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Executive summary

Introduction

How should we regulate AI? This debate is often dominated by arguments
between "AI boomers" and "AI doomers" (Hao, 2025). AI boomers claim that
building "artificial general intelligence" (AGI) is the last problem that we need to
solve. Once AGI has been built, it will then take care of the rest - continuously
improving itself, while at the same time curing cancer, solving climate change,
etc. AI doomers similarly believe that AGI, once it has reached the threshold of
human intelligence, will continue to improve itself, but will ultimately - driven by
self-preservation - eliminate humanity.

In my book (Kasy, 2025) (University of Chicago Press, October 2025), I argue
that we need to step outside of this false dichotomy between AI boomers and
doomers. Both boomers and doomers share problematic implicit assumptions:
Both sides assume that the advent of AI is inevitable, intelligence is one-
dimensional, there is a threshold of human intelligence, and beyond this
threshold AI will exponentially self-improve. And both sides understand potential

The real AI governance challenge: Who gets to decide what AI systems
optimize for? Current debates miss that AI conflicts are between different
groups of people, not humans vs. machines.
Power flows from control of AI inputs: Those who control the means of
prediction (data, computing power, expertise, and energy) determine AI
objectives.

Current governance approaches fail: Individual privacy rights and market
mechanisms can't address AI's collective harms and benefits.

Democratic control is the solution: Give stakeholders affected by AI
decisions a voice in setting AI objectives.



problems with AI only as conflicts between human and machine, which are
described as problems of value alignment.

Against both boomers and doomers, I argue that the progress of AI is not fate but
rather a product of human choices. The key conflicts are not between humans
and machines but between different people. The answer to these conflicts is
shared democratic control of AI and of the objectives that it pursues: Those
impacted by algorithmic decisions need to have a say over these decisions.

In the following, I review and expand on this argument. I first discuss how all of
AI involves optimization of some measurable objective. Social conflicts around AI
are about the choice of these optimization objectives.

I then analyze how control of these objectives is based on control of the inputs
into AI - the means of prediction - which include data and compute, but also
expertise and energy. I will take a closer look at the production function of AI,
which relates inputs of data and compute to the average performance in terms of
the AI's objective. I will draw on both statistical theory and empirical patterns
observed by AI researchers in industry. These patterns, known as scaling laws in
the deep learning literature, have guided the trajectory of the AI industry in recent
years: They have motivated the massive scaling of data-centers for the training
and deployment of AI models, which has lead to the concentration of control over
AI in a small number of hands.

An analysis of the production function of AI provides the foundation for a
discussion of the political economy of AI, and of conflicts over control of data,
compute, and expertise. Externalities and market power are intrinsic features of
this technology. I conclude with some proposals regarding how we might
implement democratic control of the means of prediction, to give affected
stakeholders a say over AI objectives, and to ensure broadly beneficial uses of
AI.

Optimization errors and optimization objectives



What is "artificial intelligence" (AI)? Public perceptions have been subject to big
swings - from thinking of AI as an obscure academic niche field, to AI as
everything relating to data, and back to a narrower conception of AI as language
modeling. For our discussion here, it will be most useful to think of AI as the
construction of systems which maximize a measurable objective (reward). Such
systems take data as an input, and produce chosen actions as an output. This is
the definition provided by textbooks on AI, e.g. (Russell & Norvig, 2016).

There are many examples where AI, in this sense, is used in socially
consequential and controversial settings. This includes the algorithmic
management of gig-workers, and the automatic screening of job candidates to
filter out applicants at risk of unionization. This includes ad targeting, and the
filtering and selection of social media feeds to maximize engagement by
promoting emotionalizing (political) content. This includes predictive policing and
incarceration, and the jailing of defendants for crimes not yet committed. And this
includes the automated choice of bombing targets and times, for instance by the
systems "Lavender" and "Where is Daddy" in Gaza (Abraham, 2024). These
systems were used to select individuals as targets and predict when fathers
would be at home with their children, to bomb them together.

Based on the definition of AI as systems that optimize a measurable reward,
much of the current debate around possible problems, ethical issues, and risks
of AI focuses on optimization failures and mis-measured objectives. Social media
algorithms might for example be criticized for maximizing short term click rates
by providing click-bait, rather than maximizing long-term engagement. Algorithms
assigning risk-scores to defendants in court might be criticized for failing to
maximize incarceration rates of future perpetrators. Language models might be
criticized for failing to provide answers evaluated as helpful by humans.

