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1 Introduction

This chapter discusses the regulation of artificial intelligence (AI) from the vantage point of

political economy. By “political economy” I mean a perspective which emphasizes that there

are different people and actors in society who have divergent interests and unequal access to

resources and power. By “artificial intelligence” I mean the construction of autonomous systems

that maximize some notion of reward. The construction of such systems typically draws on the

tools of machine learning and optimization.

AI and machine learning are used in an ever wider array of socially consequential settings.

This includes labor markets, education, criminal justice, health, banking, housing, as well as the

curation of information by search engines, social networks, and recommender systems. There is a

need for public debates about desirable directions of technical innovation, the use of technologies,

and constraints to be imposed on technologies. In this chapter, I review some frameworks to

help structure such debates.

The discussion in this chapter is opinionated and based on the following premises:

1. AI concerns the construction of systems which maximize a measurable objective (reward).

Such systems take data as an input, and produce chosen actions as an output.

2. Maximization of a singular objective by autonomous systems is taking place in a social

world where different individuals have divergent objectives. These divergent objectives

might stand in conflict. Evaluated in terms of these divergent objectives, the actions and

policies chosen by AI systems (almost) always generate winners and losers.

3. Going from individual-level assessments of gains and losses to society-level assessments

requires aggregation, which trades off gains and losses across individuals. In order to

normatively evaluate AI, as well as proposed regulations, we need to explicitly assess the

∗This chapter has benefitted from feedback by and discussions with numerous people, including Rediet Abebe,
Daron Acemoglu, David Autor, Carlos Gonzalez Perez, Lukas Lehner, Sanaz Mobasseri, and the participants of
the Oxford Machine Learning and Economics reading group and the MD4SG inequality group.
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resulting individual gains and losses, and explicitly aggregate these gains and losses across

individuals.

4. The social issues raised by AI, including questions of fairness, privacy, value alignment,

accountability, and automation, can only be resolved through democratic control of algo-

rithm objectives, and of the means to obtain them - data and computational infrastructure.

Democratic control requires public debate and binding collective decision-making, at many

different levels of society.

My discussion draws on concepts and references from machine learning, economics, and social

choice theory. I touch on several debates regarding the ethics and social impact of artificial

intelligence, without any pretension of doing justice to the vast and growing literature on these

topics; instead my goal is to give an internally coherent and principled account.

Agenda and roadmap The remainder of this chapter is divided into two parts. Section 2

reviews background material required to understand the political economy of AI. This includes a

discussion of how the technology works (Subsection 2.1), who wins and loses from the deployment

of these technologies, and how to evaluate corresponding gains and losses (Subsection 2.2), and

who makes decisions about AI’s objectives and controls the means of prediction (Subsection

2.3). Section 3 then draws on this background material to provide a unified discussion of several

issues that have received attention in debates regarding the ethics, social impact, and regulation

of AI.

In 2.1, I provide a brief overview of some subfields of AI and machine learning, including

supervised learning and deep neural nets, targeted treatment assignment, multiarmed bandits,

and reinforcement learning. I emphasize the objective functions maximized by the algorithms

developed in these different subfields. In 2.2, I then discuss a normative framework based

on the evaluation of individual welfare, and its aggregation via social welfare functions. This

normative framework, which underpins social choice theory, welfare economics, and much of

political philosophy, makes explicit the multiplicity of divergent objectives across people. I

argue that we should use this framework to evaluate the social impact of AI in terms of its

impact on the welfare of different people. In 2.3, I provide a brief review of debates about

agents of social change and democratic control. This complements the normative perspective of

social welfare analysis. I make the case that democratic control, at different levels of society, is

needed to align the objectives of AI with those of society at large.

In Section 3 I address several debates regarding the ethics, social impact, and regulation

of AI, including fairness, discrimination, and inequality (Subsection 3.1), privacy, data prop-

erty rights, and data governance (Subsection 3.2), value alignment and the impending robot

apocalypse (Subsection 3.3), explainability and accountability for automated decision-making

(Subsection 3.4), and automation and the impact of AI on the labor market and on wage in-

equality (Subsection 3.5). The subsections of Section 3 can be read independently from each

other.
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2 Background

2.1 AI and machine learning

AI in general, and machine learning in particular, are large and fast-growing fields, where new

approaches are gaining attention continuously. Many of the underlying principles, which build on

the fields of optimization and statistics, have however remained remarkably constant over time.

A grasp of these principles is essential for effective regulation of AI. In the following, I give a brief

high-level overview of some of the principles and approaches in machine learning.1 Throughout,

numbered equations are used to show different objective functions that are considered in different

branches of AI, and in economics.

AI as automated decision-making One of the leading textbooks on AI (Russell and Norvig

2016, chapter 2) defines AI as the construction of rational agents. Agents receive information

from their environment through perceptors (sensors), and act on their environment through

actuators. The agent program maps sequences of percepts into actions. A rational agent is then

defined as follows.

For each possible percept sequence, a rational agent should select an action that is

expected to maximize its performance measure, given the evidence provided by the

percept sequence and whatever built-in knowledge the agent has.

This general definition covers a wide range of different approaches to the construction of rational

agents. Of central importance for the present discussion is the performance measure or “reward”

– what is it that the AI is trying to maximize? I will argue that democratic debate and decision-

making needs to focus on the choice of such performance measures.

The leading approach to AI is based on machine learning, which will be the focus of the

remainder of my discussion. This differs from alternative approaches that dominated in the

past. One such alternative approach is the construction of “expert systems” which perform

automated logical reasoning based on knowledge databases that were hand-coded by human

experts. Machine learning, by contrast, leverages statistical inference, draws on (large) data-

sets, and automates knowledge accumulation as much as possible.

Supervised learning Supervised learning is concerned with the prediction of outcomes Y

given observable features X, for new data points (Shalev-Shwartz and Ben-David, 2014). This

paradigm includes regression, classification, and more generally prediction, and has a wide range

of applications, such as image recognition (predicting labels Y given images X), voice recognition

(predicting text Y given sound X), automatic translation (predicting text in one language Y

given text in another language X), evaluation of positions in a game (predicting the probability

of winning Y given a position X), etc.

1The review in this section draws on my lecture slides on the foundations of machine learning, available at
https://maxkasy.github.io/home/ML_Oxford_2022/.
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Applications of supervised learning in directly socially consequential settings include the

evaluation of job applicants (predicting performance measures Y given employee characteristics

X), bail setting for defendants in court (predicting future crime Y given defendant history X),

evaluation of credit applicants (predicting repayment probability Y given applicant characteris-

tics X), and evaluation of students applying to a university (predicting future test performance

Y given their resume X). Supervised learning is also used by search engines and social media

(predicting clicks Y for a given ad or entry and user with characteristics X), and recommender

systems (predicting ratings Y for a given movie and user with viewing history X).

Supervised learning methods are evaluated based on their average out-of-sample prediction

errors. It helps to introduce some notation. Let g(X) be the prediction, which depends on the

features X, where the function g has to be learned based on available observations (Xi, Yi). The

performance measure for supervised learning is given by the average prediction loss,

E[l(g(X), Y )], (1)

where l is the loss-function used to evaluate prediction errors, and E[·] denotes the average (ex-

pectation) over new draws (“out of sample”) of (X,Y ). A typical loss function for classification

problems is given by the classification error loss, for which l = 0 if and only if g(X) = Y , that

is, if the prediction is correct, and l = 1 otherwise. For prediction of continuous outcomes, a

typical loss function is the squared error, (g(X) − Y )2. The goal of supervised learning is to

find ways of choosing g based on available observations to minimize the average prediction loss;

this is called “training” or “estimation.”

