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Standard experimental designs are geared toward point estimation and hypothesis
testing, while bandit algorithms are geared toward in-sample outcomes. Here, we in-
stead consider treatment assignment in an experiment with several waves for choosing
the best among a set of possible policies (treatments) at the end of the experiment.
We propose a computationally tractable assignment algorithm that we call “exploration
sampling,” where assignment probabilities in each wave are an increasing concave func-
tion of the posterior probabilities that each treatment is optimal. We prove an asymp-
totic optimality result for this algorithm and demonstrate improvements in welfare in
calibrated simulations over both non-adaptive designs and bandit algorithms. An ap-
plication to selecting between six different recruitment strategies for an agricultural
extension service in India demonstrates practical feasibility.

KEYWORDS: Experimental design, field experiments, optimal policy, multi-armed
bandits.

1. INTRODUCTION

THE FIRST OBJECTIVE OF AN ACADEMIC researcher conducting a randomized controlled
trial (RCT) is typically to generate a point estimate of the treatment effect and a corre-
sponding standard error. These might in turn be used for testing the null hypothesis that
the average effect equals 0. The research design is chosen to minimize the estimation
error or to maximize the power for tests of this null, for example by assigning an equal
number of units to different treatments, and by stratifying the sample by predetermined
covariates (see, for instance, Athey and Imbens (2017)). Such RCTs are designed to an-
swer the question “Does this program have a significant effect?” However, the objective
of an NGO or government conducting an experiment to evaluate its programs is often
different: Instead of estimating effect sizes, they are interested in identifying and imple-
menting the best out of several possible policies or policy variants. In other words, they
would like to answer “Which program will have the largest effect?”

We consider an experimental setting with multiple waves of experimental units, and
multiple treatments. We assume that the outcome of interest is binary. At the beginning
of each wave, the number of units assigned to each treatment arm is decided. After con-
clusion of the wave, prior beliefs about treatment effects are updated based on the ob-
served outcomes. Then treatments are assigned for the next wave. Once the experiment
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is concluded, one of the treatments is picked for full-scale implementation. The objective
is to maximize the average outcomes for this full-scale implementation.

This setting defines a finite-horizon dynamic stochastic optimization problem. It can
be solved analytically using backward induction, but finding exact solutions is compu-
tationally challenging. We therefore propose a new assignment algorithm, “exploration
sampling,” a modification of Thompson sampling. In Thompson sampling, the probabil-
ity that a treatment d is assigned to a given experimental unit arriving at t is equal to the
posterior probability pdt (given outcomes up to t−1) that this treatment is in fact optimal.
For exploration sampling, we replace pdt with the assignment share qdt = St ·pdt · (1 −pdt ),
where St is a normalizing constant.1

We provide theoretical results and simulations showing that this modification improves
expected welfare. It avoids assigning more than 50% of the sample to the highest-
performing treatment, and in large samples equalizes power for rejecting each of the
sub-optimal treatments. This is optimal for the convergence rate of welfare (while stan-
dard Thompson sampling is not). In Section 8, we discuss how the algorithm and its char-
acterization extend to settings with heterogeneous treatment costs, non-binary outcomes,
non-linear objectives, and targeted treatment assignment based on covariates.

The idea of adaptive treatment assignment is almost as old as that of randomized exper-
iments (Thompson (1933)). Adaptive experimental designs have been used, for example,
in clinical trials (Berry (2006), FDA (2018)) and in the targeting of online advertisements
(Russo, Roy, Kazerouni, Osband, and Wen (2018)), but they are not yet common in eco-
nomics. Our setting is closely related to multi-armed bandit problems (Scott (2010)), but
with the key difference that there is no “exploitation” motive, and thus no exploitation-
exploration tradeoff. Under some conditions, the optimal solution to the bandit problem
can be expressed in terms of choosing the arm corresponding to the highest “Gittins in-
dex”; cf. Weber (1992). In practice, most applications use heuristic algorithms such as
the Upper Confidence Bound algorithm (UCB) and Thompson sampling (Russo et al.
(2018)). A recent literature characterizes the expected in-sample regret of these algo-
rithms; see, for example, Bubeck and Cesa-Bianchi (2012), Kock and Thyrsgaard (2017),
Kock, Preinerstorfer, and Veliyev (2018). Russo (2016) considered the closely related
problem of maximizing the probability of picking the best treatment (rather than max-
imizing expected welfare). Our theoretical analysis in Section 4 below draws on insights
from this paper, on the characterization of oracle-optimal allocations in Glynn and Juneja
(2004), and on the impossibility result of Bubeck, Munos, and Stoltz (2011). Approxi-
mations to our optimization problem are also considered in the literature on Bayesian
optimization (Frazier (2018)).

2. SETUP

Consider a policymaker who wants to maximize the expected value of a binary outcome
variable, that is, a success rate. She has to choose between three or more different policies
(treatments) and she can use an experiment that proceeds in multiple waves (repeated
cross-sections). At the end of each experimental wave, outcomes are observed, and treat-
ment assignment in subsequent waves can be based on these observed outcomes. After
the experiment concludes, a treatment is chosen for large-scale implementation.

1An interactive app implementing exploration sampling is available at https://maxkasy.shinyapps.io/
exploration_sampling_dashboard/

https://maxkasy.shinyapps.io/exploration_sampling_dashboard/
https://maxkasy.shinyapps.io/exploration_sampling_dashboard/


ADAPTIVE TREATMENT ASSIGNMENT 115

Treatments and Potential Outcomes

The experiment takes place in waves t = 1� � � � �T . Each wave t is a new random sam-
ple of Nt experimental units i= 1� � � � �Nt drawn from the population of interest (so that
the waves are repeated cross-sections, and each unit is treated only once). The total sam-
ple size is M = ∑T

t=1Nt . Each person or unit i in period t can receive one of k different
treatments Dit ∈ {1� � � � �k}, resulting in a binary outcome Yit ∈ {0�1} determined by the
potential outcome equation Yit = ∑k

d=1 1(Di = d) · Yd
it . This assumption implies in par-

ticular that there is no interference, that is, outcomes are not affected by the treatments
others receive. Random sampling means that the potential outcome vector (Y 1

it � � � � �Y
k
it )

for unit i in period t is an i.i.d. draw from the population of interest. Each treatment d
has a stationary average potential outcome (also known as average structural function)
θd = E[Yd

it ].

Treatment Assignment and State Space During the Experiment

Denote by ndt = ∑
i 1(Dit = d) the number of units assigned to treatment d in wave t.

