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Adaptive targeted infectious disease 
testing

Maximilian Kasy* and Alexander Teytelboym**

Abstract: We show how to efficiently use costly testing resources in an epidemic, when testing out-
comes can be used to make quarantine decisions. If  the costs of false quarantine and false release 
exceed the cost of testing, the optimal myopic testing policy targets individuals with an intermediate 
likelihood of being infected. A high cost of false release means that testing is optimal for individuals 
with a low probability of infection, and a high cost of false quarantine means that testing is optimal for 
individuals with a high probability of infection. If  individuals arrive over time, the policy-maker faces a 
dynamic trade-off: using tests for individuals for whom testing yields the maximum immediate benefit 
vs spreading out testing capacity across the population to learn prevalence rates thereby benefiting later 
individuals. We describe a simple policy that is nearly optimal from a dynamic perspective. We briefly 
discuss practical aspects of implementing our proposed policy, including imperfect testing technology, 
appropriate choice of prior, and non-stationarity of the prevalence rate.

Keywords: COVID-19, testing, adaptive learning, value of information, cost–benefit analysis

JEL classification: C9, D61, D83

I. Introduction

We have a simple message for all countries: test, test, test. Test every suspected case. If they 
test positive, isolate them and find out who they have been in close contact with up to 2 days 
before they developed symptoms, and test those people too . . . Once again, our key message 
is: test, test, test. (Tedros Adhanom Ghebreyesus, WHO Director-General’s opening 
remarks at the media briefing on COVID-19, 16 March 2020).

Testing is a critical part of a response to an epidemic. At an individual level, testing 
allows authorities to identify and quarantine sick people, thereby stopping the spread 
of the disease. At a country level, testing helps authorities keep track of the disease 
spread, make decisions about social distancing rules, and plan for provision of sup-
plies. However, during a sudden epidemic, such as COVID-19, testing resources can be 
limited (Gupta, 2020). Evidence from the COVID-19 pandemic suggests that countries 
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had very different testing capacities (Hasell et al., 2020). One way to think about the 
cost of a test is in terms of the value of testing the best possible alternative person. In 
other words, testing has a (shadow) cost because capacity might be difficult or impos-
sible to ramp up quickly. Even if  testing kits themselves are cheap, large-scale labora-
tory testing capacity might be infeasible (Hope, 2020) or it might be difficult to quickly 
reach all those who need testing (Weaver and Ballhaus, 2020). In this paper, we offer 
a simple framework that formalizes the key trade-offs that policy-makers might face 
under limited testing capacity, and propose an adaptive policy that can help them allo-
cate their testing capacity as effectively as possible.

Throughout the paper, we work under the assumption that the policy-maker’s ob-
jective is to minimize the total cost of disease spread. These costs are of many kinds: 
cost of human lives, cost of lost labour income, cost of testing kits, and reputation cost 
of unnecessary quarantine.

In our model, potentially sick individuals arrive over time. People might show up at 
the hospital because they think they have the relevant symptoms, or doctors might go 
out to survey and actively test people. The policy-maker can take one of three actions, 
for each individual:

– test the individual
• if  the individual tests positive, they are quarantined
• if  the individual tests negative, they are not quarantined;

– not test the individual, but quarantine them;
– not test the individual and release (i.e. not quarantine) them.

In our model, the policy-maker observes characteristics of individuals. These charac-
teristics can be health-related: whether the individual has the relevant symptoms or 
whether the individual has been in contact with others who have symptoms or have 
tested positive. The characteristics can also be observables relevant to the social and 
economic cost of the disease: whether the individual is in a critical occupation, whether 
the individual has child-care responsibilities etc.

In our model, the policy-maker has access to a statistical model that can estimate 
the probability of the individual’s having the disease conditional on the observables. 
The policy-maker can therefore assess the overall expected costs associated with quar-
antining or releasing the individual. The statistical model is imperfect in the sense 
that it cannot perfectly predict whether a given individual is infected based on their 
characteristics.

We assume that the test is perfect, but costly, so it is not possible to test everyone.1

If  the policy-maker decides to test an individual, they incur a testing cost, but they 
will subsequently take an optimal quarantining decision because the test is perfect. If  
the policy-maker decides not to test the individual, they can make one of two costly 
errors:

– false quarantine: quarantining an individual who is not infected;
– false release: not quarantining an individual who is infected.

