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ADAPTIVE MAXIMIZATION OF SOCIAL WELFARE
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We consider the problem of repeatedly choosing policies to maximize social welfare.
Welfare is a weighted sum of private utility and public revenue. Earlier outcomes in-
form later policies. Utility is not observed, but indirectly inferred. Response functions
are learned through experimentation.

We derive a lower bound on regret, and a matching adversarial upper bound for a
variant of the Exp3 algorithm. Cumulative regret grows at a rate of T 2/3. This implies
that (i) welfare maximization is harder than the multiarmed bandit problem (with a
rate of T 1/2 for finite policy sets), and (ii) our algorithm achieves the optimal rate. For
the stochastic setting, if social welfare is concave, we can achieve a rate of T 1/2 (for
continuous policy sets), using a dyadic search algorithm.

We analyze an extension to nonlinear income taxation, and sketch an extension to
commodity taxation. We compare our setting to monopoly pricing (which is easier), and
price setting for bilateral trade (which is harder).

KEYWORDS: Multiarmed bandits, optimal taxation, social welfare, adversarial learn-
ing.

1. INTRODUCTION

CONSIDER A POLICYMAKER who aims to maximize social welfare, defined as a weighted
sum of utility across individuals. The policymaker can choose a policy parameter such as a
sales tax rate, an unemployment benefit level, a health-insurance copay rate, etc. The pol-
icymaker does not directly observe the welfare resulting from their policy choices. They
do, however, observe behavioral outcomes such as consumption of the taxed good, labor
market participation, or health care expenditures. They can revise their policy choices
over time in light of observed outcomes. How should such a policymaker act? To address
this question, we bring together insights from welfare economics (in particular optimal
taxation, Ramsey (1927), Mirrlees (1971), Baily (1978), Saez (2001), Chetty (2009)) with
insights from machine learning (in particular online learning and multiarmed bandits,
see Slivkins (2019), Lattimore and Szepesvári (2020) for recent reviews, and Thompson
(1933), Lai and Robbins (1985) for classic contributions).

In our baseline model, individuals arrive sequentially and make a single binary decision.
In each period, the policymaker chooses a tax rate that applies to this binary decision,
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and then observes the individual’s response. They do not observe the individual’s private
utility. Social welfare is given by a weighted sum of private utility and public revenue.
Later, we extend our model to nonlinear income taxation, where welfare weights vary as
a function of individual earnings capacity, and sketch an extension to commodity taxation,
where individual decisions involve a continuous consumption vector.

Our goal is to give guidance to the policymaker. We propose algorithms to maximize
cumulative social welfare, and we provide (adversarial and stochastic) guarantees for the
performance of these algorithms. In doing so, we also show that welfare maximization is
a harder learning problem than reward maximization in the multiarmed bandit setting.
Private utility in our baseline model is equal to consumer surplus, which is given by the
integral of demand. In order to learn this integral, we need to learn demand for counter-
factual, suboptimal tax rates. This drives the difficulty of the learning problem.

Why Welfare, Why Adversarial Guarantees?. Our algorithms are designed to maximize
social welfare, which is not directly observable, rather than maximizing outcomes that
are directly observable. The definition of social welfare as an aggregation of individual
utilities is at the heart of welfare economics in general, and of optimal tax theory in par-
ticular. The distinction between utility and observable outcomes is important in practice.
To illustrate, consider the example of a policymaker who chooses the level of unemploy-
ment benefits, where the observable outcome is employment. The policymaker could use
an algorithm that adaptively maximizes employment. The problem with this approach is
that employment might be maximized by making the unemployed as miserable as possi-
ble. This is not normatively appealing. Such an algorithm would minimize the utility of
the unemployed, rather than maximizing social welfare. Similar examples can be given
for many domains of public policy, including health, education, and criminal justice. In
contrast to observable outcomes such as employment, welfare is improved by increasing
the choice sets of those affected, not by reducing these choice sets.

Our theoretical analysis provides not only stochastic but also adversarial guarantees,
which hold for arbitrary sequences of preference parameters. Adversarial guarantees for
algorithms promise robustness against deviations from the assumption that heterogene-
ity is independently and identically distributed over time. Possible deviations from this
assumption include autocorrelation, trends, heteroskedasticity, more general nonstation-
arity, and other concerns of time-series econometrics. In the employment example, such
deviations might for instance be due to the business cycle. One might fear that adver-
sarial robustness is achieved at the price of worsened performance for the i.i.d. setting,
relative to less robust algorithms. That this is not the case follows from our theoretical
characterizations.

Lower and Upper Bounds on Regret. Our main theorems provide lower and upper
bounds on cumulative regret. Cumulative regret is defined as the difference in welfare
between the chosen sequence of policies and the best possible constant policy. We con-
sider both stochastic and adversarial regret. A lower bound on stochastic regret satisfies
that, for any algorithm, there exists some stationary distribution of preference parameters
for which the algorithm has to suffer at least a certain amount of regret. An upper bound
on adversarial regret has to hold for a given algorithm and any sequence of preference
parameters.

For a given algorithm, stochastic regret, averaged over i.i.d. sequences of preference
parameters, is always less or equal than adversarial regret, for the worst-case sequence. A
lower bound on stochastic regret (for any algorithm) therefore implies a corresponding
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lower bound on adversarial regret, and an upper bound on adversarial regret (for a given
algorithm) immediately implies an upper bound on stochastic regret. When an adversarial
upper bound coincides with a stochastic lower bound, in terms of rates of regret, it follows
that the proposed algorithm is rate efficient, for both stochastic and adversarial regret. It
follows, furthermore, that the bounds are sharp.

A Lower Bound on Stochastic Regret. We first prove a stochastic (and thus also ad-
versarial) lower bound on regret, for any possible algorithm in the welfare maximization
problem. Our proof of this bound constructs a family of possible distributions for pref-
erences. This family is such that there are two candidate policies, which are potentially
optimal. The difference in welfare between these two policies depends on the integral
of demand over intermediate policy values. In order to learn which of the two candidate
policies is optimal, we need to learn behavioral responses for intermediate policies, which
are strictly suboptimal. Because of the need to probe these suboptimal policies sufficiently
often, we obtain a lower bound on regret, which grows at a rate of T 2/3, even if we restrict
our attention to settings with finite, known support for preference parameters and poli-
cies. This rate is worse than the worst-case rate for bandits of T 1/2.

A Matching Upper Bound on Adversarial Regret for Modified Exp3. We next propose an
algorithm for the adaptive maximization of social welfare. Our algorithm is a modification
of the Exp3 algorithm (Auer, Cesa-Bianchi, Freund, and Schapire (2002)). Exp3 is based
on an unbiased estimate of cumulative welfare for each policy. The probability of choosing
a given policy is proportional to the exponential of this estimate of cumulative welfare,
times some rate parameter. Relative to Exp3, we require two modifications for our setting.
First, we need to discretize the continuous policy space. Second, and more interestingly,
we need additional exploration of counterfactual policies, including some policies that are
clearly suboptimal, in order to learn welfare for the policies, which are contenders for the
optimum. This need for additional exploration again arises because of the dependence of
welfare on the integral of demand over counterfactual policy choices. For our modified
Exp3 algorithm, we prove an adversarial (and thus also stochastic) upper bound on regret.
We show that, for an appropriate choice of tuning parameters, worst-case cumulative
regret over all possible sequences of preference parameters grows at a rate of T 2/3, up to
a logarithmic term. The algorithm thus achieves the best possible rate. Since the rates for
our stochastic lower and adversarial upper bound coincide, up to a logarithmic term, we
have a complete characterization of learning rates for the welfare maximization problem.

Improved Stochastic Bounds for Concave Social Welfare. The proof of our lower bound
on regret is based on the construction of a distribution of preferences which delivers a
nonconcave social welfare function. If we restrict attention to the stochastic setting, where
preferences are i.i.d. over time, and if we assume that social welfare is concave, then we
can improve upon this bound on regret. We prove a lower bound on stochastic regret,
under the assumption of concavity, which grows at the rate of T 1/2. We then propose a
dyadic search algorithm, which achieves this rate, up to logarithmic terms. This dyadic
search algorithm maintains an “active interval,” containing the optimal policy with high
probability, which is narrowed down over time. Only policies within the active interval are
sampled.

Extensions to Nonlinear Income Taxation and to Commodity Taxation. Our discussion
up to this point focuses on a minimal, stylized case of an optimal tax problem, where
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individual actions are binary, and the policy imposes a tax on this binary action. Our ar-
guments generalize, however, to more complicated and practically relevant settings. This
includes optimal nonlinear income taxation, as in Mirrlees (1971) and Saez (2001), and
commodity taxation for a bundle of goods, as in Ramsey (1927). For nonlinear income
taxation, different tax rates apply at different income levels, and welfare weights depend
on individual earnings capacity. In Section 5, we discuss an extension of our tempered
Exp3 algorithm to nonlinear income taxation, and characterize its regret. For commod-
ity taxation, different tax rates apply to different goods, and consumption decisions are
continuous vectors. In Section 6, we sketch an extension of our algorithm to commodity
taxation, but leave its characterization for future research.

Roadmap. The rest of this paper proceeds as follows. We conclude this introduction
with a discussion of some related work and relevant references. Section 2 introduces our
setup, formally defines the adversarial and stochastic settings, and compares our setup
to related learning problems. Section 3 provides lower and upper bounds on regret in
the adversarial and stochastic settings. Section 4 restricts attention to the stochastic set-
ting with concave social welfare, and provides improved regret bounds for this setting.
Section 5 discusses an extension of our baseline model to nonlinear income taxation. Sec-
tion 6 sketches another extension of our baseline model to commodity taxation. Section 7
concludes, and discusses some possible applications of our algorithm, as well as an alter-
native Bayesian approach to adaptive welfare maximization. The proofs of Theorem 1
and Theorem 2 can be found in Appendix A. The proofs of our remaining theorems
and proofs of technical lemmas are discussed in the Online Supplement (Cesa-Bianchi,
Colomboni, and Kasy (2025)).

1.1. Background and Literature

To put our work in context, it is useful to contrast our framework with the standard
approach in public finance and optimal tax theory, and with the frameworks considered
in machine learning and the multiarmed bandit literature.