The choice of a prediction method typically involves a tradeoff between approximation errors

(“bias”) and estimation errors (“variance”). Methods which obtain small loss l(g(Xi), Yi) for

all the available past observations i (“in sample”) might still obtain a large average prediction

loss for new data points (“out of sample”); this phenomenon is known as overfitting. Supervised

learning methods need to limit overfitting. A common way of achieving this balance, trading

off bias and variance, uses data splitting: The algorithm is run on one part of the data, and

its average prediction loss is estimated on another part of the data. The algorithm is then

fine-tuned to minimize the estimated average prediction loss.

Smaller prediction errors can be obtained with more observations i and richer predictive

features X, combined with more flexible models g. Many of the advances of machine learning in

the 21st century can be traced to improvements on these dimensions, along with corresponding

improvements in computer hardware.

Deep learning One particular approach to supervised learning is so-called deep learning

(Goodfellow et al., 2016), which uses artificial neural networks. This is the approach that has

achieved the most spectacular successes in recent years. In a nutshell, deep learning amounts

to using a particular class of functions g(X), which map input features X into predictions. In

deep learning, these functions are built from a combination of a very large number of more
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primitive functions, which are interpreted as neurons that map their arguments into an output

or “activation.” “Training” these neural networks amounts to finding a function g that achieves

small average prediction loss. Neural nets usually represent complicated non-linear functions

g, which implies that their training (finding an optimal g) involves difficult optimization prob-

lems. A lot of work has gone into the development of hardware and algorithms to solve these

optimization problems, in addition to fine-tuning specific “architectures” (functional forms for

g) that perform well on specific prediction problems.

Deep learning is especially successful in settings with very large data-sets, in terms of both the

richness of features X and the number of observations i. Trained neural nets might be thought of

as databases that encode the examples (Xi, Yi) on which they were trained; such neural networks

then interpolate between past examples to form predictions for new observations. It should be

noted that for smaller datasets with less rich features, deep learning is often less successful than

more traditional and simpler prediction models. This applies for instance to the datasets often

found in the social sciences and in applications in labor markets or education.

Targeted treatment assignment While prediction is a rich paradigm that has many appli-

cations, prediction is usually only an intermediate step in the context of automated decision-

making. In settings such as the evaluation of job applicants, bail setting for defendants in court,

evaluation of credit applicants, evaluation of students applying to a university, or curation of

search feeds, the goal is typically to make a decision W based on the observed features X (Kita-

gawa and Tetenov, 2018; Athey and Wager, 2021) – hiring, incarceration, approving credit,

admission to school, displaying a particular entry, etc.

Put differently, the problem is to find a treatment assignment policy W = h(X) which

maximizes some objective. For binary treatment W ∈ {0, 1}, a typical objective is

E[h(X) · (Y − c)]. (2)

The ideal treatment assignment for this objective treats everyone whose outcome Y exceeds

a threshold c – hire everyone with performance above the threshold, give credit to all with

repayment probability above the threshold, etc. As Y is not known for new applicants, this

ideal treatment assignment cannot be implemented. Automated treatment assignment might

instead use a supervised learning method g(X) to predict Y given observable features X. Based

on such a prediction, it is then optimal to treat everyone for whom the predicted outcome

exceeds the threshold, that is, h(X) = 1 if and only if g(X) ≥ c.
The attentive reader might have noted that the objective in Equation (2) is in fact a special

case of the objective in Equation (1), where we can set l(h(X), Y ) = −h(X)·(Y −c). What often

complicates matters, however, is that Yi might only be observed in the data whenever Wi = 1. A

bank, for instance, only knows re-payment probabilities for those who actually obtained credit,

but not for those who were denied. This partial observability potentially creates selection

biases, a topic to which much attention has been devoted in the literature on causal inference
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in econometrics and related fields (Imbens and Rubin, 2015).

Multiarmed bandits The methods discussed thus far are sometimes called “offline” meth-

ods. This refers to the fact that learning happens for a given, fixed dataset of (Xi, Yi). After

learning from such a dataset, a fixed prediction rule g(X) or treatment assignment rule h(X) is

implemented.

This contrasts with “online” settings, where decisions have to be made over time, and

decision-rules are updated as new data arrive. The canonical example of an online decision-

problem is the “multiarmed bandit” setting (Bubeck and Cesa-Bianchi, 2012). In the multi-

armed bandit setting, units i arrive over time, and the algorithm has to decide on their treatment

Wi. Then an outcome Yi is realized and observed, where Yi might be impacted by Wi. Drawing

on the past history of treatments and outcomes, the algorithm then decides how to treat the

next unit, and so on. For a given time horizon T , the goal is to maximize the average over time

of the outcomes Yi,

1

T

T∑
i=1

Yi. (3)

Typical settings where multiarmed bandits might be used include online advertisements (display

the content or layout W that generates the most clicks Y ), online price setting (set the price W

that generates the largest profits Y ), and clinical trials (assign the treatment W that maximizes

patient survival chances Y ).

The choice of treatment for a given unit serves two purposes in a multiarmed bandit setting.

First, the purpose of achieving good outcomes now, and second, the purpose of learning about

the effectiveness of alternative treatments, to achieve better outcomes in the future. That is,

there is a trade-off between “exploitation” – choosing good treatments now – and “exploration” –

learning for future treatment choices. Good algorithms find an (approximately) optimal balance

between these two goals, and thereby learn the optimal treatment quickly, achieving good average

outcomes Y .

A generalization of the basic multiarmed bandit setting is the contextual bandit setting,

which combines the bandit setting with the targeted treatment assignment problem. Contextual

bandits learn optimal targeting rules h(X) (e.g., what ads to show to which internet users,

or what treatment to assign to which kind of patient), again by trading off exploration and

exploitation. The features X are called the “context” for these treatment assignment decisions.

Reinforcement learning For contextual bandits, the features X of new observations do

not depend on past treatment assignment decisions. In many settings, however, past actions

affect current states. This is captured in the framework of Markov Decision Problems (Sutton

and Barto, 2018), where the last period action might impact the current state (but does not

have indirect effects into the future). Markov Decision Problems provide a general model of

goal-oriented interaction with an environment, under complete observability. The objective in
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Markov Decision Problems is again to maximize the stream of rewards, as in Equation (3).

One example of Markov Decision Problems are games such as Chess and Go. In such games,

most actions in most states do not generate a direct reward, but instead change the position X

of the board in a way that might impact the future reward Y , that is, the probability of winning

the game. Denote the expected future reward (or “value function”) in state X for action W by

Q(X,W ). The optimal action Wi in state Xi is the value W which maximizes Q(Xi,W ). We

can decompose the value function as

Q(Xi,Wi) = E[Yi +Q(Xi+1,Wi+1)|Xi,Wi], (4)

where the right hand side is a conditional expectation, that is, an average among all instances

with a given value of the current state Xi and current action Wi. This decomposition is know

as the Bellman equation. When choosing Wi, the algorithm has to consider both the effect on

the current Yi and the effect on future rewards Q(Xi+1,Wi+1), which is mediated by the effect

of Wi on Xi+1.