In (Kasy, 2025), I argue that this focus on failures to optimize the intended
objectives misses the key issue: Applications of AI are typically not controversial
because AI failed to achieve its objective. They are instead controversial
because the chosen objective itself is controversial. Put differently, there is not
just one objective that AI might or might not successfully maximize. Instead,
different people have different objectives, and automated decisions generate



winners and losers. Who gets to choose the objectives of AI is thus the crucial
question.

In practice, the objectives are chosen by those who control the necessary inputs
of AI. Almost all modern AI is built on machine learning, that is, on the automated
statistical analysis of large amounts of training data. The most common form of
machine learning is supervised learning, or prediction. In supervised learning,
outcomes or labels are predicted given features: Unionization might be predicted
given job applicant portfolios; ad-clicks might be predicted given user histories;
future police encounters might be predicted given a defendants' socioeconomic
characteristics; whether a bombing target is at home might be predicted given
mobile-phone based movement patterns.

Because so much of AI is based on prediction, the most important inputs of AI
are the means of prediction - data, compute, expertise, and energy, in particular.
Who controls these inputs controls AI.

Language models

Applications of AI such as those described above are both widespread and
socially consequential, but not necessarily the most visible. Much of public
attention in recent years has instead focused on large language models (LLMs),
and on applications based on these, such as ChatGPT by OpenAI, or Claude by
Anthropic.

Large language models are, in essence, statistical prediction models for the next
word in a text, given the preceding words (Vaswani et al., 2017), (Jurafsky &
Martin, 2023). They are trained on very large quantities of text; by now,
essentially the entire internet, including transcribed Youtube videos. These LLMs
also have a very large number of parameters, on the order of 100 billion at the
time of writing (https://en.wikipedia.org/wiki/Large_language_model). LLMs are
trained iteratively, using a method called stochastic gradient descent (Bottou et
al., 2018), until predictions stop improving for a hold out sample of data points
that are not used directly in the training process.

https://en.wikipedia.org/wiki/Large_language_model


The foundation models trained in this way are very powerful - they are essentially
a compressed version of the entire internet (Chiang, 2023). But that is also
where one of their key problems lies: The internet has many dark corners. These
foundation models are quite prone to produce anything from genocidal
propaganda to child sexual abuse materials. For this reason, these foundation
models cannot be directly used for any application. Instead, they need to be
post-trained, using human annotations. The process where language models are
post-trained to predict responses that are flagged as "helpful" or "harmless" by
human annotators is known as reinforcement learning from human feedback (Bai
et al., 2022). An entire industry has sprung up hiring precarious, low wage
workers in countries such as Venezuela or Kenya, who spend their days reading
LLM generated descriptions of violence and abuse, flagging them as problematic
where appropriate (Hao, 2025), and bearing the psychological costs that this
work entails. Another variant of the post-training approach involves training on
problems with well-defined solutions, from the domains of mathematics of
coding. The LLMs are trained to predict the solutions of these problems, based
on the problem description; the resulting capabilities have been branded as
reasoning by the industry.

How does this description of LLMs fit into the general conception of AI as
maximizing measurable rewards? The rewards that LLMs maximize during
training are a weighted combination of (1) the ability to predict the next word on
the internet, and (2) the ability to make predictions that get high ratings,
according to the criteria specified for human feedback. It is in this second stage
that owner values and objectives become most explicitly incorporated. At the
time of writing, for instance, we could witness the transformation of Grok, the
LLM controlled by Elon Musk, into a chatbot that regularly produces far-right and
antisemitic posts.

Scaling laws and the production function of AI

AI models based on supervised learning need training data, and they need
compute. Availability of both of these inputs is a binding constraint in practice. To
understand the relative importance of these different inputs, it is important to
analyze the production function of AI. This production function of AI is a well-
defined object: Because any AI system has an explicitly specified objective



(reward), we can evaluate its output in terms of the average reward that it
achieves. We can furthermore ask how performance in terms of this reward
relates to the available inputs of data and compute.

I will first sketch the nature of this relationship theoretically. To describe the
production function of AI, we need to review the concepts of overfitting,
underfitting, and model complexity. I will then discuss the empirical counterpart
of this relationship, which has received considerable attention in the industry. I
lastly review how the estimated production function of AI has informed decisions
in the AI industry over the last few years.