The treatment assignment in wave t is summarized by the vector nt = (n1
t � � � � � n

k
t ) with∑

d n
d
t = Nt . Denote sdt = ∑

i 1(Dit = d�Yit = 1) the number of successes (Yit = 1) in
treatment group d in wave t. The outcome of wave t can be summarized by the vector
st = (s1

t � � � � � s
k
t ), where sdt ≤ ndt . These outcomes are observed at the end of wave t. De-

note the cumulative versions of these terms from 1 to t bymd
t = ∑

t′≤t n
d
t′ , r

d
t = ∑

t′≤t s
d
t′ , and

mt = (m1
t � � � � �m

k
t ), rt = (r1

t � � � � � r
k
t ). With i.i.d. potential outcomes, the total observations

and successes in each treatment arm (mt � rt) are sufficient statistics for the likelihood
of the data given θ (regardless of the wave in which each unit was observed), and they
summarize all relevant information for the experimenter at the beginning of period t+ 1.

Bayesian Updating

Under our assumptions, Yd
it has a Bernoulli distribution with unknown parameter θd:

Yd
it ∼ Ber(θd). We assume that the policymaker holds prior belief θd ∼ Beta(αd0�β

d
0). The

θd are independent across d. A special case, and the default for the applications later
in this paper, is the uniform prior, corresponding to αd0 = βd0 = 1 for all d. After the
outcomes for periods 1� � � � � t are realized, the posterior distribution is given by θd|mt � rt ∼
Beta(αdt �β

d
t ), where αdt = αdt−1 + sdt = αd0 + rdt and βdt = βdt−1 + ndt − sdt = βd0 +md

t − rdt .

Policy Choice and Regret

After wave T , the experimenter implements a policy d∗
T ∈ 1� � � � �k, with the objec-

tive of maximizing the expected average of the outcome Y for the whole (remaining)
population. At the conclusion of the experiment, per-capita expected social welfare of

policy d is given by SWT (d) = E[θd|mT � rT ] = αd0 +rdT
αd0 +βd0 +mdT

and the optimal policy choice

is d∗
T ∈ argmaxd SWT (d). Denote the true optimal treatment d(1) ∈ arg maxd′ θd

′ , and let
�d = θd

(1) − θd be the policy regret when choosing treatment d, relative to the optimal
treatment. Note that the objective considered in the bandit literature is in-sample regret
1
M

∑
i�t �

Dit rather than policy regret �d∗
T , as considered here. Disregarding the welfare of

participants in the experiment is justified if their number is small relative to the popula-
tion of interest.
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Expected Regret

The experimenter chooses the treatment assignment nt at the beginning of wave t. This
treatment assignment can depend on the outcomes of waves 1 to t − 1, and on a ran-
domization device. We will evaluate treatment assignment algorithms based on expected
social welfare, or equivalently expected policy regret (conditional on the true θ), for the
policy d∗

T :

Rθ(T)=E[
�d

∗
T |θ] =

∑
d

�d · P(
d∗
T = d|θ)

� (2.1)

where T denotes the number of waves of the experiment, and the expectation is over all
possible success realizations and treatment assignment choices.

Optimal Treatment Assignment

The choice of treatment assignment nt for each t = 1� � � � �T is a dynamic stochastic
optimization problem that can in principle be solved using backward induction, with full
enumeration of all possible states and actions. The state at the end of wave t − 1 is given
by (mt−1� rt−1), and the action in t is given by nt . The transition between states is described
by mt = mt−1 + nt , rt = rt−1 + st , where the success probabilities follow a Beta-Binomial

distribution, P(sdt = s|mt−1� rt−1�nt)= (
ndt
s

)B(αdt−1+s�βdt−1+ndt −s)
B(αdt−1�β

d
t−1)

. In the Supplemental Material

(Kasy and Sautmann (2021)), we discuss the derivation of value functions and the corre-
sponding optimal assignment functions, which map the state (mt � rt) into the assignment
nt . Under optimal treatment assignment, Rθ(T) is minimized. We use numerical exam-
ples with two waves to show that the optimal treatment assignment in wave 2 assigns more
units to those treatments that performed better in wave 1.

Computational Complexity

We also show in the Supplemental Material that the time complexity for dynamic
programming with full memoization (storing all intermediate results) in this setting is
of order

∑T−1
t=1 O((MtNt+1)

2k−1) + O(M2k−1
T k), and the memory complexity is of order∑T

t=1O(M
2k−1
t ). An alternative to full optimization is the use of heuristic algorithms,

which are widely used for bandit problems. This reduces computational complexity but
may increase expected policy regret Rθ(T). Below, we first briefly discuss one of the
most popular (and oldest) bandit algorithms, so-called Thompson sampling, originally
proposed by Thompson (1933). We then propose a new, closely related algorithm that we
call exploration sampling.

3. THOMPSON SAMPLING

We next define Thompson sampling and review its large-sample behavior, in order to
compare it with our proposed algorithm below. Consider first the special case of our set-
ting where units arrive one at a time. In each period t, assign treatment d with probability
pdt equal to the posterior probability, given past outcomes, that it is in fact the optimal
treatment,

pdt = P(
d = argmax

d′
θd

′ |mt−1� rt−1
)
� (3.1)
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This prescription can be implemented by sampling one draw θ̂t from the posterior given
mt−1 and rt−1, and setting Dt = argmaxd θ̂

d
t . In the context of the Beta-Binomial model

above, θ̂t is sampled from its Beta posterior. Thompson sampling can be applied much
more generally; an excellent overview is in Russo et al. (2018). When treatment assign-
ment takes place in waves, it is natural to adapt Thompson sampling by assigning a non-
random number �pdt Nt� of observations in wave t to treatment d, in order to reduce ran-
domness. The remainder of observations are assigned randomly so that expected shares
remain equal to pdt . We will refer to this method of assignment as expected Thompson
sampling.

The Large-Sample Behavior of Thompson Sampling

In many bandit problems, the goal is to minimize average in-sample regret E( 1
T

×∑T

t=1�
Dt ). Agrawal and Goyal (2012, Theorem 2) have shown that in-sample regret for

Thompson sampling (in the binary outcome setting, with sequential arrival) satisfies the
bound

lim
T→∞

E

⎡
⎢⎢⎢⎢⎢⎣

T∑
t=1

�Dt

logT

⎤
⎥⎥⎥⎥⎥⎦

≤
( ∑
d �=d(1)

1(
�d

)2

)2

� (3.2)

As first shown by Lai and Robbins (1985), no adaptive experimental design can do
better than this logT rate; the proof of this lower bound is reviewed in Section 2.3 of
Bubeck and Cesa-Bianchi (2012). This result implies that Thompson sampling only as-
signs a share of units of order log(T)/T to treatments other than the optimal treatment,
so that we effectively stop learning about the performance of sub-optimal treatments very
quickly. This benefits in-sample welfare, but is not optimal for ex post policy choice.

Bubeck, Munos, and Stoltz (2011) formalized this intuition. Their Theorem 1 implies
that any algorithm that achieves a log(T)/T rate for in-sample regret, such as Thompson
sampling, can at most achieve a polynomial rate of convergence to 0 for the probabil-
ity of choosing a sub-optimal treatment after the experiment, and thus for policy regret.
This contrasts with algorithms which assign a fixed, non-zero share of observations to
each treatment, such as conventional (non-adaptive) designs. In general, algorithms that
converge to non-zero shares achieve an exponential rate of convergence.

