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A B S T R A C T

How should one use (quasi-)experimental evidence when choosing policies such as tax rates, health insurance
copay, unemployment benefit levels, and class sizes in schools? This paper suggests an approach based on
maximizing posterior expected social welfare, combining insights from (i) optimal policy theory as developed
in the field of public finance, and (ii) machine learning using Gaussian process priors. We provide explicit
formulas for posterior expected social welfare and optimal policies in a wide class of policy problems.
The proposed methods are applied to the choice of coinsurance rates in health insurance, using data from
the RAND health insurance experiment. The key trade-off in this setting is between transfers toward the sick
and insurance costs. The key empirical relationship the policy maker needs to learn about is the response
of health care expenditures to coinsurance rates. Holding the economic model and distributive preferences
constant, we obtain much smaller point estimates of the optimal coinsurance rate (18% vs. 50%) when
applying our estimation method instead of the conventional “sufficient statistic” approach.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

How should empirical evidence be used to determine the opti-
mal level of policy parameters such as tax rates, unemployment
benefits, health insurance copay, and class sizes in school? A stan-
dard approach, labeled the “sufficient statistics approach” by Chetty
(2009), uses the data to estimate a key behavioral elasticity, and then
plugs this elasticity into formulas for optimal policy levels that are
based on elasticities at the optimum. In this paper, an alternative
approach is proposed and implemented in the context of choosing
coinsurance rates for health insurance.1
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Graham, Danielle Li, Nathan Hendren, Michael Kremer, José Luis Montiel Olea, John
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supported by NSF grant SES-1354144 “Statistical decisions and policy choice.”

E-mail address: maximiliankasy@fas.harvard.edu.
1 The coinsurance rate is the share of health care expenditures that the insured have

to pay out of pocket.

1.1. Setup

This paper takes the perspective of a policy maker who wants to
maximize some notion of social welfare. We assume that the policy
maker observes (quasi-)experimental data that allow her to learn
about some behavioral relationship that is relevant for her decision.
We assume further that the policy maker acts as a Bayesian decision
maker. This assumption implies that she uses the available data to
form a posterior expectation of social welfare given each possible
policy choice, and that she chooses the policy that maximizes this
posterior expectation.

The imposition of some additional structure allows us to derive
explicit analytic solutions to the policy maker’s problem. In Section 2,
we assume that social welfare takes a form common to many prob-
lems in public finance, where the key trade-off is between a weighted
sum of private utilities and public revenues. The empirical rela-
tionship that the policy maker needs to learn in these settings is
the response of the tax base to tax rates, or of insurance claims to
coinsurance rates. In Section 3, we consider Gaussian process pri-
ors for this behavioral relationship. The combination of the structure
of the objective function and the structure of these priors implies
that we can explicitly derive and characterize posterior expected
social welfare. In contrast to the sufficient statistics method as dis-
cussed in Chetty (2009), our approach does not rely on extrapolation
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using constant elasticity functional form assumptions,2 and it takes
uncertainty into account. The difference matters in practice, as we
will see.

1.2. Contributions of this paper

This paper contributes to the literature in several ways. First, for
empirical researchers working on issues of public policy, this paper
leverages the statistical insights of a well developed literature on
machine learning using Gaussian process priors, spline regression,
and reproducing kernel Hilbert spaces. This paper provides a sim-
ple framework to derive optimal policy choices given available data.
The practical relevance of such a framework is demonstrated by our
empirical application, where we find very different levels of opti-
mal policy relative to those suggested by a conventional estimation
approach (leaving the economic model and distributive preferences
the same). Second, for statistical decision theorists, this paper sug-
gests a class of objective functions (“loss functions”) for statistical
decision problems that have a substantive justification in economic
theory, and which contrast with conventional loss functions such as
quadratic error loss and mis-classification loss. Third, for practition-
ers of machine learning, this paper suggests a class of applications of
machine learning methods where new predictive procedures might
fruitfully be leveraged for problems other than prediction.

1.3. Application

In Section 4, the proposed approach is applied to the problem
of setting coinsurance rates in health insurance. Lowering coinsur-
ance leads to more redistribution from healthy contributors to those
in need of health care. However, it also increases insurance costs,
both mechanically and through the behavioral response of possi-
bly increased health care spending. We use data from the RAND
health insurance experiment in order to estimate this behavioral
response. We then use the estimated relationship to determine the
optimal coinsurance rate. We find an optimal coinsurance rate of 18%.
This contrasts markedly with the optimal coinsurance rate of 50%
suggested by the conventional sufficient statistics approach under
otherwise identical assumptions. Both of these numbers are based
on the (arbitrary) normative assumption that the marginal value of
a US$ for the sick is 1.5 times the marginal value of a US$ for the
insurance provider.3 For a range of alternative assumptions about
this relative marginal value, we find the same qualitative comparison.
The expected welfare loss per capita of using the sufficient statistics
plug-in approach, and thus a coinsurance rate of 50% rather than the
optimal 18%, is equal to 98 US$. For a hypothetical population of one
million insurees, using the plug-in approach would thus result in a
welfare loss of almost 100,000,000 US$.

1.4. When the difference to sufficient statistics matters most

The approach proposed here yields the same answer as the suf-
ficient statistics approach under three conditions: (i) The sample is
very large so that estimation uncertainty is negligible, (ii) the func-
tional form imposed to estimate sufficient statistics (e.g., linearity
of average log expenditures in the log coinsurance rate) is correctly
specified, and (iii) the residuals of the regression used to estimate

2 We allow for arbitrary (smooth) variation of elasticities across policy levels. Opti-
mal tax theory does not restrict us to assume elasticities are constant. The difficulties
involved in interpolation and extrapolation relying on an assumption of constant elas-
ticities have been recognized in the literature, of course. While contributions such as
Gruber (1997) do calculate globally optimal policies, more recent papers often prefer
to only evaluate marginal deviations from the status quo, to avoid undue extrapolation.

3 The choice of such welfare weights based on normative considerations is discussed
in Saez and Stantcheva (2016).

sufficient statistics are homoskedastic. When these conditions are
violated, the estimated optimal policies can differ substantially.

Condition (i) might not matter much for estimates based on IRS
data, say, but is more salient for estimates based on experimen-
tal data. Condition (ii) might be less of an issue when the optimal
policy lies inside the observed range of policy levels, because mis-
specifications are more easily diagnosed in this case. This condition
is however very important when the optimal policy lies near the
boundary or outside the observed range. Condition (iii) presumably
matters in most settings. Violations of all three conditions explain the
difference of estimated optimal policy levels in the health insurance
application.

In Section 5, we discuss these conditions in detail, and make
the case that our approach is preferred when the conclusions differ.
There are strong normative arguments for the expected welfare (i.e.,
Bayesian) approach for (policy) decision making under uncertainty.
This differs notably from other statistical problems where the main
goal is interpersonal replicability, and where frequentist approaches
might be preferred. Lastly, not relying on functional form assump-
tions is key since generically such assumptions will be violated,
distorting policy decisions when imposed.

1.5. Literature

This paper draws on two distinct literatures, (i) optimal policy
theory as discussed in the field of public finance, and (ii) statistical
decision theory and machine learning using Gaussian process priors.
Models of optimal policy in public finance have a long tradition going
back at least to the discussion in Samuelson (1947) of social wel-
fare functions, with classic contributions including Mirrlees (1971)
and Baily (1978). The empirical implementation of such models using
“sufficient statistics” is discussed in Chetty (2009) and Saez (2001).
Gaussian process priors and nonparametric Bayesian function esti-
mation are discussed extensively in Williams and Rasmussen (2006).
Gaussian process priors are closely related to spline estimation and
reproducing kernel Hilbert spaces, as discussed in Wahba (1990).
When controlling for covariates, we also make use of Dirichlet pro-
cess priors, which are reviewed in Ghosh and Ramamoorthi (2003).
The related problem of assigning treatment optimally, maximizing
the posterior expectation of average observed outcomes, has been
considered in Dehejia (2005) and Chamberlain (2011).

1.6. Road map

The rest of this paper is structured as follows. Section 2 briefly
reviews the theory of optimal insurance and optimal taxation, and
reformulates the solution to these problems in a form amenable to
our approach. Section 3 states our assumptions on the data generat-
ing process and the prior. We then derive simple closed form expres-
sions for posterior expected social welfare and for the first order
condition characterizing the optimal policy choice. Section 4 applies
the proposed approach to data from the RAND health insurance
experiment and provides estimates of the optimal coinsurance rate.
Section 5 provides an extended discussion comparing our proposed
approach to the sufficient statistics approach. Section 6 discusses a
number of extensions of our framework, including conditional exo-
geneity, optimal experimental design for policy, and an alternative
class of social welfare functions involving production. Section 7 con-
cludes. The appendix discusses technical details, including the enve-
lope theorem, a generalization of our setup involving affine opera-
tors, additional models of optimal taxation covered by our frame-
work, explicit weight functions for our application, approximations
using equivalent kernel weights, and numerical examples comparing
our approach to the sufficient statistics approach. Code implement-
ing the proposed methods and replicating the figures in this paper is
available at https://github.com/maxkasy/optimaltaxationusingML.

https://github.com/maxkasy/optimaltaxationusingML
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2. Optimal insurance and optimal taxation

Many policy problems considered in the field of public finance
share a similar structure. We first describe this structure in terms
of the example of optimal health insurance, corresponding to the
empirical application considered in Section 4. We then discuss
how other policy problems, in particular optimal taxation, can be
described in the same terms. A more detailed discussion of some of
the ideas introduced in this section can be found in Chetty (2009).

