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Identification of and Correction for Publication Bias†

By Isaiah Andrews and Maximilian Kasy*

Some empirical results are more likely to be published than others. 
Selective publication leads to biased estimates and distorted infer-
ence. We propose two approaches for identifying the conditional 
probability of publication as a function of a study’s results, the first 
based on systematic replication studies and the second on meta-stud-
ies. For known conditional publication probabilities, we propose 
bias-corrected estimators and confidence sets. We apply our methods 
to recent replication studies in experimental economics and psychol-
ogy, and to a meta-study on the effect of the minimum wage. When 
replication and meta-study data are available, we find similar results 
from both.(JEL C13, C90, I23, J23, J38, L82)

Despite following the same protocols, replications of published experiments fre-
quently find effects of smaller magnitude or opposite sign than those in the initial 
studies (cf. Open Science Collaboration 2015, Camerer et al. 2016). A leading expla-
nation for replication failure is publication bias (cf. Ioannidis 2005, 2008; McCrary, 
Christensen, and Fanelli 2016; Christensen and Miguel 2016). Journal editors and 
referees may be more likely to publish results that are statistically significant, that 
confirm some prior belief or, conversely, that are surprising. Researchers in turn face 
strong incentives to select which findings to write up and submit to journals based 
on the likelihood of ultimate publication, leading to what is sometimes called the 
file drawer problem (Rosenthal 1979). We refer to these behaviors collectively as 
selective publication or publication bias. Left unaddressed, such selectivity can lead 
to biased estimates and misleading confidence sets in published studies.

We first show how bias from selective publication can be corrected if the condi-
tional publication probability (i.e., the probability of publication as a function of a 
study’s results) is known. We then show how the conditional publication probabil-
ity can be nonparametrically identified. Finally, we apply the proposed methods to 
several empirical literatures.
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Correcting for Publication Bias.—After introducing our setup, Section I dis-
cusses the consequences of selective publication for statistical inference. When 
selectivity is known we propose median unbiased estimators and valid confidence 
sets for scalar parameters.1

Identification of Publication Bias.—Section II considers two approaches to iden-
tification. The first uses data from systematic replications of a collection of original 
studies. Following, e.g., Camerer et al. (2016), by a replication we mean a study that 
applies the same experimental protocol to a new sample from the same population 
as the corresponding original study.2 When there is no selectivity and the original 
and replication studies have the same sample size, the joint distribution of initial 
and replication estimates is symmetric, in the sense that it is unchanged when we 
reverse the roles of the original and replication results. Under the assumption that 
publication decisions depend only on the original estimates, asymmetries in this 
joint distribution nonparametrically identify conditional publication probabilities. 
While replication sample sizes often differ from those in the initial study, we show 
that nonparametric identification extends to this case as well.

Our second identification approach uses data from meta-studies, by which we 
mean studies that collect estimates and standard errors from multiple published 
studies. Under an independence assumption common in the meta-studies literature, 
if there is no selectivity then we can write the distribution of estimates for high vari-
ance studies as the distribution for low variance studies plus noise. Deviations from 
this prediction again identify conditional publication probabilities.

In applications where we can apply both approaches, which rely on different 
sources of identification, we find that they yield very similar conclusions. This find-
ing adds to the credibility of our widely applicable meta-studies based method.

Both approaches identify conditional publication probabilities up to scale. 
Multiplying publication probabilities by a constant factor does not change the dis-
tribution of published results, and so does not affect the behavior of estimators 
and confidence sets. Hence, identification up to scale is sufficient to apply our bias 
corrections.

Applications.—Section III applies the theory developed in this paper to three 
empirical literatures. Our first two applications use data from the experimental 
economics and psychology replication studies of Camerer et al. (2016) and Open 
Science Collaboration (2015), respectively. Estimates based on our replication 
approach suggest that results significant at the 5 percent level are over 30 times 
more likely to be published than are insignificant results, providing strong evidence 
of selectivity. Estimation based on our meta-study approach, which uses only the 
originally published results, yields similar conclusions.

1 While our corrections eliminate bias due to selective publication, they cannot correct for problems with the 
underlying studies. If a study suffers from omitted variables bias (cf. Bruns and Ioannidis 2016, Bruns 2017), for 
instance, our corrections provide median unbiased estimates for the sum of the parameter of interest and the omitted 
variables bias. See Section IVE.

2 Clemens (2017) terms such studies “reproductions,” to distinguish them from “verifications” (cf. Chang and 
Li forthcoming; Gertler, Galiani, and Romero 2018) which try to reproduce the same results as the original paper 
based on the original sample.
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Our third application considers the literature on the impact of minimum wages on 
employment, where no replication estimates are available. Estimates based on data 
from the meta-study Wolfson and Belman (2015) suggest that results corresponding 
to a negative and significant effect of minimum wages on employment are about 
three times more likely to be published than are insignificant results. Our point esti-
mates suggest that results showing a positive and significant effect of minimum 
wages on employment are less likely to be published than negative and significant 
results, consistent with prior work by Card and Krueger (1995) and Wolfson and 
Belman (2015), but we cannot reject that selection depends only on significance and 
not on sign. In the online Appendix we discuss two additional applications of our 
methods, using data from Croke et al. (2016) and Camerer et al. (2018).

Alternative Approaches.—There is a large prior literature on publication bias. 
Section IV discusses some of the alternatives from this literature, including 
meta-regression and approaches based on the distribution of p-values or z-statistics, 
and relates them to our framework. We further discuss the implications of 
“p-hacking” as studied by, e.g., Simonsohn, Nelson, and Simmons (2014) and Bruns 
and Ioannidis (2016) for our results.

Supplement.—A variety of supporting materials and extensions of our results are 
provided in the online Appendix. Section A contains proofs for all results discussed 
in the main text. Section B provides additional discussion of the data and methods 
used in our empirical applications, as well as a range of robustness checks. Section 
C contains further empirical results, including estimates based on alternative GMM 
estimation approaches and results for the Croke et  al. (2016) and Camerer et  al. 
(2018) applications. Finally, Section D discusses additional theoretical results, 
including on inference with multidimensional selection and the impact of selection 
on Bayesian inference.

Notation.—Throughout the paper, upper case letters denote random variables and 
lower case letters denote realizations. We observe normally distributed estimates ​X​ 
with mean ​Θ​ and standard error ​Σ​, where ​Θ​ and ​Σ​ may vary across studies.3 We 
condition on ​Θ​ and ​Σ​ whenever frequentist objects are considered, while uncondi-
tional expectations, probabilities, and densities integrate over the population distri-
bution of ​Θ​ and ​Σ​. Estimates normalized by their standard error ​Σ​ are denoted by ​
Z​, and parameters ​Θ​ normalized by ​Σ​ are denoted by ​Ω​. Latent studies (published 
or unpublished) are marked by a superscript ​⁎​, while published studies have no 
superscript.

I.  Setting

Throughout this paper we consider variants of the following data-generating pro-
cess. Within an empirical literature of interest, there is a population of latent studies ​
i​. The true effect ​​Θ​ i​ ⁎​​ in study ​i​ is drawn from distribution ​​μ​Θ​​​. Thus, different latent 

3 Note that we use ​Σ​ to denote the (scalar) standard error rather than a variance matrix.
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studies may estimate different true parameters.4 Conditional on the true effect ​​Θ​ i​ ⁎​​ 
and the standard error ​​Σ​ i​ ⁎​​ (which may also vary across studies), the result ​​X​ i​ ⁎​​ in 
latent study ​i​ is drawn from the normal distribution ​N​(​Θ​ i​ ⁎​, ​Σ​ i​ ⁎2​)​​. For simplicity of 
notation we suppress the subscript ​i​ when possible.

Studies are published if ​D  =  1​, which occurs with probability ​p​(​Z​​ ⁎​)​​, where 
​​Z​​ ⁎​  = ​ X​​ ⁎​ / ​Σ​​ ⁎​​. We observe the truncated sample of published studies (that is, we 
observe draws from the conditional distribution of ​​(​X​​ ⁎​, ​Σ​​ ⁎​)​​ given ​D = 1​) and denote 
observations in this sample by ​​(X, Σ)​​. Publication decisions reflect both researcher 
and journal decisions; we do not attempt to disentangle the two. We obtain the fol-
lowing model.

DEFINITION 1 (Truncated Sampling Process): ​​(​Θ​​ ⁎​, ​Σ​​ ⁎​, ​X​​ ⁎​, D)​​ are jointly i.i.d. 
across latent studies, with

	​ ​(​Θ​​ ⁎​, ​Σ​​ ⁎​)​  ∼ ​ μ​Θ,Σ​​​,

	​ ​X​​ ⁎​ | ​Θ​​ ⁎​, ​Σ​​ ⁎​  ∼  N​(​Θ​​ ⁎​, ​Σ​​ ⁎2​)​​,

	​ D | ​X​​ ⁎​, ​Θ​​ ⁎​, ​Σ​​ ⁎​  ∼  Ber​(p​(​Z​​ ⁎​)​)​,​

where ​​Z​​ ⁎​  = ​ X​​ ⁎​ / ​Σ​​ ⁎​​. We observe i.i.d. draws ​​(X, Σ)​​ from the conditional distribu-
tion of ​​(​X​​ ⁎​, ​Σ​​ ⁎​)​​ given ​D  =  1.​ Define ​Z  =  X / Σ​, ​​Ω​​ ⁎​  = ​ Θ​​ ⁎​ / ​Σ​​ ⁎​​, ​Ω  =  Θ / Σ​, and 
denote the marginal distribution of ​​Θ​​ ⁎​​ by ​​μ​Θ​​​.