Reinforcement learning is concerned with Markov decision problems where the effect of

actions on both rewards and future states are unknown and have to be learned. A leading

approach directly learns the expected future rewards Y for a given state X and action W , that

is, the value function Q(X,W ). In a game such as Chess or Go, for instance, this approach

would directly predict the probability of winning given the state of the board X and the next

move W . Estimating the value function amounts to a recursive form of a supervised learning

problem, where we predict Yi + Q(Xi+1,Wi+1) given Xi,Wi. The value function captures, for

instance, the probability of winning for a given configuration of the Go board. Estimation of

value functions might leverage deep learning. Successful application of this “deep reinforcement

learning” approach has lead to breakthroughs in beating human masters at Chess and Go.

2.2 Social welfare

Having completed our brief review of AI (defined as automated decision-making), and machine

learning (the leading approach to AI), we next turn to a framework for the normative evaluation

of automated decision-making systems. This section loosely builds on the exposition of social

choice theory and theories of justice provided by Sen (1995) and Roemer (1998).2 I will discuss

a general framework for the evaluation of social welfare, which quantifies how “good” a given

society is, and some of the key questions that arise in this framework. This framework is

individualist in that it first evaluates the welfare of every individual under consideration, and

then aggregates to evaluate social welfare. Such a framework is consistent with many different

views about social justice; some exceptions will be mentioned below.

Social welfare is affected by the adoption of AI-based technologies, and by policies regulating

AI. A technology or policy is considered desirable if it increases social welfare. I introduce this

2This section also draws on Chapter 2 of my open online textbook Kasy (2016), available at http:

//inequalityresearch.net, where a more detailed discussion of the issues considered here can be found.
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framework here to provide a systematic way of evaluating the social impact and regulation of

AI. This framework emphasizes that in society there is a multiplicity of conflicting objectives

across individuals, which contrasts with the focus in machine learning on optimizing a singular

objective of a single agent.

How to define social welfare based on individuals’ welfare We evaluate social welfare

based on the welfare of a set of individuals i = 1, . . . , n. This already raises the first set of difficult

questions: Who is to be included in this set of individuals? Many discussions implicitly assume

we are considering a given “society.” But does that mean everybody of a certain citizenship,

or everybody living in a certain territory? Why not all living human beings; should humans of

another country count for nothing? And what about future generations? What about animals?

Given the set of individuals, we next need to decide how to measure their welfare. The goal is

to assign a number Vi to each individual i, where Vi measures how well they are doing. Depending

on the setting, a stronger or weaker interpretation might be given to this number. An ordinal

interpretation would only consider whether Vi is smaller or larger. A cardinal interpretation

would care about the actual magnitude of Vi. An intermediate interpretation would consider

the magnitude of changes of Vi. And the Vi might or might not be comparable across persons.

If they are, then it makes sense to say that Vi is bigger than Vj , that is, i is doing better than j.

How to measure individual welfare Vi again raises a whole set of difficult questions. A minimal

notion would only consider the formal legal rights enjoyed by individuals. A broader notion

might also take into account various resources that allow individuals to achieve their objectives,

such as education, income, and health. A comprehensive notion of opportunities might aim

to take into account all factors that influence individuals’ options, and evaluate the options

effectively available to them. And we might finally consider the outcomes actually achieved

by individuals, evaluated either by some common criteria, or by their individual preferences.

Utilitarianism, the most common perspective in welfare economics, evaluates individual welfare

by the outcomes actually achieved, as evaluated by individual preferences.

Given the set of individuals i, and given evaluations Vi of their welfare, we finally ask how

well society as a whole is doing. Formally, we consider a “social welfare function,”

F (V1, . . . , Vn). (5)

The function F determines how much we care about different individuals. Note that everybody

still has a “name” at this point; the function F tells us how much weight we assign to the

welfare of i relative to the welfare of j. The function might treat different people similarly, and

not care about names. In that case it would still tell us how much we care about an additional

dollar for a poor person versus a rich person, for a sick person versus a healthy person, since

these would affect the levels Vi. And the function F might not depend on names, but on some

characteristics of individuals. The function might for instance incorporate the belief that race,

gender, or parental status should not determine individual welfare.
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This individualist framework, where we evaluate social welfare F as a function of individuals’

welfare Vi for i = 1, . . . , n, is very general. It is compatible with various perspectives, whether

radical or conservative ones. It does impose some restrictions, however, excluding in particular

fascist/perfectionist, as well as libertarian normative approaches. Fascist approaches emphasize

the greatness of a nation as their objective, no matter what the cost to the individuals involved.

Relatedly, perfectionist perspectives take greatness in cultural production, science, etc. as their

objective, again independently of the welfare of individuals. Libertarian approaches, on the

other hand, consider outcomes to be just as long as they are the consequence of private property,

contracts, and voluntary exchange on markets, no matter what the consequences for individuals’

welfare or inequality are. I will return to this contrast between libertarian and welfare-based

approaches when we discuss algorithmic fairness in Section 3.1 below.

How to measure individual welfare We will discuss two alternative ways of measuring

individual welfare. The first one equates welfare to “utility,” and assumes that utility is what

individuals maximize in their choices. The second one measures welfare in terms of the resources

(“primary goods”) that individuals have to achieve their objectives, whatever these might be,

or in terms of their “capabilities,” which take into account all constraints that individuals might

face in pursuing their objectives.

Evaluating individual welfare in terms of utility is by far the most common approach in eco-

nomics. There are two main ingredients to this approach. First, a choice set Ci containing ele-

ments c. This choice set describes all options among which an individual can effectively choose,

taking all constraints that she faces into account. Second, individual preferences, expressed in

terms of a utility function ui(c). The assumption is that individuals choose the element c ∈ Ci

which yields the greatest utility. The corresponding level of utility is taken to be a measure of

individual welfare, so that

Vi = max
c∈Ci

ui(c). (6)

Note that utility plays two roles in this framework. Utility is (i) what individuals maximize

when they have a choice, and (ii) what is deemed desirable for them from a social welfare point

of view. It is generally assumed that preferences as encapsulated in the utility functions ui are

given independently of policy or technology, while choice sets Ci might be affected by policy or

technology. Different policies can be compared in terms of the welfare Vi that individuals can

achieve given these policies.

How can we give empirical content to the idea of utility? Utility is not observable, but

choices are. In this framework, it is assumed that choices are maximizing utility. Leveraging this

assumption, it is possible to define the concept of “equivalent variation.” Equivalent variation

measures utility in monetary terms. It corresponds to the change in unearned income that

results in the same change of utility Vi as any given change of the choice set. To give a simple

example, would you rather get 3 Euro, or two apples? If you are indifferent between the two,

then the equivalent variation of getting two apples equals 3 Euro. More generally, the equivalent
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variation of income, for more interesting policy changes, can be inferred from observed choices;

cf. Chapter 3 of Mas-Colell et al. (1995). This approach allows us to calculate welfare effects

on individuals in monetary terms. Once we have done so, what remains to decide is how much

we care about additional Euros (or Dollars, etc.) for different people, to make statements about

social welfare.

The utilitarian approach allows to evaluate what is better or worse for a given individual,

based on what they would choose if they could. It implies, in particular, that having more

options (i.e., a larger choice set Ci) is generally better. It does not, however, allow to compare

utility across people, at least based on revealed preference. Being able to do such a comparison

is key for talking about inequality from a normative point of view.