1 This assumption does not affect the key messages of this paper as we show in section V. For a discus-
sion of these issues, see Galeotti et al. (2020).
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In summary, the policy-maker faces three types of costs:

– cost of testing (marginal cost or the cost of relaxing the capacity constraint);
– cost of false quarantine (e.g. forgone economic output, social isolation);
– cost of false release (e.g. spreading disease to others, not receiving early treatment).

During the COVID-19 pandemic, countries appear to have used their testing capacity 
in different ways. For example, there is substantial variation in the number of confirmed 
cases per test even after controlling for prevalence and testing capacity (Hasell et al., 
2020). The question we answer in this paper is: what is the testing policy that minimizes 
the overall costs?

The following example elucidates the key trade-offs. Suppose that the policy-maker 
only has 10,000 testing kits, but there are 20,000 individuals who have arrived at the 
hospital. Whom should the policy-maker test? Consider two policies that have been 
used repeatedly in the current pandemic.

Priority testing: Rank all individuals according to how likely they are to have the 
disease. Then test 10,000 people who are most likely to have the disease.

Several countries, such as the United States and United Kingdom, implicitly used the 
priority testing policy during the initial stages of COVID-19 pandemic by restricting 
testing to patients with strong symptoms, to those who travelled to an infected area, or 
to those who had been in contact with infected people (Padula, 2020).

Priority testing might be the optimal policy only if  the cost of falsely quarantining 
individuals who are not infected is extremely high. But by testing individuals who are 
likely to have the disease, the policy-maker could potentially be ‘wasting’ tests: if  the 
cost of a false quarantine error is not too high, the people with the highest estimated 
likelihood of the disease could be quarantined without testing. During the COVID-19 
pandemic, many countries eventually followed this logic and advised that anyone who 
had symptoms or who lived with someone who had symptoms of COVID-19 must self-
isolate without testing for an extended period.

Random testing: Test 10,000 individuals at random.
During the COVID-19 pandemic, a few countries and cities used random testing 

and there have been several calls to expand random testing (Oster, 2020; Padula, 2020). 
Random testing is a sensible policy if  tests are very cheap. The policy-maker can learn 
the prevalence of the disease (thereby being able to make better decisions about testing 
of individuals in the future), but most people tested will not be infected. Therefore, 
many tests will, once again, be ‘wasted’.

We proceed as follows. In section III, we point out that to make optimal decisions 
about testing the policy-maker needs to trade off  the costs of false quarantine and false 
release relative to the cost of testing. Under fairly mild conditions, the optimal my-
opic testing policy is to test individuals with an intermediate likelihood of the disease. 
Priority testing is therefore not myopically optimal in general because the policy-maker 
would prefer to quarantine individuals with a high likelihood of infection without 
testing them and would not test or quarantine individuals who are very unlikely to be 
infected.

In section IV, we look at how the policy-maker’s problem changes when she cares 
about the future. In this case, we show that the policy-maker will not initially want to 
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follow the myopic policy. Rather the policy-maker would want to ‘explore’ by initially 
spreading out some of her testing capacity and sacrificing some immediate benefit. 
The reason is that such exploratory testing gives the policy-maker valuable information 
about the prevalence of the disease which she can use to make better decisions about 
the testing of future individuals. A simple dynamic testing policy due to Thompson 
(1933) tells the policy-maker how much exploration is (nearly) optimal. The Thompson 
policy starts by initial exploratory testing. If  the prevalence rate is stable, the pay-off 
to exploration disappears as the number of tested individuals grows because disease 
prevalence becomes precisely estimated. Over time, the Thompson policy converges to 
the optimal myopic testing policy.

In section V, we discuss some practical implementation issues, including imperfect 
testing. We also emphasize that our main discussion assumes that true prevalence rates 
across groups do not change over time. However, in epidemics, prevalence rates can 
change considerably. We sketch how such ‘non-stationarity’ can be taken into account 
in the context of our dynamic policies. Section VI is a conclusion.

A number of papers have considered effective testing policies. For example, in the 
context of HIV testing, Boozer and Philipson (2000) point out that individuals altered 
their transmission behaviour only if  the test changed their beliefs about whether they 
were infected. The optimal myopic policy in our model is based on this insight about 
the value of information (see also Ely et al. (2020)), however, we also give a description 
of the near-optimal dynamic testing policy based on the Thompson algorithm (see, for 
example. Russo et al., 2018; Azevedo et al., 2019). A number of other recent papers have 
incorporated testing into models of optimal control of disease spread (e.g. Acemoglu 
et al., 2020; Berger et al., 2020; Brotherhood et al., 2020; Grassly et al., 2020; Piguillem 
and Shi; 2020). Cleevely et al. (2020, this issue) analysed how stratified periodic testing 
improves on universal random testing. Gollier and Gossner (2020) considered the effi-
cacy of group testing.