As we discuss in the proofs, many of our results can be extended to the case 
where ​​X​​ ⁎​​ is non-normal. Our focus on the normal case is motivated by the fact that ​​
X​​ ⁎​​ represents the estimate in each study. Such estimates are approximately normal 
with a consistently estimable variance under mild conditions. Moreover, approxi-
mate normality of estimates is widely assumed in practice (for example to justify 
reporting standard errors), including in all the papers discussed in our applications.

The truncated sampling process of Definition 1 implies the likelihood,

(1)	 ​​f​Z|Ω,Σ​​​(z | ω, σ)​  = ​ f​​Z​​ ⁎​|​Ω​​ ⁎​,​Σ​​ ⁎​,D​​​(z | ω, σ, 1)​  = ​ 
p​(z)​
 _____________  

E​[p​(​Z​​ ⁎​)​ | ​Ω​​ ⁎​  =  ω]​
 ​ φ​(z − ω)​,​

for ​φ​( · )​​ the standard normal density. Note that ​​f​Z|Ω,Σ​​​(z | ω, σ)​  = ​ f​Z|Ω​​​(z | ω)​​.  
Moreover, the scale of the publication probability does not affect the distribution of 
published results, since for ​c  >  0​, ​p​( · )​​ and ​c · p​( · )​​ imply the same ​​f​Z|Ω​​​(z | ω)​​.

A. Illustrative Example: Selection on Statistical Significance

To illustrate our setting, we consider a simple example to which we will return 
throughout the paper. A journal receives a stream of studies reporting experimen-
tal estimates ​​X​​ ⁎​  ∼  N​(​Θ​​ ⁎​, ​Σ​​ ⁎2​)​​ of treatment effects ​​Θ​​ ⁎​​, where each experiment 

4 The case where all latent studies estimate the same parameter is nested by taking the distribution ​​μ​Θ​​​ to be 
degenerate.
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examines a different treatment. The journal publishes studies with ​​Z​​ ⁎​​ in the interval ​​
[− 1.96, 1.96]​​ with probability ​p​(​Z​​ ⁎​)​  =  0.1​, while results outside this interval are 
published with probability ​p​(​Z​​ ⁎​)​  =  1​. This publication policy reflects a preference 
for “significant results,” where a two-sided z-test rejects the null hypothesis ​​Θ​​ ⁎​  =  0​ 
(or equivalently, ​​Ω​​ ⁎​  =  0​) at the 5 percent level. This journal is ten times more likely 
to publish significant results than insignificant ones. Consequently, published results 
tend to over-estimate the magnitude of the treatment effect.5 Published confidence 
intervals also under-cover the true parameter value for small values of ​Ω​ and over-
cover for somewhat larger values. This is demonstrated by Figure 1, which plots the 
median bias, ​med​(​Ω ˆ ​ | Ω  =  ω)​ − ω,​ of the usual estimator ​​Ω ˆ ​  =  Z​, as well as the 
coverage of the conventional 95 percent confidence interval ​​[Z − 1.96, Z + 1.96]​​.6  
While we have described this example in terms of selection by the journal, it 
could equivalently be interpreted as reflecting selection by researchers, or by both 
researchers and journals.

B. Corrected Inference

If we know the form of selectivity we can correct the bias from selective publica-
tion. This section derives median unbiased estimators and valid confidence sets for ​
Ω​, which can immediately be turned into estimators and confidence sets for ​Θ​ via 
multiplication by ​Σ​. These results ensure unbiasedness and correct coverage condi-
tional on ​​(Θ, Σ)​​ for all ​​(Θ, Σ)​​, rather than just on average across the distribution of ​​
(Θ, Σ)​​. For now we assume ​p​( · )​​ is known up to scale; corrections accounting for 
estimation error in ​p​( · )​​ are discussed in online Appendix Section B.1.

5 See Ioannidis (2008) and Gelman (2018) for more discussion of this point.
6 Note that ​med​(​Ω ˆ ​ | Ω  =  ω)​ − ω  =  ​(med​(​Θ ˆ ​ | Θ  =  θ, Σ  =  σ)​ − θ)​/σ​ so the median bias of ​​Ω ˆ ​​ can be inter-

preted as the median bias of ​X​ for ​θ​, scaled by the standard error.

Figure 1. Bias and Coverage Conditional on Publication

Notes: The left panel plots the median bias of the conventional estimator ​​​Θ ˆ ​​j​​  = ​ Z​j​​​, while the right panel plots the 
true coverage of the conventional 95 percent confidence interval, both for ​p​(z)​  =  0.1 + 0.9 · 𝟏​(| Z | >  1.96)​​.
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Selective publication reweights the distribution of ​Z​ by ​p​( · )​.​ To obtain valid 
estimators and confidence sets, we need to correct for this reweighting. To define 
these corrections, denote the distribution function for published results ​Z​ given 
true effect ​Ω​ by ​​F​Z |Ω​​  = ​ ∫ −∞​ z  ​​  ​f​Z |Ω​​​(​z ̃ ​ | ω)​ d​z ̃ ​,​ for ​​f​Z |Ω​​​(z | ω)​​ as in equation (1). Recall 
that ​​f​Z|Ω​​​ is the same for ​p​( · )​​ and ​c · p​( · )​,​ so we only need to know ​p​( · )​​ up to scale 
to calculate ​​F​Z|Ω​​​. We adapt an approach previously applied by, among others, D. 
Andrews (1993) and Stock and Watson (1998), and invert the distribution function 
as a function of ​ω​ to construct a quantile-unbiased estimator. Let us define ​​​ω ˆ ​​α​​​(z)​​ 
as the solution to

(2)	​ ​F​Z|Ω​​​(z | ​​ω ˆ ​​α​​​(z)​)​  =  1 − α  ∈ ​ (0, 1)​,​

so ​z​ lies at the 1 − ​α​-quantile of the distribution implied by ​​​ω ˆ ​​α​​​(z)​​. Using the mono-
tonicity properties of ​​F​Z|Ω​​​, we prove that ​​​ω ˆ ​​α​​​(Z)​​ is an ​α​-quantile unbiased estimator 
for ​Ω​.

PROPOSITION 1: Suppose that ​p​(z)​  >  0​ for all ​z​, and ​p​( · )​​ is almost everywhere 
continuous. Then ​​​ω ˆ ​​α​​​(z)​​ as defined in (2) exists, is unique, and is continuous and 
strictly increasing for all ​z.​ Furthermore, ​​​ω ˆ ​​α​​​(Z)​​ is ​α​-quantile unbiased for ​Ω​ under 
the truncated sampling setup of Definition 1,

	​ Pr​(​​ω ˆ ​​α​​​(Z)​  ≤  ω | Ω  =  ω, Σ  =  σ)​  =  1 − α  for all ω.​

These results allow straightforward frequentist inference that corrects for selective 
publication. In particular, using Proposition 1 we can consider the median-unbiased 
estimator ​​​ω ˆ ​​1/2​​​(z)​​ for ​ω​, as well as the equal-tailed level ​1 − α​ confidence interval  
​​[​​ω ˆ ​​α/2​​​(Z)​, ​​ω ˆ ​​1−(α/2)​​​(Z)​]​.​ This estimator and confidence set fully correct the bias and 
coverage distortions induced by selective publication. In the special case where 
insignificant results are published with probability zero while significant results are 
published with probability one, our corrected confidence sets exclude zero if and 
only if the test of McCrary, Christensen, and Fanelli (2016) rejects.

Illustrative Example (Continued).—To illustrate these results, we return to the 
treatment effect example discussed above. Figure 2 plots the median unbiased esti-
mator, as well as upper and lower 95 percent confidence bounds, as a function of ​Z​,  
again for the case with ​p​(​Z​​ ⁎​)​  =  1​ when ​|​Z​​ ⁎​|  >  1.96​ and ​p​(​Z​​ ⁎​)​  =  0.1​ otherwise. 
We see that the median unbiased estimator lies below the usual estimator ​​ω ˆ ​ =  Z​ 
for small positive ​Z​ but that the difference is eventually decreasing in ​Z​. The trunca-
tion-corrected confidence interval shown in Figure 2 has exactly correct coverage, is 
smaller than the usual interval for small ​Z​, wider for moderate values ​Z​, and essen-
tially the same for ​Z  ≥  5​.

II.  Identifying Selection

This section proposes two approaches for identifying ​p​( · )​.​ The first uses system-
atic replication studies, while the second uses meta-studies.
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A. Systematic Replication Studies

The following proposition extends the model in Definition 1 above to incorporate 
a conditionally independent replication draw ​​X​​ r⁣⁎​​ which is observed whenever ​​X​​ ⁎​​ is. 
The key assumption for this proposition is that selectivity of publication operates 
only on ​​X​​ ⁎​​ and not on ​​X​​ r⁣⁎​​. This assumption is plausible for systematic replication 
studies such as Open Science Collaboration (2015) and Camerer et al. (2016), but 
may fail in non-systematic replication settings, for instance if replication studies are 
published only when they “debunk” prior published results.

PROPOSITION 2 (Nonparametric Identification Using Replication Experiments): 
Consider the data-generating process of Definition 1. Assume that for each latent 
study there exist a replication estimate and standard error ​​(​X​​ r⁣⁎​, ​Σ​​ r⁣⁎​)​​ with

	​ ​X​​ r⁣⁎​ | ​Θ​​ ⁎​, ​Σ​​ r⁣⁎​, ​Σ​​ ⁎​, D, ​X​​ ⁎​  ∼  N​(​Θ​​ ⁎​, ​Σ​​ ⁎r2​)​,​

Figure 2. Bias Correction

Notes: This figure plots 95 percent confidence bounds and the median unbiased estimator for the normal model 
where results that are significant at the 5 percent level are ten times more likely to be published than are insignificant 
results. The usual (uncorrected) estimator and confidence bounds are plotted in gray for comparison.
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where we again observe the replication estimate and standard error only for pub-
lished studies. Then ​p​( · )​​ is identified up to scale, and ​​μ​Θ​​​ is identified as well.