What we can observe and compare across people are the resources that they have at their

disposition, and that affect the choices they could effectively make. More resources generally

means more options and thus higher utility. Considering these resources is one of the key ideas

in Rawls (1973), who calls them primary goods. He argues that health, civil and political rights,

income and wealth, and social bases of self-respect should be among the primary goods by which

individual welfare is to be measured. This approach allows to say who is doing better or worse

in terms of resources, and thus whether equality is achieved or not.

A similar notion, following up on Rawls, was developed by Sen (1995). He argues that the

key measure of welfare are “capabilities to function.” Rather than being based on a fixed list of

resources or primary goods, capabilities are comprehensive measures of the options effectively

at the disposition of individuals, taking into account all legal, social, economic, and cultural

constraints. These capabilities are quite similar to the sets Ci introduced above in our discussion

of utilitarian welfare.

How to trade off welfare across people Whichever way individual welfare is measured, to

make normative statements we must aggregate individual welfare to social welfare, using some

function F which takes care of this aggregation.

Suppose we are interested in small changes of some policy, which results in corresponding

small changes dVi of welfare Vi for each individual. It is then useful to think about aggregation

in terms of welfare weights ωi: Recall that social welfare is equal to F (V1, . . . , Vn). Assume that

F is differentiable and let ωi := ∂
∂Vi

F (V1, . . . , Vn). We can calculate the change dF of social

welfare by taking derivatives,

dF =
∑
i

ωi · dVi. (7)

where dVi is the effect of the policy change on the welfare of individual i, and ωi measures

the weight attached to the welfare of individual i when calculating social welfare, cf. Saez and

Stantcheva (2016).

When welfare is evaluated in terms of individual utilities, dVi is often expressed in monetary

terms (as an amount of Euro, for instance). As discussed above, the variable dVi is then called

equivalent variation. If dVi is measured in monetary terms, then the ratio ωi/ωj measures how
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much we care about an additional Euro for person i relative to an additional Euro for person

j. An egalitarian position assigns a large weight ω to those who are worst off in a society.

More generally, we can think of the ratio between welfare weights for poor versus rich people as

measuring how egalitarian some aggregation is. Utilitarianism, as originally conceived, assumes

that the marginal utility of income is declining with income, and thus puts a higher weight on

those worse off. In contrast to such an aggregation, some models used in the field of law and

economics are just summing up Euros across people, thus assigning the same weight to additional

income for everyone (Liscow, 2018). An additional Euro for a billionaire is considered equivalent

to an additional Euro for a starving person. Such an aggregation is very anti-egalitarian.

We can also think about welfare weights “in reverse:” Given the policy choices actually

made in a society, there is a corresponding set of welfare weights which justifies these policy

choices. Such weights can be thought of as measuring effective social power – whose interests

are represented by the powers that be.

2.3 Agents of change and democratic governance

In the previous section we discussed the normative evaluation of technologies and policies in

a society of individuals with multiple conflicting objectives. Such normative evaluations need

to be complemented by a strategic vision of how to affect social change to be consequential.

But who are the potential agents of social change? The question of agents of change has been

much discussed in political theory over the last century (e.g. Wright, 2019, chapter 6). Some

versions of this question are: Which agents have the interests, the values, and the capacity,

to move technology and policy? Which agents can move technology and policy in a direction

that improves social welfare, according to some notion of justice, for instance by improving the

wellbeing of those who are worse off? Lastly, in a fragmented world, where no single actor or

organization is strong enough to affect change, how can alliances and coalitions be built around

hegemonic actors, where actors in the coalition share interests and values and develop a shared

sense of identity (Gramsci, 1947)?

Closely related to this instrumental or strategic perspective, regarding the power to affect

change, is the normative question of democracy and control over technologies; see for instance

Wright (2019), chapter 4 on economic democracy. Control over the objective functions of AI

needs to be broadly shared to align the objectives of AI with social welfare, in particular if

agents act in a self-interested manner.

Profit maximization, agents of change, and threat points Who are potential agents

of change who can direct the development, deployment, and regulation of AI in a socially

beneficial direction?3 Much of the discourse on the social impact of AI focuses on voluntary

ethical behavior by companies. The implicit assumption is that corporate managers or engineers

3The following draws on an argument previously made in Abebe and Kasy (2021), https://www.

bostonreview.net/forum_response/the-means-of-prediction/.
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will act as agents of change toward a more equitable society.

This approach contrasts with a presumption shared by mainstream economics, left-wing po-

litical theory, and neoliberal thinking: Private companies are, in the first place, profit maximizing

entities. If this presumption is correct, then a focus on the ethics of corporate decisionmakers

necessarily circumscribes the scope of possible change quite narrowly. Voluntary corporate ac-

tion toward socially beneficial regulation of AI requires consistency of these actions with profit

maximization. If private companies are primarily profit maximizing, then it follows that ethical

considerations either remain cosmetic, or play only an instrumental role. Such an instrumental

role could reflect the (elusive) “business case for diversity,” or actions to avert antidiscrimination

lawsuits, union organizing, bad press, consumer boycotts, or government regulation.

This points us to potential avenues for change in a world where technological decisions are

made in private corporations: External pressures need to be such that profit-maximization aligns

better with social welfare. In order for such pressures to play a meaningful role in corporate

calculations, we need external regulation, advocacy, and oversight. That is, we need actors out-

side these corporations who are aware of the problems new technologies might be causing, who

understand how they impact all members of society, and who can influence norms, change incen-

tives, and take direct action to alter the course of development. There are many potential actors,

and many forms this action might take, falling in both the categories of “exit” and “voice,” as

discussed by Hirschman (1986). There are organizations and unions of workers who have the

potential leverage of strikes. There are civil society actors, nongovernmental organizations, and

journalists who have the potential leverage of public attention and consumer boycotts. And

there are government policymakers, the judiciary, regulatory agencies, and politicians who have

the leverage of taxation, legislation and litigation. All these actors have an essential role to play

in any strategy leading to a more socially beneficial future for AI.

Democratic governance and the means of prediction The argument just made is a

strategic argument for addressing and empowering actors whose interests and values align with

a broad base of society, so that the objectives of AI are directed to align with social welfare.

Actors who are bound by an objective of profit maximization (or other narrow interests) are

structurally incapable to make choices about technology that broadly improve welfare.

This strategic or instrumental argument is related to a more directly normative argument:

Self-determination – the ability to determine our own fate – is a goal in itself, and self-

determination needs to go beyond the individual level in a society of complex interdependencies,

to be effective. Put differently, democracy on various levels of society is a goal that we should

work towards. For reasons which are arguably historically contingent, modern societies tend

to separate the sphere of politics from the sphere of the economy. Democracy in the sphere of

politics is a goal broadly supported across the political spectrum. In the sphere of economics,

on the other hand, and especially in the English speaking part of the world, plutocracy is

broadly accepted. In the part of our waking time that we spend in employment relationships,

the decision-making power of those who own the capital remains largely unquestioned. It has
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been argued (e.g. Wright, 2019, chapter 4) that the project of democratization thus remains

unfinished, and that a good society needs to expand democracy beyond the sphere of politics,

narrowly construed, and into other spheres that are consequential for our lives; see also Sandel

(2022).