II. Model

(i) Policy-maker’s information

Let Yi be a binary random variable denoting whether individual i (he) is infected. Let Xi 
be a vector of discrete characteristics that are observable and potentially predictive of 
Yi. For example, Xi could include whether or not the individual has symptoms related to 
the disease, whether he has travelled to an infected area, whether he has been in contact 
with another person who has been infected, or whether he might have already had the 
disease and therefore built up immunity. We say individuals with characteristics Xi = x 
are in ‘group’ x.

We denote by Θ x the true prevalence of the disease among individuals in group x; that 
is, the share of members of group x for whom Yi=1. The true prevalence is unknown and 
the policy-maker (she) has a prior over Θ x.

After observing the test results of individuals who were previously tested, the policy-
maker can update her prior of the prevalence of the disease in each group using Bayes’ 
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Theorem. We denote the posterior probability that an individual from group x is in-
fected by ŷ  x. Appendix A.1 shows how the posterior probability ŷ x can be calculated 
from a simple prior used for illustration.

The policy-maker makes her decisions having potentially observed a sequence of n 
individuals, their characteristics, and their outcomes if  they have been tested. We de-
note by nx the number of individuals from group x who have been tested and by ȳx the 
average disease prevalence among these nx tested individuals. We assume that Θ x does 
not change over time. As a result, the policy-maker cannot obtain any further infor-
mation about Θ x once ȳx are known. Constant disease prevalence over time might not 
be a realistic assumption, but the basic trade-offs in the model will not be affected by 
it. We discuss the practical consequences of changing disease prevalence over time in 
section V.

(ii) Policy-maker’s choices and costs

The policy-maker’s choices when she observes individual i are summarized in Figure 1.
First, the policy-maker has two choices: to test the individual (Di = 1) or not to test 

the individual (Di = 0). Testing someone for the disease comes with a cost of  C ≥ 0. 
Cost C can either represent the marginal cost of  a testing kit or the cost of  margin-
ally relaxing the testing capacity constraint (i.e. shadow cost). The test reveals with 
certainty the value of  Yi and the policy-maker observes whether the individual is 
infected or not.2

Second, the policy-maker can quarantine (Qi = 1) or release (not quarantine, Qi = 0) 
the individual with or without testing. If  a test has been conducted, the policy-maker 
can condition her quarantining decision on the observed value of Yi.

Figure 1: Policy-maker’s decisions and costs

2 Imperfect testing does not qualitatively affect the main result (see section V).
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Making wrong decisions (i.e. Qi /= Yi) is costly. Falsely quarantining someone who is 
not infected comes with a cost of FQ > 0.3 Falsely releasing someone who is infected 
incurs a cost of FR > 0. We normalize the cost of a correct decision (i.e. Qi = Yi) to 0.4 
These costs can differ by group x, but we ignore that in our notation for the sake of 
exposition.

III. Optimal myopic targeted testing policy

We now turn to the policy-maker’s optimal myopic decision. The policy-maker takes 
prior beliefs as given and takes an optimal decision (Di, Qi) for individual i in group x 
having observed a sequence of (the characteristics of all) individuals, testing decisions, 
and the outcomes for tested individuals, i.e. (Xj, Dj, DjYj)

n
j=1. This is a two-stage decision 

problem that can be solved by backward induction.5

First, consider the case where a test is conducted (Di = 1) so Yi is not observed. 
Recall that in this case the policy-maker can make the quarantining decision condi-
tional on Yi. Since FQ > 0 and FR > 0, the optimal decision is to set Qi = Yi. Total cost 
incurred in this case is the cost C of  testing.

Second, consider the case where no test is conducted (Di = 0) so Yi is been observed. 
Recall that having observed prevalence ȳx in group x, the policy-maker’s posterior ex-
pectation of the prevalence in individual i’s group x. is ŷx. Therefore, the expected cost 
of releasing an untested individual is ŷx · FR while the expected cost of quarantining an 
untested individual is (1 − ŷx) · FQ. Hence, the optimal quarantining decision is to set 
Qi = 1 if  and only if  the expected cost of a false release exceeds the expected cost of a 
false quarantine:

ŷx · FR ≥ (1 − ŷx) · FQ,

that is, if  and only if,
ŷx ≥

FQ

FQ + FR
.