Intuition.—Consider the setup of Proposition 2, and define ​​Z​​ r​  = ​ X​​ r​ /Σ​, that is as 
the replication estimate normalized by the original standard error. Assume for the 
moment that ​​Σ​​ r⁣⁎​  = ​ Σ​​ ⁎​​, so that the replication estimate ​​X​​ r⁣⁎​​ has the same variance 
as ​​X​​ ⁎​​. Under these assumptions, the marginal density of ​​(Z, ​Z​​ r​)​​ is

(3)	​ ​f​Z,​Z​​ r​​​​(z, ​z​​ r​)​  = ​ 
p​(z)​
 _ 

E​[p​(​Z​​ ⁎​)​]​
 ​ ​∫ 

 
​ 
 
​​φ​(z − ω)​φ​(​z​​ r​ − ω)​ d​μ​Ω​​​(ω)​.​

This expression immediately implies that any asymmetries in the joint distribution 
of ​​(Z, ​Z​​ r​)​​ must be due to the publication probability ​p​( · )​.​ In particular,

	​ ​ 
​f​Z,​Z​​ r​​​​(b, a)​
 _ 

​f​Z,​Z​​ r​​​​(a, b)​ ​  = ​ 
p​(b)​
 _ 

p​(a)​ ​,​

whenever the denominators on either side are nonzero. Proposition 2 uses this iden-
tity to show that ​p​( · )​​ is nonparametrically identified up to scale.7 That ​p​( · )​​ is only 
identified up to scale is intuitive: equation (1) above shows that the scale of ​p​( · )​​ 
does not affect the distribution of published results, and equation (3) shows that 
the same remains true once we add replication results. Hence, the scale of ​p​( · )​​ is 
both unnecessary for bias corrections and unidentified without data on unpublished 
results.

In general, the replication standard error ​​Σ​​ r⁣⁎​​ will differ from the original variance ​​
Σ​​ ⁎​​, which takes us out of the symmetric framework. Additionally, the distribution of ​​
Σ​​ r⁣⁎​​ might depend on ​​Z​​ ⁎​​. Such dependence is present if power calculations are used 
to determine replication sample sizes, as in both Open Science Collaboration (2015) 
and Camerer et al. (2016). In that case, ​​Σ​​ r⁣⁎​​ is positively related to the magnitude of ​​
Z​​ ⁎​​, but conditionally unrelated to ​​Θ​​ ⁎​​. The proof of Proposition 2 shows that iden-
tification carries over to this setting, since we can recover the symmetric setting by 
(de)convolution of ​​Z​​ r​​ with normal noise.

Illustrative Example (Continued).—To illustrate our identification approach using 
replication studies, we return to the illustrative example introduced in Section I. In 
this setting, suppose that the normalized true effect ​​Ω​​ ⁎​​ is distributed ​N​(1, 1)​​ across 
latent studies. As before, assume that ​p​(​Z​​ ⁎​)​  =  1​ when ​|​Z​​ ⁎​|  >  1.96​, and that  
​p​(​Z​​ ⁎​)​  =  0.1​ otherwise. Assume finally that ​​Σ​​ r⁣⁎​  = ​ Σ​​ ⁎​  =  1​, so original and repli-
cation estimates both have variance 1.

This setting is illustrated in Figure 3. The left panel of this figure shows 100 
random draws ​​(​Z​​ ⁎​, ​Z​​ r⁣⁎​)​​; draws where ​|​Z​​ ⁎​|  ≤  1.96​ are marked in gray, while draws 
where ​|​Z​​ ⁎​|  >  1.96​ are marked in blue. The right panel shows the subset of draws ​​

7 Note that this argument does not use normality of ​Z​ and ​​Z​​ r​​, and thus generalizes to other estimator distributions.



2774 THE AMERICAN ECONOMIC REVIEW AUGUST 2019

(Z, ​Z​​ r​)​​ that are published. These are the same draws as ​​(​Z​​ ⁎​, ​Z​​ r⁣⁎​)​​, except that 90 per-
cent of the draws for which ​​Z​​ ⁎​​ is statistically insignificant are deleted.

Our identification argument in this case proceeds by considering deviations from 
symmetry around the diagonal ​Z  = ​ Z​​ r​.​ Let us compare what happens in the regions 
marked ​A​ and ​B​. In ​A​, ​Z​ is statistically significant but ​​Z​​ r​​ is not; in ​B​ it is the other 
way around. By symmetry of the data generating process, the latent ​​(​Z​​ ⁎​, ​Z​​ r⁣⁎​)​​ fall in 
either area with equal probability. The fact that the observed ​​(Z, ​Z​​ r​)​​ lie in region ​A​ 
substantially more often than in region ​B​ thus provides evidence of selective publi-
cation, and the exact deviation of the distribution of ​​(Z, ​Z​​ r​)​​ from symmetry identifies ​
p​( · )​​ up to scale.

B. Meta-Studies

Our approach using meta-studies restricts the model in Definition 1 by assum-
ing that ​​Θ​​ ⁎​​ is statistically independent of ​​Σ​​ ⁎​​ across latent studies, so studies with 
smaller standard errors do not have systematically different estimands. This is a 
strong assumption, but is imposed by many popular meta-analysis techniques includ-
ing in meta-regression (see Section IVB) and the “trim and fill” method (Duval 
and Tweedie 2000). This assumption holds trivially if ​​Θ​​ ⁎​​ is constant across latent 
studies. In our applications with replication data, estimates for ​p​( · )​​ based on this 
assumption are similar to those based on our replication approach, lending further 
support to this method.

PROPOSITION 3 (Nonparametric Identification Using Meta-Studies): Consider 
the data generating process of Definition 1. Assume additionally that ​​Σ​​ ⁎​​ and ​​Θ​​ ⁎​​ 
are independent, and that the support of ​Σ​ contains an open interval. Then ​p​( · )​​ is 
identified up to scale, and ​​μ​Θ​​​ is identified as well.
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Figure 3. Identification Using Systematic Replication Studies

Notes: This figure illustrates the effect of selective publication in replication experiments setting using simulated 
data, where selection is on statistical significance, as described in the text. The left panel shows the joint distribu-
tion of a random sample of latent estimates and replications; the right panel shows the subset which are published. 
Results where the original estimates are significantly different from zero at the 5 percent level are plotted in blue, 
while insignificant results are plotted in gray.
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Intuition.—Consider the setup of Proposition 3. The conditional density of ​Z​ 
given ​Σ​ is

	​ ​f​Z|Σ​​​(z | σ)​  = ​ 
p​(z)​
 _____________  

E​[p​(​Z​​ ⁎​)​ | ​Σ​​ ⁎​  =  σ]​
 ​ ​∫ 

 
​ 
 
​​φ​(z − θ/σ)​ d​μ​Θ​​​(θ)​.​

This implies that, for ​​σ​2​​  > ​ σ​1​​​,

(4)	​ ​ 
​f​Z|Σ​​​(z | ​σ​2​​)​ _ 
​f​Z|Σ​​​(z | ​σ​1​​)​

 ​  = ​ 
E​[p​(​Z​​ ⁎​)​ | ​Σ​​ ⁎​  = ​ σ​1​​]​  ______________  
E​[p​(​Z​​ ⁎​)​ | ​Σ​​ ⁎​  = ​ σ​2​​]​

 ​ · ​ 
​∫  ​ 

 
​​φ​(z − θ / ​σ​2​​)​ d​μ​Θ​​​(θ)​

  _______________  
​∫  ​ 

 
​​φ​(z − θ/​σ​1​​)​ d​μ​Θ​​​(θ)​ ​,​

where the first term on the right-hand side does not depend on ​z​. Since  
​​f​Z|Σ​​​(z | ​σ​2​​)​ / ​f​Z|Σ​​​(z | ​σ​1​​)​​ is identified, this suggests we might be able to invert this 
equality to recover ​​μ​Θ​​​, which would then allow us to identify ​p​( · )​​. The proof of 
Proposition 3 builds on this idea.

Illustrative Example (Continued).—As before, assume that ​​Θ​​ ⁎​​ is ​N​(1, 1)​​ distrib-
uted, that ​p​(​Z​​ ⁎​)​  =  1​ when ​|​Z​​ ⁎​|  >  1.96​, and that ​p​(​Z​​ ⁎​)​  =  0.1​ otherwise. Suppose 
further that ​​Σ​​ ⁎​​ is independent of ​​Θ​​ ⁎​​ across latent studies. This setting is illustrated 
in Figure 4. The left panel shows 100 random draws ​​(​X​​ ⁎​, ​Σ​​ ⁎​)​​; draws where ​|​X​​ ⁎​/​Σ​​ ⁎​
|  ≤  1.96​ are marked in gray, while draws where ​|​X​​ ⁎​/​Σ​​ ⁎​|  >  1.96​ are marked in 
blue. The right panel shows the subset of draws ​​(X, Σ)​​ that are published, where 90 
percent of statistically insignificant draws are deleted.