Theory of scaling laws

Statistical theory provides surprisingly specific characterizations of the
production function of AI. In supervised learning, where the goal is to make
predictions for new observations, the objective is to make small, or infrequent,
prediction errors. For a given learning algorithm (prediction method), we can
decompose the prediction error into two parts:

There is, first, the predictor variance. This is due to random fluctuations in the
training data. An algorithm with a lot of variance is prone to overfitting - it
erroneously extrapolates random fluctuations to new observations. As an
algorithm gets more data, the variance goes down. That is why more data
improves AI models.

There is, second, the predictor bias. This is typically due to the fact that the
algorithm is too simple to faithfully reflect the true relationship between predictors
and outcomes. A biased algorithm is prone to underfitting - it does not pick up on
some patterns that are observable in the data. As an algorithm fits more complex
models, the bias goes down - but the variance goes up. That is why more
compute (which allows for more model complexity) improves AI models - but only
if data is abundant.

Any good prediction algorithm needs to carefully trade off underfitting and
overfitting, by adjusting model complexity in some way or other. This is illustrated



in the following figure (reproduced from (Kasy, 2025)). Models with low
complexity tend to underfit, and lead to high prediction errors in both the training
data and for out-of-sample observations (that were not used in training). As
model complexity increases, prediction errors in the training data go down. But
when complexity gets too large, the algorithm becomes prone to overfitting, and
out-of-sample prediction performance deteriorates.

In deep learning, this tradeoff is typically resolved by using early stopping, where
training time determines effective model complexity: The algorithm continuously
updates the neural network parameters (using a method such as stochastic
gradient descent) to improve in-sample prediction errors. Along the way,
prediction performance out-of-sample is evaluated using data that were set aside
from the start. When out-of-sample performance stops improving, the training
algorithm stops.

What does this description tell us about the production function of AI? The key
inputs for training a model, such as a deep neural network, are (1) data, with a
number of observations D, and (2) compute, as measured by the number of
computational operations C. The necessary compute for training in turn is
roughly equal to the number of model parameters (size of the neural network) N ,
times the number of training steps S, C = N ⋅ S. Deep learning practitioners
acquire as much data D as they can, choose a model size N , and then train for a
number of steps S determined by early stopping - or until they exceed their
available budget of compute. They are thus interested in the production function
L(N ,D), which maps model size and data size into expected prediction loss.
Model size N  is chosen as a function of the compute budget C, N = N(C), to
optimize performance.



Statistical theory, as sketched above, tells us a few things about the functions
L(N ,D) and N(C): (1) As data D increases, for fixed model complexity, loss
goes down, because variance (overfitting) is reduced, but with decreasing
marginal returns to sample size. (2) As compute increases, if training is compute-
constrained, then loss goes down, because bias (underfitting) is reduced, but
with decreasing marginal returns to additional compute. (3) If compute is not a
binding constraint, then complexity C should increase with data size D to
optimally trade off bias and variance.

More careful analysis allows us to quantify these patterns based on the difficulty
of the underlying prediction problem. Theoretical characterization of scaling laws
is the subject of an active are in theoretical machine learning research; see e.g.
(Bach, 2023) and (Lin et al., 2025).

Empirical scaling laws for LLMs

Do these theoretical predictions hold up empirically? This question has been of
central importance for the AI industry, especially since its pivot to a singular focus
on large (language) models from around 2020: These models have required
billions of dollars of investment in both compute and data. An analysis of
production functions has been key for industry decisions regarding the allocation
of resources, and in determining the expected returns (in terms of model
capability) for large investments.

A series of papers, mostly authored by researchers at tech companies, has
explored production functions for deep learning, by systematically varying the
scale of model size N , compute C, and data size D. An early and very influential
example is (Kaplan et al., 2020), by researchers at OpenAI. By fitting parametric
models to expected loss, they obtained an empirical scaling law (production
function) L(N ,D), mapping inputs into predictive performance. In their
experiments, a variety of architectural choices regarding how to structure the
neural network used, such as depth versus width, appeared to be only of
secondary importance.



These empirical patterns have since been revisited by a series of studies, such
as (Hoffmann et al., 2022) at Google DeepMind, who proposed a production
function (scaling law) of the form

L(N ,D) =
A

N α
+

B

Dβ
+ L0,

where α = .34 and β = .28. This law tells us, in particular, how much predictive
performance can be improved by scaling compute N , and also gives a lower
bound L0 which can not be crossed regardless the scale of inputs, given the
inherent entropy of language.
More recently, (Muennighoff et al., 2025) provide an empirical analysis in the
case where data is the binding constraint, rather than compute - which is where
language modeling finds itself at the moment.