Optimal Taxation. Optimal tax theory, and optimal policy theory more generally, is
concerned with the maximization of social welfare, where social welfare is understood as
a (weighted) sum of subjective utility across individuals (Ramsey (1927), Mirrlees (1971),
Baily (1978), Saez (2001), Chetty (2009)). A key tradeoff in such models is between, first,
redistribution to those with higher welfare weights, and second, the efficiency cost of be-
havioral responses to tax increases. Such behavioral responses might reduce the tax base.

Optimal tax problems are defined by normative parameters (such as welfare weights
for different individuals), as well as empirical parameters (such as the elasticity of the
tax base with respect to tax rates). The typical approach in public finance uses historical
or experimental variation to estimate the relevant empirical parameters (causal effects,
elasticities). These estimated parameters are then plugged into formulas for optimal pol-
icy choice, which are derived from theoretical models. The implied optimal policies are
finally implemented, without further experimental variation.

Multiarmed Bandits. The standard approach of public finance, which separates elastic-
ity estimation from policy choice, contrasts with the adaptive approach that characterizes
decision-making in many branches of AI, including online learning, multi-armed bandits,
and reinforcement learning. Multiarmed bandit algorithms, in particular, trade off ex-
ploration and exploitation over time (Slivkins (2019), Lattimore and Szepesvári (2020)).
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Exploration here refers to the acquisition of information for better future policy deci-
sions, while exploitation refers to the use of currently available information for optimal
policy decisions at the present moment. The goal of bandit algorithms is to maximize a
stream of rewards, which requires an optimal balance between exploration and exploita-
tion. Bandit algorithms for the stochastic setting are characterized by optimism in the face
of uncertainty: Policies with uncertain payoff should be tried until their expected payoff
is clearly suboptimal.

Bandit algorithms (and similarly, adaptive experimental designs for informing policy
choice, as in Russo (2020), Kasy and Sautmann (2021)) are not directly applicable to
social welfare maximization problems, such as those of optimal tax theory. The reason is
that bandit algorithms maximize a stream of observed rewards. By contrast, social welfare
as conceived in welfare economics is based on unobserved subjective utility.

Adversarial Decision-Making. Adversarial models for sequential decision-making find
their roots in repeated game theory (Hannan (1957)), while related settings were indepen-
dently studied in information theory (Cover (1965)) and computer science (Vovk (1990),
Littlestone and Warmuth (1994)). Regret minimization, also in a bandit setting, was inves-
tigated as a tool to prove convergence of uncoupled dynamics to equilibria in N-person
games (Hart and Mas-Colell (2000, 2001))—the exponential weighting scheme used by
Exp3 is also known as smooth fictitious play in the game-theoretic literature (Fuden-
berg and Levine (1995)). Recent works (Seldin and Slivkins (2014), Zimmert and Seldin
(2021)) show that simple variants of Exp3 simultaneously achieve essentially optimal re-
gret bounds in adversarial, stochastic, and contaminated settings, without prior knowledge
of the actual regime. This suggests that algorithms designed for adversarial environments
can behave well in more benign settings, whereas the opposite is provably not true.

Bandit Approaches for Economic Problems. Bandit-type approaches have been applied
to a number of other economic and financial scenarios in the literature where rewards
are observable. These include monopoly pricing (Kleinberg and Leighton (2003)) (see
also the survey by den Boer (2015)), second-price auctions (Weed, Perchet, and Rigollet
(2016)), first-price auctions (Han, Zhou, and Weissman (2020), Han, Zhou, Flores, Or-
dentlich, and Weissman (2020), Achddou, Cappé, and Garivier (2021)); see also Kolum-
bus and Nisan (2022), Feng, Podimata, and Syrgkanis (2018), Feng, Guruganesh, Liaw,
Mehta, and Sethi (2021), and combinatorial auctions (Daskalakis and Syrgkanis (2022)).
Bandit-type approaches have also been applied to some settings where rewards are not
directly observable, including bilateral trading (Cesa-Bianchi, Cesari, Colomboni, Fusco,
and Leonardi (2024a, 2024b), and the newsvendor problem (Lugosi, Markakis, and Neu
(2023)).

Bandit algorithms are widely used in online advertising and recommendation. Online
learning methods are successfully used for tuning the bids made by autobidders (a service
provided by advertising platforms) (Lucier, Pattathil, Slivkins, and Zhang (2024)). While
these algorithms are analyzed in adversarial environments, the extent to which they are
deployed in commercial products remains unclear.

2. SETUP

At each time i = 1�2� � � � � T , one individual arrives who is characterized by an unknown
willingness to pay vi ∈ [0�1]. This individual is exposed to a tax rate xi, and makes a binary
decision yi = 1(xi ≤ vi). The implied public revenue is xi ·yi. The implied private welfare is



1078 N. CESA-BIANCHI, R. COLOMBONI, AND M. KASY

max(vi − xi�0). We define social welfare as a weighted sum of public revenue and private
welfare, with a weight λ ∈ (0�1) for the latter. Social welfare for time period i is therefore
given by

Ui(xi) = xi · 1(xi ≤ vi)︸ ︷︷ ︸
Public revenue

+λ · max(vi − xi�0)︸ ︷︷ ︸
Private welfare

� (1)

After period i, we observe yi and the tax rate xi, but nothing else. In particular, we do not
observe welfare Ui(xi).

We can rewrite social welfare Ui(x) as follows. Denote Gi(x) = 1(vi ≥ x), so that yi =
Gi(xi). This is the individual demand function. Then private welfare can be written as
max(vi − x�0) = ∫ 1

x
Gi(x′) dx′. That is, private welfare is given by integrated demand.1

This representation of private welfare implies

Ui(x) = x ·Gi(x)︸ ︷︷ ︸
Public revenue

+λ ·
∫ 1

x

Gi

(
x′)dx′︸ ︷︷ ︸

Private welfare

� (2)

We consider algorithms for the choice of xi, which might depend on the observable history
(xj� yj)i−1

j=1, as well as possibly a randomization device.

Notation. For the adversarial setting, we will consider cumulative demand and welfare,
denoted by blackboard bold letters, summing across j = 1� � � � � i. In particular,

Gi(x) =
∑
j≤i

Gi(x)� Ui(x) =
∑
j≤i

Ui(x)� Ui =
∑
j≤i

Uj(xj)�

Gi(x) and Ui(x) are cumulative demand and welfare for a counterfactual, fixed policy x.
Ui, without an argument, is the cumulative welfare for the policies xj actually chosen.

For the stochastic setting, we will analogously consider expected demand and expected
welfare, denoted by boldface letters. The expectation is taken across some stationary dis-
tribution μ of vi, where vi is statistically independent of xi, and of vj for j �= i. In particular,

G(x) = E
[
Gi(x)

]
� U (x) =E

[
Ui(x)

]
�

2.1. Regret

The Adversarial Case. Following the literature, we consider regret for both the ad-
versarial and the stochastic setting. In the adversarial setting, we allow for arbitrary se-
quences of willingness to pay, {vi}Ti=1. We compare the expected performance of any given
algorithm for choosing {xi}Ti=1 to the performance of the best possible constant policy x.
This comparison yields cumulative expected regret, which is given by

RT

(
{vi}Ti=1

) = sup
x

E
[
UT (x) −UT|{vi}Ti=1

]
� (3)

The expectation in this expression is taken over any possible randomness in the tax rates
xi chosen by the algorithm; there is no other source of randomness.

1This reflects the absence of income effects in our model, which implies that private utility, consumer sur-
plus, compensating variation, and equivalent variation all coincide.
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The Stochastic Case. We also consider the stochastic setting. In this setting, we add
structure by assuming that the vi are i.i.d. draws from some distribution μ on [0�1], with
implied demand function G(x) = P(vi ≥ x). This demand function is identified by the
regression

G(x) =E[yi|xi = x]�

The expectation in this expression is taken over the distribution of vi, which is presumed
to be statistically independent of the tax rate xi. Expected welfare for this distribution of
vi is given by

U (x) = x ·G(x) + λ

∫ 1

x

G
(
x′)dx′�

Cumulative expected regret in the stochastic case equals

RT (G) = sup
x

E
[
UT (x) −UT

] = T · sup
x

U (x) −E

[∑
i≤T

U (xi)
]
� (4)

The expectation in this expression is taken over both any possible randomness in the tax
rates xi, and the i.i.d. draws vi.

2.2. Comparison to Related Learning Problems

Before proceeding with our analysis of regret, we take a step back, and compare our
learning problem to two related problems that have received some attention in the lit-
erature. The first of these is the adaptive monopoly pricing problem; see, for instance,
Kleinberg and Leighton (2003). This problem is equivalent to our setting when we set
λ= 0, interpret x as a price, and UMP

i as monopolist profits (neglecting production costs):

UMP
i (x) = xi · 1(xi ≤ vi) = x ·Gi(x)�︸ ︷︷ ︸

Monopolist revenue

(5)

As in our adaptive taxation setting, the feedback received at the end of period i is

yi =Gi(xi) = 1(xi ≤ vi)�

Another related problem is price setting for bilateral trade; see, for instance, Cesa-
Bianchi et al. (2024a). In this problem, welfare UBT

i (x) is given by the sum of seller and
buyer welfare. Trade happens if and only if both sides agree to transact at the proposed
price. Buyer willingness to pay is given by vbi , while the seller is willing to trade at prices
above vsi :

UBT
i (x) = 1

(
vbi ≥ x

) · max
(
x− vsi �0

) + 1
(
vsi ≤ x

) · max
(
vbi − x�0

)
= Gb

i (x) ·
∫ x

0
Gs

i

(
x′)dx′︸ ︷︷ ︸

Seller welfare

+Gs
i (x) ·

∫ 1

x

Gb
i

(
x′)dx′︸ ︷︷ ︸

Buyer welfare

� (6)

Feedback in this case is a little richer: We observe both whether the buyer b would have
accepted the posted price, and whether the seller would have accepted this price,

yb
i =Gb

i (xi) = 1
(
xi ≤ vbi

)
and ys

i = Gs
i (xi) = 1

(
xi ≥ vsi

)
�
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TABLE I

REGRET RATES FOR DIFFERENT LEARNING PROBLEMS.