4. EXPLORATION SAMPLING

Based on Thompson sampling, we propose a modified treatment assignment algo-
rithm which we call exploration sampling. It replaces the Thompson assignment shares
(p1

t � � � � �p
k
t ) with the following transformed shares:

qdt = St ·pdt · (1 −pdt
)
� St = 1∑

d

pdt · (1 −pdt
) � (4.1)

This modification shifts weight away from the best performing option to its close competi-
tors. Since there is at most one d for which pdt > 1/2, we have that, across the components
pdt (given St), the mapping from pdt to qdt is monotonically increasing and concave.
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Heuristic Motivation. Exploration sampling would arise if we used Thompson sam-
pling but never assigned the same treatment twice in a row, thus improving power for
comparisons of relevant alternatives. Suppose that within a given wave, we sequentially
draw treatment assignments based on the Thompson probabilities p, but the draw is re-
peated, if necessary, until the current unit is assigned a different treatment from the pre-
vious unit. This algorithm defines a Markov chain for the sequence of assigned treatments
where the probability of transitioning from treatment d′ to treatment d �= d′ is given by
pd

1−pd′ . This Markov chain has a stationary distribution q that satisfies qd = ∑
d′ �=d q

d′ pd

1−pd′
for all d. By the mean ergodic theorem, the assignment shares converge to this stationary
distribution. Solving for q yields Equation (4.1). Thus, for large wave sizes, this algorithm
assigns the same share of observations to each treatment as exploration sampling.

4.1. The Large-Sample Behavior of Exploration Sampling

Our key result, Theorem 1, shows that exploration sampling achieves the best possible
exponential rate of convergence, subject to the constraint that, in the limit, half the obser-
vations are assigned to the best treatment. It achieves in particular a better exponential
rate than non-adaptive assignment, and converges much faster than Thompson sampling,
which only converges polynomially. In a second characterization, Proposition 1, we show
that for a large first wave, exploration sampling splits the second wave equally between
the two best treatments.

Many Waves

Theorem 1 characterizes the behavior of exploration sampling in settings with many
waves and fixed wave sizeNt =N ≥ 1. Let q̄dt =md

t /(Nt) denote the share of observations
assigned to d over all waves until t, and write “→p” for convergence in probability.

THEOREM 1: Consider exploration sampling in the setting of Section 2, with fixed wave
sizeNt =N ≥ 1. Assume that the optimal policy d(1) is unique and that θd(1) < 1. As T → ∞,
the following hold:

1. The share of observations q̄d(1)T assigned to the best treatment converges in probability to
ρd

(1) ≡ plimT→∞ q̄
d(1)

T = 1/2.
2. The share of observations q̄dT assigned to each treatment d �= d(1) converges in probability

to a non-random share ρd . ρd is such that − 1
NT

logpdt →p 	∗ for some 	∗ > 0 that is
constant across d �= d(1).

3. Expected policy regret converges to 0 at the same rate 	∗, that is, − 1
NT

log Rθ(T)→ 	∗.
No algorithm with limit assignment shares ρ̂ �= ρ and ρ̂d(1) = 1/2 exists for which Rθ(T)
goes to 0 at a faster rate than 	∗.

The proof of Theorem 1 can be found in the Appendix, where we first state six prelim-
inary lemmas before proceeding to the main proof. Lemmas 1 through 3 draw on Glynn
and Juneja (2004) and characterize the oracle optimal allocation of observations across
the treatments d �= d(1). This allocation maximizes the rate of convergence of policy re-
gret to 0 as T goes to infinity by asymptotically equalizing the power of tests comparing
the optimal treatment to each sub-optimal treatment. Lemmas 4 through 6, drawing on
Russo (2016), leverage results on posterior consistency and the rate of convergence of
posterior probabilities to give sufficient conditions for q̄T to converge to this allocation.
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The main proof of Theorem 1 then proceeds in several steps. First, we show that each
treatment is assigned infinitely often. This implies that pdT goes to 1 for the optimal treat-
ment and to 0 for all other treatments. Claim 1 then follows from the definition of ex-
ploration sampling. Second, we show claim 2 by contradiction. Suppose pdt goes to 0 at a
faster rate for any one of the sub-optimal treatments d. Then exploration sampling would
effectively stop assigning this treatment d. This in turn allows the other sub-optimal treat-
ments to “catch up.” Last, efficiency (claim 3) holds because the algorithm balances the
rate of convergence of posterior probabilities (or equivalently, of power) across treat-
ments. This is optimal because the rate of convergence of policy regret is dominated by
the slowest rate of convergence across treatments.

Large First Wave

Consider now the case of large wave sizeN1. With small T , the potential for adaptivity is
limited, so no optimality guarantees exist. We can nonetheless characterize the behavior
of adaptive algorithms. For large N1, with high probability Thompson sampling assigns
all observations in the second wave to the best performing treatment, while exploration
sampling splits the second wave equally between the best two treatments.

PROPOSITION 1: Consider the setting of Section 2, and assume that both the optimal policy
d(1) and the second best policy d(2) = argmaxd �=d(1) θ

d are unique. Then the following hold:
1. Suppose that treatment is assigned using Thompson sampling. Then, as N1 → ∞, the

second period assignment shares satisfy pd
(1)

2 →p 1, and pd2 →p 0 for d �= d(1).
2. Suppose that treatment is assigned using exploration sampling. Then, as N1 → ∞, the

second period assignment shares satisfy qd2 →p 1
2 for d ∈ {d(1)� d(2)}, and qd2 →p 0 for

d /∈ {d(1)� d(2)}.

5. CALIBRATED SIMULATIONS

We next present simulation evidence on the performance of alternative treatment as-
signment algorithms, using parameter vectors and sample sizes calibrated to data from
published experiments in development economics. The purpose of the calibration is to
“tie our hands” in choosing research designs and data characteristics for our simulations.

Experiments

We use data from the experiments in Ashraf, Berry, and Shapiro (2010), Bryan, Chowd-
hury, and Mobarak (2014), and Cohen, Dupas, and Schaner (2015). They each have multi-
ple treatments and a binary outcome (more information is in the Supplemental Material).
Our simulations use the same sample sizes as the original experiments, but for simplicity
ignore any clustering. We assume that the policymaker’s goal is to maximize the average
measured outcome (which was not necessarily the goal of the original experiments).