Compare what happens for two different values of the standard error ​Σ​, marked 
by ​A​ and ​B​ in Figure 4. By the independence of ​​Σ​​ ⁎​​ and ​​Θ​​ ⁎​​, the distribution of ​​X​​ ⁎​​ for 
larger values of ​​Σ​​ ⁎​​ is a noised up version of the distribution for smaller values of ​​Σ​​ ⁎​​.  
To the extent that the same does not hold for the distribution of published ​X​ 

Figure 4. Identifcation Using Meta-Studies

Notes: This figure illustrates the effect of selective publication in the meta-studies setting using simulated data, 
where selection is on statistical significance, as described in the text. The left panel shows a random sample of latent 
estimates; the right panel shows the subset of estimates which are published. Results which are significantly differ-
ent from zero at the 5 percent level are plotted in blue, while insignificant results are plotted in gray.
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given ​Σ​, this must be due to selectivity in the publication process. In this exam-
ple, statistically insignificant observations are “missing” for larger values ​Σ.​ Since 
publication is more likely when ​|​X​​ ⁎​ / ​Σ​​ ⁎​|  >  1.96​, the estimated values ​X​ tend to be 
larger on average for larger values of ​Σ​, and the details of how the conditional dis-
tribution of ​X​ given ​Σ​ varies with ​Σ​ will again allow us to identify ​p​( · )​​ up to scale.

C. Estimation

The sample sizes in our applications are limited, which makes fully nonparame-
teric estimation impractical. In the online Appendix we build on our identification 
arguments to derive GMM estimators that assume a functional form for the condi-
tional publication probability ​p​( · )​​ but are nonparametric in the distribution ​μ​ of true 
effects. For simplicity and ease of exposition, however, in the main text we specify 
parsimonious parametric models for both ​p​( · )​​ and ​μ​ which we fit by maximum 
likelihood, similar to Hedges (1992). Our nonparametric identification results sug-
gest that there is hope for estimation robust to functional form assumptions, and this 
is borne out by the similarity of the maximum likelihood estimates reported here to 
the GMM results reported in the online Appendix.

We consider step function models for ​p​( · )​,​ with jumps at conventional critical 
values, and possibly at zero. Since ​p​( · )​​ is only identified up to scale, we impose 
the normalization ​p​(z)​  =  1​ for ​z  >  1.96​ throughout. This is without loss of gen-
erality, since ​p​( · )​​ is allowed to be larger than ​1​ for other cells. We assume different 
parametric models for the distribution of latent effects ​​Θ​​ ⁎​​, discussed case-by-case 
below. In our first two applications the sign of the original estimates is normalized 
to be positive.8 We denote these normalized estimates by ​W  =  |Z|,​ and in these 
settings we impose that ​p​( · )​​ is symmetric.

III.  Applications

This section applies the results developed above to estimate the degree of selec-
tivity in three empirical literatures. We first consider data from the large scale rep-
lication studies Camerer et  al. (2016) and Open Science Collaboration (2015), 
which examine experimental studies in economics and psychology, respectively. We 
then turn to the meta-study Wolfson and Belman (2015) on the effect of the mini-
mum wage on employment. We consider two additional applications in the online 
Appendix, using replication data from Camerer et al. (2018) on social-science exper-
iments and meta-study data from Croke et al. (2016) on the effect of deworming.

Plausibility of Identifying Assumptions.—The results of Section II imply non-
parametric identification of both ​p​( · )​​ and ​​μ​Θ​​​. Our approach using replication data is 
based on the assumption that selection for publication depends only on the original 
estimates and not on the replication estimates. This assumption is highly plausible 
by design in the two replication settings we consider, which use data from systematic 

8 The studies in these datasets consider different outcomes, so the relative signs of effects across studies are arbi-
trary. Setting the sign of the initial estimate in each study to be positive ensures invariance to the sign normalization 
chosen by the authors of each study.
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replication studies. These studies pre-specify and replicate a large number of results 
published in a given time period and set of journals, and report all replication results 
together.

Our approach using meta-studies is based on the assumption that studies on a 
given topic with different standard errors do not have systematically different esti-
mands. While we cannot guarantee validity of this assumption by design, its plausi-
bility is enhanced by our finding that it yields estimates very similar to the approach 
based on replication studies in all our applications where both apply (Camerer et al. 
2016, 2018; Open Science Collaboration 2015). Variants of this assumption (or the 
strictly stronger assumption that ​Θ​ is constant) are common in existing meta-studies.

Finally, for both approaches we assume that conditional on ​​(​Θ​​ ⁎​, ​Σ​​ ⁎​)​​ estimates are 
approximately normal, consistent with the inference methods used in the underlying 
studies.

A. Economics Laboratory Experiments

Our first application uses data from a recent large-scale replication of experi-
mental economics papers by Camerer et al. (2016). The authors replicated all 18 
between-subject laboratory experiment papers published in the American Economic 
Review and Quarterly Journal of Economics between 2011 and 2014.9 Further details 
on the selection and replication of results can be found in Camerer et al. (2016), 
while details on our handling of the data are discussed in the online Appendix.

A strength of this dataset for our purposes, beyond the availability of replication 
estimates, is the fact that it replicates results from all papers in a particular subfield 
published in two leading economics journals over a fixed period of time. This miti-
gates concerns about the selection of which studies to replicate. Moreover, since the 
authors replicate 18 such studies, it seems likely that they would have published their 
results regardless of what they found, consistent with our assumption that selection 
operates only on the initial studies and not on the replications.

A caveat to the interpretation of our results is that Camerer et al. (2016) select 
the most important statistically significant finding from each paper, as emphasized 
by the original authors, for replication. This selection changes the interpretation 
of ​p​( · )​​, which has to be interpreted as the probability that a result was published 
and selected for replication. In this setting, our corrected estimates and confidence 
intervals provide guidance for interpreting the headline results of published studies. 
For consistency with the rest of the paper, however, we continue to shorthand ​p​( · )​​ 
as the publication probability.

Histogram.—Before we discuss our formal estimation results, consider the dis-
tribution of originally published estimates ​W  =  |Z|​, shown by the histogram in the 
left panel of Figure 5. This histogram suggests a large jump in the density ​​f​W​​​( · )​​ at 
the cutoff ​1.96​, and thus a corresponding jump in the publication probability ​p​( · )​​ at 

9 In their supplementary materials, Camerer et al. (2016) state that “To be part of the study a published paper 
needed to report at least one significant between subject treatment effect that was referred to as statistically signifi-
cant in the paper.” However, we have reviewed the issues of the American Economic Review and Quarterly Journal 
of Economics from the relevant period, and confirmed that no studies were excluded due to this restriction.
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the same cutoff; see Section IVC. Such a jump is confirmed by both our replication 
and meta-study approaches.

Results from Replication Specifications.—The middle panel of Figure 5 plots the 
joint distribution of ​​(W, ​W​​ r​)​  =  sign​(Z)​ · ​(Z, ​Z​​ r​)​​ in the replication data of Camerer 
et al. (2016). To estimate the degree of selection in these data we consider the model

	​ |​Ω​​ ⁎​|  ∼  Γ​(κ, λ)​,  p​(Z)​  ∝ ​ {​
​β​p​​​ 

if |Z|  <  1.96
​  

1
​ 

if |Z|  ≥  1.96.
​​​

This assumes that the absolute value of the normalized true effect ​​Ω​​ ⁎​​ follows a 
gamma distribution with shape parameter ​κ​ and scale parameter ​λ.​ This nests a wide 
range of cases, including ​​χ​​ 2​​ and exponential distributions, while keeping the num-
ber of parameters low. Our model for ​p​( · )​​ allows a discontinuity in the publication 
probability at ​|Z|  =  1.96,​ the critical value for a 5 percent two-sided z-test. Fitting 
this model by maximum likelihood yields the estimates reported in the left panel of 
Table 1. Recall that ​​β​p​​​ in this model can be interpreted as the publication probability 
for a result that is insignificant at the 5 percent level based on a two-sided z-test, 
relative to a result that is significant at the 5 percent level. These estimates therefore 
imply that significant results are more than thirty times more likely to be published 
than insignificant results. Moreover, we strongly reject the hypothesis of no selec-
tivity, ​​H​0​​: ​β​p​​  =  1​.

Results from Meta-Study Specifications.—While the Camerer et al. (2016) data 
include replication estimates, we can also apply our meta-study approach using just 
the initial estimates and standard errors. Since this approach relies on additional 
independence assumptions, comparing these results to those based on replication 
studies provides a useful check of the reliability of our meta-analysis estimates.

Figure 5. Camerer et al. (2016) Data

Notes: The left panel shows a binned density plot for the normalized z-statistics ​W  =  |X| / Σ​ using data from 
Camerer et  al. (2016). The gray line marks ​W  =  1.96.​ The middle panel plots the z-statistics ​W​ from the ini-
tial study against the estimate ​​W​​ r​​ from the replication study. The gray lines mark ​W​ and ​​W​​ r​  =  1.96,​ as well as ​
W  =  ​W​​ r​.​ The right panel plots the initial estimate ​|X|  =  W · Σ​ against its standard error ​Σ.​ The gray line marks ​
|X| / Σ  =  1.96.​
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We begin by plotting the data used by our meta-analysis estimates in the right 
panel of Figure 5. We consider the model

	​ |​Θ​​ ⁎​|  ∼  Γ​(​κ ̃ ​, ​λ ̃ ​)​,  p​(Z)​  ∝ ​ {​
​β​p​​​ 

if |Z|  <  1.96
​  

1
​ 

if |Z|  ≥  1.96
​​​

noting that ​​Θ​​ ⁎​​ is the mean of ​​X​​ ⁎​,​ rather than ​​Z​​ ⁎​,​ and thus that the interpretation of  
​​(​κ ̃ ​, ​λ ̃ ​)​​ differs from that of ​​(κ, λ)​​ in our replication specifications. Fitting this model 
by maximum likelihood yields the estimates reported in the right panel of Table 1. 
Comparing these estimates to those in the left panel, we see that the estimates from 
the two approaches are similar, though the metastudy estimates suggest a somewhat 
smaller degree of selection. Hence, we find that in the Camerer et al. (2016) data we 
obtain similar results from our replication and meta-study specifications.