The key takeaway of this section is Eq. (4). This equation is a
reformulation of standard representations of social welfare. This rep-
resentation is chosen such that it is amenable to our subsequent
analysis using Gaussian process priors. Our approach is contrasted
with more standard approaches using “sufficient statistic” formulas
for optimal policy parameters in the context of the application in
Section 4.

In the health insurance policy problem considered, the trade-off
between two objectives (increasing insurance/redistribution versus
lowering the cost to the provider) determines the optimal coinsur-
ance rate. The key empirical ingredient informing the policy maker’s
choice is the behavioral response of health care usage to changes of
the coinsurance rate.

2.1. Setup

The insurance covers a population of insured individuals i. Let Yi

denote the health care expenditures of individual i, and let Ti denote
the share of health care expenditures covered by the insurance, so
that 1 − Ti is the coinsurance rate faced by individual i, and Yi • (1 − Ti)
are her out-of-pocket expenditures.

Individuals might adjust their health care expenditures depending
on the coinsurance rate they face. We can capture this response by
considering the structural function

Yi = g (Ti, 4i) . (1)

In this equation, 4i captures unobserved heterogeneity which is
assumed to be invariant under counterfactual policies.4 Correspond-
ing to this structural function we can consider the average structural
function

m(t) = E[g(t, 4i)]. (2)

In this equation, the expectation averages over the distribution of
unobserved heterogeneity 4i across the population of insured indi-
viduals. The function m(t) describes the average level of health care
expenditures if all individuals were to face the policy level t. We
assume that this function is differentiable.

2.2. Policy objective

Given this setting, we can now describe how a marginal change
of the policy t, when applied to all of the insured, would affect the
policy maker’s objectives. A marginal change dt of t affects insurance
expenditures in two ways, mechanically, and through individuals’
behavioral response. The insurance provider’s expenditures per per-
son are given by t • m(t). The mechanical effect of the change of t
on the provider’s expenditures, holding constant individuals’ health
care expenditures, is given by m(t)dt. This mechanical effect can be
calculated by accounting, given the expenditures m(t). It does not
require estimation of a causal effect. The behavioral effect on expen-
ditures is given by t • m′(t)dt. This behavioral effect poses the key

4 This structural function could equivalently be written in terms of potential
outcomes Yt

i = g(t, 4i), so that Yi = YTi
i .

empirical challenge. To calculate it, we need to know the causal effect
m′(t) of a change in t on expenditures m(t).

The effect of the marginal change of t on the welfare of the insured
is a subtler matter. There is again a mechanical monetary effect pro-
portional to m(t)dt, since the sick have to pay less for their health care
when t is increased. This effect can again be calculated by account-
ing. But what about the effect of behavioral responses on private
welfare? As it turns out, these don’t affect private welfare under stan-
dard utilitarian assumptions for a very general class of models; this
includes models that allow for multiple behavioral margins, dynamic
choices, and discrete choices. This follows from the so-called enve-
lope theorem. Appendix A.1 provides a brief discussion of this point;
see also Milgrom and Segal (2002) and Chetty (2009).

To trade off between her two conflicting objectives, the policy
maker has to decide on the marginal value k > 1 of an additional dol-
lar transferred to the sick relative to the cost of an additional dollar
of expenditures. The parameter k reflects both social preferences for
redistribution to the sick, cf. Saez and Stantcheva (2016), as well as
private risk aversion to unforeseen health shocks; we will assume k

known for simplicity of exposition.5 Adding up the effects of a policy
change on the welfare of the insured (weighted by k) and on provider
revenues, we get the marginal effect of a change in t on social welfare,

u′(t) = (k − 1) • m(t) − t • m′(t) = km(t) − ∂

∂t
(t • m(t)). (3)

Integrating and imposing the normalization u(0) = 0 yields social
welfare,

u(t) = k

∫ t

0
m(x)dx − t • m(t). (4)

This objective function is a variant of the classic “Harberger triangle,”
where the latter corresponds to the special case where k = 1. The
first-order condition for the optimal coinsurance rate t∗ when m( • ) is
known is given by u′(t∗) = (k − 1) • m(t∗) − t∗ • m′(t∗) = 0.

2.3. Formally equivalent policy problems

There are many problems of optimal policy choice in public
finance which share a similar structure. One example is optimal
unemployment insurance, as discussed by Baily (1978) and subse-
quent papers. Chetty (2006), building on insights of Feldstein (1999),
has argued that a very general class of models of unemployment
insurance lead to the same formulas characterizing optimal bene-
fits, which are in fact equivalent to the one derived above. In the
context of unemployment insurance, t would be interpreted as the
level of unemployment benefits, and Y as the share of days spent
unemployed in a given time period by a given individual. k is the rel-
ative value of additional income for the unemployed, and m(t) is the
unemployment rate given policy level t.

Optimal taxation problems such as optimal income taxation can
also be reformulated in this way. An example is the choice of the tax
rate for the top tax bracket, as in Saez (2001). In this setting, t is the
top tax rate, and Y is the taxable income declared by an individual.
k is the marginal value assigned to additional income for rich people
relative to additional government revenues, and m(t) is the size of
the tax base in the top bracket.

A representation of the policy objective in the form of Eq. (4)
is more generally possible in settings which satisfy the following
assumptions: The policy maker’s objective is to maximize a weighted

5 In settings where k is considered a parameter to be estimated, if it is esti-
mated using data which are independent from those considered below, then k can
be replaced by a posterior expectation k̂ throughout. Our results continue to apply
verbatim for such settings.
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sum of private utilities. Individuals are maximizing utility. Policy
choices (such as tax rates and replacement rates) affect private
choices. The government is subject to a budget constraint, or equiv-
alently has alternative expenditures and revenues which pin down
the marginal value of government revenues. If there are no external-
ities, these assumptions imply that the behavioral effects of policy
choices on private welfare are zero at the margin, due to envelope
conditions. This implies that welfare under a given policy choice only
depends on some key behavioral relationship, for instance the tax
base as a function of tax rates.

Appendix A.1 provides some further discussion of two prob-
lems in optimal taxation, optimal (nonlinear) income taxation, and
behavioral optimal taxation when there are internalities.

3. Experimental variation, Gaussian process prior, and posterior

In this section, we derive closed form expressions for posterior
expected social welfare. Some readers might wish to skip ahead to
the application in Section 4, and return to these derivations at a later
point. Our discussion so far described social welfare u( • ) and the opti-
mal policy t∗ in terms of the true average response function m( • )
under counterfactual policies t. The function m( • ) is not known to
the policy maker in general, however, so she has to use empirical
evidence to form beliefs about this function. As a baseline case, we
discuss a randomized experiment.

3.1. Sampling and experimental variation

Assume that we observe n i.i.d. draws of (Yi, Ti) from the popula-
tion of interest. Assume further that Ti was randomly assigned in an
experiment, so that Ti is statistically independent of the unobserved
heterogeneity 4i. These assumptions imply

E [Yi|Ti = t] = E[g(t, 4i)|Ti = t] = E [g(t, 4i)] = m(t). (5)

Assume next that Yi is normally distributed given Ti, with constant
variance

Yi|Ti = t ∼ N(m(t),s2). (6)

In Section 6, we discuss extensions, including the case of conditional
exogeneity of treatment Ti given observables Wi, and the case of non-
normal residuals Yi − m(Ti).

3.2. Prior

The key empirical relationship that the policy maker of Section 2
has to learn is the average structural function m( • ). This function
describes average health care expenditures given the coinsurance
rate. We assume that the policy maker has a prior for m( • ) which
takes the form

m( • ) ∼ GP(l( • ), C( • , • )), (7)

where GP(l( • ), C( • , • ) denotes the law of a Gaussian process which
is such that E[m(t)] = l(t) and Cov(m(t), m(t′)) = C(t, t′), and
where both the mean function l( • ) and the covariance kernel C( • , • )
are assumed to be differentiable. We impose further that the policy
maker’s prior is such that the function m( • ) is independent of the
probability distribution PT of T. Such priors are discussed in detail in
Williams and Rasmussen (2006).

3.3. Posterior expectation of the average response function m

Recall that we assume the availability of a random sample Yi, Ti,
i = 1, . . . , n, satisfying Eq. (6). What is the posterior expectation
m̂(t) of m(t) given such data? Denote Y = (Y1, . . . , Yn) and
T = (T1, . . . , Tn), and let

li = E[m(Ti)|T] = l(Ti),

Ci,j = Cov(m(Ti), m(Tj)|T) = C(Ti, Tj), and

Ci(t) = Cov(m(t), m(Ti)|T) = C(t, Ti). (8)

Let furthermore l, C(t), and C denote the vectors and matrix collect-
ing these terms for i, j = 1, . . . , n. Since our setting implies joint
normality of Y and m(t) conditional on T, the posterior expectation of
m(t) takes the form of a posterior best linear predictor:

m̂(t) = E[m(t)|Y , T] = E[m(t)|T] + Cov(m(t), Y|T) • Var(Y|T)−1 • (Y − E[Y|T])

= l(t) + C(t) •
[
C + s2I

]−1
• (Y − l). (9)

Note that at the points T observed in the sample, the function m̂ is
equal to the familiar posterior mean for a multivariate normal vector,(
m̂(T1), . . . , m̂(Tn)

)
= l + C •

[
C + s2I

]−1 • (Y − l). In between these
observed points, the function m̂ provides an optimal interpolation
based on the smoothness assumptions encapsulated in the covari-
ance kernel C. When T is drawn from a continuous distribution, m̂
adapts to arbitrary functional forms for m in large samples. When T
has finite support, prior smoothness assumptions continue to matter
for interpolation even in the large sample limit.