Policy Space Objective Function

Model Discrete Continuous Pointwise One-Sided Lipschitz

Monopoly price setting T 1/2 T 2/3 Yes Yes
Optimal taxation T 2/3 T 2/3 No Yes
Bilateral trade T 2/3 T No No

Note: This table shows the efficient rates of regret for different learning problems. Rates are up to logarithmic terms, and apply to
both the stochastic and the adversarial setting. Regret rates are shown for the discrete case, where the space of policies x is restricted
to a finite set, and the continuous case, where x can take any value in [0�1]. The columns on the right describe the properties of the
objective function in each problem, which drive the differences in regret rates.Rates for the optimal taxation case are proven in this
paper. Rates for the continuous monopoly price setting case are from Kleinberg and Leighton (2003); the discrete case reduces to a
standard bandit problem. Rates for the continuous bilateral trade case are from Cesa-Bianchi et al. (2024a); the discrete case can be
deduced by adapting the arguments in the same paper (for the stochastic i.i.d. case with independent sellers’ and buyers’ valuations), or
by adapting the techniques in Cesa-Bianchi et al. (2024b) (for the adversarial case, allowing the learner to use weakly budget balanced
mechanisms).

Lipschitzness and Information Requirements. The difficulty of the learning problem
in each of these models critically depends on (i) the Lipschitz properties of the welfare
function, and (ii) the information required to evaluate welfare at a point.

We say that a generic welfare function W : [0�1] → R is one-sided Lipschitz if W (x +
ε) ≤W (x) +ε for all 0 ≤ x≤ 1 and all 0 ≤ ε ≤ 1−x. One-sided Lipschitzness allows us to
bound the approximation error of a learning algorithm operating on a finite subset of the
set of policies. One-sided Lipschitzness is an intrinsic property of both the monopoly pric-
ing and the optimal taxation problem; it is not an assumption that is additionally imposed.
To see this for monopoly pricing, note that, for ε ≥ 0, UMP

i (x + ε) = (x + ε) · 1(x + ε ≤
vi) ≤ x · 1(x ≤ vi) + ε = UMP

i (x) + ε. For social welfare, Ui(x) = (xi + ε) · 1(xi + ε ≤
vi) + λ · max(vi − xi − ε�0) ≤ x · 1(x ≤ vi) + ε+ λ · max(vi − xi�0) =Ui(x) + ε.

We say that learning W (·) requires only pointwise information if W (x) is a function of
G(x), and does not depend on G(·) otherwise. Pointwise information allows us to avoid
exploring policies that are clearly suboptimal, when we aim to learn the optimal policy.

Table I summarizes the Lipschitz properties and information requirements in each of
the three models; the following justifies the claims made in Table I:

1. For monopoly pricing, welfare UMP
i (x) is one-sided Lipschitz and only depends on

Gi(x) pointwise.
2. For optimal taxation, welfare Ui(x) is one-sided Lipschitz and depends on both Gi(x)

at the given x (pointwise), and on an integral of Gi(x′) for a range of values of x′

(nonpointwise).
3. For bilateral trade, welfare UBT

i (x) is not one-sided Lipschitz and depends on both
Gb

i (x) and Gs
i (x) (pointwise), as well as the integrals of Gb

i (x′) and Gs
i (x

′) (non-
pointwise).

These properties suggest a ranking in terms of the difficulty of the corresponding learn-
ing problems, and in particular in terms of the rates of divergence of cumulative regret:
The information requirements of optimal taxation are stronger than those of monopoly
pricing, but its continuity properties are more favorable than those of bilateral trade. This
intuition is correct, as shown by Table I. The rates for monopoly pricing and for bilateral
trade are known (or can be easily adapted) from the literature. In this paper, we prove
corresponding rates for optimal taxation.
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In comparing optimal taxation and monopoly pricing to conventional multiarmed ban-
dits, it is worth emphasizing that there are two distinct reasons for the slower rate of
convergence. First, the continuous support of x, as opposed to a finite number of arms,
which is shared by optimal taxation and monopoly pricing. Second, the requirement of
additional exploration of suboptimal policies for the optimal tax problem. As shown in
Table I, the continuous support alone is enough to slow down convergence, with no ex-
tra penalty for the additional exploration requirement, in terms of rates. If, however, we
restrict our attention to a discrete set of feasible policies x, then monopoly pricing re-
duces to a multiarmed bandit problem, with a minimax regret rate of T 1/2. The optimal
tax problem, by contrast, still has a rate of T 2/3, even if we restrict our attention to the
case of finite known support for v and x, as shown by the proof of Theorem 1 below.

Hannan Consistency. The cumulative regret of any nonadaptive algorithm necessar-
ily grows at a rate of T . This includes, in particular, randomized experiments where the
policy is chosen uniformly at random, from a fixed policy set, in every period. Algorithms
for which adversarial regret (and thus also stochastic regret) grows at a rate less than
T , so that per period regret goes to 0 as T increases, are known as Hannan consistent.
Nonadaptive algorithms are not Hannan consistent. Table I implies that Hannan consis-
tent algorithms exist in all settings considered, with the exception of Bilateral trade and
continuous policy spaces.

3. STOCHASTIC AND ADVERSARIAL REGRET BOUNDS

We now turn to our main theoretical results, lower and upper bounds on stochastic
and adversarial regret for the problem of social welfare maximization. We first prove a
lower bound on stochastic regret, which applies to any algorithm, and which immediately
implies a lower bound on adversarial regret. We then introduce the algorithm Tempered
Exp3 for Social Welfare. We show that, for an appropriate choice of tuning parameters,
this algorithm achieves the rates of the lower bound on regret, up to a logarithmic term.
Formal proofs of these bounds can be found in Appendix A.

3.1. Lower Bound

THEOREM 1—Lower Bound on Regret: Consider the setup of Section 2. There exists a
constant C > 0 such that, for any randomized algorithm for the choice of x1�x2� � � � and any
time horizon T ∈N, the following holds:

1. There exists a distribution μ on [0�1] with associated demand function G for which the
stochastic cumulative expected regret RT (G) is at least C · T 2/3.

2. There exists a sequence (v1� � � � � vT ) for which the adversarial cumulative expected regret
RT ({vi}Ti=1) is at least C · T 2/3.

The proof of Theorem 1 can be found in Appendix A. The adversarial lower bound
follows immediately from the stochastic lower bound, since worst-case regret (over possi-
ble sequences of vi) is bounded below by average regret (over i.i.d. draws of vi), for any
distribution of vi.

Sketch of Proof. To prove the stochastic lower bound, we construct a family of distribu-
tions {με}ε∈[−1�1] for vi, indexed by a parameter ε ∈ [−1�1]. The distributions in this family
have four points of support, (1/4� 1/2� 3/4�1). The probability of these points is given by(

a� (1 + ε)b� (1 − ε)b�1 − a− 2b
)
�
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FIGURE 1.—Construction for proving the lower bound on regret. Notes: This figure illustrates our construc-
tion for proving the lower bound on regret. The relative social welfare of policies 1 and �25 depends on the
sign of ε. The solid line corresponds to ε = −1, the dashed line to ε = 1. In order to distinguish between these
two, we must learn demand in the intermediate interval [0�5�0�75].

The values of a and b are chosen such that (i) the two middle points 1/2� 3/4 are far from
optimal, for any value of ε, and (ii) learning which of the two end points (1/4�1) is optimal
requires sampling from the middle.2 For each ε ∈ [−1�1], denote the demand function
associated to με by Gε, and the expected social welfare associated to Gε by Uε. Property
(ii) holds because of the integral term

∫ 1
1
4
Gε(x′) dx′, which shows up in Uε(1) − Uε(1/4).

This construction is illustrated in Figure 1. This figure shows plots of Gε and of Uε for
λ = 0�95 and ε ∈{±1}.

The difference in welfare Uε(1) −Uε(1/4) of the two candidate optimal policies 1/4 and
1 depends on the sign of ε. In order not to suffer expected regret that grows as |ε| · T ,
any learning algorithm needs to sample policies from points that are informative about
the sign of ε. The only points that are informative are those in the region (1/2� 3/4], where
welfare is bounded away from optimal welfare.

More specifically, the learning algorithm has to sample on the order of |ε|−2 times
from the region (1/2� 3/4], to be able to detect the sign of ε, incurring regret on the or-
der of |ε|−2 in the process. Any learning algorithm therefore incurs regret on the order of
min(|ε|−2�|ε| · T ), which for ε∝ T−1/3), leads to the conclusion.

3.2. An Algorithm That Achieves the Lower Bound

We next introduce Algorithm 1, which allows us to essentially achieve the lower bound
on regret, in terms of rates.

Conventional Exp3. Algorithm 1 is a modification of the Exp3 algorithm. Conven-
tional Exp3 (Auer et al. (2002)) is designed to maximize the standard bandit objective,∑

i≤T yi. Exp3 maintains an unbiased running estimate of the cumulative payoff of each
arm k, calculated using inverse probability weighting, Ĝi�k = ∑

j<i yi · 1(ki=k)
pik

. In period i,

arm k is chosen with probability pik = (1 −γ) · exp(η·Ĝik)∑
k′ exp(η·Ĝik′ ) + γ

K+1 , where η and γ are tun-

ing parameters. pik is thus increasing in the estimated average performance Ĝi�k

i
of arm

k in prior periods. Because Ĝi�k is not normalized by the number of time periods i, more

2Specifically, a := (1−λ)·(136−99·λ)
2·(4−3·λ)·(24−17·λ) , and b := 1−λ

2·(24−17·λ) . These two constants are strictly greater than zero, and
satisfy 1 − a− 2 · b > 0.
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Algorithm 1 Tempered Exp3 for Social Welfare.
Require: Tuning parameters K, γ and η.

1: Calculate evenly spaced grid-points x̃k = (k− 1)/K,
and initialize Ĝ1k = 0 and Û1k = 0 for k= 1� � � � �K + 1.

2: for individual i = 1�2� � � � �T do
3: For all k= 1�2� � � � �K + 1, set {Assignment probabilities}

pik = (1 − γ) · exp(η · Ûik)∑
k′

exp(η · Ûik′)
+ γ

K + 1
� (7)

4: Choose ki at random according to the probability distribution (pi�1� � � � �pi�K+1).
Set xi = x̃ki , and query yi accordingly.