Note that absent a test, if  we had that FQ = 0 the policy-maker would quarantine 
everyone and if  we had that FR = 0 the policy-maker would not quarantine anyone. 
Comparing the ex ante expected costs of testing or not testing, we get that it is optimal 
to test (Di = 1), if  and only if

C ≤ min (ŷx · FR, (1 − ŷx) · FQ) ,

that is, if  and only if6

3 We assume that all costs are commensurate and can be measured in a single currency.
4 The main result is not qualitatively affected by costly correct quarantine decisions (see section V).
5 We assume that the policy-maker tests in the case when she is indifferent between testing and not 

testing.
6 If  the interval is empty, then no member of group x is tested.
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ŷx ∈ [C/FR, 1 − C/FQ] .

The following proposition summarizes the policy-maker’s optimal myopic policy.7

Proposition 1: The optimal myopic policy for individual i in group x is:

 1. If  ŷx < C/FR, then do not test; release.
 2. If  ŷx ∈ [C/FR, 1 − C/FQ] then test; quarantine if  the test is positive; release if  the 

test is negative.
 3. If  ŷx > 1 − C/FQ, then do not test; quarantine.

The intuition for this result is as follows. Other things equal, if  the cost FR of  a false 
release in a group increases, the policy-maker should start testing individuals who were 
previously untested (and released) because their likelihood of disease was too low.

On the other hand, if  the cost of false quarantine FQ in a group increases, the policy-
maker should start testing individuals who were previously untested (and quarantined) 
because their likelihood of disease was too high.

Lower testing costs expand the range of disease likelihoods in which individuals are 
tested on both sides. If  C = 0, all individuals are tested.

Figure 2 provides a concrete illustration of an optimal myopic testing policy. In this 
example, C = 1, FR = 5 and FQ = 10. If  the policy-maker could not test the individual, 
then she would quarantine the individual if  and only if  the estimate of the group’s 
disease prevalence is greater than 10

10+5 = 2
3. The policy-maker tests an individual if  her 

estimate of the group’s disease prevalence is between 15 and 9
10.

IV. Adaptive targeted testing policy

The optimal myopic targeted testing policy for individual i ignores any potential value 
of acquired information for making future decisions. In this section, we consider what 
happens when the policy-maker takes this informational value into account.

Suppose that one individual arrives in every period; thus individual i arrives in period 
i. The policy-maker needs to make a decision (Di, Qi) about testing and quarantining 

7 Ties are broken in favour of testing.

Figure 2: Optimal myopic testing and quarantining policy for C = 1, FR = 5, and FQ = 10
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this individual immediately, i.e. before the next individual arrives. When making a de-

cision for individual i, the policy-maker has access to information (Xj, Dj, DjYj)
j<i
j=1 for 

all prior individuals j < i.
As before when observing an individual i from group x, the policy-maker needs to 

make one of two decisions: (i) to test, or (ii) not to test. Denote by Ki the costs associated 
with the binary testing decision: (i) cost Ki(1) = C of  the test, and (ii) the expectation 
of the cost Ki(0) of  the error associated with either quarantining or not quarantining 
the individual without testing. While the cost of the test is certain, the average cost of 
not testing individuals from group x will depend on the prevalence Θx of  the disease in 
group x; this happens because with higher Θx the probability of false release rises and 
with lower Θx the probability of false quarantine rises. Let K̄x = E[Ki (1)− Ki(0)|Θx] 
denote the average cost difference between testing and not testing an individual in 
group x.

Suppose that Θx were known. Then the policy-maker would want to test an indi-
vidual in group x if  the cost of testing is lower than the expected cost of not testing, 
i.e. if

K̄x ≤ 0.

Recall that if  ŷx < FQ/FR + FQ, then the policy-maker would release an untested indi-
vidual in group x; in this case, the policy-maker would want to test if

K̄x = C − FR ·Θx ≤ 0.

Otherwise, the policy-maker would want to release an untested individual in group x; in 
this case, the policy-maker would test if

K̄x = C − FQ · (1 −Θx) ≤ 0.