3.4. Posterior expectation of social welfare u and its derivative u′

What ultimately matters from the policy maker’s perspective is
not the response function m( • ) itself, but how expected social wel-
fare û(t) depends on her policy choice t. Recall from Eq. (4) that
u(t) = k

∫ t
0 m(x)dx − t • m(t). The function u( • ) is thus a linear trans-

formation of m( • ). This implies that it has a Gaussian process prior
distribution, like m( • ) itself, where

m(t) = E[u(t)] = k

∫ t

0
l(x)dx − t •l(t), and (10)

D(t, t′) = Cov(u(t), m(t′))) = k •

∫ t

0
C(x, t′)dx − t • C(t, t′). (11)

Like before, let D(t) = Cov(u(t), Y|T) = (D(t, T1), . . . , D(t, Tn)). The
posterior expectation of u(t) then equals

û(t) = E[u(t)|Y , T] = E[u(t)|T] + Cov(u(t), Y |T) • Var(Y|T)−1 • (Y − E[Y|T])

= m(t) + D(t) •
[
C + s2I

]−1
• (Y − l). (12)

It is in this formula that the pieces of our optimal policy setup and of
the Gaussian process prior setup start to come together.
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3.5. The optimal policy choice given the data

We assume that the policy maker aims to maximize expected
social welfare.6 The optimal t, maximizing posterior expected social
welfare given the experimental observations Y, T, satisfies

t̂∗ = t̂∗(Y , T) ∈ arg max
t

û(t). (13)

The first order condition for this optimization problem is given by

∂

∂t
û(t̂∗) = E

[
u′(t̂∗)|Y , T

]
= m′(t̂∗) + B(t̂∗) •

[
C + s2I

]−1
• (Y − l) = 0,

(14)

where

B(t, t′) = Cov
(

∂

∂t
u(t), m(t′)

)
=

∂

∂t
D(t, t′) = (k−1) • C(t, t′)−t •

∂

∂t
C(t, t′)

(15)

and B(t) = (B(t, T1), . . . , B(t, Tn)). Numerically, the maximizer of û
might be found using a grid search algorithm or the Newton-Raphson
algorithm. Explicit expressions for D( • , • ) and B( • , • ), for a specific
choice of C( • , • ), are derived in Appendix A.1.

3.6. The posterior variance of m, u and u′

In order to choose the optimal policy t̂∗, we only need to know the
posterior expectation û(t) of u(t). In order to perform Bayesian infer-
ence, however, we might also be interested in the posterior variance
of m, u and u′. Given joint normality of Y and m(t) given T, the pos-
terior variance of m(t) is given by the difference between the prior
variance of m(t), and the prior variance of the estimator m̂(t),

Var(m(t)|Y , T) = Var(m(t)|T) − Var(m̂(t)|T). (16)

Similarly, Var(u(t)|Y , T) = Var(u(t)|T) − Var(û(t)|T) and
Var(u′(t)|Y , T) = Var(u′(t)|T) − Var(û′(t)|T). The posterior variances
do not depend on Y by joint normality. The prior variance of m(t) is
given by Var(m(t)) = C(t, t) by assumption, while

Var(u(t)|T) =k2 •

∫ t

0

t∫
0

C(x, x′)dx′dx − 2kt •

∫ t

0
C(x, t)dx + t2 • C(t, t),

Var(u′(t)|T) =(k − 1)2 • C(t, t) − 2(k − 1) •
∂

∂t′ C(t, t′)|t′=t

+ t2 •
∂2

∂t′∂t
• C(t, t′)|t′=t. (17)

The prior variances of the estimators (posterior expectations) equal

Var(m̂(t)|T) = C(t) •
[
C + s2I

]−1
• C(t)′,

Var(û(t)|T) = D(t) •
[
C + s2I

]−1
• D(t)′, and

Var(û′(t)|T) = B(t) •
[
C + s2I

]−1
• B(t)′. (18)

6 Note that the maximizer of expected welfare, chosen by a Bayesian decision
maker, is in general different from the expectation of the maximizer of welfare.

3.7. Choice of covariance kernel

To fully specify the prior for m( • ), we need to describe its prior
moments, that is the mean function l( • ) and the covariance kernel
C( • , • ). Following common practice in the machine learning literature
(cf. Williams and Rasmussen, 2006), we take l = 0 and consider
covariance kernels of the form

C(t1, t2) = v0 + v1 • t1t2 + exp
(
−|t1 − t2|2/(2l)

)
. (19)

The first two terms correspond to the covariance kernel of a linear
trend b0 + b1t where b0 and b1 are uncorrelated and have variance
v0 and v1. If v0 and v1 are chosen to be large, this prior (i) allows
for arbitrary functional forms of the relationship between t and Y,
(ii) is relatively uninformative about the intercept and slope of the
relationship between t and Y, while (iii) providing shrinkage toward
smooth functions. Note in particular that the choice of the prior mean
function l becomes arbitrary when v0 and v1 are large, and setting
l = 0 is without loss of generality. In the limit, any other linear prior
mean function l would yield the same posterior distribution.7

3.8. Covariates and conditional independence

Thus far, we have assumed that Ti varies randomly (indepen-
dently of 4i) in our data. In practice, we can often more plausibly jus-
tify conditional independence given additional observed covariates
Wi. If independence holds only conditionally, i.e., Ti ⊥ 4i|Wi, we can
consider a Gaussian process prior for k(t, w) = E[Y|T = t, W = w].
Such a conditional approach is also warranted in experimental set-
tings, such as the one considered in Section 4, when we wish to
adjust for random imbalances of covariates. The details of the condi-
tional approach are spelled out in Section 6.

3.9. Discussion

A few remarks are in place to build intuition for Gaussian pro-
cess regression. First, Gaussian process regression is an estimation
method that is closely related to other, more familiar nonparametric
regression methods such as kernel regression (taking local averages
of Y for neighboring values of T), series regression (regressing Y on,
for instance, a polynomial in T), and spline regression. Appendix A.1
provides a brief review of the relationship between these methods.
The advantage of Gaussian process regression for our purposes is
that it allows to coherently embed regression into the optimal tax
problem, taking into account posterior uncertainty.

Second, imposing normality for both the prior and the residuals
is less important than it might seem. Imposing normality is in fact
equivalent, for our purposes, to imposing linearity of the estimated
m̂(t) as a function of the vector of outcomes Y (not to be confused
with linearity of m̂(t) as a function of t). Such linearity holds for any
standard nonparametric regression method.

Third, of greater practical importance is the choice of covariance
kernel C. Kernels such as the one we chose here allow for arbi-
trary functional forms, but do implicitly assume smoothness of m.
The choice of length scale l governs how “wiggly” the resulting esti-
mate m̂ is; the role of l is thus similar to that of a bandwidth in
kernel regression or that of the number of terms in a series regres-
sion. Inclusion of the non-informative linear term ensures that no
prior information is imposed on the slope or level of m, so that these
features (which are key for optimal policy) are entirely data-driven.

7 The limit (v1, v0) → ∞ yields a well-defined estimator, corresponding to a penal-
ized nonparametric regression, where the penalty is given by a semi-norm on m( • ).
A special case is spline regression, as discussed in Wahba (1990). In practice, choosing
(v1, v0) large is a convenient way of approximating this limit numerically.
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Table 1
Predicted average expenditures for different coinsurance rates.

(1) (2) (3) (4)

Share with any Spending in $ Share with any Spending in $

Free care (t = 1) 0.931 2166.1 0.932 2173.9
(0.006) (78.76) (0.006) (72.06)

25% Coinsurance (t = 0.75) 0.853 1535.9 0.852 1580.1
(0.013) (130.5) (0.012) (115.2)

50% Coinsurance (t = 0.5) 0.832 1590.7 0.826 1634.1
(0.018) (273.7) (0.016) (279.6)

95% Coinsurance (t = 0.05) 0.808 1691.6 0.810 1639.2
(0.011) (95.40) (0.009) (88.48)

N 14,777 14,777 14,777 14,777

Notes: This table shows OLS estimates of average health care expenditures for the different treatment arms. Columns (1) and (2) control for month × site fixed effects and year
fixed effects, columns (3) and (4) control additionally for a large set of further pre-determined covariates. All regressions are pooled across Maximum Dollar Expenditure values.

4. Application — the RAND health insurance experiment

We now turn to our empirical application, using the data of
the RAND health insurance experiment to estimate the behavioral
response function m( • ) as well as the social welfare function u( • ),
which in turn is used to determine the optimal coinsurance rate t̂∗.