Bias Correction.—To interpret our estimates, we calculate our median-unbi-
ased estimator and confidence sets based on our replication estimate ​​β​p​​  =  0.029.​ 
Figure 6 plots the median unbiased estimator, as well as the original and adjusted 
confidence sets, for the 18 studies included in Camerer et al. (2016). Considering 
the first panel, which plots the median unbiased estimator along with the original 
and replication estimates, we see that the adjusted estimates track the replication 
estimates fairly well but are smaller than the original estimates in many cases.10 The 
second panel plots the original estimate and conventional 95 percent confidence set 
in blue, and the adjusted estimate and 95 percent confidence set in black. As we see 
from this figure, 12 of the adjusted confidence sets include zero, compared to just 2 
of the original confidence sets. Hence, adjusting for the estimated degree of selec-
tion substantially changes the number of significant results in this setting.

B. Psychology Laboratory Experiments

Our second application is to data from Open Science Collaboration (2015), 
who conducted a large-scale replication of experiments in psychology. The authors 
considered studies published in three leading psychology journals, Psychological 

10 Note, however, that even for ​p​( · )​​ known it is not the case that the conditional median of ​​Z​​ r​​ given ​Z​ is equal to 
the adjusted estimate. Indeed, the conditional distribution of ​​Z​​ r​​ given ​Z​ does not depend on ​p​( · )​​.

Table 1—Selection Estimates for Open Science Collaboration (2015)

Replication Meta-study

κ λ βp ​​κ ̃ ​​ ​​λ ̃ ​​ βp

0.337 2.411 0.029 1.343 0.157 0.038
(0.236) (1.074) (0.028) (1.299) (0.076) (0.051)

Notes: Selection estimates from lab experiments in economics, with robust standard errors in 
parentheses. The left panel reports estimates from replication specifications, while the right 
panel reports results from meta-study specifications. Publication probability βp is measured 
relative to the omitted category of studies significant at 5 percent level, so an estimate of 0.029 
implies that results which are insignificant at the 5 percent level are 2.9 percent as likely to be 
published as significant results. The parameters (κ, λ) and (​​κ ̃ ​​, ​​λ ̃ ​​) are not comparable.



2780 THE AMERICAN ECONOMIC REVIEW AUGUST 2019

Science, Journal of Personality and Social Psychology, and Journal of Experimental 
Psychology: Learning, Memory, and Cognition, in 2008. They assigned papers to 
replication teams on a rolling basis, with the set of available papers determined by 
publication date. Ultimately, 158 articles were made available for replication, 111 
were assigned, and 100 of those replications were completed in time for inclusion in 
Open Science Collaboration (2015). Replication teams were instructed to replicate 
the final result in each article as a default, though deviations from this default were 
made based on feasibility and the recommendation of the authors of the original 
study. Ultimately, 84 of the 100 completed replications consider the final result of 
the original paper.
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Figure 6. Adjusted Estimates for Camerer et al. (2016)

Notes: The top panel plots the estimates ​W​ and ​​W​​ r​​ from the original and replication studies in Camerer et al. (2016), 
along with the median unbiased estimate ​​​θ ˆ ​​1/2​​​ based on the estimated selection model and the original estimate. The 
bottom panel plots the original estimate and 95 percent confidence interval, as well as the median unbiased estimate 
and adjusted 95 percent confidence interval ​​[​​θ ˆ ​​0.025​​​(W)​, ​​θ ˆ ​​0.975​​​(W)​]​​ based on the estimated selection model. Adjusted 
intervals not accounting for estimation error in the selection model are plotted with solid lines, while endpoints for 
intervals accounting for estimation error are marked with “​∣​”: see online Appendix Section B.1.
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As with the economics replications above, the systematic selection of results for 
replication in Open Science Collaboration (2015) is an advantage from our perspec-
tive. A complication in this setting, however, is that not all of the test statistics used in 
the original and replication studies are well-approximated by z-statistics (for exam-
ple, some of the studies use ​​χ​​ 2​​ test statistics with two or more degrees of freedom). 
To address this, we limit attention to the subset of studies which use z-statistics or 
close analogs thereof, leaving us with a sample of 73 studies. Specifically, we limit 
attention to studies using z- and t-statistics, or ​​χ​​ 2​​ and F-statistics with one degree 
of freedom (for the numerator, in the case of F-statistics), which can be viewed as 
the squares of z- and t-statistics, respectively. To explore sensitivity of our results to 
denominator degrees of freedom for t- and F-statistics, in the online Appendix we 
limit attention to the 52 observations with denominator degrees of freedom of at 
least 30 in the original study and find quite similar results.

Histogram.—The distribution of originally published estimates ​W​ is shown by 
the histogram in the left panel of Figure 7. This histogram suggests a large jump in 
the density ​​f​W​​​( · )​​ at the cutoff ​1.96​, as well as possibly a jump at the cutoff ​1.64​,  
and thus of corresponding jumps of the publication probability ​p​( · )​​ at the same 
cutoffs. Such jumps are again confirmed by the estimates from both our replication 
and meta-study approaches.

Results from Replication Specifications.—The middle panel of Figure 7 plots the 
joint distribution of ​W,​ ​​W​​ r​​ in the replication data of Open Science Collaboration 
(2015). Relative to the plot for Camerer et al. (2016), we see a larger fraction of 
studies where ​W  >  1.96​ for the original study while ​​W​​ r​  <  1.96​ in the replication 
study (8 of the 18 of studies in Camerer et al. 2016, compared to 43 of the 73 studies 
in Open Science Collaboration 2015).11 This could be due to differences in selection 

11 Indeed, 12 of the 73 studies in Open Science Collaboration (2015) have ​W  >  3​ and ​​W​​ r​  <  1.96​, while none 
of those in Camerer et al. (2016) do.

Figure 7. Open Science Collaboration (2015) Data

Notes: The left panel shows a binned density plot for the normalized z-statistics ​W  =  |X| / Σ​ using data from Open 
Science Collaboration (2015). The gray line marks ​W  =  1.96.​ The middle panel plots the z-statistics ​W​ from the 
initial study against the estimate ​​W​​ r​​ from the replication study. The gray lines mark ​|W|​ and ​|​W​​ r​|  =  1.96,​ as well 
as ​W  = ​ W​​ r​.​ The right panel plots the initial estimate ​|X|  =  W · Σ​ against its standard error ​Σ.​ The gray line marks ​
|X| / Σ  =  1.96.​
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or to differences in the distribution of effects. To disentangle these issues, we fit the 
model

	​ |​Ω​​ ⁎​|  ∼  Γ​(κ, λ)​,  p​(Z)​  ∝ ​
⎧
 

⎪
 ⎨ 

⎪
 

⎩
​
​β​p,1​​

​ 
if |Z|  <  1.64

​  ​β​p,2​​​  if 1.64  ≤  |Z|  <  1.96​   
1

​ 
if |Z|  ≥  1.96

 ​​​ .

This model again assumes that the absolute value of the normalized true effect ​| ​Ω​​ ⁎ ​|​  
follows a gamma distribution across latent studies. Given the larger sample size, we 
consider a slightly more flexible model than before and allow discontinuities in the 
publication probability at the critical values for both 5 percent and 10 percent two-
sided z-tests.

Fitting this model by maximum likelihood yields the estimates reported in the left 
panel of Table 2. These estimates imply that results that are significantly different 
from zero at the 5 percent level are over 100 times more likely to be published than 
results that are insignificant at the 10 percent level, and nearly 5 times more likely to 
be published than results that are significant at the 10 percent level but insignificant 
at the 5 percent level. We strongly reject the hypothesis of no selectivity.

These results do not indicate a large difference in the degree of selection relative 
to the Camerer et al. (2016) data.12 They suggest, however that the distribution of  
​|​Ω​​ ⁎​|​ may be substantially smaller, with ​E​[ |​Ω​​ ⁎​| ]​  =  0.41​ (standard error 0.1) in the 
Open Science Collaboration (2015) data compared to ​E​[ |​Ω​​ ⁎​| ]​  =  0.81​ (standard 
error 0.39) in the Camerer et al. (2016) data. These estimates for ​E​[ |​Ω​​ ⁎​| ]​​ are noisy 
but suggest that the larger number of studies with ​W  >  1.96​ and ​​W​​ r​  <  1.96​ in 
Open Science Collaboration (2015) may be due to differences in the distribution of 
true effects, rather than to differences in the degree of selection.

Our results for this setting are roughly consistent with those of Johnson et  al. 
(2017), who independently consider the Open Science Collaboration (2015) data 
and likewise estimate a step function model for ​p​( · )​​, but allow a discontinuity only 
at the 5 percent significance level. Johnson et al. (2017) estimate that insignificant 
results are only about 0.5 percent as likely to be published as are significant results. 
The Johnson et al. specifications for ​​μ​Ω​​​ allow the possibility that ​Pr​{​Ω​​ ⁎​  =  0}​  >  0​ 

12 If we instead estimate the model only with a discontinuity at the 5 percent level (as in the Camerer et al. 2016 
data), we estimate ​​β​p​​  =  0.024​ with standard error of 0.009.