If  the policy-maker knew Θx, she would be able to take an optimal (in expectation) 
decision for each individual i in group x. However, the policy-maker can only form a 
posterior over Θx given the information she has access to. Armed with this posterior, 
the policy-maker can calculate the probability that her action is, in fact, myopically op-
timal (see Appendix A.2).

The policy-maker’s objective is to maximize societal outcomes, i.e. to minimize cu-
mulative expected costs over time. However, the optimal myopic testing policy that 
‘exploits’ the full benefit of  testing to the current individual (described in section III) 
is not dynamically optimal. The reason is that testing an individual has ‘exploration’ 
value, i.e. it allows the policy-maker to obtain a more precise estimate of  the true 
prevalence, thereby making better decisions for individuals arriving later. As a result, 
the policy-maker faces an exploration–exploitation trade-off. In order to explore, the 
policy-maker initially spreads out some of  her testing capacity and sacrifices some 
immediate benefit.

The optimal extent of exploration comes from a solution to a complex dynamic sto-
chastic optimization problem. But solving for the optimal dynamic testing policy is 
computationally infeasible. Remarkably, however, a simple policy due to Thompson 
(1933) turns out to be almost optimal:

Test individual i with probability equal to the probability that Di = 1 is myopically optimal.
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The Thompson policy neatly captures the exploration–exploitation trade-off  faced 
by the policy-maker. Initially, the policy-maker has little data and exploration is valu-
able so the probability of a testing decision for any given individual will rely heavily 
on the policy-maker’s prior. As a result, the Thompson policy recommends to spread 
out testing capacity in the vicinity of the cut-offs for testing under the optimal myopic 
policy. As the sample size within a group x becomes large, the policy-maker learns the 
true prevalence Θx within the group and exploration becomes unnecessary. As a result, 
Thompson policy—as well as the dynamically optimal policy—coincides with the op-
timal myopic policy described in section III in the limit when nx  is large.

A spate of recent work has shown that, surprisingly, the expected total cost achieved 
by Thompson policy asymptotically matches the expected total costs under the fully 
optimal policy (Agrawal and Goyal, 2012; Kaufmann et al., 2012). Therefore, in large 
samples the policy-maker loses almost nothing by following the Thompson algorithm 
(see Appendix A.3). The Thompson algorithm is used ubiquitously online in product 
assortment planning, revenue management, and recommendation systems by compa-
nies such as Microsoft, Google, and LinkedIn (see, for example, Russo et al., 2018) and 
is gradually making inroads into economic policy evaluation (Kasy and Sautmann, 
2019; Kasy and Teytelboym, 2020; Caria et al., 2020).

(i) Illustration of myopic vs dynamic testing policies

We now illustrate how the optimal myopic testing is affected by changes in testing costs 
and in the costs of false quarantine/release. We also show how the Thompson policy 
spreads out testing compared to the optimal myopic policy.

We fix C = 1 and n = 50. Let us consider four types of individuals—nurses, truck drivers, 
academics, party clowns—whose costs of false release and false quarantine differ as in the 
table below. Here we assume that the individuals’ types is just one of many characteristics: 
the types determine the individuals’ relative costs, but not their probability of infection.

These numbers are purely illustrative; we use them for exposition and to showcase compara-
tive statics of testing policies. Here we imagine that there are many groups of observable 
characteristics for every type: for example, there are nurses with and without symptoms, aca-
demics who have and who have not travelled to a conference in a disease hot spot, etc. We 
have already considered the optimal myopic testing policy for truck drivers in section III. The 
optimal myopic testing policies for all four types are illustrated in grey lines in Figures 3a–3d. 
For example, in an optimal myopic testing policy, the range for testing of nurses (Figure 3c) 
is greater than the range of testing for academics (Figure 3b) because in our illustration the 
costs of false quarantine and false release for nurses is greater than that of academics.

Let us first consider the Thompson testing policy for nurses and truck drivers. 
Figures 3c and 3d show that after 50 observations for each group the Thompson testing 
policy still smoothly spreads out testing around the optimal myopic testing cut-offs. In 
order to learn the true prevalence rate which will help make better future decisions, the 
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Thompson policy suggests testing some nurses and truck drivers who would not have 
been tested under the optimal myopic testing policy (because their infection likelihood 
is either too high or too low). These tests come at the expense of lowering the prob-
ability of testing for some nurses/truck drivers who would have definitely been tested 
under the optimal myopic policy.