4.1. Background and data

The following discussion is based on the review of the RAND
experiment provided by Aron-Dine et al. (2013). The RAND exper-
iment, which took place between 1974 and 1981, provided health
insurance to more than 5800 individuals from about 2000 households
in six different locations across the United States. Families partic-
ipating in the experiment were assigned to plans with one of six
coinsurance rates. Four of the six plans simply set different overall
coinsurance rates of 95, 50, 25, or 0% (free care). The other two plans
were somewhat more complicated, with higher coinsurance rates
for dental and outpatient mental health services, or for outpatient
services in general. For the sake of simplicity of our discussion, data
from the last two plans are neglected; the analysis focuses on the
first four plans. The probability of assignment to each of these was
0.32 for the free care plan, 0.11 for the 25% coinsurance plan, 0.07
for the 50% coinsurance plan, and 0.19 for the 95% coinsurance plan.

Families were additionally randomly assigned, within each of
the six plans, to different out-of-pocket maximums, referred to as
the “Maximum Dollar Expenditure.” The possible Maximum Dollar
Expenditure limits were 5, 10, or 15% of family income, up to a maxi-
mum of $750 or $ 1000(roughly $3000 or $4000 in 2011 dollars). We
pool data across Maximum Dollar Expenditure amounts, and only
consider the effect of coinsurance rates on expenditures.

4.2. Replication of results from Aron-Dine et al. (2013)

As a first step, we replicate some of the results of Aron-Dine et
al. (2013). We estimate predicted expenditures, using specifications
corresponding to those used by Aron-Dine et al. (2013) for rows 2 and
3 in each of the panels of their Table 3. The chosen regression speci-
fication controls for month × site fixed effects and year fixed effects;
this is necessary, since treatment was only conditionally random.
The chosen specification additionally corrects for under-reporting of
spending, by proportionally scaling up spending for outpatient ser-
vices based on estimated rates of under-reporting. As discussed in
Aron-Dine et al. (2013), this adjustment has only a minor impact on
results. Our Table 1 reports predicted values for the share of families
with any spending and for the average amount of spending within
each of the treatment categories. Columns 3 and 4 of this table con-
trol additionally for a rich set of pre-determined covariates to correct
for imbalance in the assignment. This correction again has only a

minor effect. As can be seen from this table, spending is essentially
unaffected by the coinsurance rate in the range from 95% coinsurance
to 25% coinsurance. Only when approaching the free care treatment
does there appear to be an effect of the coinsurance rate on spending.

4.3. Estimation of m( • )

We next apply the method proposed in Section 3 to these data.
Consider first estimation of m, the response function which gives
expected spending as a function of the subsidy rate t. The subsidy
rate t equals 1 minus the coinsurance rate. We use a Gaussian process
prior with squared exponential covariance kernel plus an “uninfor-
mative” (dispersed) linear component.8 This is a default choice of
prior, resulting in data-dependent shrinkage toward a linear regres-
sion. We validate the quality of predictions based on this prior at the
end of this section, by dropping treatment arms and comparing the
resulting estimates to those using all data. We use the same con-
trols as in column 4 of Table 1, so that our estimate m̂ is effectively a
smooth interpolation of the estimates in this column. The first panel
of Fig. 1 shows our estimate m̂, as well as the estimated slope of m,
m̂′. As to be expected based on the predicted values of Table 1, m̂ is
flat over most of it’s support and curves upward toward the right,
as t approaches 1, corresponding to the free care plan. This implies
that the behavioral effect of increasing t on insurance expenditures,
t • m′(t), is close to 0 for t small, but is important in the proximity of
the free care plan.

4.4. Estimation of u( • ) and of t∗

We next calculate the posterior expected social welfare û, as in
Eq. (12), and its derivative û′. We assume that the preference for

8 Specifically, we use the type of prior discussed in Section 6, with covariance kernel
Ck of the form

1
s2

Ck((t1, w1), (t2, w2)) = v0 + v1 • t1t2 + exp
(

− 1
2

(
‖ t1 − t2‖2+ ‖ w1 − w2‖2

))
,

(20)

where we choose v0 = 100 and v1 = 50. ‖t1 − t2 ‖ is the absolute difference in
coinsurance, and ‖w1 − w2 ‖ is the Euclidean norm of the difference in covariates.
Covariates are scaled such that (i) year fixed effects and month × location fixed effects
have a distance of 2 when they are unequal, and (ii) all other covariates have a distance
of 0.2 when they are one standard deviation apart. For the distribution of covariates
PW , we consider an “uninformative” Dirichlet prior with a = 0, which implies that
P̂W is equal to the empirical distribution of W. The prior mean l of m is set equal to 0.
Given that v0 and v1 are chosen large, the posterior would be the same for other linear
functions l.



M. Kasy / Journal of Public Economics 167 (2018) 205–219 211

0

500

1000

1500

2000

0.00 0.25 0.50 0.75 1.00
t

m

t = 0.82

0

500

0.00 0.25 0.50 0.75 1.00
t

u u

−1000

−500

0

500

1000

0.00 0.25 0.50 0.75 1.00
t

u

Fig. 1. Health expenditures m, social welfare u and its derivative, and credible sets for u′ . Estimates based on the RAND health insurance experiment data.

redistribution to the sick is given by k = 1.5. This is a key parameter
reflecting a normative choice by the policy maker; alternative val-
ues for k are considered below. The specific parameter is chosen for
illustration only, and our findings should be interpreted in this light.
The second panel of Fig. 1 plots our estimate û of social welfare, and
its derivative û′. The optimal policy choice t̂∗ solves the first order
condition û′(t̂∗) = 0. We find an optimal policy choice of t̂∗ = 0.82,
corresponding to a coinsurance rate of 18%. As the objective function
is fairly flat around this point, the free care plan performs almost as
well in terms of expected social welfare.

4.5. Confidence sets

The last panel in Fig. 1 plots a point-wise 95% confidence band
for u′( • ). The intersection of this confidence band with the horizon-
tal axis yields a corresponding confidence set for the optimal policy

choice, which in this case ranges from a subsidy rate t of 68% to a
subsidy rate of 100%, that is free care.

4.6. Varying k

The estimates of the optimal coinsurance rate discussed thus far
are based on the normative choice of k = 1.5. Recall that k mea-
sures the marginal value of a US$ to the sick relative for the marginal
value of a US$ for the insurance, or equivalently for the average con-
tributor to the insurance. From an ex-post perspective, after health
shocks have been realized (our preferred interpretation), k measures
a taste for redistribution from the healthy to the sick. From an ex-
ante perspective, k measures risk aversion. Note, however, that it is
difficult to map k to conventional risk aversion parameters for money
lotteries, since a negative health shock not only affects income and
expenditures, but also health itself.
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Fig. 2. The optimal policy t∗ as a function of k.

To explore the difference between our method and the sufficient
statistics approach more systematically, Fig. 2 plots the optimal pol-
icy t∗ as a function of k, estimated in three different ways; using our
approach, using the sufficient statistics approach with the Aron-Dine
et al. (2013) estimate of ĝ = 0.5, and using the RAND investigators’
estimate of ĝ = 0.2.9 A higher value of k (a higher preference for
redistribution to the sick) implies a higher t∗, and so does a lower
estimated elasticity ĝ. Our approach consistently yields a higher
t∗ than the sufficient statistics approach, showing that our basic
comparison is not specific to the value k = 1.5.

Our method yields t∗ > 0 even when k = 1 because expendi-
tures are estimated to be decreasing in t for small values of t, so that
an additional US$ for the insured costs the insurance less than one
US$. Note that values of k < 1 would correspond to a preference for
redistribution from the sick to the healthy.

4.7. Robustness of interpolation

As we adopt a Bayesian approach in this paper, our results nec-
essarily depend on the prior. We can, however, validate the use of
this prior by dropping some of our data and evaluating the quality of
the resulting interpolation relative to estimates using all data. Fig. 3
shows the results of this exercise. As to be expected, dropping one of
four treatment arms does have an impact on our estimates for m, u,
and u′. That said, the resulting variation is considerably smaller than
the variation implied by our 95% confidence bands in Fig. 1, suggest-
ing that our prior does indeed conform well with the data generating
process.

5. Comparison to the sufficient statistics approach

The approach to optimal insurance and taxation proposed in this
paper builds on the popular “sufficient statistics” approach, but mod-
ifies it in important respects. Our approach should not be considered
as being opposed to the sufficient statistics approach, but rather as
being a refinement. In this section, we first review the sufficient
statistics approach in the context of the optimal insurance applica-
tion, and apply it to the RAND health insurance setting. We then
discuss in general terms why our proposed approach differs from
the sufficient statistics approach. We conclude the section with some

9 As discussed in Section 5 below, the optimal policy is equal to t∗(g) = 1
1+g/(k−1) ,

where g is the elasticity of health care expenditures m with respect to copay 1 − t at
the optimum. The sufficient statistics approach substitutes an estimate ĝ for g in this
expression.

arguments why our approach might be preferred. In Appendix A.1,
we discuss some numerical examples to illustrate under what condi-
tions differences between our approach and the sufficient statistics
approach are likely to be quantitatively important.