Figure 1 shows the average outcomes across treatment arms for each of the three ex-
periments. We set the “true” parameter vectors θ equal to these average outcomes for
the purpose of our simulations. For Ashraf, Berry, and Shapiro (2010), average outcomes
are roughly evenly spaced. This makes it comparatively easy to statistically detect which
treatments are performing better, so we would expect benefits of adaptation even for
moderate sample sizes. For Bryan, Chowdhury, and Mobarak (2014), two treatments are
clearly better, but they are also very close. It is easy to distinguish these from the other
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FIGURE 1.—Average treatment outcomes in experimental data.

two treatments, but it takes a large amount of information to figure out which is the best,
and the returns to doing so are not very large. For Cohen, Dupas, and Schaner (2015),
the top six treatments are again roughly evenly spaced, but the best treatments are close
together and thus hard to distinguish.

Simulation Results

We compare three different algorithms. The non-adaptive algorithm assigns an equal
share of units to each of the treatment arms and serves as a benchmark. Expected Thomp-
son assigns a non-random share of units in each wave based on the Thompson probabili-
ties. Exploration sampling, our preferred approach, is as described in Section 4.

We evaluate the performance of these algorithms using the distribution of policy regret
across 100,000 simulation draws. Recall that policy regret is given by �d∗

T = maxd θd −θd∗
T .

For each experiment, the vector θ, and in particular maxd θd , is fixed across simulation
draws.

Table I shows performance metrics for each of the three algorithms considered, and for
varying numbers of waves, holding total sample size constant. We report average policy
regret, as well as the share of simulation draws for which the optimal treatment d(1) would
be chosen after T . Finally, we report average in-sample regret, 1

M

∑
i�t �

Dit .
The results show that exploration sampling consistently outperforms expected Thomp-

son sampling in terms of average policy regret, and both outperform non-adaptive assign-
ment. Adaptive designs with more waves perform better than designs with fewer waves
(for the same total sample size). The gains from adaptive designs are largest in the ap-
plication to Ashraf, Berry, and Shapiro (2010), followed by Cohen, Dupas, and Schaner
(2015).

The probability of choosing the best treatment is strictly larger than under non-adaptive
assignment as well; figures in the Supplemental Material furthermore show that the dis-
tribution of policy regret under exploration sampling first-order stochastically dominates
the distribution under non-adaptive assignment. For Ashraf, Berry, and Shapiro (2010)
and Bryan, Chowdhury, and Mobarak (2014), both approaches pick one of the best two
treatments with high probability. For Cohen, Dupas, and Schaner (2015), the distribution
is more dispersed, owing to smaller treatment differences.

In-sample regret is the objective of bandit algorithms, for which Thompson sampling is
rate-optimal, but exploration sampling is not. Here, Thompson performs best among the
algorithms compared. However, because exploration sampling shifts sampling toward the
better performing options, it dominates non-adaptive assignment in terms of in-sample
regret.
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TABLE I

SIMULATION RESULTSa

Statistic 2 waves 4 waves 10 waves

Ashraf, Berry, and Shapiro (2010)
Average policy regret

exploration sampling 0�0017 0�0010 0�0008
expected Thompson 0�0022 0�0014 0�0013
non-adaptive 0�0051 0�0050 0�0051

Share optimal
exploration sampling 0�978 0�987 0�989
expected Thompson 0�971 0�981 0�982
non-adaptive 0�933 0�935 0�933

Average in-sample regret
exploration sampling 0�1126 0�0828 0�0701
expected Thompson 0�1007 0�0617 0�0416
non-adaptive 0�1776 0�1776 0�1776

Units per wave 502 251 100

Bryan, Chowdhury, and Mobarak (2014)
Average policy regret

exploration sampling 0�0045 0�0041 0�0039
expected Thompson 0�0048 0�0044 0�0043
non-adaptive 0�0055 0�0054 0�0054

Share optimal
exploration sampling 0�792 0�812 0�820
expected Thompson 0�777 0�795 0�801
non-adaptive 0�747 0�748 0�749

Average in-sample regret
exploration sampling 0�0655 0�0386 0�0254
expected Thompson 0�0641 0�0359 0�0205
non-adaptive 0�1201 0�1201 0�1201

Units per wave 935 467 187

Cohen, Dupas, and Schaner (2015)
Average policy regret

exploration sampling 0�0070 0�0063 0�0060
expected Thompson 0�0074 0�0065 0�0061
non-adaptive 0�0086 0�0087 0�0085

Share optimal
exploration sampling 0�567 0�586 0�592
expected Thompson 0�560 0�582 0�589
non-adaptive 0�526 0�524 0�529

Average in-sample regret
exploration sampling 0�0489 0�0374 0�0314
expected Thompson 0�0467 0�0345 0�0278
non-adaptive 0�0737 0�0737 0�0737

Units per wave 1080 540 216

aAverage policy regret, share optimal, and average in-sample regret across 100,000 simulation draws. The vector θ equals average
outcomes in the original experiment in all draws. The total sample size is as in the original experiment.
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6. IMPLEMENTATION IN THE FIELD

Precision Agriculture for Development (PAD) is an NGO that works with government
partners to provide a phone-based personalized agricultural extension service to farm-
ers. We designed an experiment using exploration sampling as in Section 4 to help PAD
choose among a variety of different call methods to enroll rice farmers in one state in
India.2 The outcome is a binary variable describing call completion: It equals 1 if the call
recipient answered five questions asked during the call (which enables processing). PAD
tested six treatments that combined automated voice calls in the morning or evening with
possible text message alerts sent up to 24 hours ahead.

The sample was selected from a list of phone numbers provided by the government
partner. PAD set aside a batch of 10,000 valid numbers that are not on the Indian “do-
not-disturb” list, and randomly selected waves of 600 phone numbers for testing. Starting
on June 3, 2019, a new experimental wave was started every other day and completed
the next day (with a one-day delay on June 17).3 The success rate of each treatment arm
was estimated starting with a uniform prior over θ in order to determine the assignment
frequencies for each consecutive wave.

Findings

Table II shows treatment assignments and success rates, and the posterior mean and
standard deviation of the success rate θd , as well as the posterior probability pdT that each
treatment is optimal. Figure 2 plots the assignment shares over time. The figure shows
that one treatment was assigned the most units from wave 2 onwards, but some closely
competing treatments got a high share of observations, especially in early waves. The
number of observations per wave assigned to each of the treatments did stabilize towards
later waves, as predicted by our characterization of exploration sampling in Theorem 1.

Calling farmers at 10 am after a text message an hour ahead of time is with over 75 per-
cent probability the treatment with the greatest success rate, estimated to be 19.3 percent.
Across treatments, higher success rates are associated with a higher number of observa-
tions, and correspondingly smaller posterior standard deviation. This holds by design for

TABLE II

OUTCOMES OF THE ADAPTIVE EXPERIMENT FOR PADa

Treatment Outcomes Posterior

Call time SMS alert mdT rdT rdT /m
d
T Mean SD pdT

10 am – 903 145 0.161 0.161 0.012 0.009
10 am 1 h ahead 3931 757 0.193 0.193 0.006 0.754
10 am 24 h ahead 2234 400 0.179 0.179 0.008 0.073
6:30 pm – 366 53 0.145 0.147 0.018 0.011
6:30 pm 1 h ahead 1081 182 0.168 0.169 0.011 0.027
6:30 pm 24 h ahead 1485 267 0.180 0.180 0.010 0.126

aFor each treatment arm: total observations, total successes, share of successes, posterior mean, and standard deviation of the
success rate, and probability that the arm is optimal. 10,000 units and 17 waves.

