 = {b0 : b0 = M ′ · c, S · c ≤ 0},
where c is of dimension k, M = (M1, . . . , MJ ) is of di-
mension k × J , and S has k columns. The components
(̂β j, β j, v j, Mj ) of (̂β, β, diag(v ), M ) are i.i.d. draws from
some distribution P. P is such that ‖(β j, v j, Mj )‖ < C for
some fixed constant C with probability 1. The estimator β̂

satisfies E [̂β|β,V, M] = β and Var(̂β|β,V, M ) = V . The dis-
tribution P, the constraint matrix S, and the dimension k does
not depend on J .

Discussion. Our goal in this section is to give a simple
characterization of the MSE of our proposed estimator, based
on the variance and bias-squared formula of equation (27),
and based on the pseudo-true hyperparameters (β0, τ∗2). The-
orem 1 states that the conditions of assumption 1 are sufficient
to allow us to do so as long as J is large.

In order to state results of this form, we need to spell out
what happens to the components of β, V , and B0 as J in-
creases. The easiest way to do this is in terms of the random
coefficient setup of assumption 1. Note that this assumption
also implies that the dimension k of the set B0 stays con-
stant as J increases. This is achieved by reparameterizing,
and writing β = M ′c for fixed c of dimension k and M a se-
quence of random vectors. An alternative to the random co-
efficient setup would be to consider deterministic sequences
(β j, v j, Mj ) and to impose constraints on their behavior. This
is the approach taken by Xie, Kou, and Brown (2012), for
instance.

In related work (Abadie & Kasy, forthcoming), we provide
stronger results of the form of theorem 1, proving uniform risk
consistency of tuning parameter choice using criteria such as
cross-validation or Stein’s unbiased risk estimate. The uni-
form risk consistency is toward estimators using an infea-
sible oracle optimal choice of tuning parameters. Theorem
1, by contrast, shows point-wise risk consistency toward the
pseudo-true choice of (β0, τ∗2), which need not be optimal.
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Comparison to unrestricted and restricted estimators. Re-
call that we obtain unrestricted estimation and structural
estimation as limiting cases of our proposed estimator,
where τ2 → ∞ corresponds to unrestricted estimation and
τ2 → 0 to restricted estimation. The mean squared error
MSE(̂βEB(b0, τ2), β) for given values of (b0, τ2) is equal to
the sum of a variance term and a squared bias term (see equa-
tion [27]). The MSE of the unrestricted estimator contains
only variance terms, MSE (b0, ∞) = 1

J

∑
j v j .

Under the asymptotic sequence of assumption 1, the
MSE of the structural estimator converges to an aver-
age containing only bias terms, minb0∈B0 MSE (b0, 0) =
minb0∈B0

1
J

∑
j (β j − b0

j )
2.

By theorem 1, it then follows immediately that for large
enough J , our estimator has lower MSE than the unrestricted
estimator if

MSE (̂βEB(β0, τ∗2), β) < 1
J ·

J∑
j=1

v j,

and larger MSE if this inequality is reversed. Our estimator
has lower MSE than the restricted estimator for large J if

MSE (̂βEB(β0, τ∗2), β) < min
b0∈B0

1
J ·

J∑
j=1

(β j − b0
j )

2,

and larger MSE if this inequality is reversed.

The role of heteroskedasticity. The infeasible oracle-
optimal choice of (b0, τ2) would minimize MSE (̂βEB(β0,

τ∗2), β) and automatically yield an estimator that dominates
structural and unrestricted estimation uniformly.8 The first-
order condition for the optimal τ×2 that minimizes the MSE
is

J∑
j=1

[
v2

j

(τ×2 + v j )3
· (τ×2 − (β j − β0

j )
2)] = 0.

The empirical Bayes estimate (̂β0, τ̂2), by contrast, maxi-
mizes the marginal log likelihood and, for large J (β0, τ∗2),
approximately maximizes the expected log likelihood. The
first-order condition characterizing τ∗2 is

J∑
j=1

[
1

(τ∗2 + v j )2

(
τ∗2 − (β j − β0

j )
2)] = 0.

How does τ∗2 relate to the optimal choice of τ×2? As can
be seen from the first-order conditions, both are weighted
averages of (β j − β0

j )
2. The weights differ slightly, however.