5: For all k= 1�2� � � � �K + 1, set {Estimated demand}

Ĝi+1�k = Ĝi�k + yi · 1(ki = k)
pik

� (8)

6: For all k= 1�2� � � � �K + 1, set {Estimated welfare}

Ûi+1�k = x̃k · Ĝi+1�k + λ

K
·
∑
k′>k

Ĝi+1�k′ � (9)

7: end for

weight is given to the best performing arms over time, as estimation uncertainty for aver-
age performance decreases. In both these aspects, Exp3 is similar to the popular Upper
Confidence Bound algorithm (UCB) for stochastic bandit problems (Lai (1987), Agrawal
(1995), Auer, Cesa-Bianchi, and Fischer (2002)). In contrast to UCB, Exp3 is a random-
ized algorithm. Randomization is required for adversarial performance guarantees. This
is analogous to the necessity of mixed strategies for zero-sum games.

Modifications Relative to Conventional Exp3. Relative to this algorithm, we require
three modifications. First, we discretize the continuous support [0�1] of x, restricting at-
tention to the grid of policy values x̃k = (k− 1)/K. Second, since welfare Ui(x) is not di-
rectly observed for the chosen policy x, we need to estimate it indirectly. In particular, we
first form an estimate Ĝik of cumulative demand for each of the policy values x̃k, using in-
verse probability weighting. We then use this estimated demand, interpolated using a step-
function, to form estimates of cumulative social welfare, Ûik = x̃k · Ĝik + λ

K
· ∑k′>k Ĝik′ .

Third, we require additional exploration, relative to Exp3. Since social welfare depends
on demand for counterfactual policy choices, we need to explore policies that are away
from the optimum, in order to learn the relative welfare of approximately optimal policy
choices. The mixing weight γ, which determines the share of policies sampled from the
uniform distribution, needs to be larger relative to conventional Exp3, to ensure sufficient
exploration away from the optimum.

THEOREM 2—Adversarial Upper Bound on Regret of Tempered Exp3 for Social Wel-
fare: Consider the setup of Section 2, and Algorithm 1. Assume that (K + 1)η< γ.
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Then for any sequence (v1� � � � � vT ) expected regret RT ({vi}Ti=1) is bounded above by(
γ +η · (e− 2)

K + 1
K

·
(

2K + 1
6

+ λ2

γ

)
+ λ

K

)
· T + log(K + 1)

η
� (10)

Suppose additionally that c1� c2� c3 > 0 are constants. Then there exists a constant c4 such
that, if we set γ = c1 · ( log(T )

T
)1/3, η = c2 · γ2, and K = 	c3/γ
, the expected regret RT ({vi}Ti=1)

is bounded above by

c4 · log(T )1/3T 2/3� (11)

COROLLARY 1—Stochastic Upper Bound on Regret of Tempered Exp3 for Social
Welfare: Under the assumptions of Theorem 2, suppose additionally that vi is drawn i.i.d.
from some distribution with associated demand function G. Then expected regret RT (G) is
bounded above by the same expressions as in Theorem 2.

The proof of Theorem 2 can again be found in Appendix A.

Tuning. The statement of the theorem leaves the constants c1� c2� c3 in the definition
of the tuning parameters unspecified. Suppose we wish to choose the tuning parameters
so as to optimize the upper bound obtained in Theorem 2. Ignoring the rounding of K,
an approximate solution to this problem is given by

η = 1/a · (log(T )/T
)2/3

�

γ = λ
√

(e− 2)/a · (log(T )/T
)1/3

�

K =
√

3λa/(e− 2) · (T/ log(T )
)1/3

�

where

a= (
9(e− 2)

)1/3
(
√
λ/3 + λ)2/3�

This solution is obtained by taking the upper bound in Equation (10), approximating
(K + 1)/K ≈ 1 and (2K + 1)/6 ≈ K/3, and solving the first-order conditions with respect
to the three tuning parameters. This approximation, and the tuning parameters specified
above, yield an approximate upper bound on regret of 6 · log(T )1/3T 2/3.

Unknown Time Horizon. Note that the proposed tuning depends crucially on knowl-
edge of the time horizon T at which regret is to be evaluated. In order to extend our rate
results to the case of unknown time horizons, we can use the so-called doubling trick;
cf. Section 2.3 of Cesa-Bianchi and Lugosi (2006): Consider a sequence of epochs (inter-
vals of time periods) of exponentially increasing length, and rerun Algorithm 1 for each
time period separately, tuning the parameters over the current epoch length. This con-
struction converts Algorithm 1 into an “anytime algorithm,” which enjoys the same regret
guarantees of Theorem 2, up to a multiplicative constant factor. Another more efficient
strategy to achieve the same goal is to modify Algorithm 1, allowing the parameters η
and γ to change at each iteration, and splitting each bin associated with the discretization
parameter K whenever more precision is required.
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FIGURE 2.—Tempered Exp3 for Social Welfare—numerical example. Notes: This figure illustrates the per-
formance of our algorithm for the stochastic case, where vi is drawn uniformly at random from [0�1] for all
i, the weight λ equals �7, and the tuning parameters are K = 20�η = 0�025�γ = 0�1. The left plot shows the
cumulative average regret of our algorithm, averaged across 4000 simulations. The right plot shows expected
social welfare U (x) as a function of the policy x.

The Extra log(T )1/3 Term. There is a rate discrepancy between our our upper and
lower bounds on regret, corresponding to the log(T )1/3 term in our upper bound. We con-
jecture the existence of an alternative algorithm that can eliminate this extra logarithmic
term, albeit at the cost of reduced computational efficiency and a less transparent theo-
retical analysis. Our conjecture is based on known results for the standard multi-armed
bandit problem with K arms. The Exp3 algorithm achieves an upper bound of order√
K log(K)T for this problem, which includes an extra logarithmic factor compared to the

known lower bound of order
√
KT . Exp3 is an instance of the Follow-The-Regularized-

Leader (FTRL) algorithm with importance weighting and the negative entropy as the
regularizer. It is known that using the 1

2 -Tsallis entropy as the regularizer in the FTRL
algorithm with importance weighting results in regret guarantees of order

√
KT for the

bandit problem (Lattimore and Szepesvári (2020)). However, unlike Exp3, FTRL with
Tsallis entropy involves a more complex proof. Analogous statements might be true for
our setting.

Numerical Example. For illustration, Figure 2 plots the cumulative average regret of
Tempered Exp3 for Social Welfare for the case where vi is sampled uniformly at random
from [0�1] each time period. Initially, the performance of our algorithm is, by construc-
tion, equal to the performance of choosing a policy uniformly at random. Over time,
however, the average regret of our algorithm drops by more than half, in this numeri-
cal example. Note that the rate at which cumulative regret declines in Figure 2 (for i.i.d.
sampling from a fixed distribution) is unrelated to the regret rate of Theorem 2 (for the
worst-case sequence of vi, for each time horizon T ).

Alternative Algorithms. Theorem 2 shows that Tempered Exp3 for Social Welfare
achieves the lower bound for adversarial regret. The same might be true for other al-
gorithms. Any alternative algorithm that shares this property needs to be randomized.
The need for randomization parallels the need for mixed strategies in both static and dy-
namic zero-sum games; it excludes deterministic algorithms such as UCB. For the bandit
setting, the Tsallis-INF algorithm (Zimmert and Seldin (2021)), of which Exp3 is a special
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case, is furthermore the only algorithm known to be rate optimal in both stochastic and
adversarial regimes.

For our adaptive welfare problem, any algorithm that achieves the optimal rate is not
only required to randomize; any such algorithm also needs to sample suboptimal policies
at a sufficient rate; cf. the proof of Theorem 1. Tempered Exp3 for Social Welfare does
so by sampling policies uniformly at random, with probability γ. In the conclusion, we
propose a similar modification for Thompson sampling.

A possible improvement to uniform sampling across all policies, as in Tempered Exp3
for Social Welfare, could be to only sample policies uniformly at random from the range
of potentially optimal policies: Demand outside this range is irrelevant for welfare com-
parisons within this range. This idea is implemented in the algorithm that we introduce in
Section 4 for the stochastic concave setting.

4. STOCHASTIC REGRET BOUNDS FOR CONCAVE SOCIAL WELFARE

Theorem 1 in Section 3 provides a lower bound proportional to T 2/3 for adversarial and
stochastic regret in social welfare maximization. The proof of this lower bound constructs
a distribution for the vi. This distribution is such that expected social welfare U (x) is
nonconcave, as a function of x; two global optima are separated by a region of lower wel-
fare. In order to learn which of two candidates for the globally optimal policy is actually
optimal, it is necessary to sample policies in between. These intermediate policies yield
lower welfare, and sampling them contributes to cumulative regret. This construction is
illustrated in Figure 1.

Given that the construction relies on nonconcavity of expected social welfare, could
we achieve lower regret if we knew that social welfare is actually concave? The answer
turns out to be yes, for the stochastic setting (in the adversarial setting, cumulative wel-
fare is necessarily nonconcave). One reason is that concavity ensures that the function is
unimodal. To estimate the difference in social welfare between two policies, it therefore
suffices to sample policies that lie in the interval between them. These in-between policies
yield social welfare exceeding the minimum of the two boundary policies. A second rea-
son is that concavity prevents unexpected spikes in social welfare. This property allows us
to test carefully chosen triples of points for extended periods, to ensure that one of them
is suboptimal, without incurring significant regret.

For the stochastic setting with concave social welfare, we present an algorithm that
achieves a bound on regret of order T 1/2, up to logarithmic terms. Before describing our
proposed algorithm, Dyadic Search for Social Welfare, let us formally state the improved
regret bounds. The proofs of these lower and upper bounds can be found in the Online
Supplement.

THEOREM 3—Lower bound on regret for the concave case: Consider the setup of Sec-
tion 2. There exists a constant C > 0 such that, for any randomized algorithm for the choice
of x1�x2� � � � and any time horizon T ∈ N, the following holds.

There exists a distribution μ on [0�1] with associated demand function G and concave
social welfare function U , for which the stochastic cumulative expected regret RT (G) is at
least C · T 1/2.