2The pre-analysis plan for this experiment was registered at www.socialscienceregistry.org/trials/4263. The
R-code used for implementation can be found at github.com/maxkasy/Precision-Agriculture-for-Development.

3The schedule got delayed by one day starting June 17 due to internet connectivity issues in India.

http://www.socialscienceregistry.org/trials/4263
http://github.com/maxkasy/Precision-Agriculture-for-Development
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FIGURE 2.—Assignment frequencies over time.

exploration sampling. Cumulatively, nearly 40 percent of farmers received the most suc-
cessful type of call, whereas under 4 percent received the least successful call (at 6:30 pm
without a text message alert). Based on the posterior estimated success rates, exploration
sampling not only improved learning, but also increased overall success rates within the
experiment (18.04%) compared to a standard design with equal assignment to treatment
arms (where the estimated success rate based on posterior means would be 17.15%).

7. ALTERNATIVES TO EXPLORATION SAMPLING

Theorem 1 shows that exploration sampling achieves the best possible exponential rate
of convergence of expected policy regret, subject to the constraint that, in the limit, half
the observations are assigned to the best treatment, or γ ≡ plim q̄d(1)T = 1/2. This result
raises several questions.

Other Algorithms

A first question is whether there are other algorithms that achieve the same form
of constrained efficiency. The answer is yes; Proposition 3 in Appendix A.6 shows that
there is a larger class of algorithms for which the assignment shares for d �= d(1) con-
verge to the oracle-optimal limit shares characterized by Lemmas 1 to 3. In these al-
gorithms, the vector of assignment shares in wave t, qt , is given by a function ψ(pt) of
the Thompson shares pt which satisfies the properties stated in Appendix A.6. An algo-
rithm satisfying these properties might for instance be constructed by setting qd

∗
t
t = γ, and

qdt = [(1 − γ)/(1 −pd∗
t )] ·pdt for d �= d∗

t .
4 We will call the limit allocation of such an algo-

rithm ργ . In this notation, the assignment shares under exploration sampling converge to
ρ1/2.

4Russo (2016) proposed another algorithm satisfying these conditions, which takes the form of assigning
units with a fixed probability γ to the arm with the highest pdt , and the remainder to the arm with the second
highest pdt . Our setting differs from that of Russo (2016), since (1) our objective is to maximize expected
welfare rather than the probability of picking the best treatment, and (2) Russo’s algorithm is less well suited
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Relative to algorithms such as the one just proposed and those proposed in Russo
(2016), exploration sampling has additional advantages that are not reflected in the large-
deviation asymptotics of Theorem 1. In these algorithms, there tends to be initial insta-
bility in assignment shares, due to the fixed share γ assigned to d∗

T , and due to initial
uncertainty about which treatment is best. Exploration sampling leads to more stable as-
signment shares in initial periods. This advantage would be reflected in worst-case (local
to 0) asymptotics, the analysis of which is left for future research.

Different Share for the Top Treatment

A second question is whether γ = 1/2 is a good choice. The following proposition,
which is related to Lemma 3 in Russo (2016), provides a partial answer. It implies that γ =
1/2 provides a tight bound on the rate of convergence of expected policy regret, relative to
the efficient unconstrained allocation which uses the (unknown) rate-maximizing choice
of γ. Consider again the setting of Section 2. Suppose that an algorithm is used under
which q̄T converges in probability to the limit allocation ργ that is rate-optimal for policy
regret, subject to ρd(1)γ = γ. Denote by 	∗

γ the rate of convergence of Rθ(T), that is, 	∗
γ =

limT→∞(− 1
NT

log Rθ(T)), for such assignment shares.

PROPOSITION 2: Under these assumptions, 	∗
γ ≥ min(γ�1 − γ) · maxγ′ 	∗

γ′ , and in partic-
ular, 	∗

1/2 ≥ 1
2 · maxγ′ 	∗

γ′ .

Data-Dependent Share for the Top Treatment

A third question is whether it would be possible to do better by choosing γ in a data-
dependent manner. Asymptotically, the answer is again yes. In Section 5 of Glynn and
Juneja (2004), an algorithm with data-dependent γ is proposed. This algorithm is based
on a plug-in procedure that works as follows. Given the available data, form an estimate
of θ. Based on this estimate, calculate the optimal sample shares ρ for maximizing the
asymptotic rate of convergence 	 of policy regret, as derived from large-deviations theory.
Use these plug-in shares for the allocation of treatments. Glynn and Juneja (2004) proved
consistency of this approach under some conditions.

8. EXTENSIONS

More General Outcome Distributions and Objective Functions

Above, we assumed that outcomes are binary and social welfare is linear in the success
rate θd . This setting immediately generalizes in a number of ways. For normal outcomes
with appropriately modified posterior probabilities, the definition of exploration sampling
and the characterizations of Section 4 apply with minor modifications. We can also allow
for known per-unit costs cd of treatment d.5

for the batched setting, as it assigns all observations to two treatments. Unlike exploration sampling, Russo’s
algorithm and the alternative algorithms characterized here require a tuning parameter γ.

5In the binary outcome setting with treatment costs cd , Theorem 1 needs the additional conditions
θd

(1) − cd
(1)
< 1 − cd and −cd(1) < θd − cd ∀d. These conditions ensure that the problem is “hard” enough,

so that we cannot exclude any treatment from being optimal without observations on that treatment. They are
immediately satisfied if the costs are the same for all d.
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More generally, population outcomes may follow some other distribution F , and the
planner may be interested in other moments of F besides the mean, such as the variance
(inequality) or certain percentiles (poverty levels). For example, we may assume that there
is a family of outcome distributions F that can be parameterized with a vector θd , and the
planner learns about θd in order to maximize E[U(θd)], where U is a utility function that
may depend on these parameters in complex ways.

The exploration sampling algorithm generalizes in a straightforward way to this set-
ting, as long as we can simulate draws of θ = (θd)kd=1 from the posterior in each t. We
can simulate θ, determine the utility-maximizing treatment for each draw, calculate the
share pdt of draws for which d is optimal, and obtain the exploration sampling shares
qdt by formula (4.1). We conjecture that exploration sampling improves learning, and the
asymptotic characterizations in Section 4.1 hold, in a range of more general settings of
this form. In the specific case where outcomes are binary, but regret �d is replaced with
U(θd

(1)
)−U(θd), our convergence results apply verbatim for any utility function U that

is increasing in θd .