Minimization of the MSE assigns a slightly larger weight to
draws j with smaller values of v j , relative to to maximization

8This can achieved for large J by choosing hyperparameters minimizing
SURE (see Abadie & Kasy, forthcoming).

of the expected log likelihood. For homoskedastic settings
(v j constant) or settings where v j and β j vary independently
across j, the two objectives do in fact coincide. In these cases,
it is immediate that our empirical Bayes estimator dominates
both unrestricted and restricted estimation for large enough J .
It is also possible to reverse the dominance of empirical Bayes
relative to unrestricted estimation, however, by introducing
strong correlation across j between β j and v j . Suppose in
particular that J is even, that B0 = {0}, and that

v j = β j = 0 for j odd, v j = β j = 2 for j even.

Then τ∗2 = 0 and MSE (̂βEB(β0, τ∗2), β) = 2 while
MSE (β0, ∞) = 1 so that unrestricted estimation has lower
MSE than empirical Bayes for large samples. Restricted
estimation dominates empirical Bayes for small enough
samples if β ∈ B0. Note, however, that when β ∈ B0, the
two estimators become equivalent for large enough J since
τ̂2 →p 0.

C. Fixed J Characterization of the MSE

The previous section characterized the MSE of β̂EB under
the assumption that sampling variability of the hyperparam-
eters (̂β0, τ̂2) is negligible relative to the variance of β̂. We
formally showed that this is a valid assumption for the case
for large J under a random coefficient sequence. The advan-
tage of this characterization is that it yields simple and easily
interpreted expressions for the MSE. The disadvantage is that
it relies on an approximation that might be misleading when
J is too small.

In this section, we characterize the MSE taking into
account the sampling variability of the hyperparameters
(̂β0, τ̂2) but restrict our attention to the homoskedastic and
normally distributed case with canonical coordinates for the
restrictions imposed by B0. In this section, J is fixed and β

is nonrandom. The results in this section generalize a classic
proof by Stein (1981), showing the uniform dominance of
James-Stein shrinkage, to our estimator.

Homoskedastic case, canonical coordinates. We assume
for the rest of this section that V = I and that the restrictions
imposed by B0 take the canonical form

B0 = {b : b1, . . . , bK = 0, bK+1, . . . , bL ≤ 0}.
These assumptions are restrictive. Homoskedasticity elimi-
nates the weighting issues discussed in the previous section.
The form of the equality restrictions in the definition of B0

is without loss of generality. The assumed form of the in-
equality restrictions is restrictive whenever L − K > 1, but
our derivation could easily be generalized to more general
sets B0. Denote

R =
K∑

j=1

β̂2
j +

L∑
j=K+1

max(̂β j, 0)2.
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Under these assumptions, the empirical Bayes estimator of
equation (24) takes the form

β̂0 =

⎧⎪⎨⎪⎩
0 j = 1, . . . K

max(̂β j, 0) j = K + 1, . . . , L

β̂ j j = L + 1, . . . , J

τ̂2 = max
(

1
J R − 1, 0

)
β̂EB

j =

⎧⎪⎨⎪⎩
τ̂ 2

τ̂ 2+1 · β̂ j j = 1, . . . K

or j = K + 1, . . . , L and β̂ j > 0,

β̂ j else.

(28)

This estimator linearly shrinks the components 1 through K ,
corresponding to the equality restrictions imposed by B0. This
estimator does not shrink the components L + 1 through J .
This estimator shrinks the components K + 1 through L if
and only if the unrestricted estimates violate the inequality
restrictions imposed by B0.

Stein’s unbiased risk estimate (SURE). A celebrated result
by Stein (1981) provides a characterization of the MSE of
arbitrary estimators of the form β̃ = β̂ + g(̂β), whenever β̂ ∼
N (β, I ) and g is almost differentiable.9 By theorem 1 of Stein
(1981), the risk function MSE of β̃ as an estimator of β is
given by

MSE (β̃, β) = 1 + 1
J Eβ

[‖g(̂β)‖2 + 2∇ · g(̂β)
]
, (29)

where ∇ · g = ∑
j ∂ jg j is the divergence of g, and the expec-

tation is taken for a fixed β. The risk function of β̂ itself as
an estimator of β is given by MSE (̂β, β) = 1. Stein’s result
immediately implies that β̃ uniformly dominates β̂ in terms
of MSE if

‖g(̂β)‖2 + 2∇ · g(̂β) < 0 (30)

for all β̂. Note that this is a sufficient but not necessary con-
dition for uniform dominance.