THEOREM 4—Stochastic Upper Bound on Regret of Dyadic Search for Social Welfare:
Consider the stochastic setup of Section 2 and time horizon T ∈ N. If Algorithm 2 is run
with confidence parameter δ = 1

T 5/2 , and if the social welfare function U is concave, then the
expected regret RT (G) is of order at most T 1/2, up to logarithmic terms.
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Algorithm 2 Dyadic Search for Social Welfare.
Require: A confidence parameter δ ∈ (0�1).

1: I1 = [0�1], t0 = 0, k= 0
2: for epochs τ = 1�2� � � � do
3: Let c = (sup Iτ + inf Iτ)/2, and d = sup Iτ − inf Iτ . {Subinterval for sampling}
4: if τ is odd then
5: Let l = c − 1

4d, r = c + 1
4d.

6: else
7: Let l = c − 1

6d, r = c + 1
6d.

8: end if
9: for t = tτ−1 + 1� tτ−1 + 2� � � � do

10: Select w ∈ argmaxw′∈{l�c�r�(l�c)�(c�r)}�t−1(w′), {Sampling}
breaking ties following the order l� c� r� (l� c)� (c� r)

11: if w ∈{l� c� r} then
12: Set xt = w.
13: else
14: Set xt = w1 + (w2 −w1) · k+1/2

nt−1(w1�w2)+1 , and k= (k+ 1) mod nt−1(w1�w2) + 1.
15: end if
16: Calculate Jt (l� c), Jt (c� r), and Jt (l� r), as in (15) and (16). {Inference}
17: if inf(Jt (l� c)) ≥ 0 or inf(Jt (l� r)) ≥ 0 then
18: let Iτ+1 = Iτ ∩ [l�1] and tτ = t and break {Shrinking the active interval}
19: else if sup(Jt (c� r)) ≤ 0 or sup(Jt (l� r)) ≤ 0 then
20: let Iτ+1 = Iτ ∩ [0� r] and tτ = t and break
21: end if
22: end for
23: end for

Dyadic Search. Our algorithm is based on a modification of dyadic search, as discussed
in Bachoc, Cesari, Colomboni, and Paudice (2022a, 2022b). At any point in time, this
algorithm maintains an active interval Iτ, which contains the optimal policy with high
probability. Only policies within this interval are sampled going forward. As evidence
accumulates, this interval is trimmed down, by excluding policies that are suboptimal with
high probability.

The algorithm proceeds in epochs τ. At the start of each epoch, a subinterval [l� r] ⊂ Iτ
is formed, with mid-point c = (l + r)/2. The points l� c� r are in a dyadic grid, that is,
they are of the form k/2m. After sampling from [l� r], we calculate confidence intervals
Jt (l� c), Jt (c� r), and Jt (l� r) for the welfare differences �(l� c), �(c� r), and �(l� r), where
�(x�x′) =U (x′) −U (x).

If the confidence interval Jt (l� c) or Jt (l� r) lies above 0, concavity implies that the op-
timal policy cannot lie to the left of l; we can thus trim the active interval Iτ by dropping
all points to the left of l. Symmetrically, if the confidence interval Jt (c� r) or Jt (l� r) lies
below 0, we can trim Iτ by dropping all points to the right of r.

Confidence Intervals for Welfare Differences. This procedure requires the construction
of confidence intervals for welfare differences of the form

�
(
x�x′) = U

(
x′) −U (x) = x′ ·G(

x′) − x ·G(x) − λ

∫ x′

x

G
(
x′′)dx′′� (12)
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At time t, we estimate demand G(x), for policies x chosen in previous periods, as3

Ĝt (x) = 1
nt (x)

∑
i≤t

yi · 1(xi = x)� nt (x) =
∑
i≤t

1(xi = x)�

We similarly estimate integrated demand
∫ x′
x
G(x′′) dx′′ by (x′ − x) times the average of

realized demand yi for observations xi in the open interval (x�x′). We have to be careful,
however, to use a sample of xi that is (approximately) uniformly distributed over this in-
terval. This can be achieved for our dyadic search procedure, as specified in Algorithm 2,
by truncating the time index used to estimate this average.4 Let

s
(
x�x′� t

) = max
{
s ≤ t : log2

(
1 +

∑
i≤s

1
(
xi ∈

(
x�x′))) ∈N

}
�

We define

Ĝt

(
x�x′) = 1

nt

(
x�x′) + 1

∑
i≤s(x�x′�t)

yi · 1
(
xi ∈

(
x�x′))� nt

(
x�x′) =

∑
i≤s(x�x′�t)

1
(
xi ∈

(
x�x′))�

At each round, Algorithm 2 maintains estimates for welfare differences among three
points l� c� r (for left, center and right, respectively). The estimate of the welfare differ-
ence between x′ = c and x = l (or between x′ = r and x = c) is given by

�̂t

(
x�x′) = x′ · Ĝt

(
x′) − x · Ĝt (x) − λ · (x′ − x

) · Ĝt

(
x�x′)� (13)

while the estimate of the welfare difference between r and l is given by

�̂t (l� r) = �̂t (l� c) + �̂t (c� r)� (14)

To construct confidence intervals for �(x�x′), we also need to quantify the uncertainty of
our demand estimates. We use the following interval half-lengths for confidence intervals
for tax revenue at x, and for the private welfare difference between x′ and x:

�t (x) = x ·
√

1
2nt (x)

log
(

2
δ

)
�

�t

(
x�x′) = λ · (x′ − x

) ·
(√

1
2
(
nt

(
x�x′) + 1

) log
(

2
δ

)
+ 2

nt

(
x�x′) + 1

)
�

Using the shorthand a ± b = [a − b�a + b], our confidence interval for �(x�x′), where
x′ = c and x= l (or x′ = r and x= c) is given by

Jt
(
x�x′) = �̂t

(
x�x′) ± (

�t

(
x′) + �t (x) + �t

(
x�x′))� (15)

3We use the convention 0/0 = 0 and a/0 = +∞ whenever a > 0. Furthermore, every summation over an
empty set of indices is understood to have value 0.

4The sampling procedure in Algorithm 2 samples sequentially from the dyadic grid in the active interval,
refining the grid in subsequent iterations. s(x�x′� t) provides a truncation of the time index such that one round
of such dyadic sampling has been completed.



ADAPTIVE MAXIMIZATION OF SOCIAL WELFARE 1089

while our confidence interval for �(l� r) is given by

Jt (l� r) = �̂t (l� r) ± (
�t (r) + �t (l) + �t (l� c) + �t (c� r)

)
� (16)

With these preliminaries, we are now ready to state our algorithm, Dyadic Search for
Social Welfare, in Algorithm 2.

Before concluding this section, we highlight two features of Algorithm 2. First, two
of the three points l� c� r, and the corresponding estimates of demand, are kept from
each epoch to the next. Second, estimation of the integral term is performed by querying
points following a fixed and balanced design on the dyadic grid—instead of, for example,
using a randomized Monte Carlo procedure, which may lead to unbalanced exploration.
This implies that the points queried to estimate the integral terms can be easily reused to
obtain other integral estimates from each epoch to the next. These two features combined
ensure that Algorithm 2 recycles information very efficiently to prune the active interval
as quickly as possible, which leads to better regret.

5. INCOME TAXATION

We discuss two extensions of the baseline model of optimal taxation that we introduced
in Section 2. These extensions incorporate features that are important in more realistic
models of optimal taxation. For both of these extensions, we propose a properly modified
version of Algorithm 1. The first extension, discussed in this section, is a variant of the
Mirrlees model of optimal income taxation (Mirrlees (1971), Saez (2001, 2002)). The
second extension, discussed in Section 6 is a variant of the Ramsey model of commodity
taxation (Ramsey (1927)).

Our model of income taxation generalizes our baseline model by allowing for hetero-
geneous wages wi, welfare weights ω(wi), extensive-margin labor supply responses deter-
mined by the cost of participation vi, and nonlinear income taxes xi = x(wi). Two sim-
plifications are maintained in this model, relative to a more general model of income
taxation. First, only extensive margin responses (participation decisions) by individuals
are allowed; there are no intensive margin responses (hours adjustments). Second, as in
the baseline model of Section 2, there are no income effects. In imposing these assump-
tions, our model mirrors the model of optimal income taxation discussed in Section II.2
of Saez (2002).

Setup. At each time i = 1�2� � � � �T , one individual arrives who is characterized by (i)
a potential wage wi ∈ [0�1], and (ii) an unknown cost of participation vi ∈ [0�1]. This
individual makes a binary labor supply decision yi. If they participate in the labor market
(yi = 1), they earn wi, but pay a tax according to the tax rate xi = x(wi) on their earnings
wi. They furthermore incur a nonmonetary cost of participation vi.

Their optimal labor supply decision is therefore given by yi = 1(vi ≤ wi · (1 − xi)), and
private welfare equals max(wi · (1 − xi) − vi�0). The implied public revenue is equal to
the tax on earnings xi ·wi if yi = 1, and 0 otherwise.

We define social welfare as a weighted sum of public revenue and private welfare,
with a weight ω(wi) for the latter. Typically, ω is a decreasing function of w, reflecting
a preference for redistribution toward those with lower earnings potential; cf. Saez and
Stantcheva (2016). Social welfare for time period i, as a function of the tax schedule x(·),
is therefore given by

Ui

(
x(·)) = x(wi) ·wi · 1

(
vi ≤wi ·

(
1 − x(wi)

))︸ ︷︷ ︸
Public revenue
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+ω(wi) · max
(
wi ·

(
1 − x(wi)

) − vi�0
)︸ ︷︷ ︸

Private welfare

� (17)

After period i, we observe yi and the tax schedule xi(·). If yi = 1, we also observe wi.
Nothing else is observed.5

Piecewise Constant Tax Schedules. We next construct a generalization of Algorithm 1
based on piecewise constant tax schedules, with tax rates changing at the grid-points W ,
where 0 ∈ W ⊂ [0�1]. Formally, define 	w
 = max{w′ ∈ W : w′ ≤ w}, rounding the wage
w down to the nearest grid point in W ,6 Denote H =|W|, and let

XW = {
x(·) : ∀w ∈ [0�1]�x(w) = x

(	w
)}�
For w ∈W and any x ∈ [0�1], denote

Gi(w�x) =wi · 1
(
vi ≤ wi · (1 − x)

) · 1
(	wi
 =w

)
�

so that yi ·wi = Gi(wi�xi(wi)). Gi(w�x) is the individual labor supply function, in mone-
tary units, interacted with an indicator for whether the wage wi falls into the tax bracket
starting at w. With this notation, we can rewrite

max
(
wi · (1 − x) − vi�0

) =
∫ 1

x

Gi

(	wi
�x′)dx′�

For piecewise constant tax rates x(·), we get

Ui

(
x(·)) =

∑
w∈W

[
x(w) ·Gi

(
w�x(w)

) +ω(wi) ·
∫ 1

x(w)
Gi

(
w�x′)dx′

]
� (18)

Cumulative social welfare is given by Ui = ∑
j≤i Ui(xi(·)), and we correspondingly define

cumulative expected regret, in the adversarial setting, as

RT = sup
x(·)∈XW

E
[
UT

(
x(·)) −UT|{vi}Ti=1�{wi}Ti=1

]
�

The supremum here is taken over all tax schedules x(·) that are piecewise constant be-
tween the grid points w ∈W .