Table 2—Selection Estimates for Open Science Collaboration (2015)

Replication Meta-study

κ λ βp,1 βp,2 ​​κ ̃ ​​ ​​λ ̃ ​​ βp,1 βp,2

0.311 1.314 0.009 0.205 0.974 0.153 0.017 0.306
(0.117) (0.293) (0.005) (0.087) (0.549) (0.053) (0.009) (0.135)

Notes: Selection estimates from lab experiments in psychology, with robust standard errors in 
parentheses. The left panel reports estimates from replication specifications, while the right 
panel reports results from meta-study specifications. Publication probabilities βp are measured 
relative to the omitted category of studies significant at 5 percent level. The parameters (κ, λ) 
and (​​κ ̃ ​​, ​​λ ̃ ​​) are not comparable.
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and they estimate that ​​Ω​​ ⁎​  =  0​ about 90 percent of the time. Similarly, our esti-
mated gamma distribution has mode equal to zero.

Results from Meta-Study Specifications.—As before, we re-estimate our model 
using our meta-study specifications, and plot the joint distribution of estimates and 
standard errors in the right panel of Figure 7. Fitting the model yields the estimates 
reported in the right panel of Table 2. As in the last section, we find that the meta-
study and replication estimates are broadly similar, though the meta-study estimates 
again suggest a somewhat more limited degree of selection.

Approved Replications.—Gilbert et al. (2016) argue that the protocols in some 
of the Open Science Collaboration (2015) replications differed substantially from 
the initial studies. These arguments were disputed by many of the Open Science 
Collaboration (2015) authors in Anderson et al. (2016), who note that many of the 
replications used protocols approved in advance by the authors of the underlying 
papers. In online Appendix Section B.6.2 we report results based on the subset 
of approved replications and find roughly similar estimates, though the estimated 
degree of selection is smaller.

Bias Corrections.—To interpret our results, we plot our median-unbiased esti-
mates based on the Open Science Collaboration (2015) data in Figure 8. We see 
that our adjusted estimates track the replication estimates fairly well for studies with 
small original z-statistics, though unlike in Figure 6 differences are larger for studies 
with larger original z-statistics.13

Our adjustments again dramatically change the number of significant results, 
with 62 of the 73 original 95 percent confidence sets excluding zero, and only 28 of 
the adjusted confidence sets (not displayed) doing the same.

C. Effect of Minimum Wage on Employment

Our final application uses data from Wolfson and Belman (2015), who conduct 
a meta-analysis of studies on the elasticity of employment with respect to the mini-
mum wage. In particular, Wolfson and Belman (2015) collect analyses of the effect 
of minimum wages on employment that use US data and were published or circu-
lated as working papers after the year 2000. They collect estimates from all studies 
fitting their criteria that report both estimated elasticities of employment with respect 
to the minimum wage and standard errors, resulting in a sample of 1,000 estimates 
drawn from 37 studies, and we use these estimates as the basis of our analysis. For 
further discussion of these data, see Wolfson and Belman (2015).

Since the Wolfson and Belman (2015) sample includes both published and 
unpublished papers, we evaluate our estimators based on both the full sample and 
the subsample of published estimates. We find qualitatively similar answers for the 
two samples, so we report results based on the full sample here and discuss results 

13 Since we have sorted on the original estimates, patterns of this sort can arise from mean reversion.
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based on the subsample of published estimates in the online Appendix. We define ​
X​ so that ​X  >  0​ indicates a negative effect of the minimum wage on employment.

Histogram.—Consider first the distribution of the normalized estimates ​Z​, shown 
by the histogram in the left panel of Figure 9. This histogram is somewhat sugges-
tive of jumps in the density ​​f​Z​​​( · )​​ around the cutoffs ​− 1.96​, ​0​, and ​1.96​, and thus of 
corresponding jumps in the publication probability ​p​( · )​​ at the same cutoffs; these 
jumps seem less pronounced than in our previous applications, however.

Results from Meta-Study Specifications.—For this application we do not have any 
replication estimates, and so move directly to our meta-study specifications. The 
right panel of Figure 9 plots the joint distribution of ​X​, the estimated elasticity of 
employment with respect to decreases in the minimum wage, and the standard error ​
Σ​ in the Wolfson and Belman (2015) data.

We consider the model

	​ ​Θ​​ ⁎​  ∼ ​ θ 
–
 ​ + t​(​ν ̃ ​)​ · ​τ ̃ ​,  p​(Z)​  ∝ ​

⎧

 
⎪
 ⎨ 

⎪
 

⎩

​

​β​p,1​​

​ 

if Z  <  − 1.96

​  
​β​p,2​​​ 

if −1.96  ≤  Z  <  0
​   

​β​p,3​​
​ 

if 0  ≤  Z  <  1.96
​   

1

​ 

if Z  ≥  1.96

 ​​ ​.

Since the data are not sign-normalized, we model ​​Θ​​ ⁎​​ using a t-distribution with 
degrees of freedom ​​ν ̃ ​​ and location and scale parameters ​​θ – ​​ and ​​τ ̃ ​,​ respectively. Unlike 
in our previous applications, we allow the probability of publication to depend on the 
sign of the z-statistic ​Z​ rather than just on its absolute value. This is important, since 

Figure 8. Adjusted Estimates for Open Science Collaboration (2015)

Note: This figure plots the estimates ​W​ and ​​W​​ r​​ from the original and replication studies in Open Science 
Collaboration (2015), along with the median unbiased estimate ​​​θ ˆ ​​1/2​​​ based on the estimated selection model and 
the original estimate.
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it seems plausible that the publication prospects for a study could differ depending 
on whether it found a positive ​​(X  <  0)​​ or negative ​​(X  >  0)​​ effect of the minimum 
wage on employment.

Our estimates based on these data are reported in Table 3, where we find that 
results which are insignificant at the 5 percent level are about 30 percent as likely 
to be published as are significant estimates finding a negative effect of the mini-
mum wage on employment. Our point estimates also suggest that studies finding 
a positive and significant effect of the minimum wage on employment may be less 
likely to be published, but this estimate is quite noisy and we cannot reject the 
hypothesis that selection depends only on significance and not on sign. Unlike our 
other results, this is sensitive to the details of the specification: if we instead restrict 
the distribution of true effects ​​Θ​​ ⁎​​ to be normal, our estimate for ​​β​p,1​​​ drops to 0.225 
with a standard error of 0.118. On the other hand, our GMM approach discussed in 
online Appendix Section C.1 returns a ​​β​p,1​​​ estimate of 1.174 with a standard error 
of 0.417.

Since the studies in this application estimate related parameters, it is interesting 
to consider the estimate ​​θ –

 ​​ for the mean effect in the population of latent estimates. 
The point estimate is small but significantly different from zero at the 5 percent 
level, and suggests that the average latent study finds a small negative effect of the 
minimum wage on employment. This effect is about half as large as the “naive” 
average effect ​​θ –

 ​​ we would estimate by ignoring selectivity, ​0.041​ with a standard 
error of ​0.011​.

These results are consistent with the meta-analysis estimates of Wolfson and 
Belman (2015), who found evidence of some publication bias towards a negative 
employment effect, as well as the results of Card and Krueger (1995), who focused 
on an earlier, non-overlapping set of studies.

Figure 9. Wolfson and Belman (2015) Data

Notes: The left panel shows a binned density plot for the z-statistics ​X/Σ​ in the Wolfson and Belman (2015) data. 
The solid gray lines mark ​|X|/Σ  =  1.96,​ while the dash-dotted gray line marks ​X/Σ  =  0.​ The right panel plots 
the estimate ​X​ against its standard error ​Σ​. The gray lines mark ​|X|/Σ  =  1.96.​
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Multiple Estimates.—A complication arises in this application, relative to those 
considered so far, due to the presence of multiple estimates per study. Since it is 
difficult to argue that a given estimate in each of these studies constitutes the “main” 
result, restricting attention to a single estimate per study would be arbitrary. This 
somewhat complicates inference and identification.

For inference, it is implausible that estimate standard-error pairs ​​(X, Σ)​​ are inde-
pendent within study. To address this, we cluster our standard errors by study.

For identification, the problem is somewhat more subtle. Our model assumes 
that the latent parameters ​​Θ​ i​ ⁎​​ and ​​Σ​ i​ ⁎​​ are statistically independent across estimates ​
i​, and that ​​D​i​​​ is independent of ​​(​Θ​ i​ ⁎​, ​Σ​ i​ ⁎​)​​ conditional on ​​Z​ i​ ⁎​​. It is straightforward to 
relax the assumption of independence across ​i,​ provided the marginal distribution of  
​​(​Θ​ i​ ⁎​, ​Σ​ i​ ⁎​, ​X​ i​ ⁎​, ​D​i​​)​​ is such that ​​D​i​​​ remains independent of ​​(​Θ​ i​ ⁎​, ​Σ​ i​ ⁎​)​​ conditional on ​​
Z​ i​ ⁎​​. This conditional independence assumption is justified if we believe that both 
researchers and referees consider the merits of each estimate on a case-by-case basis, 
and so decide whether or not to publish each estimate separately. Alternatively, it 
can also be justified if the estimands ​​Θ​​ ⁎​​ within each study are statistically indepen-
dent (relative to the population of estimands in the literature under consideration).

IV.  Alternative Approaches

Many approaches to detecting selectivity and publication bias have been proposed 
in the literature. Good reviews are provided by Rothstein, Sutton, and Borenstein 
(2006) and Christensen and Miguel (2016). In this section we analyze some of these 
approaches through the lens of our framework and relate them to our results.

A. Should Results “Replicate?”

The findings of recent systematic replication studies such as Open Science 
Collaboration (2015) and Camerer et al. (2016) are sometimes interpreted as indi-
cating an inability to “replicate the results” of published research. In this setting, 
a “result” is understood to “replicate” if both the original study and its replication 
find a statistically significant effect in the same direction. The share of results which 
replicate in this sense is prominently discussed in Camerer et al. (2016). Our frame-
work shows that the probability of replication in this sense might be low even with-
out selective publication or other sources of bias.