In terms of AI, what this perspective implies is that we need democratic debate and control

over the objectives of automated decision-making systems. Such control should be exerted in

particular by those who are affected in important ways by the decisions of such systems. It

should be exercised not only at the level of nation states, in the context of regular elections, but

at various levels of society. Democratic control of the objectives for automated decisionmaking,

as discussed in Section 2.1, in turn requires democratic control over the “means of prediction,”

including data and computational infrastructure, as well as a basic understanding of the workings

of automated decision systems. Appealing to the ethical impulses of agents constrained by

profit maximization is not enough. Neither are minimal regulatory constraints geared only

toward preventing the worst harms. And neither are individual-level property rights over data, a

proposal that we will discuss below. The remainder of this chapter elaborates on this perspective

in the context of various debates about the ethics and social impact of AI.

3 The ethics and social impact of AI

Having concluded our review of conceptual frameworks, we now turn to debates about the ethics

and social impact of AI. These debates concern (i) fairness, discrimination, and inequality, (ii)

privacy, data property rights, and data governance, (iii) value alignment and the impending

robot apocalypse, (iv) explainability and accountability for automated decision-making, and (v)

automation and the impact of AI on the labor market and on wage inequality. Rather than

providing a comprehensive review of these debates, I will provide a brief account of each of them

in terms of the frameworks set up in Section 2. I will then connect each of these debates back

to our discussion of objectives for AI, social welfare, and democratic governance.

3.1 Fairness and inequality

One of the concerns raised about automated decisionmaking is whether the resulting decisions

are fair, or reversely, whether a decisionmaking system is discriminatory.4 The canonical setting

for discussions about algorithmic fairness is the setting of targeted treatment assignment, as

discussed in Section 2.1. To recall, in this setting the algorithm produces a treatment assignment

policy W = h(X), assigning treatment W as a function of observable features X. A typical

objective for the case of binary treatments is to maximize the sum of outcomes Y net of the cost

of treatment c among the treated, E[h(X) · (Y − c)]. In the context of hiring, for instance, W

is the decision to hire a worker, Y is some measure of their productivity (contribution to firm

profits), and c is their wage.

4The discussion in this section draws on Kasy and Abebe (2021).
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Fairness What does it mean for a policy h(X) to be fair, or discriminatory? Many different

definitions have been proposed in the literature, and some of these are mathematically incon-

sistent. Many of these definitions are, however, conceptually closely related, and are similar to

notions of taste-based discrimination in economics. In particular, typical definitions are based

on some notion of merit Y , which corresponds to the decisionmaker’s objective, such as profits,

and some salient identity groups A, such as race or gender. An assignment policy is designated

as unfair if there are inequalities in the probability of being treated across groups, where these

inequalities are not justified by differences in “merit” between the groups. One such definition

of fairness is “predictive parity,” which requires that the difference

E[Y |W = 1, A = 1]− E[Y |W = 1, A = 0]

equals 0. In words, average merit among the treated should be the same across the groups A = 1

and A = 0. This condition is also known as the “hit rate test for taste-based discrimination” in

empirical economics, cf. Knowles et al. (2001). Other definitions which are closely related, and

which share the same limitations, are “equality of true positives,” “equality of false positives,”

and “balance for the negative class.” Also related are so-called “individual fairness” notions;

see for instance Pessach and Shmueli (2020) for a comprehensive review of fairness definitions.

As argued in Kasy and Abebe (2021), definitions of this form have a number of normative

limitations:

1. They legitimize and perpetuate inequalities justified by “merit” both within and between

groups. The focus on “merit” – a measure promoting the decision-maker’s objective –

reinforces, rather than questions, the legitimacy of the status quo.

2. They are narrowly-bracketed. Fairness only requires equal treatment within the context

of the algorithm at hand, and does not consider the impact of the algorithm on inequality

of welfare in the wider population. Unequal treatment that compensates pre-existing

inequalities might reduce inequality of welfare.

3. They focus on categories (protected groups) and ignore within-group inequalities as em-

phasized in particular by intersectional critiques (Crenshaw, 1990). Equal treatment across

groups can be consistent with great inequality within groups.

Closely related to these limitations is the fact that definitions of fairness such as predictive

parity essentially equate discrimination to a deviation from profit maximization: When outcomes

Y are perfectly predictable, then fairness holds automatically for the profit-maximizing policy

h(X), no matter how unequal the resulting allocation is in terms of welfare, both between and

within the groups A. When Y is binary and perfectly predictable given X, for instance, then

W = h(X) = Y is profit maximizing and satisfies predictive parity, as well as balance for the

negative class, equality of true and false positives, etc.

This is no coincidence. At the origin of definitions of taste-based discrimination lies the work

of Becker (1957). This work equated normative desirability to the decisions of profit maximizing
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firms in competitive markets – independently of consequences for the welfare of those affected by

such decisions. Such notions of fairness and discrimination are based on an implicitly libertarian

normative framework. This contrasts with consequentialist notions of social welfare, as discussed

in Section 2.2 above. Fairness, in Becker’s sense, amounts to choosing a treatment assignment

policy that maximizes the profit objective E[h(X) ·(Y −c)], rather than a policy that maximizes

some notion of social welfare F (V1, . . . , Vn).

Equality and social welfare From the perspective of social welfare, we care about the impact

of a policy h(X) on the welfare Vi of individuals, and on the aggregate welfare F (V1, . . . , Vn).

To discuss this impact formally, consider the potential outcomes framework of causal inference

(Imbens and Rubin, 2015). Consider binary treatments Wi and assume there are no spillovers

across individuals, in the determination of their welfare Vi. Then we can assume that individual

welfare is determined by the potential outcome equation

Vi = Wi · V 1
i + (1−Wi) · V 0

i . (8)

In words, if individual i is treated, their welfare equals V 1
i , otherwise their welfare equals V 0

i .

Any treatment assignment policy h which maps X into the probability of being treated h(X)

then implies a realized distribution of welfare, joint with features X, of

pV,X(v, x) =
[
pV 0|X(v, x) + h(x) ·

(
pV 1|X(v, x)− pV 0|X(v, x)

)]
· pX(x).

Typical social welfare functions F can then be written as functions of this distribution.

This is a generic description for evaluating the impact of a treatment assignment policy on

social welfare, as in Section 2.2. Let us emphasize again how this differs from the fairness notions

discussed above: Fairness is about requiring that people (i) of the same “merit” (ii) are treated

(iii) independently of their group membership. Social welfare is about (i) the (counterfactual /

causal) consequences of an algorithm for the distribution (ii) of welfare of different (iii) people.

There are many situations where these notions deliver conflicting normative evaluations. One

example concerns the consequences of increased surveillance, or better prediction algorithms.

Typically, more accurate prediction will lead to treatments more aligned with “merit,” which is

good for fairness. They will also lead to more unequal treatment, which is often bad for equality

and social welfare. Another example concerns all forms of affirmative action, redistribution, or

compensatory interventions for pre-existing inequalities. Such interventions are always bad for

fairness, as defined above, but good for equality and social welfare.

The main takeaway from this discussion for the regulation of artificial intelligence is that

evaluations of automated decision systems should focus less on fairness, which typically requires

alignment with profit maximization, and more on the consequences for individual and social

welfare. Mechanisms for auditing and control by unions, civil society organizations, and public

policymakers, need to draw on tools for the evaluation of consequences for welfare. These tools
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include causal inference and the measurement of welfare, as developed in empirical economics,

among other fields.