Covariate-Specific Treatment Assignment

Instead of one treatment for the whole population, the planner may be interested in the
optimal treatment assignment d∗

T (·) that maps covariates X into treatments D. Such as-
signment rules are studied in the literature on contextual bandits (Dudik et al. (2011),
Dimakopoulou, Athey, and Imbens (2017), Bastani, Bayati, and Khosravi (2017), Di-
makopoulou, Zhou, Athey, and Imbens (2018)) and on targeted treatment assignment
based on observational data (e.g., Kitagawa and Tetenov (2018)).

A natural adaptation of our algorithm to targeted treatment assignment policies uses
hierarchical Bayesian models. Consider the case of binary outcomes Y and discrete co-
variates X . Let θdx = E[Yd|X = x]. We might model θdx ∼ Beta(αd0�β

d
0) independently

across x given d, with (αd0�β
d
0)∼ π distributed independently across d for some prior π.

We can sample from the posterior using Markov chain Monte Carlo, and based on such
samples estimate pdxt = P(d = argmaxd′(θd

′ − cd
′
)|X = x�mt−1� rt−1). The exploration

sampling algorithm for this setting then uses stratum-specific conditional assignment
shares qdxt = Sxt ·pdxt · (1 −pdxt ).

Combining Bandit and Policy Objectives

When the experimental sample is not negligible relative to the policy population, the
planner may consider a combination of policy regret and in-sample regret. This is easily
accommodated in the fully optimal assignment discussed in the Supplemental Material.
Adapting the exploration sampling algorithm is less immediate. A possible alternative
approach could build on the knowledge gradient method discussed in the literature on
Bayesian optimization (Frazier (2018)), which is based on a one-period truncated version
of the dynamic optimization problem; its approximation to the value function could be
modified to take into account in-sample welfare.

APPENDIX: PROOFS

Consider an experiment of length T that uses exploration sampling. We are interested
in the behavior of Rθ(T) as T → ∞. Throughout this appendix, all probability statements
are frequentist (conditional on the true θ). We start with three lemmas that characterize
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the rate-optimal treatment allocation q̄, based on results from Glynn and Juneja (2004).
We then restate some lemmas from Russo (2016) that help establish the convergence of
exploration sampling to this rate-optimal allocation, before proceeding to the proof of
Theorem 1 based on these lemmas.

A.1. The Rate-Optimal Allocation

Lemma 1 states that the rate of convergence of expected policy regret Rθ(T) to zero is
equal to the slowest rate of convergence 	d across d �= d(1) for the probability of d being
estimated to be better than d(1). For a given limit assignment share ρd(1) = γ for d(1),
Lemma 2 draws on the theory of large deviations to characterize 	d as a function of the
treatment allocation share for each d �= d(1), ρd . It also states that the posterior probability
pdT of d being optimal, and therefore the Thompson allocation shares, converge at the
same rate 	d . Lemma 3 characterizes the allocation of observations across the treatments
d �= d(1) which maximizes the rate of Rθ(T).

LEMMA 1: Denote the estimated success rate of d at time T by θ̂dT = αd0 +rdT
αd0 +βd0 +mdT

. Assume

that the optimal policy d(1) is unique. Suppose that limT→∞ − 1
NT

logP(θ̂dT > θ̂
d(1)

T ) = 	d for
all d. Then

lim
T→∞

(
− 1
NT

log Rθ(T)

)
= min

d �=d(1)
	d�

PROOF: The expected policy regret can be written as Rθ(T)= ∑
d �

d ·P(argmaxd′ θ̂d
′
T =

d). We can bound this from below and above:(
min
d �=d(1)

�d
)

·
(

max
d �=d(1)

P
(
θ̂dT > θ̂

d(1)

T

)) ≤ Rθ(T)

≤
(
(k− 1)max

d �=d(1)
�d

)
·
(

max
d �=d(1)

P
(
θ̂dT > θ̂

d(1)

T

))
�

The claim follows. Q.E.D.

LEMMA 2: Suppose that q̄dT =md
T/(NT) converges to ρd for all d, with ρd(1) = γ. Then

1. limT→∞ − 1
NT

logP(θ̂dT > θ̂
d(1)

T )= 	d , and
2. plimT→∞ − 1

NT
logpdT = 	d ,

where 	d =Gd(ρd) for a function Gd : [0�1] → R that is finitely valued, continuous, strictly
increasing in ρd , and satisfies Gd(0)= 0.

PROOF: The first claim follows from the arguments in Glynn and Juneja (2004, Sec-
tion 2). The second claim follows from Proposition 5 and Lemma 2 in Russo (2016). The
function Gd is given by Gd(ρd)= infx(γ · Id(1) (x)+ ρd · Id(x)), where Id is the Legendre
transform of the log moment generating function of Yd . Q.E.D.

LEMMA 3: The rate-optimal allocation ργ , subject to ρd(1)γ = γ, is given by the unique so-
lution to the system of equations

∑
d �=d(1)

ρdγ = 1 − γ and Gd
(
ρdγ

) = 	∗ > 0 for all d �= d(1) (A.1)
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for some 	∗. No other allocation ρ̂, subject to ρ̂d(1) = γ, can achieve a faster rate of conver-
gence of Rθ(T) than 	∗.

PROOF: Based on Lemma 1 and part (1) of Lemma 2, the allocation that maximizes
the convergence of Rθ(T) is given by arg maxρ mind �=d(1) Gd(ρd), subject to

∑
d ρ

d = 1 and
ρd

(1) = γ. The claim follows from the properties of Gd in Lemma 2. Q.E.D.

Theorem 1 in Glynn and Juneja (2004) states an unconstrained version of this result,
maximizing the probability of picking the optimal policy, rather than minimizing policy
regret.

For the remainder of this section, we take Equation (A.1) as the definition of ρ. Theo-
rem 1 states that q̄T converges to ρ for exploration sampling.

A.2. Sufficient Conditions for Convergence to the Optimal Allocation

To prove Theorem 1, we draw on several lemmas from Russo (2016), which we restate
here in our notation. Lemma 4 shows that q̄dt converges to the optimal share ρd as in
Equation (A.1) if the assignment share is “self-correcting,” in the sense that the current
assignment qdt is small whenever total assignment q̄dt to d is too high. Lemma 5 shows that
if q̄dt is too high, then pdt converges to zero exponentially faster than pd′

t for some other
d′ �= d(1), which will allow us to show that qdt will be such that Lemma 4 applies. Lemma 6
is a posterior consistency result for adaptive assignments.

LEMMA 4—Lemma 12 of Russo (2016): Suppose that q̄d(1)t →p γ and

∞∑
t=1

qdt · 1
(
q̄dt > ρ

d + δ)<∞

for all d �= d(1) and all δ > 0, with probability 1. Then q̄dt →p ρd .