Consider the setup for replication experiments of Proposition 2, with constant 
publication probability ​p​( · )​​, so that publication is not selective and ​​f​Z,​Z​​ r​​​  = ​ f​​Z​​ ⁎​,​Z​​ r⁣⁎​​​​.  
For illustration, assume further that ​​Σ​​ ⁎​  = ​ Σ​​ r⁣⁎​​ with probability ​1​. For ​Φ​ the 

Table 3—Selection Estimates for Wolfson and Belman (2015)

​​θ 
–
 ​​ ​​τ ̃ ​​ ​​ν ̃ ​​ ​​β​p,1​​​ ​​β​p,2​​​ ​​β​p,3​​​

0.018 0.019 1.303 0.697 0.270 0.323
(0.009) (0.011) (0.279) (0.350) (0.111) (0.094)

Notes: Meta-study estimates from minimum wage data, with standard errors clustered by study 
in parentheses. Publication probabilities βp measured relative to omitted category of estimates 
positive and significant at 5 percent level.
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standard normal distribution function, the probability that a result replicates in the 
sense described above is

    ​    Pr​(​Z​​ r⁣⁎​ · sign​{​Z​​ ⁎​}​  >  1.96 | |​Z​​ ⁎​ |  >  1.96)​ 

	 = ​ 
​∫  ​ 

 
​​​[Φ ​​(− 1.96 − ω)​​​ 2​ + Φ ​​(− 1.96 + ω)​​​ 2​]​ d​μ​Ω​​​(ω)​

    ________________________________    
​∫  ​ 

 
​​​[Φ​(−1.96 − ω)​ + Φ​(−1.96 + ω)​]​ d​μ​Ω​​​(ω)​

 ​ .​

If the true effect is zero in all studies then this probability is ​0.025.​ If the true effect 
in all studies is instead large, so that ​|​Ω​​ ⁎​|  >  M​ with probability one for some large ​
M​, then the probability of replication is approximately 1. Thus, any replication prob-
ability between 0.025 and one is consistent with no selection, and low replication 
frequencies are not necessarily indicative of selective publication, but could instead 
be due to a large share of small true effects. Strengths and weaknesses of alternative 
measures of replication are discussed in Simonsohn (2015) and Patil, Peng, and 
Leek (2016).

B. Meta-Regressions

A popular test for publication bias in meta-studies (cf. Card and Krueger 1995, 
Egger et al. 1997) is based on meta-regression, which uses regressions of either of 
the following forms:

	​ ​E​​ ⁎​​[X | 1, Σ]​  = ​ γ​0​​ + ​γ​1​​ · Σ, ​ E​​ ⁎​​[Z | 1, ​ 1 _ Σ ​]​  = ​ β​0​​ + ​β​1​​ · ​ 1 __ Σ ​,​

where we use ​​E​​ ⁎​​ to denote best linear predictors. Under the assumptions of 
Proposition 3, if ​p​( · )​​ is constant then it follows immediately that

	​ ​E​​ ⁎​​[X | 1, Σ]​  =  E​[​Θ​​ ⁎​]​, ​ E​​ ⁎​​[Z | 1, ​ 1 _ Σ ​]​  =  E​[​Θ​​ ⁎​]​ · ​ 1 __ Σ ​​ .

Hence, testing that either ​​γ​1​​  =  0​ or ​​β​0​​  =  0​ delivers a valid test for the null hypoth-
esis of no selectivity, though there are some forms of selectivity against which such 
tests have no power.

For our minimum wage application, a regression of ​X​ on ​Σ​ yields an intercept of 
0.006 (standard error 0.038) and a slope of 0.408 (standard error 0.372).14 A regres-
sion of ​Z​ on ​1 / Σ​ yields an intercept of 0.343 (standard error 0.283) and a slope of 
0.018 (standard error 0.009). In particular, neither of these regressions allows to 
reject the null of no selectivity at a 5 percent level, in contrast to the estimates dis-
cussed in Section IIIC.

Absent publication bias, ​​γ​0​​​ and ​​β​1​​​ recover the average of ​​Θ​​ ⁎​​ in the population 
of latent studies. Our estimates of ​​γ​0​​​ and ​​β​1​​​ are 0.006 and 0.018. These coefficients 
are sometimes interpreted as selection-corrected estimates of the mean effect across 
studies (cf. Doucouliagos and Stanley 2009; Christensen and Miguel 2016), but this 

14 The sign normalization in our economics and psychology lab experiment applications means that 
meta-regression does not apply in these settings.
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interpretation is potentially misleading in the presence of publication bias. In par-
ticular, the conditional expectation ​E​[X | 1, Σ]​​ is nonlinear in both ​Σ​ and ​1/Σ​, which 
implies that ​​β​0​​​, ​​γ​1​​​ are generally biased as estimates of ​E​[​Θ​​ ⁎​]​​.15 We discuss a simple 
example with one-sided significance testing in online Appendix Section D.1.

A variety of generalizations to meta-regression have been proposed in the lit-
erature, including by Stanley and Doucouliagos (2014), who propose to use 
power-weighted meta-regressions to increase robustness to selective publication, 
and Stanley, Doucouliagos, and Ioannidis (2017) who consider nonlinear meta-re-
gressions. Meta-regressions have also been widely used in applications, including 
by Carter et al. (2017); Havránek (2015); and Ioannidis, Stanley, and Doucouliagos 
(2017).16

C. The Distribution of p-Values and z-Statistics

Another approach in the literature considers the distribution of p-values, or 
the corresponding z-statistics, across published studies (cf. De Long and Lang 
1992; Schuemie et  al. 2014; Simonsohn, Nelson, and Simmons 2014; Brodeur 
et  al. 2016; Brodeur, Cook, and Heyes 2018). Assuming normality, there is a 
one-to-one mapping between the distribution of p-values ​P​ and the distribu-
tion of z-statistics ​Z​, since ​P  =  1 − Φ​(Z)​​ for 1-sided tests of the null hypothe-
sis ​θ  =  0​ or, equivalently, ​ω  =  0​.17 Under our model, absent selectivity in 
the publication process the distribution ​​f​Z​​​ is equal to ​​f​​Z​​ ⁎​​​​. For ​​Z​​ ⁎​ | ​Ω​​ ⁎​  ∼  N​(​Ω​​ ⁎​, 1)​​  
and ​​Ω​​ ⁎​  ∼ ​ μ​Ω​​​, this implies that

	​ ​f​Z​​​(z)​  = ​ f​​Z​​ ⁎​​​​(z)​  = ​ (​μ​Ω​​ * φ)​​(z)​  = ​ ∫ 
 
​ 
 
​​φ​(z − ω)​ d​μ​Ω​​​(ω)​.​

This model implies that the density ​​f​​Z​​ ⁎​​​​ is infinitely differentiable. If selectivity is 
present, by contrast, then ​​f​Z​​​(z)​  = ​ (p​(z)​/E​[p​(​Z​​ ⁎​)​]​)​ · ​f​​Z​​ ⁎​​​​(z)​.​ Any discontinuity of  
​​f​Z​​​(z)​​ (for instance at critical values such as ​z  =  1.96​) thus identifies a correspond-
ing discontinuity of the conditional publication probability ​p​(z)​​:

(5)	​ ​ 
​lim​z​↓​​​z​0​​​​  ​f​Z​​​(z)​ _ 
​lim​z​↑​​​z​0​​​​  ​f​Z​​​(z)​

 ​  = ​ 
​lim​z​↓​​​z​0​​​​ p​(z)​
 _ 

​lim​z​↑​​​z​0​​​​ p​(z)​ ​.​

If we impose that ​p​( · )​​ is a step function, this identifies ​p​( · )​​ up to scale.
In the context of our applications, we estimate the size of this discontinuity by 

considering the ratio of histogram bars above and below the threshold, where we 
use the same bins as in Figures 5 and 7. For the application to economics labora-
tory experiments, we find a jump in the publication probability at 1.96 equal to 4. 
A two-sided test of the null of equal mass above and below the threshold gives a 
p-value of 0.0215. For the application to psychology laboratory experiments, we 

15 Stanley (2008) and Doucouliagos and Stanley (2009) note this bias but suggest that one can still use  
​​H​0​​: ​γ​1​​  =  0​ to test the hypothesis of zero true effect if there is no heterogeneity in the true effect ​​Θ​​ ⁎​​ across latent 
studies.

16 Other recent work examining selective publication in economics and finance using non meta-regression 
approaches includes Chen and Zimmermann (2017) and Hou, Xue, and Zhang (2017).

17 For two-sided tests, the mapping is between p-values and absolute z-statistics ​|Z|​.
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find a jump in the publication probability at 1.64 equal to 7, with a corresponding 
p-value of 0.0078, and a jump in the the publication probability at 1.96 equal to 2.3, 
with a corresponding p-value of 0.0347.

The model without selectivity, ​​f​Z​​​(z)​  = ​ f​​Z​​ ⁎​​​​(z)​  = ​ (​μ​Ω​​ * φ)​​(z)​​, has testable 
implications beyond smoothness. In particular, the density ​​f​​Z​​ ⁎​​​​ precludes exces-
sive bunching, since for all ​k  ≥  0​ and all ​z,​ ​​∂​ z​  k​  ​f​​Z​​ ⁎​​​​(z)​  ≤ ​ sup​z​​ ​∂​ z​   k​ φ​(z)​​ and ​​∂​ z​ k​  ​f​​Z​​ ⁎​​​​(z)​  
≥ ​ inf​z​​ ​∂​ z​   k​ φ​(z)​​ so for example ​​f​​Z​​ ⁎​​​​(z)​  ≤  φ​(0)​​ and ​​f​ ​Z​​ ⁎​​  ′′ ​​(z)​  ≥  φ″​(0)​  =  − φ​(0)​​ for all ​
z​. Spikes in the distribution of ​Z​ thus likewise indicate the presence of selectivity or 
inflation.