3.2 Privacy and data governance

In order to learn, machine learning needs an objective function, a learning algorithm, and data.

In the notation of Section 2.1 for supervised learning, the data often take the form of observations

(Xi, Yi), where i indexes different individuals. As machine learning has entered many socially

consequential domains, privacy concerns become paramount: Who gets access and control to

what kind of data about individuals? To what extent can an individual effectively veto such

access? How can harms to individuals that result from data-collection be prevented?

The leading formalization of privacy in computer science is differential privacy. I next review

this formalization and discuss its advantages and limitations. Differential privacy essentially

guarantees that individuals are indifferent about collection of their data, no matter what hap-

pens later. Correspondingly, they do not have a reason to object to collection of their data if

differential privacy is guaranteed, even if they could do so based on individual data property

rights.

I then discuss the limitations of this approach. While differential privacy effectively ensures

that no harm results for individual i from collection of their own data, it does not ensure

that no harm results for groups of people from collection of their data. The reason are “data

externalities.” Machine learning is about learning patterns, rather than individual instances.

Differential privacy, and individual property rights, do not prevent the learning of such patterns,

and thus do not prevent any resulting downstream harms. Correspondingly, harms from data

collection can only be prevented by means of democratic data governance, as will be discussed

below.

Differential privacy Consider a database X , with entries of the form (Xi, Yi). How can we

reveal useful information about such a database X to some third party, without revealing the

identity of those represented in the database? Differential privacy, which provides an answer to

this question, is a well-studied and coherent approach to privacy in computer science (Dwork

and Roth, 2014). This approach can be understood as a response to the limitations of earlier

attempts at maintaining privacy while releasing some information. Naive approaches to privacy

are typically vulnerable to auxiliary information. One such approach is the removal of “identi-

fying information,” such as names, addresses, social security numbers, etc. The problem with

this approach is that even a small number of seemingly innocent variables are often sufficient to

uniquely identify individuals. For example, it is likely that a user is uniquely identified by the list

of the most recent movies they might have watched on a streaming platform. Another approach

commonly employed is aggregation, where only averages of variables across groups of people are

reported. Again, it is surprisingly easy to identify the individuals in such an aggregate, once

the averages for multiple variables are reported. A striking example are medical studies that
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report frequencies of genetic variants (“single nucleotide polymorphisms”) among patients with

a certain disease. From such aggregate frequencies, for a large enough number of genes, it is

possible that the identity of all patients in the sample can be recovered, thus revealing the fact

that they have a certain disease.

“Differential privacy” provides a coherent and robust definition that avoids these pitfalls.

Differential privacy considers randomized algorithms M that map databases X into random

reports M(X ). A report here is any description or summary of the data X ; for instance a

summary produced by a machine learning algorithm. Consider two databases X and X ′ which

are the same, except that the data (Xi, Yi) for one individual i have been added or removed

between X and X ′. We say that a randomized algorithm M is ε-differentially private if for all

sets of possible reports S, and for all X and X ′ that only differ by one entry, we have that

P (M(X ) ∈ S)

P (M(X ′) ∈ S)
≤ exp(ε). (9)

If ε is small, this means that the probability distribution of M(X ) and of M(X ′) is almost

the same, for any pair of databases that differ by one entry. It makes no discernible difference

whether any given individual is included in the data or not. Any differentially private algorithm

needs to employ randomness. Without randomness, there is always a pair of databases X and

X ′ which differ by only one entry such that M(X ) 6=M(X ′), except in trivial cases.

This definition or privacy has a number of desirable properties. Most importantly, it is im-

mune to post-processing. No matter what additional data someone might possess, and what

calculations they might apply to the reportedM(X ), the resulting report remains ε-differentially

private. If multiple reports are made based on a database X , say reports that are ε1 and ε2 dif-

ferentially private, then the bound on the privacy loss adds up – the result is ε1+ε2 differentially

private. This raises the issue how a given “privacy budget” might be spent. This issue came

up, for instance, in recent debates about the US census, where different social scientists wished

to learn different facts about the US population, subject to a global privacy budget constraint.

A large literature has developed randomized algorithms that reveal relevant information

while maintaining differential privacy. Of particular importance for the present chapter are

algorithms for differentially private machine learning. Recall from Section 2.1 the objectives

of different branches of machine learning: Predicting outcomes Y given features X (for super-

vised learning), choosing treatments W given features X to maximize some outcome Y (for

targeted treatment assignment), or choosing treatments W adaptively to maximize the stream

of outcomes Y (for multi-armed bandits). Crucially, all of these objectives require learning

some population relationships between the X, W , and Y ; none of these objectives require the

identification of data for specific individuals in a dataset. As it turns out, and quite remarkably,

differential privacy does impose very little cost in terms of these objectives, cf. Dwork and Roth

(2014), chapter 11. Put differently, differential privacy can be preservered without affecting

machine learning or any of its downstream consequences.
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Property rights, data externalities, and democratic data governance Differential

privacy implies that it makes (almost) no observable difference whether any given individual

is included in the data or not. From this it follows that it makes (almost) no difference to

an individual, who might be impacted by third party actions based on M(X ), whether they

are included in the data or not. This holds regardless of who gets to see the queries, what

other information they possess, or which actions they might take based on the report M(X );

cf. Dwork and Roth (2014), chapter 10.

This insight connects the notion of differential privacy to a closely related debate about

individual property rights in data. One proposal to address issues of privacy is to give individuals

the legal right of control over data that concern themselves, and an associated right of selling

these data to third parties, or exchanging them against services; this idea has been promoted by

Jaron Lanier, among others. Based on the argument above, individuals who hold property rights

for their data have no incentive to not reveal their data to a differentially private mechanism.

It might appear plausible that a legal arrangement with individual property rights over data

would protect individuals from harms arising from data collection and processing. This is not

the case, however, as shown by the following argument. If differential privacy is guaranteed, then

individual data property rights will not reduce the collection of data. Since machine learning is,

furthermore, essentially unimpeded by differential privacy, it follows that any harms or benefits

arising from the use of machine-learning based technologies are unaffected by differential privacy

or individual property rights. Economists have described this fact as “data externalities,” cf.

Acemoglu et al. (2022). When an individual reveals their data, even to a differentially private

mechanism, this can have consequences for other individuals, and vice versa. Such externalities

might lead to variants of the “prisoner’s dilemma:” No individual has an incentive to withhold

their data, but collectively everyone may be harmed by data collection.

To provide a concrete example, consider a health insurance company collecting data on

individual predictive features (risk factors) X for a certain disease Y , where the predictive

features X are in the public domain, but the disease data are subject to privacy restrictions. If

patients sell their data to the company, subject to differential privacy, they gain individually,

based on any payment they may receive. As a consequence, however, premia for all the high-risk

patients go up, making them worse off, and the insurance arguably less equitable.

Such harms can, by construction, not be prevented through the enactment of individual-level

privacy rights. Instead, as argued by Viljoen (2021), they can only be addressed through some

form of collective democratic data governance. Only with collective processes of deliberation

and decisionmaking regarding the collection of data, as discussed in Section 2.3, can we prevent

harms from surveillance by private or public entities, while also reaping the potential benefits of

AI and machine learning. Those who might be affected by automated decision-making, which is

based on patterns learned from individual data, need to have a say in the collection of these data.