The Thompson sampling policy for party clowns and academics has two interesting 
further features (see Figures 3a–3b). First, the Thompson policy for academics does not 
recommend testing any academic with probability 1 (Figure 3b). Second, the probabil-
ity of testing for academics and party clowns jumps at precisely the quarantine cut-off  
in the absence of a test. Intuitively, in the absence of a test the decision changes from 
not quarantining to quarantining around the cut-off. As a result the probability that 
testing is optimal also jumps.

In Appendix A.4, we illustrate the Thompson policy when the number of observa-
tions is 10 and 500. As more tests have been conducted, the policy-maker’s estimate 
of the prevalence becomes more precise, and the rewards from exploration become 
smaller. As a result, the Thompson policy becomes closer and closer to the optimal 
myopic testing policy.

V. Extensions and implementation

Imperfect testing: Suppose that the test is imperfect with a false positive rate FP and a 
false negative rate FN . Given the estimated prevalence ŷx, the expected cost of testing 
becomes

C + ŷxFNFR + (1 − ŷx)FPFQ.

The costs of not testing remain the same. Therefore, the policy-makers test the indi-
vidual if

C + ŷxFNFR + (1 − ŷx)FPFQ ≤ min (ŷx · FR, (1 − ŷx) · FQ) ,

Figure 3: Optimal myopic and Thompson testing policies. Solid grey line: optimal myopic testing policy. 
Dashed grey line: quarantine cut-off in the absence of testing. Solid black line: Thompson policy. Number 
of observations (n) is 50.
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that is if

ŷx ∈
ï

C + FPFQ

FR − FNFR + FPFQ
,

FQ − C − FPFQ

FQ + FNFR − FPFQ

ò
,

as long as the cut-offs are well-defined given the parameters. In general, the presence of 
false positive and false negative rates changes both the lower and the upper cut-offs for 
testing resulting in more or less testing.

Correct quarantine decision is costly:  Suppose that a correct quarantine decision comes 
at a cost K , but the correct release decision still has a cost of zero. Then the optimal 
quarantining decision is to set Qi = 1 if  the expected cost of a false release exceeds the 
expected cost of a quarantine:

ŷx · FR ≥ (1 − ŷx) · FQ + ŷx · K,

that is, if
ŷx ≥

FQ

FQ + FR − K
.

Now it is optimal to test (Di = 1) if

C + ŷxK ≤ min (ŷx · FR, (1 − ŷx) · FQ + ŷx · K) ,
that is, if

ŷx ∈
[C�FR−K , 1 − C�FQ

]
.

Therefore, introducing a cost of a correct quarantine decision does not affect the upper 
bound for testing (as all of these individuals would have been quarantined absent a 
test), but it increases the lower bound for testing (as testing has become more costly).

Choice of prior:  In our simulations, we have assumed a uniform prior for the preva-
lence rates for each group x (see Appendix A.1). In particular, the prevalence rates 
across groups are independent a priori. In practice, the performance of the Thompson 
policy will, however, depend on the choice of the prior. A practical implementation of 
our method will require a more sophisticated predictive model for Y based on a rich set 
of predictive features X , where X  includes demographics, disease symptoms, contact 
history, etc. Such a model could for instance be constructed based on a flexible logit 
regression model for Y  given X , with an appropriate prior for the coefficients of this 
regression. Alternatively, one might use a model such as those discussed in chapter 
3 of Williams and Rasmussen (2006). We would assume that Θx =

1
1+e−g(x)  and start 

with a Gaussian process prior g (·) ∼ GP(µ, C) for the function g (where µ is the mean 
function and C is the covariance kernel of the Gaussian process prior). For any such 
predictive model, we can obtain the expected posterior probability of infection ŷx for 
individuals with characteristics x as the posterior expectation of Θx.

Non-stationarity:  Disease prevalence rates change over time and the process is not 
stationary. If  parameters of the model that tracks the disease spread (e.g. a SIR 
model) could be accurately estimated, then our methods could be adapted to learning 
the parameters of such a model. However, there can be a lot of disagreement among 
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experts about the trajectory and extent of disease spread.8 Therefore, an alternative is 
to adapt our methods to an environment with non-stationary prevalence rates, which 
might for instance follow a rescaled random walk. The Thompson policy in such an 
environment would involve the model ‘forgetting’ older observations which might not 
be informative of the current state of the world (Russo et al., 2018, Section 6.3). The 
extent of ‘forgetting’ would depend on the rate at which information about prevalence 
rates becomes obsolete (Raj and Kalyani, 2017; Besbes et al., 2019).