D. Observability

The setup of Definition 1 assumes that we only observe the draws ​​(​X​​ ⁎​, ​Σ​​ ⁎​)​​ for 
which ​D  =  1​. In some cases, however, additional information may be available. 
First, we might know of the existence of unpublished studies, for example from 
experimental preregistrations, without observing their results ​​X​​ ⁎​​. In this case, called 
censoring, we observe i.i.d. draws of ​​(Y, D)​​, where ​Y  =  D · ​Z​​ ⁎​​.18 The correspond-
ing censored likelihood is

 ​ ​f​Y,D|​Ω​​ ⁎​​​​(y, d | ​ω​​ ⁎​)​  =  d · p​(y)​ · φ​(y − ω)​ + ​(1 − d)​ · ​(1 − E​[p​(​Z​​ ⁎​)​ | ​Ω​​ ⁎​  = ​ ω​​ ⁎​]​)​.​

Second, we might additionally observe the results ​​Z​​ ⁎​​ from unpublished working 
papers as in Franco et al. (2014). The likelihood in this case is

	​ ​f​​Z​​ ⁎​,D|​Ω​​ ⁎​​​​(z, d | ω)​  =  p ​​(z)​​​ d​ ​​(1 − p​(z)​)​​​ 1−d​ · φ​(z − ω)​.​

Even under these alternative observability assumptions, the truncated likelihood (1) 
arises as a limited information likelihood that conditions on publication decisions 
and/or unpublished results. Our identification and inference results therefore con-
tinue to apply.

That said, additional information allows identification of ​p​( · )​​ under weaker 
assumptions. With full observability of unpublished results ​​Z​​ ⁎​​, for example, ​p​( · )​​ 
is identified by simply regressing ​D​ on ​​Z​​ ⁎​​, cf. Franco, Malhotra, and Simonovits 
(2014).

E. Bias and Pseudo-True Values

Bruns and Ioannidis (2016) and Bruns (2017) discuss an additional way in which 
selectivity may increase bias in observational studies. To cast their concern into our 
framework, recall that we assume throughout that the distribution of ​​X​​ ⁎​​ in latent 
studies is normal and centered on ​​Θ​​ ⁎​​. There are different ways this model can be 
interpreted.

A first interpretation is that ​​Θ​ i​ ⁎​​ is the “true” parameter of interest in study ​i​. 
This would for example be the case for randomized experiments where we have no 

18 We could also observe the standard error ​Σ​ for published studies, but suppress this for simplicity.
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reason to doubt the internal validity of each study. In this case any variation of ​​Θ​ i​ ⁎​​ 
across studies ​i​ considering the same question is due to issues of external validity, 
for instance to different populations of experimental subjects, or to effects changing 
over time. In this setting our corrections yield valid estimates and confidence sets 
for the parameters of interest.

A second interpretation of our model is that researchers consider different esti-
mates ​​X​​ ⁎​​ of the same parameter. These estimates might for instance be based on 
different controls, different outcome variables, different estimation methods, and 
so on. These estimates have expectations ​​Θ​​ ⁎​​ that vary across specifications, so not 
all ​​Θ​​ ⁎​​ correspond to the “true” effect of interest. Put differently, variation of ​​Θ​​ ⁎​​ 
across studies might be due to violations of internal validity, in addition to issues 
of external validity.19 Under this second interpretation, we have additional sources 
of bias. First, ​E​[Θ]​  ≠  E​[​Θ​​ ⁎​]​​ in general, so selection can lead to different average 
biases among published and latent studies. This effect can persist even as sampling 
noise goes to zero.20 Second, even if we avoid this bias by using our approach to 
identify ​​μ​Θ​​​ and therefore ​E​[​Θ​​ ⁎​]​​, there is no guarantee that ​E​[​Θ​​ ⁎​]​​ corresponds to 
the parameter of interest. Hence, while our corrections can undo selection bias and 
allow inference on either the parameter ​Θ​ in a given study or the distribution ​​μ​Θ​​​ of ​​
Θ​​ ⁎​​ in the population of latent studies, we cannot correct deficiencies in the under-
lying studies.

F. Manipulation and p-Hacking

Some authors consider the possibility that researchers manipulate their results 
(Brodeur et al. 2016, Furukawa 2017), while others consider the selection of results 
within papers, which Simonsohn, Nelson, and Simmons (2014) term “p-hacking.” 
Our primary focus in this paper is on researchers’ decisions whether or not to submit 
findings, and journal decisions whether or not to publish submissions, rather than 
on manipulation or p-hacking. Nonetheless, depending on the form manipulation or 
p-hacking takes, it may still be consistent with our baseline model.

To illustrate, consider an experimental setting where researchers run two inde-
pendent versions of an experiment, or estimate two regression specifications for the 
same estimand. Suppose first that they decide whether to report an estimate for each 
experiment or specification separately. In this case our baseline model applies, save 
that ​​Θ​ i​ ⁎​​ is no longer i.i.d. Suppose now alternatively that the researcher decides to 
always report only the more significant of the two estimates. In this case, the proba-
bility of publication of the first estimate depends on the underlying parameter via the 
second estimate, so publication probabilities are of the form ​p​(​Z​ i​ ⁎​, ​Ω​ i​ ⁎​)​​.

To accommodate such violations of our baseline model, we discuss the extension 
of our approach to settings where the selection probability may depend on both ​Z​ 
and ​Ω​ in online Appendix Section D.3. Given normal replication estimates ​​X​​ r​,​ we 
show that in this setting we can still identify enough features of the model to apply 
selection-corrections. We also develop specification tests for our baseline model 

19 If some studies are viewed as more credible than others, this highlights the value of conducting inference on ​
Θ​ for individual studies, rather than merely on the distribution ​​μ​Θ​​​.

20 Consider for instance the case where ​E​[​Θ​​ ⁎​]​  =  0​ and positive results are more likely to be published.
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against this more general alternative, however, and in no case do we reject our base-
line model where ​p​( · )​​ does not depend on ​Ω​ given ​Z​.

V.  Conclusion

This paper makes three contributions relative to the existing literature on selective 
publication. First, we provide methods to calculate bias-corrected estimators and 
confidence sets when the form of selectivity is known. Second, we provide nonpara-
metric identification results for selectivity based on replications and meta-studies. 
Third, we apply the proposed methods to several literatures, documenting the vary-
ing scale and kind of selectivity. In cases where both our replication and meta-study 
approaches apply, they yield similar conclusions.

Implications for Empirical Research.—What can researchers and readers of 
empirical research take away from this paper? First, when conducting a meta-anal-
ysis of the findings of some literature, researchers may wish to apply our methods 
to assess the degree of selectivity, and to apply appropriate corrections to individual 
estimates, tests, and confidence sets. We provide code on our websites which imple-
ments the proposed methods for a flexible family of selection models.21

Second, our results provide guidance for how to interpret published empirical 
findings. In particular, if a reader has a view about how the selection process oper-
ates in a given literature, they can adjust published estimates and confidence sets as 
discussed in Section IV. Even if one is concerned that the selection model does not 
capture all sources of bias, these corrections aid interpretation by showing how much 
selection, considered in isolation, changes the interpretation of published results. A 
positive message from our results is that published estimates remain informative 
even when publication is quite selective.

It should be emphasized that we do not advocate adjusting publication standards 
to reflect our corrected critical values. If these cutoffs were to be systematically used 
in the publication process, this would simply entail an “arms race” of selectivity, 
rendering the more stringent critical values invalid again.

Optimal Publication Rules.—One might take the findings in this paper, and the 
debate surrounding publication bias more generally, to indicate that the publica-
tion process should be non-selective with respect to findings. Selective reporting 
by researchers might be eliminated by pre-analysis plans, cf. Olken (2015). Going 
one step further, selective publication by journals might be eliminated by result-
blind review, cf. American Society of Health Economists (2015). The Journal of 
Development Economics now offers authors the option of pre-results review. The 
hope would be that non-selectivity of the publication process might restore the 
validity (unbiasedness, size control) of standard inferential methods.

Note, however, that optimal publication rules may depend on results. This can 
for instance be the case in models where policy decisions are made based on pub-
lished findings. Online Appendix Section D.6 provides a stylized example of such a 

21 We have also implemented our meta-study approach in a web app: https://maxkasy.github.io/home/metastudy/.

https://maxkasy.github.io/home/metastudy/
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setting. Alternatively, given evidence that experts can forecast experimental results 
quite well (cf. DellaVigna and Pope 2018), excessively surprising findings might 
be interpreted as evidence of implementation problems and so weigh against pub-
lication. A broader study of the question of optimal publication from a journal’s 
perspective can be found in Frankel and Kasy (2018).

Supplement.—The online Appendix contains a wide variety of results to com-
plement those discussed in the main text. Section A provides proofs, while Section 
B gives additional details for our empirical applications and considers a range of 
robustness checks, including allowing publication probabilities to depend on covari-
ates such as the journal or the year in which a paper was initially circulated. Section 
C derives novel GMM estimation approaches that leave the distribution of true 
effects unrestricted, and reports results for our applications. Section C also reports 
ML estimates for the Croke et al. (2016) and Camerer et al. (2018) applications. 
Finally, Section D reports additional theoretical results, including extensions of our 
identification results to allow publication probabilities to depend on ​Σ​ (to reflect a 
preference for precise estimates) and on ​Ω​ (to nest violations of our baseline model). 
This section also extends our inference results to cases where selection is driven by 
multiple variables, and discusses the effect of selection on Bayesian inference.
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