Regardless of these various revisions, the basic point has held: Predictive
performance scales with compute and data, but with decreasing marginal
returns. Extrapolation suggested that very good performance could be achieved
by scaling both compute and data, Reversely, the winner in a commercial race to
dominate the AI industry needed to invest in acquiring both compute and data at
a massive scale; dominance was not to be achieved by smart ideas around
algorithm design alone.

The scramble for scale

This recognition of empirical scaling laws has triggered a massive scramble for
scaling large language models since around 2020. Both the number of training
tokens D (tokens are sub-divisions of words; so this corresponds roughly to
number of words), and the number of model parameters N , has increased
exponentially. The following figure (reproduced again from (Kasy, 2025), based
on data from Wikipedia, “Large Language Model,” accessed October 1, 2024,
https://en.wikipedia.org/wiki/Large_language_model) illustrates this scramble for
dominance in the AI industry (note the logarithmic vertical scale on both plots!).
This figure plots the number of training tokens D and the number of model
parameters for the leading large language models, by model release date.

https://en.wikipedia.org/wiki/Large_language_model
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This scramble for scale has been extremely costly. Open AI, for instance, has
raised a total of 57.9 Billion US$ at the time of writing
(https://tracxn.com/d/companies/openai/__kElhSG7uVGeFk1i71Co9-
nwFtmtyMVT7f-YHMn4TFBg, accessed July 10, 2025), much of which was
spent on compute. The required data centers, for both training and deployment,
have a large environmental footprint in terms of both energy and freshwater use
(needed for cooling) (https://ig.ft.com/ai-data-centres/, accessed July 31, 2025).
This scramble for scale has also made it impossible for any non-commercial
entities to compete, crowding out much of the diverse academic AI ecosystem
existing previously.

Future potential

Production functions can guide corporate allocation decisions. But they can also
help us answer questions of broader societal relevance: (1) What future
improvements can we expect from pursuing this technological path? (2) Who is
going to reap the economic benefits of this technology? And (3) what levers do
various actors have to reclaim democratic control of this technology in the public
interest? We first discuss (1), before turning to (2) and (3) in the following
section.

What is the likely trajectory of AI in the coming years? The most fundamental
constraint, both for language models and for machine learning across a range of
domains, is data availability. Once all the text on the internet, all existing books,

https://tracxn.com/d/companies/openai/__kElhSG7uVGeFk1i71Co9-nwFtmtyMVT7f-YHMn4TFBg
https://tracxn.com/d/companies/openai/__kElhSG7uVGeFk1i71Co9-nwFtmtyMVT7f-YHMn4TFBg
https://ig.ft.com/ai-data-centres/


and all auto-transcribed Youtube-videos have been fed into the training data,
there is not much language data left that might be acquired.

This has prompted a number of reactions in the industry. First, more and more
data of lower quality has been fed into these models, including data from the
darkest corners of the internet. But that approach, too, seems to have largely run
its course. Second, data "manually" annotated by humans, for specific tasks, has
been collected, to create chat-bots such as ChatGPT. This has been crucial for
turning generic language models into usable tools, but it is also time consuming
and rather costly, and not easily scalable. Relatedly, curated problems with
known true solution - in particular in math and in coding - have been used to
guide language models towards problem-solving abilities. Third, there has been
an attempt to scale compute not at training time (as described above, which has
decreasing returns for fixed data size), but instead at inference time - whenever
a user submits a prompt to the model. All of these have yielded some
improvements, but they will not overcome the fundamental limits of scaling when
data is, ultimately, limited.

Moving beyond language models, and turning our focus back to the many other
socially consequential applications of AI, there is great variation in terms of the
potential for an approach based on statistical learning. In domains where data is
more limited than for language modeling, data can be expected to be the binding
constraint, rather than compute. The potential for machine learning approaches
is fundamentally governed by the amount of potentially available data, relative to
the complexity of the underlying prediction problem. This holds regardless of the
specific machine learning approach or model class used.