Algorithm. Algorithm 3 generalizes Algorithm 1 to this setting. As before, we form an
unbiased estimate Ĝi of Gi using inverse probability weighting, map this estimate into
a corresponding estimate Ûi of Ui, based on Equation (18), and cumulate across time
periods to obtain Ûi. Note that wi is observed whenever yi = 1. This implies that the
estimate Ĝi is in fact a function of observables, and the same holds for Ûi.

5It should be noted that in this model we take the transfer x0 for individuals without other income as given.
The effective tax owed by an employed individual equals x(wi) ·wi − x0. The “unconditional basic income” x0

does not affect labor supply, given our assumption that there are no income effects, and it enters social welfare
additively. It is therefore without loss of generality to omit x0 from our model.

6Here, we use slightly nonstandard notation, where 	·
 denotes rounding down to the nearest grid-point,
rather than the nearest integer.
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Algorithm 3 Tempered Exp3 for Optimal Income Taxation.
Require: Tuning parameters K, γ and η, and set of grid points W ⊂ [0�1].

1: Calculate evenly spaced grid-points X ={0� 1
K
� 2

K
� � � � �1}.

2: Initialize Ĝ1(w�x) = 0 and Û1(w�x) = 0 for all w ∈X and all x ∈X .
3: for individual i = 1�2� � � � �T do
4: For all x�w ∈X , set 	w
 = max{w′ ∈W :w′ ≤ w}, and

{Assignment probabilities}

pi(x|w) = (1 − γ) · exp
(
η · Ûi

(
x� 	w
))∑

x′∈X
exp

(
η · Ûi

(
x′� 	w
)) + γ

K + 1
� (19)

5: Draw Ai ∼ U[0�1]. For all w ∈ [0�1], set

xi(w) = max
{
x ∈X :

∑
x′∈X �x′<x

pi

(
x′|w

) ≤Ai

}
� (20)

and query yi accordingly.
6: For all w ∈W and x ∈X , set {Estimated labor supply}

Ĝi(x�w) = yi ·wi ·
1
(	wi
 =w�xi(wi) = x

)
pi(x|w)

� (21)

7: For all w ∈W and x ∈X , set {Estimated welfare}

Ûi+1(x�w) = Ûi(x�w) + x · Ĝi(x�w) + ω(wi)
K

·
∑

x′∈X �x′>x

Ĝi

(
x′�w

)
� (22)

8: end for

Algorithm 3 keeps track of estimated demand and social welfare for each bin (“tax
bracket”), as defined by the grid points w ∈W . The algorithm then constructs a distribu-
tion pi(x|w) over tax rates x ∈X given w, using the tempered Exp3 distribution. The tax
schedule x(·) is sampled according to these (marginal) distributions of tax rates for each
bracket. Though immaterial for the following theorem, we choose the perfectly correlated
coupling, across brackets, of these marginal distributions, which is implemented using the
random variable Ai in Algorithm 3.

THEOREM 5—Adversarial Upper Bound on Regret of Tempered Exp3 for Optimal
Income Taxation: Consider the setup of Section 5, and Algorithm 3. Assume that (K+1)η<
γ, and that ω(w) ≤ 1 for all w.

Then for any sequence (v1� � � � � vT ) expected regret RT ({vi}Ti=1) is bounded above by(
γ +η · (e− 2)

K + 1
K

·
(

2K + 1
6

+ 1
γ

)
+ 1

K

)
· T + H log(K + 1)

η
� (23)
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Suppose additionally7 that K = c1 · (T/H)1/3, γ = c2/(K+1), and η = c3/(K+1)2, for some
constants c1� c2� c3. Then expected regret RT ({vi}Ti=1) is bounded above by

c4 ·H1/3 · log(T )1/3T 2/3� (24)

for some constant c4.

6. COMMODITY TAXATION

In this section, we generalize our baseline model of optimal taxation to a model of
commodity taxation with multiple goods j ∈ {1� � � � �k} and continuous demand functions
yi(x) ∈ [0�1]k, where x ∈ [0�1]k is a vector of tax rates. We again assume that there are
no income effects. Our setup is a version of the classic Ramsey model (Ramsey (1927)).
We propose a generalization of Tempered Exp3 for Social Welfare to this setting. In the
following, we use 〈x� y〉 to denote the Euclidean inner product between x and y .

Setup. At each time i = 1�2� � � � �T , one individual arrives who is characterized by a
utility function ui : [0�1]k →R. This individual is exposed to a tax vector xi ∈ [0�1]k, and
makes a continuous consumption decision yi. Public revenue is given by 〈xi� yi〉. Private
utility is given by ui(yi) plus their consumption of a numeraire good, which has price
normalized to 1 and enters utility additively. The individual consumption choice yi costs
〈xi + p�y〉, where p is the (exogenously given) vector of pre-tax prices. This cost of pur-
chasing yi reduces the consumption of the numeraire good. The optimal individual deci-
sion is therefore given by

yi =Gi(xi) = argmax
y∈[0�1]k

[
ui(y) − 〈xi +p�y〉]� (25)

The implied private welfare is

vi(x) = v0 + max
y∈[0�1]k

[
ui(y) − 〈x+p�y〉]�

where we have added a constant v0, chosen such that vi(0) = 0; this is just a normalization
to simplify notation below.

We define social welfare as a weighted sum of public revenue and private welfare, with
a weight λ for the latter. Social welfare for time period i, as a function of the tax vector x,
is therefore given by

Ui(xi) = 〈xi� yi〉︸ ︷︷ ︸
Public revenue

+λ · vi(xi)︸ ︷︷ ︸
Private welfare

� (26)

After period i, we observe yi and the tax vector xi. Nothing else is observed. Algorithm 4
adapts our approach to this setting. This algorithm requires a mapping � from (esti-
mated) demand to welfare.

Mapping Demand to Welfare. By the envelope theorem (Milgrom and Segal (2002)),

∇xvi(x) =Gi(x)�

7for simplicity, we assume that in the following tuning K is an integer. If not, round K to the closest integer.
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Algorithm 4 Tempered Exp3 for Commodity Taxation.
Require: Tuning parameters K, γ and η.

1: Calculate the set of evenly spaced grid-points X ={0� 1
K
� � � � �1}k

and initialize Ĝ1(x) = 0 for all grid points.
2: for individual i = 1�2� � � � �T do
3: For all x ∈X , set {Estimated welfare}

Ûi(x) = 〈xi� Ĝi〉 + λ · v̂i(xi)� (28)

4: For all x ∈X , set {Assignment probabilities}

pi = (1 − γ) · exp
(
η · Ûi(x)

)∑
x′

exp
(
η · Ûi

(
x′)) + γ

(K + 1)k
� (29)

5: Choose xi at random according to the probability distribution pi, and query yi ac-
cordingly.

6: For all x ∈ [0�1]k, set {Estimated demand}

G̃i+1(x) = Ĝi(x) + yi ·
1
(
xi = 	x
)

pi

v̂i+1(x) =�(G̃i+1)

Ĝi+1(x) = ∇xv̂i+1(x)� (30)

7: end for

Let V be the set of differentiable functions v on [0�1]k such that ∇xv ∈ L2, and such
that v(0) = 0. Consider the following operator, mapping the demand function G into the
corresponding indirect utility function v:

�
(
G(·)) ∈ argmin

v(·)∈V

∫
[0�1]k

∥∥∇xv(x) −G(x)
∥∥2

dx (27)

We can think of the operator � as combining two operators. First, the function G is
projected on the subspace of functions on [0�1]k, which can be written as the gradient
of some function v. Second, the projected G is then integrated to get v(x) for any x.
Integration here is along some curve in [0�1]k from 0 to x. Given the first projection,
the choice of curve does not matter for the resulting function v. A formal analysis of
Tempered Exp3 for Commodity Taxation would need to prove existence of the projection.
We leave such a formal analysis, including lower and upper regret bounds, for future
research.

7. CONCLUSION

Possible Applications. The setup introduced in Section 2 was deliberately stylized, to
allow for a clear exposition of the conceptual issues that arise when adaptively maximiz-
ing social welfare. The algorithm that we proposed for this setup, and the generalizations
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discussed later in the paper, are nonetheless directly practically relevant. They remain
appropriate in economic settings that are considerably more general than the setting de-
scribed by our model.

The reasons for this generality have been elucidated by the public finance literature, cf.
Chetty (2009), building on the generality of the envelope theorem; cf. Milgrom and Segal
(2002), Sinander (2022). By the envelope theorem, the welfare impact of a marginal tax
change on private welfare can be calculated ignoring any behavioral responses to the tax
change. This holds in generalizations of our setup that allow for almost arbitrary action
spaces (including discrete and continuous, multidimensional, and dynamic actions), and
for arbitrary preference heterogeneity. The expressions for social welfare that justify our
algorithms remain unchanged under such generalizations. That said, the validity of these
expressions does require the absence of income effects and of externalities. If there are
income effects or externalities, the algorithms need to be modified.