5.1. The “sufficient statistics” approach

As emphasized by Chetty (2009), the first-order conditions for
optimal policy models in a wide variety of settings only involve
some key behavioral elasticities at the optimal policy. This suggests
to estimate optimal policy levels by substituting estimates of these
behavioral elasticities into formulas for optimal policy. Under the
assumptions of Section 2, the marginal social return to an increase of
t can be rewritten as

u′(t) = m(t) • [(k − 1) − t • m′(t)/m(t)] = m(t) •

[
(k − 1) − g •

t
1 − t

]
,

(21)

where g is the elasticity of health care expenditures m with respect
to copay 1 − t, g := − ∂m(t)

∂(1−t)
• 1−t

m(t) . Note that g is a function of t
unless logm(t) is a linear function of log(1 − t). Solving the first order
condition u′(t∗) = 0 yields

t∗(g) =
1

1 + g/(k − 1)
. (22)

The “sufficient statistic” approach substitutes an estimate ĝ of g into
Eq. (22) to obtain t∗(ĝ) as an estimate of the optimal policy. In order
to estimate g, one could fit a linear regression of log(Y) on log(1 − t),
as well as the appropriate controls, and take the negative of the coef-
ficient on log(1 − t) as the estimate of g. This is not quite feasible in
the present context, however, given that t = 1 for an important part
of the experimental sample, so that log(1 − t) is not well defined.

We can re-write our proposed optimal policy, t̂∗ = arg maxtû(t)
in similar terms, to facilitate comparison. The first order condition
for t̂∗ is given by ∂

∂t û(t̂∗) = m̂(t̂∗) •
[
(k − 1) − t • m̂′(t̂∗)/m̂(t̂∗)

]
= 0, and

thus

t̂∗ =
1

1 + m̂′(t̂∗)
m̂(t̂∗)

1−t̂∗
k−1

.

The policy t̂∗ which maximizes posterior expected welfare thus is
given by the same expression the sufficient statistic based policy
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t∗(g), except that we replace g by the elasticity of the posterior
expectation m̂ of m at the optimum t̂∗.

5.2. Sufficient statistic estimates for the RAND experiment

Various estimates for g based on the RAND experiment have been
proposed in the literature, as discussed by Aron-Dine et al. (2013).
The most famous estimate, constructed by the RAND investigators
themselves, is given by ĝ = 0.2. This estimate was constructed
in a fairly complicated manner, based on so-called “arc-elasticities”
for pairwise comparisons and averaging across these comparisons.
Plugging this estimate into the sufficient statistic formula yields
t∗(ĝ) = 1/1.4 ≈ 0.7, that is a suggested copay of approximately
30%. This is 12 percentage points higher than the optimal copay of
18% obtained using our method. Table 4 of Aron-Dine et al. (2013)
presents various alternative estimates ĝ, based on the more standard
definition of an elasticity underlying our derivation of the sufficient
statistics formula. Their estimates, omitting the free care plan from
calculations, are slightly larger than 0.5. Plugging this into the for-
mula for t∗(g) yields t∗(ĝ) ≈ 1/2 = 0.5 — that is a suggested copay
of approximately 50%. This is 32 percentage points or almost 180%

higher than the optimal copay of 18% obtained using our method. The
expected welfare loss per capita of using the sufficient statistics plug-
in approach rather than the optimal t̂∗, û(t̂∗)−û(t∗(ĝ)) = û(.82)−û(.5)
is equal to 98 US$. For a hypothetical population of one million
insurees, using the plug-in approach would thus result in a welfare
loss of almost 100,000,000 US$.

Why is our estimate so different? To answer this question, we
next take a step back, and provide a more abstract comparison of our
approach to the sufficient statistics approach. We then return to the
optimal insurance context and work through numerical examples to
see under what conditions the difference matters quantitatively.

5.3. General comparison of approaches

Let us consider an abstract policy choice problem, where a policy
maker’s objective (“social welfare”) takes the form u(t, h, h′), where t
is the policy choice variable (which could be a number, a vector or
a function), and (h, h′) represents the unknown state of the world.
The key insight of the sufficient statistic literature is that many pol-
icy choice problems in public finance are such that u depends on
the state of the world only via a small number of key parameters
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h (labeled “sufficient statistics,” for example, the elasticity of the
tax base with respect to some tax rate), but not on h′. This is true
thanks to the envelope theorem and the choice of welfarist (utilitar-
ian) objective functions. With a slight abuse of notation, we thus get
that the optimal policy when h is known is given by

t∗(h) = arg max
t

u(t, h).

The sufficient statistics approach proceeds by plugging in an estimate
for h, most commonly obtained through parametric maximum like-
lihood or least squares regression, and optimizing the plug-in policy
objective function to obtain t∗(ĝ),

ĥ = arg max
h∈Hr

Ln(h|X), t∗(ĥ) = arg max
t

u(t, ĥ).

Here, H r is the parametric model considered, and Ln(h|X) is the log-
likelihood of h for a given data set X of size n, where for instance
X = (Y, T, W).

The approach proposed in this paper differs in several ways. It
focuses on solving the relevant finite sample decision problem in the
Bayesian (i.e., expected welfare) paradigm, and it is nonparametric.
Formally, we propose to choose

t̂∗ = arg max
t

E[u(t, h)|X] = arg max
t

∫
u(t, h)dp(h|X),

where p(h|X) is the posterior distribution of h. Additionally, we pro-
pose using a nonparametric prior p which is supported on the full set
of H, not just the parametric sub-model Hr. One of the key contribu-
tions of this paper is showing that this is feasible in a tractable and
transparent manner in many practically relevant settings, contrast-
ing with alternative “black box” machine learning approaches.

5.4. How the answers differ

There are three reasons why the answers differ between the
approach we propose and the sufficient statistics approach. First,
maximizing posterior expected welfare (our approach) is differ-
ent from maximizing welfare plugging in posterior expectations
of parameters (the Bayesian version of the sufficient statistics
approach). Second, the functional form restrictions required for para-
metric estimation matter, and might cause problems for instance
because the elasticity g(t) is not constant in t. This is an issue that
does not arise for our nonparametric approach, which allows for arbi-
trary (smooth) dependence of m(t), and thus g(t), on t. And third, the
objective function for estimation matters. Estimating the conditional
expectation of logY, as implicitly done by standard estimates of g, is
different from estimating the (log of the) conditional expectation of
Y, as would be the theoretically correct approach. Let us elaborate.

First, the approaches differ in terms of how uncertainty is dealt
with. For nonlinear functions u, we in general have

E[u(t, h)|X] �= u(t, E[h|X]).

For functions u that are convex or concave in h, this is reflected
in Jensen’s inequality. This implies that a plug-in approach will
in general yield distorted policy choices. Note that this argument
regarding uncertainty does not concern inference, but is about
the point estimates of optimal policy. In the context of the opti-
mal insurance problem, let h(t) = (m(t),g(t)). Since u′(t) =
m(t) •

[
(k − 1) − g(t) • t

1−t

]
, we get

E[u′(t, h)|X] = u′(t, E[h|X]) +
t

1 − t
• Cov(m(t),g(t)|X).

Our proposed optimal policy, which solves E[u′(t∗, h)|X] = 0, there-
fore differs from the plug-in approach using the posterior expec-
tation of g(t) whenever the posterior covariance Cov(m(t),g(t)|X) is
not equal to 0. This is generically the case in our setting, where
g(t) = − ∂m(t)

∂(1−t)
• 1−t

m(t) . Put differently, the policy choice maximizing
posterior expected welfare (our proposal) is given by t∗(g̃), where

g̃ =
E[m′(t∗)|X]
E[m(t∗)]|X]

=
E [m(t∗)g(t∗)|X]

E[m(t∗)]|X]
.

This differs, in general, from the plug-in policy choice t∗(E[g(t∗)|X]).
This distortion of the plug-in approach due to uncertainty can be
important for finite sample sizes. This distortion vanishes in the large
sample limit if h is identified and consistently estimable.

The answers differ, second, based on how prior information is
imposed in parametric frequentist estimation and in nonparamet-
ric Bayesian estimation. Parametric frequentist estimation can be
thought of as an imposition of the prior belief that h ∈ Hr for some
finite dimensional set Hr. The set Hr might for instance correspond
to the set of functions m(t) which are such that logm(t) is linear
in log(1 − t). A nonparametric Bayesian prior, on the other hand,
can accommodate arbitrary functional forms by having its support
on the full set of possible values h, thus relying less strongly on
prior information. Nonparametric frequentist estimation (a possible
third alternative, used less often in the sufficient statistics literature),
like the nonparametric Bayesian approach, implicitly also relies on
prior assumptions concerning in particular the smoothness of the
objects considered. Nonparametric estimation without some impo-
sition of prior information is in general impossible when considering
continuous objects.

In the context of the RAND data, it is obvious that a log-log func-
tional form for the regression of health care expenditures on the
subsidy rate is a poor approximation. This seems nonetheless to be
the conventional way to analyze these data (in some variant); cf. the
discussion in Aron-Dine et al. (2013) p. 212 ff.

The answers differ, third, in terms of the objective function
maximized. There is a difference between (i) maximizing u (as we
propose), and (ii) maximizing the log likelihood of h, or minimizing
the sum of squared residuals (as in the plug-in approach). This can
be an issue even in the large sample limit, and is not just a finite
sample issue; the wrong objective function can lead to inconsistent
policy choices. In the context of the health insurance application,
suppose for instance that the true conditional expectation of expen-
ditures m(t) = E[Y|T = t] is in fact such that logm(t) is linear
in log(1 − t). This does not imply that the slope of a regression of
logY on log(1 − t) identifies the relevant elasticity, since in general
E[logY|T = t] ≤ logE[Y|T = t] by Jensen’s inequality, and thus the
slopes with respect to t of E[logY|T = t] and logE[Y|T = t] may
differ.