We can see this in a number of domains where the promise of machine learning
has not been borne out, thus far. One example is genomics. After the initial
excitement around the Human Genome Project in the early 2000s, many of the
promised medical and scientific breakthroughs have not materialized (Ball,
2023). With hindsight, that might be not all that surprising: Given the number of
genes in the human genome, and given that most biological processes involve
complex interactions of multiple genes and environmental factors (contra the
Mendelian model of one gene corresponding to one "trait"), the amount of



observations needed for reliable predictive patterns greatly exceeds the number
of living humans, whose genomes could possibly be sequenced. An intermediate
example are self-driving cars. Despite partial successes based on complicated
systems that combine many approaches, the promise of statistical learning
leading to safe autonomous driving has not materialized thus far. Companies
such as Tesla have however collected billions of hours of driving footage at this
point, so maybe predictive performance will be sufficient for practical use at
some point. Another example is macroeconomic forecasting: There is ultimately
only one observation that we have of the US in the aftermath of the 2008
financial crisis; no amount of algorithmic tinkering will overcome the limitations
this imposes on statistical extrapolation.

There are, of course, many other domains where the relationship of data-
availability to complexity turns out to be more favorable. One extreme example is
game-play in games such as go or chess, which has been solved using deep
reinforcement learning (François-Lavet et al., 2018) by generating vast amounts
of games based on self-play, which became possible once enough compute was
available (Silver et al., 2017).

The scramble for data

Who gets to control the relevant inputs of AI, and thereby gets to control the
objectives that are maximized? Who are possible agents of change, who have
the ability and willingness to align the objectives of AI with socially desirable
goals? What existing and legal instruments can be used to promote such
alignment. What ideological obfuscations prevent us from doing so? (Kasy, 2025)
discusses all these questions. Here I want to focus only on the question of
control over data that describe individuals. Such individual data are the data that
matter most for socially contested applications of AI.

Privacy and data externalities

Control over individual-level data is intimately connected to the question of
privacy. The most well-known piece of privacy legislation is the General Data
Protection Regulation (GDPR) of the European Union, which went into effect



across Europe in 2018 and has since been adopted, with minor modifications, in
a range of other countries. The GDPR gives wide-ranging control rights to
individuals (data subjects) regarding data that concern them. We can interpret
the GDPR as granting individual property rights over data. Individuals can
withhold their data, have them deleted, or share them at will, in exchange for
services or other material benefits.

When such individual property rights over data are in place and effectively
enforced, then data can only be collected if it is individually rational to share
them. Companies that want to collect data, for example for the purpose of
targeted advertising or individualized pricing, thus need to create mechanisms
where individuals voluntarily share private information. Computer science has
studied the creation of such mechanisms.

The literature on differential privacy (Dwork & Roth, 2014) in computer science
provides a coherent formalization of how to make individuals indifferent about
contributing their data, regardless of what downstream decisions might be made
based on the output of the mechanism. This turns out to be equivalent to
protecting the identity of individuals who contribute data to some dataset.
Differential privacy is a property of mechanisms that release information about a
dataset. Differential privacy requires that no one with access to the output of the
mechanism can draw inferences about whether a specific individual is included
in the dataset or not - regardless of what additional information or computational
tools they possess. (Formally, these statements only have to hold with sufficiently
high probability.)

There are many mechanisms that guarantee differential privacy. Any such
mechanism needs to employ some degree of randomization. Importantly, as has
been shown in machine learning theory, it is possible for supervised learning
algorithms to learn predictive patterns without violating differential privacy.
Consider the example of a linear regression, where an outcome Y  is predicted
using a linear function of features X with coefficients β, ˆY = X ⋅ β. Then it is
possible to get a reliable estimate of β without revealing any information about
whether any particular value of (Yi,Xi) was in the data (cf. (Dwork & Roth, 2014),
chapter 11).



The upshot of these theoretical results is that machine learning is all about the
patterns (β, in the regression example), not about the individual observations
(Yi,Xi). This implies that differential privacy can be implemented without
affecting any down-stream decisions based on machine-learning and AI. We can
in particular have individual-property rights over data, and implement
differentially privacy data-collection to make it individually rational to share, and
yet leave all down-stream harms and benefits of AI unaffected!

To give an example, a health insurance company might learn how to predict
certain diseases based on publicly available features Xi. Any individual might
rationally be willing to share their health data, if these are protected by a
differentially private mechanism. But after the insurance learns to predict the
presence of the disease, all affected patients will be excluded from health
insurance.

This is an example of what economists have called data externalities (Acemoglu
et al., 2022). Because learning is all about externalities, individual data property
rights are toothless for managing the harms and benefits of AI. This has led to
calls for more collective forms of data governance (Viljoen, 2021); I will return to
this point in the conclusion.