LEMMA 5—Lemma 13 of Russo (2016): Suppose that q̄d(1)t →p γ and consider any d �=
d(1) and any δ > 0. Then there exist a δ′ > 0 and a sequence εt → 0 such that, for all t,

q̄dt > ρ
d
γ + δ ⇒ pdt

max
d′ �=d(1)

pd
′
t

≤ exp
(−t(δ′ + εt

))
�

LEMMA 6—Proposition 4 of Russo (2016): Denote the posterior probability after wave t
that θd is in some setA by Pdt (A). Suppose that

∑
t q

d
t = ∞. Then Pdt ([θd −ε�θd +ε])→p 1

for any ε > 0 and the true θd . Suppose that
∑

t q
d
t <∞. Then inft Pdt (A) > 0 for any open

interval A⊂ [0�1].

A.3. Proof of Theorem 1

Recall that exploration sampling assigns a share qdt = pdt ·(1−pdt )∑
d′ pd

′
t ·(1−pd′t )

of wave t to treatment

d, where pdt is the posterior probability that d is optimal.
Step 1: Each treatment is assigned infinitely often. Suppose that treatment d is only

assigned finitely often. Then there is some wave t ′ after which d is not assigned anymore,
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and the posterior probability pdt of d being optimal is bounded away from 0 for all t > t ′.
To see this, note that the posterior (Beta) distribution for θd assigns positive mass to the
interval (1 − ε�1] for any ε > 0. Let ε = (1 − θd

(1)
)/2 > 0. For any other d′ and any t,

there is positive posterior probability that θd′
< 1 − ε: If

∑
t q

d′
t = ∞, then the posterior

probability that θd′
< 1 − ε converges to 1 by Lemma 6. If

∑
t q

d′
t <∞, then the posterior

probability that θd′
< 1 − ε remains bounded away from 0, again by Lemma 6. It follows

that inft pdt > 0.
Under exploration sampling, the denominator in the expression defining qdt is bounded

above by 1, and thus the assignment share qdt is bounded below by pdt · (1 −pdt ). It follows
that qdt is bounded away from 0 when the same holds for pdt . This implies that treatment
d will be assigned again with probability 1 after t ′; contradiction.

Step 2: The share of observations q̄d(1)T assigned to the best treatment converges in
probability to 1/2 as T → ∞. We can derive upper and lower bounds on qdt , by consider-
ing the maximum and minimum of the expression defining qdt with respect to the vector
pt , for a given pdt > 0.

The denominator of the expression defining qdt ,
∑

d′ pd
′
t · (1 −pd′

t ), is concave as a func-
tion of the vector pt . The maximum of qdt is therefore achieved at a corner of the simplex
of possible values for pt given pdt . Each corner is such that pd′

t is equal to 0 for all but two
values of d′ (one of them d). For any such pt , we get qdt = 1/2. This implies qdt ≤ 1/2 for
all values of pt and all d.

In the reverse, again by concavity and symmetry of the denominator, the minimum of
qdt with respect to {pd′

t }d′ �=d , given pdt , is achieved when pd′
t is equal to 1−pdt

k−1 for all d′ �= d.
We therefore get

qdt ≥ pdt · (1 −pdt
)

pdt · (1 −pdt
) +

∑
d′ �=d

1 −pdt
k− 1

(
1 − 1 −pdt

k− 1

) = pdt

pdt +
(

1 − 1 −pdt
k− 1

) ≥ pdt
pdt + 1

�

Since each treatment is assigned infinitely often, we have that pd(1)t →p 1 in probability by

Lemma 6 and uniqueness of the optimal treatment d(1), and therefore pd
(1)
t

pd
(1)
t +1

→p 1/2. We

get that qd(1)t →p 1/2 in probability. The claim for the average across t, q̄d(1)T , follows by
the law of large numbers.

Step 3: The share of observations q̄dT assigned to each treatment d �= d(1) converges
in probability to a non-random share ρd . ρd is such that − 1

NT
logpdT →p 	∗ for all d �=

d(1) and some 	∗ > 0 that is constant across d �= d(1). Consider a sub-optimal treatment
d and a subsequence of t where the share of observations allocated to d up to time t
exceeds ρd . Lemma 5 implies that along this subsequence, the posterior probability pdt
that d is optimal has to go to zero exponentially faster than maxd′ �=d(1) pd

′
t (we assume

wlog k > 2, since the claims of Theorem 1 are immediate for k = 2). Note now that by
definition of qdt ,

qdt ≤ pdt · (1 −pdt
)

max
d′ �=d(1)

pd
′
t · (1 −pd′

t

) ≤ 2
pdt

max
d′ �=d(1)

pd
′
t

�

where the second inequality holds as long as maxd′ �=d(1) pd
′
t ≤ 1/2. Since pdt /maxd′ �=d(1) pd

′
t

converges to 0 at an exponential rate, by Lemma 5, the same holds for qdt . Thus, along
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any subsequence where the share of observations allocated to d up to time t exceeds ρd ,
we have that qdt goes to 0 sufficiently fast (i.e., at an exponential rate). By Lemma 4, we
have that the share of observations assigned to d has to converge to ρd . The second part
of the claim follows from the definition of ρ in Lemma 3.

Step 4: Expected policy regret converges to 0 at the same rate 	∗, that is, − 1
NT

×
log Rθ(T)→ 	∗. No algorithm with limit assignment shares ρ̂ �= ρ and ρ̂d(1) = 1/2 exists
for which Rθ(T) goes to 0 at a faster rate than 	∗. By Lemma 1 and Lemma 3.

A.4. Proof of Proposition 1

To show this result, let us consider the posterior probabilities pd2 that d is optimal after
wave 1, for each d. Note first that pd(1)2 →p 1 as N1 → ∞ by consistency of posteriors
(Schwartz’s theorem, e.g., Theorem 6.16 in Ghosal and Van der Vaart (2017)). Further,
from Proposition 5 in Russo (2016), it follows that pd2/p

d(2)

2 →p 0 for d /∈ {d(1)� d(2)}: The
posterior probability of the set Θd of values for θ which are such that d is the optimal
treatment converges in probability to 0 at an exponential rate equal to the KL-divergence
of the closest element in Θd to the true data generating θ. Given uniqueness of d(2), this
KL-divergence is strictly larger for any d /∈ {d(1)� d(2)} than for d(2), and pd2/p

d(2)

2 →p 0
follows.