SURE for our estimator. We now apply Stein’s general re-
sult to our estimator, as defined in equation (28).

Theorem 2. Assume that β̂ ∼ N (β, I ), and consider the esti-
mator β̂EB as defined in equation (28). Then MSE (̂βEB, β) =
1 + Eβ [�], where

� =
{

1
R · [J + 4 − 2J∗] R > J

1
J · [R − 2J∗] else,

(31)

9g is almost differentiable if there exists a function ∇g = (∂1g, . . . , ∂J g)
such that we can write g(b′′ ) − g(b′ ) = ∫ b′′

b′ ∇g(b)db for all b′, b′′ and arbi-
trary paths of integration between these two points.

R = ∑K
j=1 β̂2

j + ∑L
j=K+1 max(̂β j, 0)2, and J∗ = K +∑L

j=K+1 1(̂β j > 0).

By Stein’s result, β̂EB uniformly dominates β̂ in terms of
MSE if ‖g(̂β)‖2 + 2∇ · g(̂β) < 0 for all β̂. By equation (31),
the empirical Bayes estimator therefore has uniformly lower
risk than the unrestricted estimator for all β if

J∗ > J/2 + 2,

where J∗ is the number of binding constraints imposed by B0.
Since J∗ ≥ K , this holds automatically if K > J/2 + 2, that
is, if there are enough equality restrictions. Note, however,
that the inequality restrictions also contribute to reducing risk
by increasing J∗ whenever the restrictions are binding.

Corrected degrees of freedom. We can improve risk uni-
formly by applying a degree of freedom corrections to the
estimation of τ̂2. Replacing, in particular, J by L − 2 in the
denominator of the expression defining τ̂2, we get

τ̂2 = max
(

1
L−2 R − 1, 0

)
,

‖g(̂β)‖2 + 2∇ · g(̂β)

=
{

L−2
R · [L + 2 − 2J∗] R > L − 2

R − 2J∗ else,

which is uniformly more negative than the corresponding
expression for our empirical Bayes estimator. To see this, note
that the quadratic expression x[x + 4 − 2J∗] is minimized at
x = J∗ − 2 ≥ L − 2. This estimator with corrected degrees
of freedom uniformly dominates the maximum likelihood
estimator if J∗ > L−2

2 , which holds automatically if 2K >

L − 2. This estimator shrinks less aggressively toward the
set B0 relative to the empirical Bayes estimator discussed
before.

V. Conclusion

We have proposed a general-purpose approach for using
economic theory in order to construct estimators. These esti-
mators perform particularly well when the empirical predic-
tions of the theory are approximately correct but perform no
worse than unrestricted estimators under moderate or large
violations of the theoretical predictions.

Our approach can be summarized as follows. First, obtain a
first-stage estimate of the parameters of interest that neglects
the theoretical predictions. This first-stage estimate will often
have a large variance. Second, assume that the true parameter
values are equal to parameter values conforming to the the-
oretical predictions (the structural model), plus some noise
of unknown variance. This assumption yields a family of
priors for the parameters of interest. The priors are indexed
by hyperparameters, namely, the variance of noise and the
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parameters of the structural model. Third, use the marginal
likelihood of the data given the hyperparameters to obtain es-
timates of the latter. The estimated variance of noise, in par-
ticular, provides a measure of model fit. Fourth, use Bayesian
updating conditional on the estimated hyperparameters and
the data in order to obtain estimates of the parameters of in-
terest. We demonstrate how to implement this approach in
a variety of settings, constructing estimators that shrink to-
ward parameter sets consistent with economic theories, such
as structural models of labor demand, consumer demand sat-
isfying Slutsky conditions, general equilibrium models of as-
set markets, abstract theories of economic decision making,
or structural discrete choice models.

In a normal-normal setting with linear equality and in-
equality restrictions implied by economic theory, our ap-
proach leads to particularly tractable and interpretable es-
timators. Theorems 1 and 2 provide characterizations of the
risk function of our estimator. Theorem 1 is based on an
asymptotic approximation that implies that the variability of
the estimated hyperparameters is negligible relative to the
variability of the estimates of interest. This assumption is
justified as long as the dimension of the parameters of inter-
est is large relative to the dimension of the hyperparameters.
Theorem 2 uses Stein’s unbiased risk estimate to provide a
characterization and proof of uniform dominance that does
not rely on this asymptotic approximation.
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