Our approach is motivated by applications of algorithmic decision-making for public
policy, where a policymaker cares about welfare, but also faces a government budget con-
straint. Possible application domains of our algorithm include the following. In public
health and development economics, field experiments such as Cohen and Dupas (2010)
vary the level of a subsidy for goods such as insecticide-treated bed nets (ITNs), estimat-
ing the impact on demand. Our algorithm could be used to find the optimal subsidy level
quickly and apply it to experimental participants. A term capturing positive externalities
of the use of ITNs could be added to social welfare, leaving the algorithm otherwise un-
changed. In educational economics, many studies evaluate the impact of financial aid on
college enrollment (Dynarski, Page, and Scott-Clayton (2023)). An adaptive experiment
might vary the level of aid provided, where aid is conditional on college attendance and
conditional on pre-determined criteria of need or merit. In such an experiment, a variant
of our algorithm for optimal income taxation might be used, where the welfare weights ω
are a function of need or merit, and the outcome y is college attendance. In environmental
economics, many experiments (e.g., Lee, Miguel, and Wolfram (2020)) study the impact
of electricity pricing on household electricity consumption. Once again, our baseline algo-
rithm (for binary household decisions about connecting to the grid) or our algorithm for
commodity taxation (for continuous household decisions about consumption levels) could
be applied, to learn optimal prices, taking into account both distributional considerations
and externalities.

These examples are all drawn from public policy, where there is an intrinsic concern
for social welfare. This contrasts with commercial applications, where the goal is typi-
cally to maximize (directly observable) profits by monopolist pricing (den Boer (2015)),
or more generally by reserve price setting in auctions (Nedelec, Calauzènes, El Karoui,
and Perchet (2022). Adaptive pricing algorithms are used in applications such as online ad
auctions. A concern for welfare might enter in such commercial settings if there is a par-
ticipation constraint that needs to be satisfied for consumers. Suppose, for example, that
consumers or service providers need to first sign up for a platform, say for e-commerce or
for gig work, and then repeatedly engage in transactions on this platform. To sign up in
the first place, their expected welfare needs to exceed their outside option. This constraint
might then enter the platform provider’s objective, in Lagrangian form, adding a term for
welfare, and leading to objectives such as those maximized by our algorithms.

An Alternative Approach: Thompson Sampling. The main algorithm proposed in this
paper, Tempered Exp3 for Social Welfare, is designed to perform well in the adversar-
ial setting. In the construction of this algorithm, no probabilistic assumptions were made
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about the distribution of vi. In the stochastic framework, a sampling distribution is as-
sumed, for instance, that the vi be i.i.d. over time. The Bayesian framework completes
this by assuming a prior distribution over the parameters, which govern the sampling dis-
tribution.

One popular heuristic for adaptive policy choice in the Bayesian framework is Thomp-
son sampling (Thompson (1933), Russo, Van Roy, Kazerouni, Osband, and Wen (2018)),
also known as probability matching, which assigns a policy with probability equal to
the posterior probability that this policy is optimal. In our setting, Thompson sam-
pling could be implemented as follows. First, form a posterior for the demand function
G(x) = E[y|x], based on all the data available from previous periods j < i. Sample one
draw G̃(·) from this posterior. Map this draw into a draw Ũ (·) from the posterior for
U (·) via Ũ (x) = x · G̃(x) +λ · ∫ 1

x
G̃(x′) dx′. Find the maximizer xi = argmaxx Ũ (x). This is

the policy recommended by Thompson sampling. We conjecture that this algorithm will
outperform random assignment, but will underexplore relative to the optimal algorithm.
Adding further forced exploration to this algorithm might improve cumulative welfare. A
formal analysis of algorithms of this type is left for future research.

A natural class of priors for G are Gaussian process priors (Williams and Rasmussen
(2006)). If outcomes y are conditionally normal (rather than binary, as in our baseline
model), then the posterior for demand is available in closed form, and the posterior mean
is equal to the best linear predictor given past outcomes yj . Furthermore, since social
welfare is a linear transformation of demand, the posterior for U is then also linear and
available in closed form. For details, see Kasy (2018).

APPENDIX A: PROOFS

A.1. Theorem 1 (Lower Bound on Regret)

Defining a Family of Distributions for v. Recall that, for each ε ∈ [−1�1], the probabil-
ity distribution με is defined as the probability measure supported on (1/4� 1/2� 3/4�1) with
masses (a� (1 + ε) · b� (1 − ε) · b�1 − a− 2 · b), where

a := (1 − λ) · (136 − 99 · λ)
2 · (4 − 3 · λ) · (24 − 17 · λ)

� b := 1 − λ

2 · (24 − 17 · λ)
�

Furthermore, for each ε ∈ [−1�1], recall that Gε and Uε are respectively the demand func-
tion and the expected social welfare associated to με (see Figure 1 for an illustration). Let
v1� v2� · · · ∈ [0�1] be the sequence of individual valuations. For each ε ∈ [−1�1], consider
a distribution Pε such that the individual valuations v1� v2� � � � form a Pε-i.i.d. sequence
(independent of the randomization used by the algorithm) with common distribution με.

Explicit Lower Bound on Regret That Will Be Proven. Define

c1 := λ

4
· b� c2 := 1

8
· 1 − λ

4 − 3 · λ� c3 := b ·
√

2
a · (1 − a− 2 · b)

�

We will prove that, for any randomized algorithm and any time horizon T ∈N, there exists
ε ∈ [−1�1] such that

RT

(
Gε

) ≥ C · T 2/3�
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where

C := min
(
c2

1 · c2
3

c2
�
c2

2
�

1
16

· 3

√
c2

1 · c2

c2
3

)

= min
(

λ2 · (4 − 3 · λ)3

8 · (136 − 99 · λ) · (26 − 19 · λ)
�

λ2/3 · (1 − λ)4/3 · (136 − 99 · λ)1/3 · (26 − 19 · λ)1/3

128 · (4 − 3 · λ) · (24 − 17 · λ)4/3

)
> 0� (31)

Fix a randomized algorithm to choose the policies x1�x2� � � � , and fix a time horizon
T ∈ N.

Number of Mistakes and Lower Bound on Regret. We need to count the random num-
ber of times the algorithm has played in the regions (1/2� 3/4], [0� 1/2] and (3/4�1] up to time
T . This can be done relying on the following random variables:

n1 :=
T∑
i=1

1(1/2�3/4](xi)� n2 :=
T∑
i=1

1[0�1/2](xi)� n3 :=
T∑
i=1

1(3/4�1](xi)�

Notice that since the intervals (1/2� 3/4]� [0� 1/2] and (3/4�1] form a partition of [0�1], we
have that

n1 + n2 + n3 = T (32)

For each ε ∈ [−1�1], denote by Eε the expectation taken with respect to the distribution
Pε. Notice that, for each ε ∈ [−1�1], the expected regret when the underlying distribution
is Pε equals

RT

(
Gε

) = T · sup
x∈[0�1]

Uε(x) −
T∑
i=1

Eε
(
Uε(xi)

)
� (33)

Algebraic calculations show that, for each ε ∈ [−1�1],

max
x∈(1/2�3/4]

Uε(x) = Uε(3/4)� max
x∈[0�1/2]

Uε(x) =Uε(1/4)�

max
x∈(3/4�1]

Uε(x) =Uε(1)�
(34)

and Uε(1) −Uε(1/4) = c1 · ε� (35)

Further calculations show also that

min
ε∈[−1�1]

min
(
Uε(1/4)�Uε(1)

) =U1(1/4)� max
ε∈[−1�1]

max
x∈(1/2�3/4]

Uε(x) =U−1(3/4)� (36)

and U1(1/4) −U−1(3/4) = c2� (37)

Equations (34), (35), (36), and (37) imply that

sup
x∈[0�1]

Uε(x) =Uε(1) if ε ∈ [0�1]� (38)
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It follows that, if ε ∈ [0�1],

RT

(
Gε

) (33)= T · sup
x∈[0�1]

Uε(x) −
T∑
i=1

Eε
(
Uε(xi)

)
(38)= T ·Uε(1) −

T∑
i=1

Eε
(
Uε(xi) · (1(1/2�3/4](xi) + 1[0�1/2](xi) + 1(3/4�1](xi)

))
(34)≥ T ·Uε(1) −

T∑
i=1

Eε
(
Uε(3/4) · 1(1/2�3/4](xi)

+Uε(1/2) · 1[0�1/2](xi) +Uε(1) · 1(3/4�1](xi)
)

(32)= (
Uε(1) −Uε(3/4)

) ·Eε(n1) + (
Uε(1) −Uε(1/4)

) ·Eε(n2)

(36)≥ (
U1(1/4) −U−1(3/4)

) ·Eε(n1) + (
Uε(1) −Uε(1/4)

) ·Eε(n2)

(37)= c2 ·Eε(n1) + (
Uε(1) −Uε(1/4)

) ·Eε(n2)

(35)= c2 ·Eε(n1) + c1 · ε ·Eε(n2) (39)

Notice that inequality (39) quantifies how much regret the algorithm is going to suffer in
terms of the expected number of times it plays in the wrong regions, when the demand
function is Gε and ε > 0.

In the same way inequality (39) was proven, we can prove that, if ε ∈ [0�1],

RT

(
G−ε

) ≥ c2 ·E−ε(n1) + c1 · ε ·E−ε(n3) ≥ c1 · ε ·E−ε(n3)� (40)

which again quantifies how much regret the algorithm is going to suffer in terms of the
expected number of times it plays in the wrong regions, when the demand function is G−ε

and ε > 0.

Intuition for the Remainder of the Proof. At high level, inequalities (39) and (40) tell
us that, if |ε| is not negligible, the algorithm has to play a substantially different number
of times in the region (3/4�1], depending on the sign of ε, not to suffer significant regret
when the demand function is Gε. The crucial idea is that the only way for the algorithm
to present this different behavior is by playing in the only informative region about the
sign of ε, that is, the region (1/2� 3/4]. However, as shown in (39), selecting policies in this
region comes at a cost in terms of regret. To relate quantitatively the number of times the
algorithm has to play in this costly region with the difference in the expected number of
times the algorithm selects policies in the region (3/4�1] is the last missing ingredient that
we can obtain relying on information theoretic techniques: It can be proved (and a formal
proof is provided in the Online Supplement, in Section B.1, that, for each ε ∈ [0�1],

E−ε(n3) ≥Eε(n3) − c3 · ε · T ·
√
Eε(n1)� (41)

Now, if the algorithm is going to suffer low regret when ε > 0, then by (39) we have an
upper bound on the number of times the algorithm plays in the region (1/2� 3/4] and a
lower bound on the number of times it plays in the region (3/4�1], whenever ε > 0. In
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turn, by (41), this gives a lower bound on the number of times the algorithm plays in the
suboptimal region (3/4�1] when ε < 0. Then, relying on (40), we have an explicit lower
bound on how much regret the algorithm is going to suffer when ε < 0. We will now carry
out this plan—and prove the theorem—as follows.