1. From these conditions on p2, the claim for Thompson sampling follows immediately.

2. To show the claim for exploration sampling, recall that qd2 = pd2 ·(1−pd2 )∑
d′ pd

′
2 ·(1−pd′2 )

. Note that

under these conditions on p2, for d /∈ {d(1)� d(2)},

0 ≤ pd2

1 −pd(1)2

≤ pd2

pd
(2)

2

→p 0�

pd
(2)

2

1 −pd(1)2

= 1 −
∑

d/∈{d(1)�d(2)}

pd2

1 −pd(1)2

→p 1� and thus

qd
(1)

2 = 1

1 + 1 −pd(2)2

pd
(1)

2

pd
(2)

2

1 −pd(1)2

+
∑

d �=/∈{d(1)�d(2)}

1 −pd2
pd

(1)

2

pd2

1 −pd(1)2

→p 1
2
�

qd
(2)

2 = 1

1 + pd
(1)

2

1 −pd(2)2

1 −pd(1)2

pd
(2)

2

+
∑

d �=/∈{d(1)�d(2)}

pd2

pd
(2)

2

1 −pd2
1 −pd(2)2

→p 1
2
�

A.5. Proof of Proposition 2

We compare two algorithms in which the limit shares ρd allocated to the sub-optimal
treatments d �= d(1) are chosen to maximize the rate of convergence of policy regret, as in
Lemma 3. The first algorithm has limit share assignment ργ with ρd(1)γ = γ and therefore
rate of convergence 	∗

γ . Call the associated experiment, with T waves withN experimental
units each, experiment A. The second algorithm has limit share assignments ργ∗ , where
γ∗ = argmaxg′ 	∗

g, so that the rate of convergence 	∗
γ∗ is the highest possible rate of con-

vergence.
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Define a hypothetical experiment B that uses the second algorithm with limit shares ρ∗
γ ,

but with a number of waves equal to �min(γ�1 − γ) · T � for any T = 1� � � � �∞. Denote
regret for experiment B, as a function of T , by R̃θ(T). By Lemmas 1 and 2,

1⌊
min(γ�1 − γ) · T⌋ ·N log R̃θ(T)→ 	∗

γ∗ �

Since lim �min(γ�1−γ)·T �
T

= min(γ�1 − γ), it follows that

	′ ≡ lim
T→∞

1
TN

log R̃θ(T)= min(γ�1 − γ) · 	∗
γ∗ �

It remains to show that 	∗
γ ≥ 	′. By assumption, the number of observations assigned to

d(1) under experimentA, divided by the total number of observationsNT , converges to γ
in probability. The number of observations assigned to d(1) under experiment B, divided
by NT , converges to min(γ�1 − γ) · γ∗ < γ in probability (since 0 < γ∗ < 1; otherwise
	∗
γ∗ = 0, which cannot be optimal). By a symmetric argument, the number of observations

assigned to all d �= d(1) under experiment A, divided by NT , converges to 1 − γ, while
under B it converges to min(γ�1 − γ) · (1 − γ∗) < 1 − γ.

Therefore, with probability going to 1 as T goes to ∞, under experiment A, more ob-
servations are assigned to treatment d(1), as well as to all other treatments d �= d(1) com-
bined, relative to experiment B. Furthermore, forA, the allocation among the treatments
d �= d(1) is such that it provides the largest possible value of 	∗

γ . This, in combination with
the fact that the rate of convergence of expected policy regret is monotonically increasing
in the number of observations available for any treatment arm, yields the claim.

A.6. Generalizing Theorem 1

Generalizing Theorem 1, Proposition 3 below shows that similar properties are enjoyed
by any algorithm satisfying the following conditions:

1. The vector of assignment shares in wave t, qt , is given by a function ψ(pt) of the
vector pt .

2. limp→ed ψ
d(p)= γ, where ed is the dth unit vector and γ < 1.

3. qdt ≤ C · pdt

max
d′ �=d(1) p

d′
t

, for some constant C and all d �= d(1).
4. Each treatment is assigned infinitely often.

Conditions 2 and 3 are immediately verifiable properties of the function ψ. Condition 4
requires case-specific proofs.

PROPOSITION 3: Consider any algorithm satisfying the conditions stated above, in the set-
ting of Section 2, with fixed wave size Nt = N ≥ 1. Assume that the optimal policy d(1) is
unique and that θd(1) < 1. As T → ∞, the following hold:

1. The share of observations q̄d(1)T assigned to the best treatment converges in probability to
ρd

(1)

γ ≡ plimT→∞ q̄
d(1)

T = γ.
2. The share of observations q̄dT assigned to treatment d �= d(1) converges in probability

to a non-random share ρdγ . ρdγ is such that − 1
NT

logpdt →p 	∗ for some 	∗ > 0 that is
constant across d �= d(1).
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3. Expected policy regret converges to 0 at the same rate 	∗, that is, − 1
NT

log Rθ(T)→ 	∗.
No algorithm with limit assignment shares ρ̂γ with ρ̂d(1)γ = γ exists for which Rθ(T) goes
to 0 at a faster rate than 	∗.

As an example of an algorithm satisfying these properties, consider treatment assign-
ment using the assignment shares qd

∗
t
t = γ, and qdt = [(1 − γ)/(1 −pd∗

t )] · pdt for d �= d∗
t .

Properties 1 and 2 are immediate. Property 3 holds with C = 1. Noting that qdt is bounded
away from 0 when the same holds for pdt , Property 4 holds by arguments exactly analogous
to those in step 1 of the proof of Theorem 1.

The proof of Proposition 3 follows the same steps as our proof of Theorem 1.
Step 1: Each treatment is assigned infinitely often. This holds by assumption.
Step 2: The share of observations q̄d(1)T assigned to the best treatment converges in

probability to γ as T → ∞. Since each treatment is assigned infinitely often, we have that
pd

(1)

t →p 1 in probability by Lemma 6 and uniqueness of the optimal treatment d(1), and
therefore qd(1)t =ψd(1) (pt)→p γ in probability, by our assumption on ψ. The claim for the
average across t, q̄d(1)T , follows by the law of large numbers.

Step 3: The share of observations q̄dT assigned to treatment d converges in probability
to a non-random share ρdγ , for all d. ρdγ is such that − 1

NT
logpdT →p 	∗ for all d �= d(1)

and some 	∗ > 0 that is constant across d �= d(1). Consider a sub-optimal treatment d and
a subsequence of t where the share of observations allocated to d up to time t exceeds
ρdγ . Lemma 5 implies that along this subsequence, the posterior probability pdt that d is
optimal has to go to zero exponentially faster than maxd′ �=d(1) pd

′
t (we assume wlog k > 2,

since the claims of Proposition 3 are immediate for k = 2). Note now that, by assump-
tion, qdt ≤ C · pdt

max
d′ �=d(1) p

d′
t

, for some constant C and all d �= d(1). Since pdt /maxd′ �=d(1) pd
′
t

converges to 0 at an exponential rate, by Lemma 5, the same holds for qdt . Thus, along
any subsequence where the share of observations allocated to d up to time t exceeds ρdγ ,
we have that qdt goes to 0 sufficiently fast (i.e., at an exponential rate). By Lemma 4, we
have that the share of observations assigned to d has to converge to ρdγ . The second part
of the claim follows from the definition of ργ in Lemma 3.

Step 4: Expected policy regret converges to 0 at the same rate, that is, − 1
NT

log Rθ(T)→
	∗. No other assignment shares ρ̂dγ exist for which ρ̂d(1)γ = γ and Rθ(T) goes to 0 at a faster
rate than 	∗. By Lemma 1 and Lemma 3.
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