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NOTES AND PROBLEMS

IDENTIFICATION IN TRIANGULAR
SYSTEMS USING CONTROL

FUNCTIONS

MAXIMILIAN KASY
University of California, Berkeley

This note discusses identification in nonparametric, continuous triangular systems.
It provides conditions that are both necessary and sufficient for the existence of
control functions satisfying conditional independence and support requirements.
Confirming a commonly noticed pattern, these conditions restrict the admissible
dimensionality of unobserved heterogeneity in the first-stage structural relation,
or more generally the dimensionality of the family of conditional distributions of
second-stage heterogeneity given explanatory variables and instruments. These con-
ditions imply that no such control function exists without assumptions that seem
hard to justify in most applications. In particular, none exists in the context of a
generic random coefficient model.

1. INTRODUCTION

In a recent paper, Imbens and Newey (2009) develop nonparametric identifica-
tion results in triangular systems for models with a first stage that is monotonic
in unobservables. Based on these results, they construct inference procedures. In
related work, Imbens (2007) surveys control functions in triangular systems more
generally. This note elaborates on their analysis by providing conditions that are
both necessary and sufficient for the existence of control functions. The nonpara-
metric, continuous triangular system setup considered is given by

Y = g(X,ε), (1)

X = h(Z ,η), (2)

where we assume

Z ⊥ (ε,η), (3)
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with Z , X,Y each continuously distributed inR. This is the general setup in which
the application of instrumental variable methods is usually discussed, where Z is
the exogenous instrument, X is the treatment, and Y is the outcome variable. The
object of interest is the structural function g.

Recent contributions to the literature have generalized identification in para-
metric (linear) triangular models to nonparametric setups. The idea of nonpara-
metric identification using the control function approach is to find a function C of
X and Z such that, for V = C(X, Z),

X ⊥ ε|V . (4)

If C is a one-dimensional, strictly monotonic function of both X and Z , then there
exists a one-to-one mapping between (X, Z), (X,V ), and (Z ,V ). Existence of an
invertible mapping between (X,V ) and (Z ,V ) implies that conditional indepen-
dence (4) is equivalent to

Z ⊥ ε|V . (5)

In contrast to the literature providing mostly sufficient conditions for identifica-
tion, this note provides conditions that are both necessary and sufficient for the
existence of control functions that satisfy conditional independence and support
requirements. These conditions impose restrictions on the dimensionality of un-
observed heterogeneity. While the importance of dimensionality restrictions has
been noted repeatedly, among others by Imbens (2007), this note is, to the best
of our knowledge, the first to formally show that they are both necessary and
sufficient.

The central object of interest in the control function literature is the average
structural function (ASF). Let Eε denote the expectation taken over the marginal
distribution of ε, and similarly for EV . The ASF was defined by Blundell and
Powell (2003) as ASF(x) := Eε[g(x,ε)]. Given a control function, the ASF is
identified by

ASF(x) = EV [E[g(X,ε)|V, X = x]] = EV [E[Y |V, X = x]]. (6)

The first equality requires conditional independence (4). Identification of the con-
ditional expectation given X,V requires full support of V given X . Under the
same conditions, one can identify the quantile structural function (QSF) gτ (x),
which is given by the τ th quantile of g(x,ε) over the marginal distribution of ε,
as well as functions defined by more general conditional moment restrictions.1

Various choices for C have been proposed in the literature. Newey, Powell, and
Vella (1999) suggest using the residual of a first-stage mean regression:

V = C(X, Z) = X −E[X |Z ]. (7)

This is justified by an additive model for h, i.e., h(Z ,η) = h̃(Z) + η and
V = η. Such additivity would not hold, for example, in models with heteroskedas-
tic residuals.
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Imbens and Newey (2009) propose, more generally, to use the conditional cu-
mulative distribution function F of X given Z :

V = C(X, Z) = F[X |Z ]. (8)

This is justified by a first-stage h that is strictly monotonic in a one-dimensional
η, implying that V = F(η).

In either of these cases, the fact that V is a function of η alone immediately
implies that conditional independence (5) holds. Under strict monotonicity of the
conditional expectation or distribution function in Z , this in turn implies condi-
tional independence (4).

The next section provides an example of failure of conditional independence
(4) using the control function (8). Sections 3.1 and 3.2 provide the central results
of this note. Section 3.1 gives a condition that is both necessary and sufficient
for the existence of a control function that is constant in the instrument given
unobserved heterogeneity. Section 3.2 does the same for the more general case of
control functions satisfying conditional independence (4). Section 3.2 also shows
that no control function can exist in the case of the random coefficient model.
Section 3.3 states extensions to the case of higher dimensional X and Z . Section
4 concludes. All proofs are relegated to the Appendix.