In Appendix A.1, we discuss several numerical examples illus-
trating how and when these three sources of divergent answers
can be quantitatively important, even for modest deviations from a
baseline model rationalizing the sufficient statistics approach. The
main takeaway of these examples is that these possible sources of
mis-specification can be quite important in practice, and that their
direction is hard to predict. It is easy to modify the examples dis-
cussed to obtain biases of arbitrary magnitude and sign. It is thus
not an innocuous approximation to use parametric estimates of suf-
ficient statistics and plug them into optimal policy formulas; the
preferred approach of maximizing posterior expected welfare with-
out parametric restrictions is likely to yield substantively different
conclusions.
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5.5. The case for the nonparametric Bayes approach

Let us conclude this section by making the general case that our
approach is the conceptually preferred one. There is a long standing
theoretical literature in economics on decision making under uncer-
tainty. A strong normative argument can be made that maximization
of expected utility (welfare) is the rational response to uncertainty.
Two key arguments have been made to this end. The first argument is
the complete class theorem: Any admissible decision procedure, that
is any procedure that is not uniformly dominated by some other pro-
cedure, can be written as the maximizer of expected welfare for some
prior. The second argument was made by Savage: Every ranking of
decision procedures that satisfies basic rationality criteria (complete-
ness, and the dynamic consistency requirement of “independence”)
corresponds to a ranking based on expected welfare.

Why, then, is a frequentist approach to inference more com-
mon in empirical economics than a Bayesian approach? Historical
reasons aside, a key reason is the type of question asked. When dis-
tinguishing between alternative theories of the world, we would
like to have statistical procedures that are constrained enough by
social convention such that different researchers will reach the same
conclusion; this is what frequentist inference aims to achieve. This
is distinct from the problem of making optimal (policy) decisions,
where the above arguments make a strong case for an expected wel-
fare approach. Correspondingly, we see that in industry and finance,
a Bayesian approach is often the default option in settings such as
online experimentation and portfolio choice.

6. Extensions

This section discusses several extensions of the setting introduced
in Sections 2 and 3. First, we consider data where conditioning on
covariates Wi is necessary for Ti to be independent of 4i. We derive
formulas for posterior expected social welfare for this case. Next, we
briefly discuss non-normal outcomes Y. Then, we consider optimal
experimental design when the goal is to maximize social welfare, and
assess the social value of adding experimental observations. Finally,
we consider an alternative class of policy problems, where the goal is
to maximize the average of some observable outcome net of the cost
of inputs. The solution to this problem takes a form similar to the
one we derived for the problem of optimal insurance, with different
covariance functions D(t) and B(t).

6.1. Conditional independence

We now discuss the generalization of the setting of Section 3 to
the case where random assignment of Ti holds conditional on a vec-
tor of observable covariates Wi. Assume that we observe i.i.d. draws
of (Yi, Ti, Wi), that (as before) Yi = g(Ti, 4i), and that 4i is independent
of Ti given Wi.10 Let PW be the probability distribution of W, define
k(t, w) = E[g(t, 4i)|Wi = w], assume

Yi|Ti = t, Wi = w ∼ N(k(t, w),s2), (23)

and let

m(t) = E[g(t, 4i)] =
∫

k(t, w)dPW (w). (24)

Consider a prior for k( • , • ) of the form k( • , • ) ∼ GP(lk( • ), Ck( • , • )),
where now the mean function lk( • ) is a function of (t, w), and simi-
larly for the covariance kernel Ck( • , • ). Consider furthermore a prior

10 Note that 4i may subsume Wi , so that we could equivalently write
Yi = g(Ti , Wi , 4i).

for PW of the form PW ∼ DP(a, P0
W ), where DP(a, P0

W ) is the law of a
Dirichlet process such that E[PW ( • )] = P0

W ( • ), and a is the “precision”
of the prior. An introduction to Dirichlet priors can be found in Ghosh
and Ramamoorthi (2003). Assume finally that the prior is such that
k( • , • ) and PW are independent.

Under these assumptions, the posterior expectation of m(t) is
equal to m̂(t) =

∫
k̂(t, w)dP̂W (w), where k̂ and P̂W are the corre-

sponding posterior expectations. The posterior expectation of k(t, w)
is given by

k̂(t, w) = lk(t, w) + Ck(t, w) •
[
Ck + s2I

]−1
• (Y − lk), where

lk
i = E[k(Ti)|T , W] = lk(Ti, Wi),

Ck
i,j = Cov(k(Ti, Wi), k(Tj, Wj)|T , W) = C((Ti, Wi), (Tj, Wj)), and

Ck
i (t, w) = Cov(k(t, w), k(Ti, Wi)|T , W) = Ck((t, w), (Ti, Wi)). (25)

The posterior expectation of dPW(w) is equal to

dP̂W (w) =
a

a + n
dP0

W +
n

a + n
dPn

W , (26)

where Pn
W is the empirical distribution of Wi in the sample. Combin-

ing these results, we get

m̂(t) =l̂(t) + Ĉ(t) •
[
Ck + s2I

]−1
• (Y − lk), where

l̂(t) :=
a

a + n

∫
lk(t, w)dP0

W (w) +
1

a + n

∑
i

lk(t, Wi), and

Ĉ(t) :=
a

a + n

∫
Ck(t, w)dP0

W (w) +
1

a + n

∑
i

Ck(t, Wi). (27)

Similarly, for social welfare we get

û(t) =m̂(t) + D̂(t) •
[
Ck + s2I

]−1
• (Y − lk), where

m̂(t) :=k

∫ t

0
l̂(x)dx − t • l̂(t), and

D̂(t) :=k •

∫ t

0
Ĉ(s, t′)ds − t • Ĉ(t, t′). (28)

6.2. Non-normal residuals

So far, it was assumed that the outcomes Yi are conditionally
normally distributed. This seems a reasonable approximation in the
context of our application. When outcomes are not normally dis-
tributed, there are various possible ways to generalize our setting,
including the following two.

First, one could specify an appropriate alternative model for the
outcome Yi given Ti and Wi. Williams and Rasmussen (2006) dis-
cuss this in detail for the case of binary outcomes, for instance. This
approach has the advantage that it remains fully in the Bayesian
paradigm, with its desirable decision theoretic properties. It has the
disadvantage that the mapping from data to estimates becomes non-
linear and less transparent. In this case, computation of m̂ and û
generally requires numerical simulation.

Alternatively, one could use the exact same estimators for m( • ),
u( • ), and u′( • ) which we have been using, but re-interpret them as
posterior best linear predictors rather than posterior expectations.
This has the advantage of maintaining the transparent and simple
mapping from data to estimates. This is also in line with common
empirical practice. Most nonparametric regression estimators are
linear in the outcomes Y, and ordinary least squares regressions are
commonly fit in settings with non-normal outcomes. This approach
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has the disadvantage that it lacks the decision theoretic justifications
of the fully Bayesian approach.

6.3. Optimal experimental design and optimal sample size

The decision problem considered thus far was to pick a policy t
maximizing expected social welfare û given experimental data Y, T.
We can now take a step back and ask how to optimally design such
experiments in order to maximize ex-ante expected welfare. In addi-
tion, taking one more step back, we can ask what the optimal sample
size is, or equivalently, how to gauge the social value of an additional
experimental observation.

An experimental design is a vector of policy levels
T = (T1, . . . , Tn), assigned to a random sample of units i = 1, . . . , n.
The optimal design maximizes ex-ante expected welfare. Ex-ante
welfare, as a function of T, is defined assuming that the policy t is
chosen as t̂∗ = t∗(Y , T) once the experiment is completed. Define

û(T) : = E[max
t

û(t)|T] = E[û(t̂∗)|T]

= E[max
t

m(t) + D(t) •
[
C + s2I

]−1
• (Y − l)|T], (29)

where Y|T ∼ N(l, C + s2I). The optimal experimental design
T∗ satisfies T∗ ∈ arg maxT û(T). The dependence of û(T) on T is
implicit, through the dependence of D, C, and the distribution of Y
on the design points Ti. û(T) can be evaluated using simulation, and
solutions to the maximization problem can be found numerically.
Analytic characterizations are available in a working paper version of
this manuscript.

Consider now the value of adding observations to our sample, and
the value of the whole experiment. Both are characterized by the fol-
lowing value function for experiments of size n, assuming that both
the experimental design T and the policy t are chosen optimally,

û(n) := max
T

û(T) = max
T

E
[

max
t

û(t)|T
]

= E
[
û(t̂∗)|T = T∗] . (30)

The value of adding an observation to the sample is given by û(n +
1) − û(n). The value of the whole experiment is given by û(n) − û(0),
where û(0) = maxtE[u(t)] is the prior expected maximum of u. The
optimal sample size satisfies n∗ = arg maxn

(
û(n) − ∑n

i=1 c(i)
)
. Here,

c(i) is the cost of an additional unit of observation at sample size i.

6.4. Production objective

So far, we have considered optimal policy problems of a form
common in public finance, where social welfare reflects a trade-off
between public revenues and the welfare (utility) of transfer recipi-
ents or tax payers. Welfare is estimated indirectly in these settings,
since utility is not observable.

Another important class of policy problems is based on objec-
tives defined in terms observable outcomes. Such problems can be
described in the language of production functions. As an example,
consider an educational setting, where i indexes schools, and Yi mea-
sures long-run student outcomes of interest (or proxies for these
long-run outcomes such as test scores). The vector T ∈ R

dt is equal
to the level of educational inputs such as teachers per student (class
size), teacher salaries (affecting self-selection into teaching), school
facilities, extra tutoring, and length of the school year.