An important task for the regulation of AI is to create legal environments and organizational

structures that allow for such collective deliberation and control over the means of prediction.
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3.3 Value alignment and conflicts of interest

As discussed in Section 2.1, AI is concerned with the construction of systems which maximize

some stream of rewards. One approach covered by this general definition is reinforcement

learning, cf. Sutton and Barto (2018); François-Lavet et al. (2018). In reinforcement learning,

the algorithm has to solve a Markov Decision Problem, where there are endogenous states of

the environment which evolve over time. The algorithm has to learn the probability of going

from any given state to the next, and the distribution of rewards for any state and action, to

maximize a stream of rewards. An issue that arises in this context, as well as in other branches

of AI, is the issue of value alignment (Russell, 2019):

[...] we may suffer from a failure of value alignment—we may, perhaps inadvertently,

imbue machines with objectives that are imperfectly aligned with our own.

A famous thought-experiment illustrating this issue was formulated by Bostrom (2003), who

considered a hypothetical AI which has been endowed with the goal to produce as many paper

clips as possible. Since humans don’t want infinitely many paper-clips, the AI will eventually

need to eliminate the possibility of humans turning it off, by eliminating humans.5

While such scenarios might not be our most immediate concern, variants of this danger

in more mundane settings are very much relevant at present. One example is the automated

curation of news feeds and search results by social networks and search engines to maximize user

engagement and, ultimately, ad clicks. The success of these algorithms has arguably contributed

to filter bubbles and political polarization, the rise of click bait and conspiracy theories, and

a rise of mental health problems among teenagers. Another example is the use of machine

learning to match unemployed workers to jobs. Such algorithms are considered by employment

agencies to maximize the rate of proposed matches which result in employment. This objective,

combined with penalties for job seekers who do not accept proposed matches, might lead to

systematically placing workers in jobs for which they are over-qualified, resulting in de-skilling,

wage declines, and reductions in worker welfare.

Inverse reinforcement learning The value alignment problem arises when the objective

function (reward) of an algorithm is not exactly the same as the objective function of humans.

One possible solution to the value alignment problem could be to more carefully encode human

objectives in the reward maximized by the algorithm. The problem with this approach is that

it is very hard to fully anticipate and capture the complexity of relevant human objectives, for

all possible circumstances, in a single numerical measure.

Inverse reinforcement learning has been proposed as an alternative to this “hardcoding”

approach, cf. Ng and Russell (2000). The idea of inverse reinforcement learning is to observe

5Discussions of value alignment are often combined with predictions of a “singularity” in the development of
AI. The idea of a singularity is that once AI achieves “human level intelligence,” it will be able to improve itself,
leading to an exponential explosion of AI capabilities. Such a presumed singularity is emphatically not part of
my discussion here.
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human behavior, and to infer the reward function which would make the observed human be-

havior optimal. This inverts the problem of reinforcement learning, where rewards are observed

and optimal behavior has to be learned. The inverse reinforcement learning approach builds

on a long tradition in economics, aiming to infer preferences from observed behavior, cf. Train

(2009). This approach is sometimes marketed as “provably safe AI.”

Multi-tasking, surrogate outcomes, and fundamental limits An alternative perspective

on value alignment is suggested by economic theory, in particular by the frameworks of mecha-

nism design and contract theory: There are fundamental limits to automated decision-making

when not all relevant outcomes are measurable. These limits cannot be overcome through better

engineering choices.

The designer of an AI system faces similar issues to the designer of incentive pay systems

(contracts) which are based on quantitative measures of performance, where the goal is to guide

the efforts of human agents. Models of multitasking, as introduced by Holmstrom and Milgrom

(1991), provide an explanation why high-powered incentives based on observable outcomes can

gravely distort agent behavior, and are rarely observed in actual employment contracts: If agent

effort has multiple dimensions, and some of these are unobservable, then incentives based on

the observable dimensions will distort effort away from the unobserved ones. Teacher incentives

based on student test performance, and the resulting distortion of education towards “teaching

to the test,” is a much-discussed example. The literature on surrogate outcomes in bio-statistics

(Athey et al., 2019) provides another perspective on the same problem. This literature considers

settings where outcomes of interest, such as patient mortality, are not observable, for instance

because they take too long to realize. This literature discusses conditions under which causal

effects can still be inferred based on intermediate (surrogate) outcomes, for instance blood

pressure or some other biomarkers.

What unites these frameworks is the emphasis on observability. Not all relevant consequences

of the actions (which might be chosen by an algorithm) are available in the form of observable

quantitative measures. Any consequence that is not measurable is then not taken into account

by an optimizing algorithm. This problem becomes more severe, the better the algorithm is

at optimizing the measured objectives. Crucially, approaches such as inverse reinforcement

learning cannot provide a solution to this issue of observability. Inverse reinforcement learning

might adjust the weights on measurable components of human objectives, but it cannot learn

components that are not measurable. Just as it is often not a good idea to have high-powered

monetary incentives for human agents, there might be many settings where we need to refrain

from deploying high-powered algorithms which maximize measurable objectives.

Conflicts of interest and democratic control Our discussion of value alignment thus far

focused on the difference between the objective maximized by an algorithm and the objective

of “humans.” As emphasized throughout the discussion in this chapter, however, different hu-

mans have very different objectives and conflicting interests between themselves. The alignment
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problem in many cases is not so much about about a difference in objectives between algorithms

and humans, but rather about a difference in objectives between those who define the objective

of an algorithm, and the rest of society.

Our motivating example illustrates these points: A company operating a social network,

using algorithms to maximize ad-clicks and user engagement, might well be acting optimally

for their profit objective. If ad-click maximization implies that democracy or teenage mental

health are harmed, then that is unfortunate collateral damage in the quest for profits, from the

perspective of the company, rather than reflecting a failure of alignment between the algorithm

and the company operating it. Solving issues of alignment between algorithms operated by

specific individuals or organizations, and society at large, requires democratic control of the

means of prediction. Only public debate and collective decisionmaking about the objectives

to be maximized can ensure that the pursuit of specific measurable objectives by automated

decisionmaking systems is socially beneficial, and does not lead to broad harms.

3.4 Explainability and accountability

Automated decision-making raises questions regarding accountability: Who is responsible for

decisions made automatically? Can these decisions be appealed? Can these decisions be ex-

plained? Can the rules leading to these decisions be appealed? Why was a particular decision

made, or reversely, what would the decision have been for different input features X? In this

context, Vredenburgh (2022) argued for a right to explanation, as a precondition for informed

self-advocacy.

Explaining decisions For our purposes, it is useful to distinguish between explaining in-

dividual decisions, and explaining decision rules. Someone affected by an individual decision

might rightfully wish to appeal that decision. In particular, she might ask why that decision was

made, and what she could have done differently to obtain a different decision. This is especially

salient in the context of targeted treatment assignment, as discussed in Section 2.1; consider for

instance the case of hiring, or of university admissions.

As the framework of causal inference (Pearl, 2000; Imbens and Rubin, 2015) teaches us,

questions of “why” a decision was made are somewhat ill-defined, even if we have the full

decision-rule and its derivation at our disposition. This point was elegantly expressed by Tolstoy

(1869):

Why does an apple fall when it is ripe? Is it brought down by the force of gravity?