2. COUNTEREXAMPLE

Consider the following random coefficient model:

X = η1 +η2 Z = η · (1, Z), (9)

(η1,η2,ε) ∼ N (μ,�), (10)

Z ⊥ (η,ε). (11)

This model will serve as a counterexample for identification attempts using con-
trol functions. Imbens (2007, Sect. 5.2) uses the same example of the failure of
the control function of Imbens and Newey (2009). As will be shown in Section 3,
no control function exists in this specification because first-stage heterogeneity η
is more than one-dimensional.

For an economic example of this,2 suppose the following: We are interested
in the production function relating output of firms to a single variable input, e.g.,
labor l. Production technology is Cobb-Douglas, i.e., log output is yi = Ai +αi li ,
where A and α are unobserved heterogeneity in firm technology or endowment
with other factors. Prices for the output good vary exogenously, wages are con-
stant, and firms maximize profits. Then both the first-stage relationship, that is,
firm-specific labor demand as a function of prices, and the second-stage produc-
tion function exhibit a linear random coefficient structure.
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A similar example is the problem of estimating returns to schooling when re-
turns are heterogeneous, schooling depends on returns, and we observe an inde-
pendent cost variable affecting school choice that can serve as an instrument.

Now we will show why the control function proposed by Imbens and Newey
(2009), V = F(X |Z), fails in this random coefficient model. For jointly normally
distributed variables, the conditional expectation is given by the best linear pre-
dictor. Hence we get, by ordinary least squares regression of ε on X given Z ,

E[ε|X, Z ] = με + (X −E[X |Z ]) · Cov(X,ε|Z)

Var(X |Z)
.

The assumptions imply that X and ε are jointly normal given Z , with

Cov(X,ε|Z) = �η1,ε + Z�η2,ε,

Var(X |Z) = �η1,η1 +2Z�η1,η2 + Z2�η2,η2 ,

E[X |Z ] = μη1 + Zμη2 .

This gives

E[ε|X, Z ] = με + (X −μη1 − Zμη2) · �η1,ε + Z�η2,ε

�η1,η1 +2Z�η1,η2 + Z2�η2,η2

. (12)

The control function proposed by Imbens and Newey (2009),

V = F(X |Z) = �

(
(X −μη1 − Zμη2)√

Var(X |Z)

)
, (13)

is monotonic in X . If the support of Z is restricted to an appropriate range,3 it is
also monotonic in Z . Hence, for at least a subrange of V , the following equalities
hold:

E[ε|V, X ] = E[ε|V, Z ] = E[ε|X, Z ]

= με +�−1(V )
�η1,ε + Z�η2,ε√

�η1,η1 +2Z�η1,η2 + Z2�η2,η2

. (14)

From this it follows that conditional independence (4) is violated: By invert-
ibility of C in both X and Z , conditional independence (4) and (5) are equivalent.
Conditional independence (5) requires conditional mean independence, i.e., that
E[ε|V, Z ] is constant in Z given V . By equation (14) this holds if and only if
�η2,η2 = 0, that is, if the slope of the first stage is constant. If the slope η2 has
positive variance, conditional independence (4) does not hold. A similar argument
can be made about the conditional variance of ε given V, X .



IDENTIFICATION IN TRIANGULAR SYSTEMS 5

3. CHARACTERIZATION OF MODELS IN WHICH CONTROL
FUNCTIONS EXIST

The next three subsections will present the general results characterizing triangu-
lar systems for which control functions exist. Section 3.1 shows that control func-
tions that do not depend on Z given η exist if and only if η is one-dimensional.
This requirement is in particular violated by the random coefficient model of
the previous section. Section 3.2 shows that control functions that satisfy condi-
tional independence (4) exist if and only if the family of conditional distributions
P(ε|X, Z) is one-dimensional. This dimensionality requirement is again violated
by the random coefficient model. Section 3.3 finally generalizes the previous re-
sults to setups with higher-dimensional X and Z .

3.1. Control Functions that Do Not Depend on Z Given ηηη

The next proposition covers all variants of the control function approach that we
are aware of, in particular Newey, et al. (1999) and Imbens and Newey (2009).

PROPOSITION 1. If V = C(h(Z ,η), Z) does not depend on Z given η, then
conditional independence (5) holds.

As mentioned in the Introduction, conditional independence (5) is equivalent
to (4) if there exists a mapping (Z ,V ) → (X,V ), which is true if C is invertible.
Conditional independence (4) is necessary for the use of V as a control. The
condition of Proposition 1, however, comes at the price of restricting the first-
stage structural function, h.

PROPOSITION 2. If V = C(h(Z ,η), Z) does not depend on Z given η for
a C(X, Z) that is smooth and almost surely invertible in X, then {h(·,η)} is a
one-dimensional family of functions in Z.