Ethics of targeting:  Targeted testing policies target. Disease prevalence as well as costs 
of false quarantine and false release might well vary across income, race, gender, etc. 
Policy-makers need to make sure that their choices of parameters and covariates do 
not discriminate, especially among the most vulnerable groups. These concerns are not 
novel to public health experts, but they can go unnoticed when decisions about indi-
viduals’ lives are being made using statistical models. Our paper implies that resource 
allocation can be improved by carefully considering costs and benefits of testing and 
quarantine within any non-discrimination constraints adopted by the policy-maker.

Estimating local prevalence:  How should a policy-maker maximize the precision of an 
estimate of the prevalence rate with a given number of tests? If  the policy-maker is not 
concerned about the welfare of the individuals in the experimental sample, then she 
should sample different groups x in proportion to 

√
ŷx(1 − ŷx), i.e. standard deviation 

of prevalence in the group given its prevalence rate (Neyman, 1934). Therefore, groups 
with prevalence closer to ½ should be sampled proportionally more. Such stratified 
testing strategies are particularly useful if  the policy-maker subsequently uses the esti-
mate to make a decision about a local area lockdown.

VI. Conclusion

Testing policies that use testing resources efficiently need to take into account the costs 
of testing, false quarantine, and false release. Our simple framework illuminates various 
trade-offs faced by the policy-maker when testing resources are limited. Our testing pol-
icies balance the information value of wide-ranging testing with the immediate benefit 
of testing and quarantining those who are likely to be infected. Practical implementa-
tion of our policies does not require any additional statistical sophistication beyond 
what is typically deployed to fight epidemics, but any application will require careful 
parameter and model calibration.

Appendix: Details of the model

A.1 Policy-maker’s information

To avoid technical subtleties, we assume that all characteristics are discrete and the dis-
tribution of characteristics has finite support.

8 Consider, for example, the difference between two highly influential models for the UK during COVID-
19 due to Ferguson et al. (2020) and Lourencço et al. (2020).
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Let Θx ∈ [0, 1] be the prevalence of the disease among persons with characteris-
tics (‘group’) Xi = x. The policy-maker does not precisely know the prevalence of the 
disease among the group. To keep things simple, let us assume that the policy-maker’s 
prior over the prevalence is uniformly and independently distributed across groups, i.e.

Θ ∼ Uni
Ä
[0, 1]k

ä
.

That is, we assume that the policy-maker essentially has no prior knowledge of the 
prevalence of the disease among any group and thinks that the prevalences of the 
disease are independent across groups. Conditional on the policy-maker’s prior, the 
outcomes of group x follow a Bernoulli distribution with parameter Θx, i.e.

Yi|Xi = x,Θ ∼ Ber(Θx).

We assume that the parameters (p1, . . . , pk) of  the distribution of characteristics are 
independent of the prevalence vector. Therefore, the policy-maker cannot learn about 
prevalence of disease simply from observing the distribution of characteristics across 
individuals.

The policy-maker observes a sequence (Xj, Dj, DjYj)
n
j=1 of  n individuals, their charac-

teristics, and their outcomes if  they have been tested. Formally, we define

nx =
∑

i

1(Xi = x, Di = 1),

and

ȳx =
1
nx

∑
i

1(Xi = x, Di = 1)Yi.

After observing n individuals, the policy-maker can update her prior of the preva-
lence of the disease in each group. Because the policy-maker’s prior is uniform, the 
posterior has the following closed-form:

Θx|(Xj, Dj, DjYj)
n
j=1 ∼ Beta(1 + nxȳx, 1 + nx(1 − ȳx)).

Since the mean of a random variable distributed as Beta(α,β) is α
α+β

, the expected 
prevalence ŷx in group x conditional on observing a sequence of individuals (Yi, Xi)

n
i=1 

is

ŷx = E
[
Θx|(Xj, Dj, DjYj)

n
j=1

]
=

1 + nxȳx

2 + nx
.

Average prevalence in the observed outcomes is sufficient to pin down the posterior 
prevalence, so

ŷx = E[Yi|Xi = x, ȳx].