Is it because its stalk withers? Because it is dried by the sun, because it grows too

heavy, or because the boy standing under the tree wants to eat it?

Questions of the form “what if,” by contrast, can be well-posed. They form the core of the

interventionist framework for causality in the empirical social sciences (Imbens and Rubin,

2015). In the context of targeted treatment assignment rules of the form W = h(X), we might
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ask what the decision W would have been if X had taken on a different value. To the extent

that X is the product of individual decisions, such knowledge allows individuals to adjust their

behavior to achieve a desired treatment, such as being hired, or admitted to a university.

Notably, the answer to such “what if” questions is more readily available, in principle,

for automated decision-making systems than it is for human decision-makers. It is easier to

have a computer evaluate the function h(X) for counterfactual values of X than it is to get

human decision-makers to credibly reveal counterfactual decisions. Consider a hiring decision

by a corporate manager, or a university admissions decision by an admissions officer. In these

settings, we don’t know how the hiring manager or admissions officer would have decided for

counterfactual applications.

What complicates the explanation of decision-functions h(X), in terms of “what if” queries,

is the possibility of high-dimensional features X and complicated, non-linear mappings h. This

complication is especially salient for algorithms based on deep neural networks. This is an aspect

discussed in the field of algorithm explainability; one proposal, for instance, is to report local

linear approximations to decision functions, to make them more human-readable.

Explaining decision rules Going beyond individual instances where a decision rule was ap-

plied, we might wish to have public debate and democratic accountability for decision rules.

This aspect of explainability is closely connected to the remainder of my discussion in this chap-

ter. Explanation of rules is a necessary pre-condition for democratic control of rules. In order

to ensure socially beneficial development and deployment of AI, we cannot leave decisions about

development and deployment to a narrow class of experts and technocrats, such as corporate

engineers. Rarely will the interests and viewpoints of these experts align with the interests

and viewpoints of the wider public, and, in particular, of vulnerable groups affected by new

technologies. A key role, then, for experts interested in advancing social welfare is to explain

AI to the wider public.

Some might object that the explanation of algorithmic rules to the public is impossible, es-

pecially when they are represented by very complicated functions, and derived in an automated,

blackbox manner, using complicated algorithms, as is the case for deep neural networks, for

instance. Such an objection is misguided, however. AI and machine learning are surprisingly

simple, in the ways that matter, and can be very much made open to public debate. As em-

phasized throughout this chapter, AI concerns the construction of algorithms maximizing some

performance measure, based on data. What is central to explanations of rules for the purpose of

democratic debate, is the definition of the objective (performance measure), the space of actions

considered, and possibly the data used. Furthermore, how well a given algorithm performs in

terms of its performance measure is also easily communicated. Relative to these, the specific

implementation and mechanics of an optimizing algorithm are secondary.
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3.5 Automation and the labor market

Technical change in general, and AI in particular, affect individual and social welfare, and

inequality, by shifting demand in the labor market. This is one of the most consequential

mechanisms by which technology impacts social welfare. This mechanism has received a lot of

attention in labor economics; see, e.g., Acemoglu and Autor (2011).

Production functions The effect of shifting technology on labor demand is typically modeled

in terms of (aggregate) production functions, cf. Mas-Colell et al. (1995), Chapter 5. The

assumption is that total output Y is determined by a relationship of the form

Y = y(N1, . . . , NJ ,K1, . . . ,KM , A). (10)

Here Nj is the number of workers of type j employed in production, and Km is the amount

of capital goods of type m used. The argument A indicates the dependence of the production

function on technology. As technology progresses, A changes, and the function y shifts, typically

upward. If aggregate production can be represented in this way, and if wages are determined by

competitive labor markets,6 then the wages of each type of worker are equal to their marginal

productivity (contribution to profits), i.e.,

wj = ∂y/∂Nj .

The effect of technical change on wages in this production function framework is theoretically

ambiguous. It is possible for the slope ∂y/∂Nj to go either up or down, as the level y increases,

due to a shift in A.

One possible effect of technical change on the labor market is so-called “skill-biased technical

change” (Goldin and Katz, 2009). The empirical literature on skill-biased technical change has

focused on the US labor market, in particular. It has been argued that there is a secular trend,

due to technological progress, which continually increases the demand for workers with higher

levels of education, relative to the demand for workers with lower levels of education. This

shift in relative demand was not met by a corresponding shift in relative supply. The growth in

the share of workers with advanced degrees has stalled since the 1980s, in the US. The shift in

relative demand, combined with roughly constant relative supply, so the argument goes, led to

an increase in wage inequality between education groups.

This pattern seems not to hold since the turn of the 21st century, however. Correspondingly,

there was a shift in the emphasis of the literature towards so-called “polarization” of the (US)

labor market, cf. Autor and Dorn (2013). The polarization argument is that technological

advances and automation, including through AI-based technologies, led to an erosion of demand

for tasks performed by workers in the middle of the income distribution. Typical examples are

6There are many reasons why this might not be the case, including monopsony, efficiency wages, and search
frictions.
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clerical and office jobs, affected by the advent of PCs and the internet, or blue collar jobs in

industry, affected by the increased use of robots. Tasks at either end of the income distribution,

on the other hand, are harder to automate. The consequence of such polarization, if it takes

place, is an erosion of the middle class.

Objectives, and control of the means of prediction An insight that immediately emerges

from the production function framework is that the effect of technical change on economic

inequality is not pre-ordained. Different productivity-increasing changes of the technology A

might have very different impacts on the distribution of wages, in particular. This opens the

door for explanations that relate technical change to social choices made by those in power,

subject to the institutional and ideological constraints that they are facing. An example of such

an argument is provided in Chapter 7 of Acemoglu and Johnson (2023): Consider a setting

where union power and sectoral bargaining imply that firms cannot unilaterally cut wages or

fire workers. As a consequence, the potential returns to automating jobs in order to raise

profits are limited. Rather than pursuing automation, profits are then maximized by investing

in technologies that increase worker marginal productivity, while providing the corresponding

training to workers.

The production function framework is very useful for structuring debates about the impact

of AI on economic inequality. It also has some limitations, however. First, the production

function framework is very flexible. Because of this, it can explain many different possible

developments of inequality, after the fact, in terms of technical change. It does not yield sharp

testable predictions, however. Second, this framework applies to any technology; there is nothing

specific to AI relative to other technologies, in terms of its impact on the production function.

And third, the technological channel through which choices impact production functions is left

open in this framework.

The frameworks I have emphasized in this chapter can provide additional and complementary

structure to the production function framework, as it relates to AI. Artificial intelligence is the

construction of automated decision-making systems that maximize some measurable objective.

The choice of this objective is made by those who control the means of prediction, in particular

data and computational infrastructure. How, then, can the deployment of technologies based

on machine learning be steered in a direction that favors increasing the marginal productivity of

workers, especially for those at the bottom of the wage distribution? Once again, the answer is

democratic control. Workers need to have a say over (i) what kinds of data are collected within

their company, and (ii) what objectives automated decision-making should maximize. To the

extent that these decisions are also consequential for workers who are not currently working for

a given company, these decisions are furthermore best made through democratic governance at

a sectoral level, rather than at individual establishments. The regulation of AI in the workplace

needs to create the conditions for such democratic decision-making, to ensure that AI does not

contribute to a further explosion of inequality and dehumanization of workplaces.
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