Low Regret Cannot Be Achieved for Both Positive and Negative ε. To get a contradiction,
suppose that

∀ε ∈ [−1�1] RT

(
Gε

)
<C · T 2/3� (42)

It follows from (39) that, for each ε ∈ [0�1],

Eε(n1)
(39)≤ RT

(
Gε

)
c2

(42)≤ C

c2
· T 2/3� Eε(n2)

(39)≤ RT

(
Gε

)
c1 · ε

(42)≤ C

c1 · ε · T 2/3� (43)

This implies, relying also on (40) and (41), that for each ε ∈ [0�1] we have

RT

(
G−ε

) (40)≥ c1 · ε ·E−ε(n3)
(41)≥ c1 · ε · (Eε(n3) − c3 · ε · T ·

√
Eε(n1)

)
(32)= c1 · ε · (T −Eε(n1) −Eε(n2) − c3 · ε · T ·

√
Eε(n1)

)
(43)≥ c1 · ε ·

(
T − C

c2
· T 2/3 − C

c1 · ε · T 2/3 − c3 · ε · T ·
√
C

c2
· T 2/3

)

= c1 · ε ·
(

1 − C

c2
· T−1/3 − C

c1 · ε · T−1/3 − c3 · ε · T 1/3 ·
√
C

c2

)
· T� (44)

Pick ε := T−1/3 ·
√√

C·c2
c1·c3

. First, note that since 0 <C
(31)≤ c2

1 ·c2
3

c2
we have that ε ∈ (0�1]. Substi-

tuting this value of ε in (44) leads to

C · T 2/3 (42)
> RT

(
G−ε

)
(44)≥

√√
C · c2 · c1

c3
·
(

1 − C

c2
· T−1/3 − 2 ·

√
c3

c1 · √c2
·C3/4

)
· T 2/3

(31)≥ 1
2

·
√√

C · c2 · c1

c3
·
(

1 − 4 ·
√

c3

c1 · √c2
·C3/4

)
· T 2/3

(31)≥ 1
4

·
√√

C · c2 · c1

c3
· T 2/3� (45)

where the second to last inequality follows from C ≤ c2
2 , while the last inequality follows

from C ≤ 1
16

3

√
c2

1 ·c2

c2
3

. Rearranging inequality (45) leads to the contradiction

C
(45)
>

(
1
4

·
√
c1 · √c2

c3

)4/3

= 1
8

· 3

√
2 · c2

1 · c2

c2
3

>
1
16

· 3

√
c2

1 · c2

c2
3

(31)≥ C�
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Since (42) leads to a contradiction, it follows that there exists ε ∈ [−1�1] such that
RT (Gε) ≥ C · T 2/3. Given that the time horizon T and the randomized algorithm were
arbitrarily fixed, the theorem is proved.

A.2. Theorem 2 (Adversarial Upper Bound on Regret)

The proof of this theorem builds upon the proof of Theorem 6.5 in Cesa-Bianchi and
Lugosi (2006). Relative to this theorem, we need to additionally consider the discretiza-
tion error introduced by Algorithm 1, and explicitly control the variance of estimated
welfare.

Recall our notation U and U(x) for realized cumulative welfare, and for cumulative wel-
fare for the counterfactual, fixed policy x. We further abbreviate UTk = U(x̃k). Through-
out this proof, the sequence {vi}Ti=1 is given and conditioned on in any expectations.

1. Discretization
Recall that Ui(x) = x · 1(x≤ vi) + λ · max(vi − x�0). Let

ṽi = max
k

{x̃k : x̃k ≤ vi}

(this is vi rounded down to the next grid point x̃k), and denote

Ũi(x) = x · 1(x≤ vi) + λ · max(ṽi − x�0)�

Ũi(x) =
∑
j≤i

Ũj(x)�

as well as Ũik = Ũi(x̃k). Then it is immediate that Ũi(x) ≤Ui(x),

sup
x

∣∣Ũi(x) −Ui(x)
∣∣ ≤ λ

K
�

and argmaxx Ũi(x) ∈{x̃1� � � � � xK+1} and, therefore,

max
k

Ũik ≥ sup
x

Ui(x) − i · λ
K

2. Unbiasedness
At the end of period i, Ĝk is an unbiased estimator of

∑
j≤i 1(x̃k ≤ vj) for all k.

Therefore, E[Ûik] = Ũik for all i and k.
3. Upper bound on optimal welfare

Define Wi = ∑
k exp(η · Ûik), and qik = exp(η · Ûik)/Wi.

It is immediate that

E[logWT ] ≥ η ·E
[
max

k
ÛTk

]
≥ η · max

k
E[ÛTk] = η · max

k
ŨTk�

Furthermore,

E[logWT ] =
∑

0≤i<T

E

[
log

(
Wi+1

Wi

)]
+ log(W0)�

Given our initialization of the algorithm, log(W0) = log(K + 1).
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4. Lower bound on estimated welfare
Denote Ûik = x̃k · Ĥk + λ

K
· ∑k′>k Ĥk′ , where Ĥk = yi

pik
· 1(ki = k),

so that Ûik = ∑
j<i Ûjk, and E[Ûjk] = Ui(x̃k).

By definition of Wi,

log
(
Wi+1

Wi

)
= log

(∑
k

qik · exp(η · Ûik)
)
�

Since pk ≥ γ/(K + 1) for all k, Ûik ∈ [0� (K + 1)/γ] for all i and k and, therefore,
η · Ûik ≤ (K + 1) · η/γ ≤ 1 (where the last inequality holds by assumption). Using
exp(a) ≤ 1 + a+ (e− 2)a2 for any a≤ 1 yields

exp(ηÛik) ≤ 1 +η · Ûik + (e− 2) · (η · Ûik)2�

Therefore,

log
(
Wi+1

Wi

)
≤ log

(∑
k

qik · (1 +η · Ûik + (e− 2) · (η · Ûik)2
))

≤ η ·
∑
k

qik · Ûik + (e− 2) ·η2 ·
∑
k

qik · Û2
ik

The second inequality follows from log(1 + x) ≤ x.
5. Connecting the first-order term to welfare

Note that, by definition, qik = (pik − γ

K+1 )/(1 − γ). Therefore,∑
k

qik · Ûik = 1
1 − γ

∑
k

pik · Ûik − γ

(1 − γ)(K + 1)
·
∑
k

Ûik�

and thus

E

[∑
k

qik · Ûik

]
≤ 1

1 − γ
E

[
Ũi(xi)

]
�

where we have used the fact that 0 ≤ Ũk ≤ 1 for all k, given our definition of Ũ , and
the fact that ki is distributed according to pik, by construction.

6. Bounding the second moment of estimated welfare
It remains to bound the term E[

∑
k qik · Û2

ik]. As in the preceding item, we have∑
k

qik · Û2
ik ≤ 1

1 − γ

∑
k

pik · Û2
ik�

We can rewrite

Ûik =
(
x̃k · 1(ki = k) + λ

K
· 1(ki > k)

)
· yi

piki

�

Bounding yi ≤ 1 immediately gives

Ei

[
Û2

ik

] ≤ x̃2
k

pik

+
(
λ

K

)2

·
∑
k′>k

1
pik′
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and, therefore,

Ei

[∑
k

pik · Û2
ik

]
≤

∑
k

x̃2
k +

(
λ

K

)2

·
∑
k

∑
k′>k

pik

pik′

≤
∑
k

(
k

K

)2

+
(
λ

K

)2

·
∑
k

pik

∑
k′ �=k

K + 1
γ

= K(K + 1)(2K + 1)
6K2 + λ2

γ

K + 1
K

= K + 1
K

·
(

2K + 1
6

+ λ2

γ

)
�

7. Collecting inequalities
Combining the preceding items, we get

η ·
(

sup
x

U(x) − T · λ
K

)
≤ η · max

k
ŨTk ≤E[logWT ] (Item 1)

=
∑

0≤i<T

E

[
log

(
Wi+1

Wi

)]
+ log(K + 1) ( Item 3)

≤ η

1 − γ
·E[Ũ] + (e− 2) · η2

1 − γ

∑
1≤i≤T

∑
k

E
[
pik · Û2

ik

]
+ log(K + 1) (Item 4 and 5)

≤ η

1 − γ
·E[Ũ] + (e− 2) · η2

1 − γ
T · K + 1

K
·
(

2K + 1
6

+ λ2

γ

)
+ log(K + 1)� (Item 6)

Multiplying by (1 − γ) and dividing by η, adding γ supxU(x) + T λ
K

to both sides
and subtracting E[Ũ], bounding supxU(x) ≤ T , and E[Ũ] ≤ E[U] (from Item 1),
yields

sup
x

U(x) −E[U]

≤
(
γ +η · (e− 2)

K + 1
K

·
(

2K + 1
6

+ λ2

γ

)
+ λ

K

)
· T

+ log(K + 1)
η

� (46)

This proves the first claim of the theorem.
8. Optimizing tuning parameters
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Suppose now that we choose the tuning parameters as follows:

γ = c1 ·
(

log(T )
T

)1/3

� η = c2 · γ2� K = c3/γ�

Substituting we get

sup
x

U(x) −E[U]

≤
(
γ + c2 · γ2 · (e− 2)

K + 1
K

·
(

2c3/γ + 1
6

+ λ2

γ

)
+ λ · γ/c3

)
· T + log(K + 1)

c2 · γ2

= log(T )1/3T 2/3 ·
(
c1 + (e− 2)

K + 1
K

· c1c2

(
c3

3
+ λ2 + γ

6

)
+ λ

c1

c3

+ log
(
T 1/3 log(T )−1/3c3/c1 + 1

)
c2

1 log(T )

)
= log(T )1/3T 2/3 ·

(
c1 + (e− 2) · c1c2

(
c3

3
+ λ2

)
+ λ

c1

c3
+ 1

3c2
1

+ o(1)
)
�

The second claim of the theorem follows.
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