Remark. Identification of average structural functions or quantile structural
functions for a given X = x requires, in addition to conditional independence (4),
that V has full support given X = x . In other words, the range of C(X, Z) must
be independent of X .

Remark. Assume that almost surely h(Z ,η1) �= h(Z ,η2) for independent
draws Z ,η1,η2 from the respective distributions of Z and η. Then the family of
functions {h(.,η)} is one-dimensional if and only if it is possible to predict the
counterfactual X under manipulation of Z from knowledge of X and Z . This
possibility is a much stronger requirement than the possibility of identifying the
ASF or QSF for the first stage relationship, which follows immediately from
exogeneity of Z . The counterfactual outcome setting Z = z0, h(z0,η) is used as
a control function in the proof of Proposition 3 below.

Remark. If invertibility is dropped from the assumptions of Proposition 2, one-
dimensionality of the family {h(·,η)} does not necessarily follow, but neither does
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conditional independence (4). For example, if C = const., then conditional inde-
pendence (5) holds, but (4) does not necessarily hold.

The reverse of Proposition 2 is also true.

PROPOSITION 3. If {h(.,η)} is a one-dimensional family of functions in
Z and almost surely h(Z ,η1) �= h(Z ,η2) for independent draws Z ,η1,η2 from
the respective distributions of Z and η, then there exists a control function V =
C(h(Z ,η), Z) that does not depend on Z given η.

Remark. If the family {h(.,η)} is not only one-dimensional but also monotonic
in unobserved heterogeneity, that is,

h(z1,η1) > h(z1,η2) ⇔ h(z2,η1) > h(z2,η2) ∀ z1, z2,η1,η2, (15)

then C(X, Z) = F(X |Z) is the same control function as the one constructed in
the proof of Proposition 3, in that there is an invertible mapping between the two.
If monotonicity fails, however, C(X, Z) = F(X |Z) cannot satisfy the sufficient
condition of Proposition 1.

Remark. It follows from Proposition 2 that in the random coefficient example
of Section 2, no control function satisfying the sufficient condition of Proposition
1 and invertibility in X can exist. The family of functions

h(Z ,η1,η2) = η1 +η2 Z (16)

assumed in the random coefficient model is two-dimensional, which implies
that we cannot predict the counterfactual X under a manipulation setting Z = z,
h(z,η), for a given observational unit from X and Z alone.

3.2. Control Functions Satisfying Conditional Independence

Next we will consider the more general case of control functions satisfying
conditional independence (4), which is required to identify Eε|V [g(x,ε)|V ] by
E[Y |X = x,V ].

PROPOSITION 4. There exists a control function V = C(X, Z) such that
conditional independence (4) holds and that is invertible in Z if and only if
P(ε|X, Z) is an at most one-dimensional family of distributions that is not con-
stant in Z if it is not constant.

Remark. If C is not invertible in Z , the following situation is theoretically
possible: The family of conditional distributions p(ε|Z , X) is two-dimensional.
The conditional support of (X, Z) given V , XZ(V ), is comprised of a discrete set
of points given X . Hence p(ε|X,V ) is a mixture of p(ε|Z , X) over a discrete set
of points Z . None of the components of this mixture is constant as X varies and Z
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covaries to remain within the manifold XZ(V ). Nevertheless, the changes in the
components cancel exactly, implying that p(ε|X,V ) is constant in X .

Intuitively, such canceling seems a highly nongeneric phenomenon and of little
practical relevance. We do not have results, however, precluding this possibility
in the absence of invertibility of C in Z .

Remark. The theorem only characterizes conditions for the existence of a con-
trol function. It does not give conditions for identifiability of C itself.

In the random coefficient model of Section 2, the necessary condition of Propo-
sition 4 is not fulfilled in general. We have

ε|X, Z ∼ N

(
με + (X −μη1 −μη2 Z)

Cov(X,ε|Z)

Var(X |Z)
,Var(ε)− Cov2(X,ε|Z)

Var(X |Z)

)
,

(17)

which is a two-dimensional family as long as Cov(X,ε|Z) is not identical 0 and
Cov2(X,ε|Z)

Var(X |Z) is not constant in Z , i.e., so long as

(�η1,ε + Z�η2,ε)
2

�η1,η1 +2Z�η1,η2 + Z2�η2,η2

depends on Z . Since this is the case for generic �, the following corollary holds.

COROLLARY 1. There exists no control function invertible in Z in the
generic random coefficient model of Section 2 such that conditional indepen-
dence (4) holds.

3.3. Higher-Dimensional X and Z

The results of the previous sections extend to the case of higher-dimensional X
and Z . In particular, if we allow X ∈ Rk and Z ∈ Rl with l ≥ k, the following
generalization of Proposition 2 holds.

PROPOSITION 5. If V = C(h(Z ,η), Z) does not depend on Z given η for
a C(X, Z) that is smooth and almost surely invertible in X, then {h(.,η)} is a
k-dimensional family of functions in Z.