Average student outcomes in school i are determined by the
“educational production function” Yi = g(Ti, 4i), where 4i denotes
unobserved inputs such as students’ family backgrounds. The pol-
icy maker’s objective is to maximize average (expected) outcomes
E[Yi] across schools, net of the cost of inputs. The unit-price of
input j is given by pj. The policy maker’s willingness to pay for a

unit-increase in Y is given by k. This yields the objective function
u(t) = k • m(t) − p • t, where we define m(t) = E[g(t, 4i)], as before.

Given the assumptions of Section 3 (experimental assignment of
Ti, normal residuals, Gaussian process prior for m( • )), the posterior
mean for u is given by

û(t) = m(t) + D(t) •
[
C + s2I

]−1
• (Y − l), where now

m(t) = k •l(t) − p • t and

D(t, t′) = k • C(t, t′), (31)

and the optimal policy satisfies the first order condition û′(t̂∗) =
m′(t̂∗) + B(t̂∗) •

[
C + s2I

]−1 • (Y − l) = 0, as before, where now
B(t, t′) = k • ∂

∂t C(t, t′).
Examples of experimental evidence on the role of educational

inputs can be found in Fryer (2014), Angrist and Lavy (1999), Krueger
(1999), and Rivkin et al. (2005). Further examples for such choice-
of-inputs problems can be found in the experimental development
economics literature; cf. the survey in Banerjee and Duflo (2009).
The profit maximization problem of the firm, as treated in stan-
dard microeconomic theory (cf. Andreu Mas-Colell and Green, 1995
chapter 5), can be described in these terms as well.

7. Conclusion

This paper combines insights from the theory of optimal taxation
and insurance with insights from machine learning and nonparamet-
ric Bayesian decision theory. This paper proposes a framework based
on a standard social welfare function, (quasi-)experimental policy
variation, and Gaussian process priors, which leads to tractable,
explicit expressions characterizing the optimal policy choice. Apply-
ing the proposed method to data from the RAND health insurance
experiment, we find values for the optimal policy choice that are sub-
stantially different from those obtained using the standard “sufficient
statistics” approach.

This paper points toward a large area of potential applications
for machine learning methods in informing policy. Most commonly,
machine learning methods are devised to solve problems of predic-
tion. Relative to pure prediction problems, two additional conceptual
layers enter the problem of optimal policy choice. First, we need
some form of exogenous variation to arrive at causal estimates, so
that we can interpret predictions as counterfactual average out-
comes. Second, we need some basis for normative evaluations of
these counterfactual outcomes. One possible normative basis is the
class of social welfare functions which are considered in this paper.

Appendix A

This appendix provides additional background and technical
details to supplement our main discussion.

A.1. The envelope theorem

A key step in the derivation of the social welfare function in
Eq. (4) is the assumption that individuals’ behavioral responses do
not affect private welfare. This assumption is justified by the enve-
lope theorem. There are many versions of this theorem, this section
reviews a basic version. For further discussion, see Andreu Mas-Colell
and Green (1995), Milgrom and Segal (2002), and Chetty (2009).

Let t be a (policy) parameter, for instance the share of health care
expenditures covered by insurance, and let x be a vector of individ-
ual choices, such as the choice of when to visit a doctor or hospital.
Suppose an individual maximizes u(x, t) subject to x ∈ X, given t. The
set X captures all constraints faced by the individual. Let x(t) be the
individual’s choice given t, where we assume that she maximizes her



M. Kasy / Journal of Public Economics 167 (2018) 205–219 217

utility, x(t) ∈ arg maxx∈Xu(x, t). The individual’s welfare (maximum
utility) is given by

V(t) = u(x(t), t) = sup
x∈X

u(x, t). (32)

Let x∗ = x(t) for some fixed t, and define

Ṽ(s) = V(s) − u(x∗, s) = u(x(s), s) − u(x(t), s)

= sup
x∈X

u(x, s) − u(x∗, s). (33)

This definition immediately implies Ṽ(s) ≥ 0 for all s and Ṽ(t) = 0. If
Ṽ is differentiable at t, it follows that Ṽ ′(t) = 0, so that

V ′(t) =
∂

∂s
u(x∗, s)|s=t , (34)

where x∗ does not depend on s on the right hand side. Behavioral
changes are thus irrelevant for the welfare impact of a marginal pol-
icy change. General conditions to guarantee differentiability of V are
difficult to obtain; sufficient conditions are discussed in Milgrom
and Segal (2002). Note, however, that differentiability of x and in
particular continuity of the feasible set X are not required.

In the context of our health insurance application, the choice
vector x might include behavioral margins such as labor supply,
preventative health behavior, whether to visit a doctor, and which
doctor to visit. For a given choice vector x, the coinsurance rate t then
determines how much money the individual has available for con-
sumption other than health care. An individual’s utility ui depends
on all her choices and her consumption. The envelope theorem tells
us that the effect of a policy change on utility ui is the same as the
effect of the hypothetical increase in her consumption that would
result holding her current choices fixed. This effect can be calculated
mechanically, multiplying current health care expenditures by the
change in t.

A.2. General policy problem

Sections 2 and 6 discussed two common classes of policy prob-
lems in economics. These are special cases of a more general class of
policy problems, where we can write the social welfare function in
the form

u = Lm + u0, (35)

for a known function u0 on T ⊂ R
dt and a linear operator L mapping

the set of continuously differentiable functions m defined on T into
itself. The linear operator might be defined using operations such
as integration and multiplication by known functions. Maintaining
the same assumptions as before on experimental data and the pol-
icy maker’s prior, in particular m ∼ GP(l(.), C(., .)), where l and C are
defined on T again, and assuming the necessary continuity and dif-
ferentiability conditions, we get posterior expectations of the form

m̂(t) = l(t) + C(t) •
[
C + s2I

]−1
• (Y − l)

û(t) = m(t) + D(t) •
[
C + s2I

]−1
• (Y − l)

û′(t) = m′(t) + B(t) •
[
C + s2I

]−1
• (Y − l) (36)

where

m(t) = (Ll)(t) + u0(t),

D(t, t′) = Cov(u(t), m(t′)) = LxC(x, t′),

B(t, t′) = Cov
(

∂

∂t
u(t), m(t′)

)
=

∂

∂t
D(t, t′) =

∂

∂t
LxC(x, t′). (37)

In these equations, we write LxC(x, t′) to emphasize that this
expression applies the linear operator L to C(x, t′) as a function of x
for fixed t′.

With this more general formulation, we see immediately how
our baseline application extends to more general policy problems.
This includes, in particular, the case where t is a multidimensional
vector, including for instance tax rates for several tax brackets, or
features such as maximum deductibles in insurance plans. This also
includes the case where k is allowed to vary with t, so that u(t) =∫ t

0 k(x)m(x)dx − t • m(t).

A.3. Optimal taxation

A.3.1. Optimal consumption taxes
Suppose there are J goods j = 1, . . . , J, and that a proportional

tax tj is levied on consumption of good j. Assume that the supply of
goods is infinitely elastic, so that the prices pj are exogenously given.
Assume that consumer i chooses to consume Yi = g(Ti, 4i) ∈ R

J

when faced with tax vector Ti. Denote by m(t) the average con-
sumption vector across consumers, so that m(t) = E[g(t, 4i)], where
the expectation again averages over the distribution of unobserved
heterogeneity in the population of consumers. Suppose that the pol-
icy maker values an additional US$ for each consumer at the same
weight k < 1, relative to public revenues. Then, leveraging the enve-
lope theorem as before, the effect of a marginal change of t on social
welfare can be written as

∂tu(t) = (1 − k) • m(t) + t •∂tm(t).

This is exactly the same formula we encountered for the optimal
insurance problem, except that (i) the sign is flipped, since we
are now considering taxes rather than transfers, and (ii) the policy
parameter t is now multidimensional. With experimental (or quasi-
experimental) variation of Ti, we can identify the demand function
m, and the previous discussion applies almost verbatim.

A.3.2. Internalities
The approach discussed in this paper can also be extended to

problems in behavioral public finance. Consider the following set-
ting, based on Allcott and Taubinsky (2015). Let t be a subsidy of
choice 1 relative to choice 2, e.g., efficient vs. inefficient lightbulbs,
so that the relative price of choice 1 is c − t, where c is the difference
in costs of production. Let n(p) be the share of consumers choosing
option 1 when the price difference between the two options is p. Let
m(p) the average mis-perception of the value of option 1 relative to
option 2, for consumers marginal at price p. Allcott and Taubinsky
(2015) show that the effect on social welfare of a marginal change of
t can be written as

u′(t) = (t − m(c − t)) • n′(c − t).

A marginal increase of the subsidy t has a behavioral effect n′(c − t) <
0 on the share of consumer choosing option 2, which maps into an
increase −t • n′(c − t) of public expenditures on the subsidy, and an
increase of private consumer utility by −m(c − t)) • n′(c − t). Allcott
and Taubinsky (2015) experimentally assign prices and de-biasing
information, which allows them to observe the joint distribution of
willingness to pay before and after the de-biasing treatment. Using
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these data, one could again use Gaussian process priors to derive the
posterior distribution of m and n, and the corresponding posterior
expected marginal welfare change E

[
û′(t)|X

]
.