Artificial natural monopolies and network effects

There is a second reason why individual data property rights do not provide a
solution. Even leaving aside the question of data externalities, we might be
practically compelled to use certain platforms that collect our data, because
being on the platform provides a positive benefit relative to any outside option or
competing platform.

This is especially obvious for social networks: These networks are useful and
enjoyable to the extent that they allow us to connect to other people or creators
on the same platform. The platforms thus create network effects. Because it is
almost impossible to collectively coordinate to switch to a different platform,
these platforms look like natural monopolies; they are more useful the larger their
user base is. This, in turn, implies that there is a surplus for any user who is on



the platform, relative to the outside option. That surplus can be extracted by the
platform by implementing surveillance and data-collection, even when
surveillance is individually costly.

But are platforms really natural monopolies? Not quite: The network effects
which sustain them are artificially and intentionally created - we might call them
artificial natural monopolies. In fact, there is no technical reason whatsoever
which prevents users on one platform from connecting with those on another
platform. Consider, for comparison, how phone providers operate. When you
want to call your friends, they don't have to be using the same phone provider as
you - phone networks are said to be interoperable. As a consequence, you can
choose a phone plan without consideration of network effects, and there is actual
competition between phone providers.

The network effects of digital platforms, from social media to gig work platforms,
are thus artificially created. (Doctorow, 2023) coined the memorable term
enshittification for the trajectory that such platforms undergo: At first, they provide
quality service for free, to grow their user base. Then they actively prevent
interoperability (which would technically be no problem to maintain) to create
network effects. Once their user base is large enough, this by itself provides a
surplus relative to alternative platforms. That surplus is then extracted, in
particular in the form of data collection and surveillance.

Democratic control

To recap, artificial intelligence is automated decision-making to maximize some
measurable objective. The most important question about AI is how this objective
is chosen, and by whom. In practice, the objective is determined by those who
control the means of prediction, in particular data and compute, as well as
expertise and energy. In order to better align AI with socially desirable objectives,
we need to create institutions that give those who are affected by AI decisions a
say over the choice of the objective that is maximized.

Market-based mechanisms won't allow us to achieve this goal. Machine learning
and AI are fundamentally about the externalities of data collection and pattern



recognition, so that individual property rights won't allow us to regulate the harms
and benefits of AI. Many applications of AI furthermore involve distributional
conflict, which requires a social negotiation of the harms and benefits accruing to
different people.

Consider social media: Algorithms that curate social media feeds typically
maximize engagement. They often do so by promoting emotionalizing political
content, which arguably undermines the democratic process and the possibility
public deliberation of important questions. Consider individualized pricing and gig
work platforms: Much corporate effort goes into data-collection for the purpose of
estimating individual consumer demand or labor supply of gig workers. Machine
learning then allows these companies to set individualized prices that maximize
platform surplus, while extracting all consumer or worker surplus. Consider
workplace automation: AI might be used in ways that either substitute or
augment human workers, shifting marginal productivities up or down. How AI is
deployed thus impacts whether it leads to shared prosperity or to a further
concentration of wealth. The absence of market-based mechanisms to address
social harms is even more glaring in the case of predictive incarceration or AI-
based warfare and assassinations.

How, then, could we start building institutions for the democratic control of AI?
We need effective legal frameworks that give stakeholders a voice - whether for
social media-platforms, gig work, workplace automation, or predictive policing.
Such voice, furthermore, cannot only be based on a check on a national ballot
every four years.
Instead, it takes active deliberation and informed public debate across these
domains. Such debate is possible. While the technical details of AI might be
complicated, the fact that it maximizes well-specified measurable objectives is
not.

Deliberation and decision-making across these domains could be based on
various institutional arrangements. One attractive set of proposals involves
sortition (Landemore, 2020), as familiar from jury duty: A randomly selected and
representative set of stakeholders gets to meet regularly, to debate and acquire
information, and to then make decisions. Another interesting option is liquid



democracy: Rather than relying on a separate class of professional
representatives, everyone is entitled to vote on important issues, or alternatively
delegate their vote to any other individual, who in turn might delegate further.
Digital tools can be used to facilitate this process.

This, then, is the main task for our future: To develop and implement institutions
and mechanism for the democratic control the goals of AI by controlling the
means of prediction. This is the only way for maintaining collective self-
determination, and for aligning the objectives of AI with those of society at large,
to avoid a dystopian future where we are ruled by AI systems acting in the
interests of a small oligarchy.
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