The proof is analogous to the one-dimensional case. Similarly, for Proposition
3 we have the generalization below.

PROPOSITION 6. If {h(.,η)} is a k-dimensional family of functions in Z
and almost surely h(Z ,η1) �= h(Z ,η2) for independent draws Z ,η1,η2 from the
respective distributions of Z and η, then there exists a control function V =
C(h(Z ,η), Z) that does not depend on Z given η.
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Finally, since none of the arguments leading to Proposition 4 depends on the
dimensionality of X or Y , we get the generalization below.

PROPOSITION 7. There exists a control function V = C(X, Z) such that
conditional independence (4) holds and that is invertible in Z if and only if
P(ε|X, Z) is an at most l-dimensional family of distributions that is not constant
in Z if it is not constant.

4. CONCLUSION

This note characterizes triangular models for which control functions satisfying
conditional independence and support requirements exist. These characterizations
seem restrictive and will generally not be fulfilled. In particular, Proposition 2
states that having a control function that is a function of unobserved heterogeneity
η requires a one-dimensional first stage family of structural functions.

Examples of such one-dimensional families include (i) families that are
monotonic in unobserved heterogeneity, as in Imbens and Newey (2009); (ii)
models with X = h(|Z − η|), which could describe the loss from missing an
unknown target η; and (iii) multiplicative families of the form X = h(Z) · η,
where h is of nonconstant sign. An economic example of (iii) is an income
equation where X is income, h(Z) is the (possibly negative) amount of some
asset that an individual owns, and η is the rate of return. The characterizations
proven in this paper show, however, that while such alternative families could
be considered, no less restrictive family will allow construction of a control
function. That is, there is no scope for generalization in conditions beyond
Imbens and Newey (2009).

NOTES

1. Suppose the object of interest is g̃(x) = argminǧEε [ρ(g(x,ε), ǧ)] for a loss function ρ(Y, g̃).
The function g̃ is identified under the same conditions as the ASF. To show this, replace Y with ρ in
equation (6).

2. I thank Bryan Graham for this motivation.
3. If μη2 > 0, then Z ≤ −�η1,η2/�η2,η2 is sufficient, though not necessary.
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APPENDIX: Proofs

Proof of Proposition 1. This is immediate from independence of Z and (η,ε). By
assumption we can write V as a function of η, and therefore

Z |(V (η),ε) ∼ Z . (A.1)

Hence, the conditional distribution of Z given V (η),ε does not depend on ε, implying
conditional independence (5). n

Proof of Proposition 2. Invertibility in X and smoothness of C imply that the range of
V = C(X, Z) is a one-dimensional, smooth manifold for a given Z . Since V is a function
of η only, its range is independent of Z . Hence the range of V is a one-dimensional, smooth
manifold. Invertibility and smoothness of C imply further that we can define a function h̃
such that X = h̃(Z ,V ).

These assertions are true for many “reduced form” representations of the first stage such
as regression residuals or conditional quantiles. However, the assumption that V does not
depend on Z given η makes the first stage “structural” in the sense that we can write

h(Z ,η) = h̃(Z ,V (η)). (A.2)

Because V is one-dimensional, this is a one-dimensional family of functions in Z . n

Proof of Proposition 3. Since {h(.,η)} is a one-dimensional family of functions, we
can assume without loss of generality that η has its support in R. Pick a generic z0 from the
distribution of Z , and define C(X, Z) = h(z0,h−1(Z , X)), where the inverse is understood
with respect to the η argument of h holding Z fixed. This inverse is well defined by the
nonconstancy of h in η and the one-dimensionality of η. By definition, C(h(Z ,η), Z) =
h(z0,η), which is a function of η alone. n

Proof of Proposition 4. Consider the family of conditional distributions of ε given
Z , X . This is an at most two-dimensional family, indexed by a parameter that shall be
denoted θ(Z , X), that is, p(ε|Z , X) =: p(ε,θ(Z , X)). The distribution of ε given X,V is
in general a mixture over Z of p(.,θ(Z , X)) for Z such that C(X, Z) = V . If C is invertible
in Z , no mixing takes place, and this reduces to p(.,θ(Z , X)) for Z = C−1(X,V ). In this
case, conditional independence (4) is equivalent to constancy of θ(Z , X) on the manifold

XZ(V ) := {(x, z) : C(x, z) = V, (x, z) ∈ supp(X, Z)}. (A.3)

Hence θ could be written as a function of C , which implies that the dimensionality of the
range of θ is no higher than the dimensionality of the range of C . The range of C , however,
cannot be of dimensionality larger than the dimension of Z if C has full range given X , as
required for identification of the ASF and implied by the invertibility of C . This implies
that the range of θ is at most one-dimensional. n