A.4. Explicit covariance kernels

Consider the optimal insurance problem of Section 2, where
u(t) = k

∫ t
0 m(x)dx − t • m(t), and a covariance kernel for the prior on

m( • ) of the form

C(t1, t2) = v0 + v1 • t1t2 +
1

v(0)
•v

(
t1 − t2

l

)
, (38)

where v is the standard normal pdf and l is a parameter determining
the length scale of the kernel. Denote the standard normal cdf by V.
We neglect covariates here for clarity of exposition; otherwise this is
the covariance kernel used in our application.

For this setting, we can provide explicit expressions for the
covariance functions D and B,

D(t, x) =k •

t∫
0

C(x′, x)dx′ − t • C(t, x)

=(k − 1)v0t + (k/2 − 1)v1xt2

+
1

v(0)
•

[
kl •

(
V

(
t − x

l

)
− V

(−x
l

))
− t •v

(
t − x

l

)]
, and

(39)

B(t, x) = (k − 1) • C(t, x) − t •
∂

∂t
C(t, x)

= (k − 1)v0 + (k − 2)v1tx +
1

v(0)

•

[
(k − 1) •v

(
t − x

l

)
− t

l
•v′

(
t − x

l

)]
= (k − 1)v0 + (k − 2)v1tx +

v
( t−x

l

)
v(0)

•

[
(k − 1) +

t • (t − x)
l2

]
.

(40)

We finally get

Var(u′(t)) =Var((k − 1) • m(t) − t • m′(t)) =

=(k − 1)2 • C(t, t) − 2(k − 1) • t •
∂

∂t′ C(t, t′)|t′=t

+ t2 •
∂2

∂t′∂t
C(t, t′)|t′=t

=(k − 1)2v0 + (k − 2)2t2v1 + (k − 1)2 +
t2

l2
. (41)

The latter expression is useful for the construction of credible sets;
cf. Section 3.

A.5. Equivalent kernel

By symmetry and unimodality of the posterior under our assump-
tions, the posterior expectation m̂(t) = E[Y|T = t] can be written
as a maximum a posteriori, that is, as the solution to the penalized
regression

m̂ = arg min
l(.)

[
1
s2

•
∑

i

(Yi − l(Ti))
2+ ‖ l − l ‖2

C

]
, (42)

where ‖ m − l ‖2
C is a penalty term. The norm ‖ m ‖2

C is the reproduc-
ing kernel Hilbert space norm corresponding to the covariance kernel

C. It is defined as the norm corresponding to an inner product on the
space of all linear combinations of functions of the form C(t, .) and
their limits, where 〈C(t1, .), C(t2, .)〉 = C(t1, t2), cf. Wahba (1990) and
van der Vaart and van Zanten (2008). By Eq. (9), the posterior expec-
tation can also be written in the form m̂(t) = w0(t) + 1

n

∑
iw(t, Ti) • Yi

for some weight function w. The weight function w(., Ti) thus corre-
sponds to the estimate of m̂ we would obtain if we had Yi = n and
Yj = 0 for j �= i, and if we replace l by 0. Representation (42) then
implies

w(., Ti) = arg min
l(.)

⎡⎣∑
j�=i

l(Ti)2 + (n − l(Ti))2 + s2 • ‖ l ‖2
C

⎤⎦
= arg min

l(.)

[
1
2

∫
l(t)2dFn(t) +

s2

2n
• ‖ l ‖2

C −l(Ti)

]
, (43)

where Fn is the empirical distribution function of T. If we replace
the empirical distribution Fn by the population distribution F in this
expression, we get an approximation of w by the solution to the
minimization problem

w̄(., t′) = arg min
l(.)

[
1
2

∫
l(t)2dF(t) +

s2

2n
• ‖ l ‖2

C −l(t′)

]
. (44)

The solution to this latter minimization problem is called the equiva-
lent kernel (cf. Silverman, 1984; Sollich and Williams, 2005; Williams
and Rasmussen, 2006 chapter 7). The equivalent kernel does not
depend on the data, but it does depend on the sample size n which
scales the penalty term ‖ m ‖2

C . The validity of this approximation
hinges on the uniform closeness of

∫
m(t)2dFn(t) and

∫
m(t)2dF(t).

We can feed this equivalent kernel approximation into our pol-
icy problem, to get an approximation to posterior expected social
welfare in terms of a weighted average of outcomes with deter-
ministic weights. For the general policy problem of Appendix A.1,
where u = Lm + u0, this yields û(t) ≈ ũ0(t) + 1

n

∑
iv(t, Ti) • Yi,

where v( • , Ti) = Lw̄(., t′). This approximation points toward a deriva-
tion of the frequentist properties of û( • ) and of t̂∗. In particular,
if m̂ is consistent at a fast enough rate and some conditions on
the weight functions hold, then the central limit theorem suggests
û(t)∼AN

(
u(t), 1

n Var(v(t, Ti) • Yi)
)

. A Taylor expansion around the opti-

mum suggests t̂∗∼AN
(

t∗, 1
n • u′′(t∗)2 Var(∂tv(t, Ti) • Yi)

)
.

A.6. Comparison to the sufficient statistics approach: numerical
examples

In Section 5, we discussed three reasons why our proposed
approach and the sufficient statistics plug-in approach yield differ-
ent answers. All three reasons contribute to a difference between
the policy levels recommended by the conventional approach and
by our proposal. How much each reason contributes numerically
depends on context. To gain some intuition, let us consider a series
of numerical examples, along the lines of our empirical application.

Let us start with a setting where the standard approach yields
the same answer as the approach maximizing expected welfare. Sup-
pose that we have a very large sample, so that sampling uncertainty
is negligible. Assume that m(t) = E[Y|T = t] = const. • (1 − t)−g,
so that the elasticity g is indeed constant in t and no bias arises due
to functional form mis-specification. Assume also that g is estimated
using a nonlinear least squares regression of Y on t based on this
functional form, so that the correct objective function is maximized.
Let, as before, k = 1.5, and assume g = 1/6. In this case, the
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elasticity at the optimum is estimated without bias or noise, and thus
t(ĝ) = t(g) = 0.9.

Let us next consider three deviations from this baseline, corre-
sponding to the three ways our approach differs from the sufficient
statistics approach. For each of these deviations, the sufficient statis-
tics approach yields a distorted answer, relative to maximization of
expected welfare.

Consider first the effect of estimation uncertainty. Assume that
E[m(t)|X] = const. • (1 − t)−g with g = 1/6. Then, the policy
choice maximizing posterior expected welfare is again given by
t∗(g) = 0.9. Suppose additionally that

Cov
(

m(t∗)
E[m(t∗)]|X]

,g(t∗)|X
)

=
E[m(t∗)g(t∗)|X]

E[m(t∗)]|X]
− E[g(t∗)|X] = 1/12.

The posterior expectation of g, is then equal to 1/12, so
that the sufficient statistics (plug-in) approach recommends
t∗(E[g(t∗)|X]) = t∗(1/12) ≈ 0.95. In this example, the welfare
maximizing approach chooses a smaller t than the sufficient statis-
tics approach. This arises because of a positive posterior covariance
between m(t∗) and g(t∗). Such a positive covariance is to be expected
when t∗ is at the right end of the support of observed T, as in the
RAND application. The covariance would be close to 0 when t∗ is at
the center of the support of T, and negative when it is at the left end.
The bias in policy choices induced by ignoring uncertainty can thus
go either way, for realistic scenarios.

Consider second the effect of mis-specified functional form. Sup-
pose that the elasticity g is not constant in t, but rather decreasing
in t; this appears to be the case in the RAND application. Assume in
particular that the true form of m is given by

log m(t) = log(E[Y|T = t]) = const.−g • log(1−t)−f • (log(1 − t) − log 0.1)2.

Here, f parametrizes deviations from the constant elasticity case. For
f > 0, the elasticity of m with respect to 1 − t is declining in t, while
the elasticity at t = 0.9 is still equal to g. When g = 1/6, the opti-
mal policy is again the same as in the baseline case, t∗(g) = 0.9.
Suppose that we have a large sample, so that uncertainty can be
neglected, with T uniformly distributed on [0, 0.95]. Suppose that
g = 1/6 and f = 1/6. Then, a least squares fit of the model m(t) =
E[Y|T = t] = const. • (1 − t)−g̃ would obtain an estimated elasticity g̃

of 0.53, and a corresponding plug-in policy choice t∗(0.53) = 0.74,
smaller than the expected welfare maximizing choice.

Consider third the effect of individual heterogeneity and the
choice of objective function for estimation. Assume that, given t, Y
is equal to 2000 with probability p(t) and equal to 1 with prob-
ability 1 − p(t), where p(t) = 0.4 ∗ (1 − t)−g. In this case, as
before, m(t) = E[Y|T = t] = const. • (1 − t)−g. If we estimate
m using nonlinear least squares regression of Y on T, we are in the

baseline case, and therefore choose the welfare maximizing policy
of t∗(1/6) = 0.9. Suppose now that instead we estimate −g as
the slope of a least squares regression of logY on log(1 − T). Sup-
pose that we have a large sample with T uniformly distributed on
[0, 0.95]. Then, the estimated elasticity would equal to g̃ ≈ 0.62,
and t∗(0.62) = 0.70. This upward bias in the estimated elasticity
arises because of the combination of a larger variance of Y for smaller
t, and the nonlinear transformation of estimating the regression in
logarithms rather than levels.
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