A.2 Testing probabilities under the Thompson policy

Recall that the expected difference K̄x = E [Ki (1)− Ki (0) | Θx]in costs between testing 
and not testing is given by

K̄x = C − FR ·Θx

if  ŷx < FQ/FR + FQ, and by
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K̄x = C − FQ · (1 −Θx)

otherwise. The posterior distribution of Θx is Beta(1 + nxȳx, 1 + nx(1 − ȳx)).
Thompson sampling tests with probability equal to the posterior probability that 

testing is optimal. This posterior probability is given by
P (K̄x ≤ 0) .

Let F(y|α,β) denote the cumulative distribution function of a Beta distribution with 
parameters α and β, evaluated at y. Then the posterior probability that testing is op-
timal, if  ŷx < FQ/FR + FQ, is given by

P (C − FR ·Θx ≤ 0) = 1 − F
(C�FR ; 1 + nxȳx, 1 + nx(1 − ȳx)

)
.

The posterior probability that testing is optimal, if  ŷx ≥ FQ/FR + FQ, is given by

P (C − FQ · (1 −Θx) ≤ 0) = 1 − F
(C�FQ ; 1 + nx(1 − ȳx), 1 + nxȳx

)
.

A.3 Regret bound of the Thompson algorithm

The dynamic set-up we discuss in this paper can be thought of as a so-called two-armed 
contextual bandit problem. Units arrive sequentially, we observe their group member-
ship Xi (the ‘context’), and then decide between the two ‘arms’ of testing (Di = 1) or 
not (Di = 0). Then rewards are realized. The rewards are −C in the case of testing, and 

either −FRYi  (if  ŷx <
FQ

FR+FQ
) or −FQ(1 − Yi) (otherwise) in the case of not testing.

Conditional on the quarantining decision absent testing, this is exactly the bandit 

framework. We can ‘concentrate out’ the quarantining decision when analysing our set-

ting. With consistency of posteriors the sign of ŷx − FQ
FR+FQ

 is the same as the sign of 
Θx − FQ

FR+FQ
 in large samples, and theoretical results for bandit problems carry over. The 

learning problem for the decision-maker in this limit then becomes to figure out whether 
our not Θx lies on one or the other side of the myopic cutoffs C/FR or 1 − C/FQ.

A large literature discusses guarantees for the performance of bandit algorithms 
(e.g. Bubeck and Cesa-Bianchi (2012) and Russo et al. (2018)) and more specifically 
of Thompson sampling (see, in particular, Agrawal and Goyal (2012) and Russo and 
Van Roy (2016)). These analyses bound the regret—the cumulative difference between 
realized costs and the costs that could have been achieved by taking optimal decisions 
given the knowledge of Θ. The guarantees in the literature are distinguished by whether 
they consider large sample limits for fixed Θ, or worst-case bounds over all possible Θ.

For the large sample limit case, Agrawal and Goyal (2012) show that normalized re-
gret T/log(T)R̄T  converges to a constant equal to the efficiency bound. This constant is 
larger the smaller the difference between treatment arms, since it then takes dispropor-
tionally longer to learn which arm is optimal. In our case, the constant is large when 
Θ is close to either cut-off  for the myopic decision rule. We can interpret this bound to 
mean that only about logT/T  decisions are sub-optimal, relative to those that we would 
have made given knowledge of Θ. For the worst-case scenario, Russo and Van Roy 
(2016) show that regret satisfies a finite sample prior-independent bound that grows as √

T . This worst-case bound is driven by parameter values that are in a 1/
√

T  neighbour-
hood of the cut-offs for the myopic rule.
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A.4 Thompson policy for n = 500 and n = 10

Figures 4a–4d illustrate the Thompson policy after 500 observations.

Figure 4: Optimal myopic and Thompson testing policies. Solid grey line: optimal myopic testing policy. 
Dashed grey line: quarantine cut-off in the absence of testing. Solid black line: Thompson policy. Number 
of observations (n) is 500.

As we showed in section A.1,
ŷx =

1 + nxȳx

2 + nx
,

so in small samples the support of estimated prevalence ŷx can deviate significantly 
from the support of ȳx (i.e. [0, 1]). Figures 5a–5d illustrate the Thompson policy after 
10 observations.

Figure 5: Optimal myopic and Thompson testing policies. Solid grey line: optimal myopic testing policy. 
Dashed grey line: quarantine cut-off in the absence of testing. Solid black line: Thompson policy. Number 
of observations (n) is 10.
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