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Screening and Selection

• Frequentist statistical guarantees control performance under
repeated sampling
• That is, if we could draw the data multiple times in a given situation,

certain properties would hold on average across data realizations

• The way in which statistical procedures are commonly applied
often doesn’t match the sampling thought experiment
• We might only write up/publish certain findings
• We might choose the target for inference based on the data

• In such cases, standard statistical procedures can yield
non-standard behavior



Example: Randomized Trial

• To illustrate, imagine that we conduct a randomized trial of a job
training program

• Usual statistical procedure:
• Compare average outcomes in treatment and control groups
• Conclude that treatment has an effect if the difference in average

outcomes is large relative to the standard error

• Analogously, we can analyze the effect of treatment within
observable subgroups of the sample, e.g. based on location or
prior employment history

• Usual statistical guarantee: under regularity conditions, if
treatment in fact has no effect, we will mistakenly conclude that
there is an effect at most α (e.g. 5%) of the time



Screening and Selection

• The usual statistical guarantee fixes a procedure (e.g. run the
experiment and take the difference-in-means) and asks how it
performs over repeated draws of the data

• Empirical practice often differs from this idealized description
• Our experimental result may only be written up or published if it is

positive and statistically significant⇒ screening/publication bias
• We might focus our analysis on the subgroup with the largest effect
⇒ selection bias

• There is an active literature in statistics and related fields which
aims to correct for these issues
• My goal today: provide a brief review of this literature, some of the

tools it suggests, and some of the questions that it raises



Decision Theory Without
Screening or Selection



Decision Theory Without Screening or Selection

• Suppose we observe X ∼ F (µ) for an unknown parameter µ

• For today, will specialize to X ∼ N (µ,Σ) for µ ∈ RJ and Σ known
• For X a vector of estimates based on underlying, potentially

non-normal observations, justified in many contexts by the central
limit theorem

• Suppose we are interested in a parameter θ = v ′µ ∈ R

• For a set of possible actions A, and a loss function L, we want to
choose a decision rule δ (X ) to achieve a low expected loss

Eµ [L (δ (X ) , θ)] .

We may also require this rule to satisfy some additional
constraints



Example: Randomized Trial

• In the job-training experiment, the vector X could collect
treatment-control differences across J demographic subgroups
• So long as the number of trial participants in each subgroup is

large, the central limit theorem justifies the approximation

X ∼ N (µ,Σ)

for Σ a diagonal matrix

• We can consider different target parameters θ in this context
• For ωj the population share of group j and v = (ω1, ..., ωJ )′,

θ = v ′µ =
∑

j

ωjµj

captures the average treatment effect in the population
• For v = ej = (0, .., 0, 1, 0, ..., 0) the j th standard basis vector,

θ = v ′µ = µj

captures the average treatment effect in subgroup j



Loss Functions and Constraints

• For estimation we can take A = R and consider squared-error
loss L (a, θ) = (a− θ)2

, so

Eµ [L (δ (X ) , θ)] = Eµ

[
(δ (X )− θ)2

]
corresponds to mean squared error

• We may further impose unbiasedness or median-unbiasedness,

Eµ [δ (X )] = θ or Medµ (δ (X ) > θ) =
1
2

for all µ

• To quantify uncertainty we might focus on confidence intervals,
taking A to be the set of closed intervals in R, define L (a, θ) = |a|
as the length of a, and impose a coverage constraint,

Prµ {θ ∈ δ (X )} ≥ 1− α for all µ

potentially along with other constraints



Optimal Decision Rules

These problems have well-known solutions

• The maximum likelihood estimator

θ̂ = v ′X

is the best (median-)unbiased estimator for θ, in the sense that
for any other (median-)unbiased estimator θ̃,

Eµ

[(
θ̂ − θ

)2
]
≤ Eµ

[(
θ̃ − θ

)2
]

for all µ

• Similarly, for σθ̂ =
√

v ′Σv the standard error of θ̂, confidence
intervals of the form [

θ̂ ± c · σθ̂
]

are optimal in various senses
• c = 1.96 for gives the standard 95% confidence interval.



Screening and Selection

• The decision-theoretic setup above made two assumptions
1. We care about performance on average across all realizations of X
2. The target parameter θ = v ′µ is the same for all realizations of X

which can fail in practice

• I’ll refer to failures of (1) as screening and failures of (2) as
selection

• Warning: useful shorthand for today, but these are not
consistently adopted terms in literature



Screening



Screening Problems

• Above, we averaged performance over all realizations of X

• Sometimes, however, we may only care about performance over
a subset of data realizations

• To formalize this, suppose that for a screening variable S
1. The conditional distribution of S|X does not depend on µ
2. We only care about behavior conditional on S = 1, e.g.

Eµ [L (δ (X ) , θ) |S = 1] , Eµ [δ (X ) |S = 1] , Prµ {θ ∈ δ (X ) |S = 1}



Example: Randomized Trial

• In the randomized trial example, suppose θ corresponds to the
average treatment effect over the population

• Randomization ensures that θ̂ = v ′X is unbiased for θ on
average across data realizations
• But not all estimates θ̂ are equally likely to be published
• An extensive literature expresses concern about, and provides

evidence of, publication bias
• A few recent examples include Open Science Collaboration (2015),

Bruns and Ioannidis (2016), and Camerer et al. (2016)



Example: Randomized Trial

• To study publication bias in this example, let S = 1 be an
indicator for the event that a given estimate θ̂ gets published,

S = 1
{

Estimate θ̂ gets published
}

• We assumed that that the conditional distribution S|X does not
depend on θ

• Means that publication decisions depend only on estimates, and
not on the underlying parameters once we hold the experimental
results fixed

• Publication decisions could depend on many factors
• Preference for positive results
• Preference for surprising results
• Preference for results consistent with previous literature



Example: Randomized Trial

• Here, I’ll focus on an example from Andrews and Kasy (2019)
• Preference for statistically significant results: many papers in the

literature point to this
• Specifically, let Z = θ̂/σθ̂ ∼ N (ω, 1) denote the estimate,

standardized to have variance one
• Suppose results that are significantly different from zero at the 5%

level (i.e |Z | > 1.96) are 10 times more likely to be published than
are statistically insignificant results

Pr {S = 1|X} ∝

1 if X implies |Z | > 1.96

0.1 otherwise

• What is the effect of such screening on the distribution of
published results?



Example: Randomized Trial
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Screening Problems

• While I’ve discussed screening in terms of publication bias, note
that it doesn’t matter who’s doing the screening
• e.g. authors choosing not to write up results vs. journals choosing

not to publish
• Hence, “screening” as discussed here covers many forms of

so-called “p-hacking”

• Moreover, some practices which are recommended on other
grounds generate the same issues
• e.g. dropping models where a specification test suggests the

model is incorrect



Corrections for Screening

• Fortunately, some results in statistics provide powerful tools to
correct for screening

• Let fX (x |µ) denote the density of X without screening. Bayes
rule implies that the conditional density of X given S = 1 is

fX |S=1 (x |µ) =
E [S|X = x ] fX (x |µ)

Eµ [S]

• This implies that if fX (x |µ) has exponential family structure (as is
true for the normal distribution) then fX |S=1 (x |µ) does as well

• Results in statistics then deliver optimal median-unbiased
estimators, optimal confidence intervals for θ = v ′µ



Example: Randomized Trial



Selection



Selection Problems

• In screening problems, we only cared about some values of X ,
but always cared about the same target θ

• In selection problems, by contrast, we want to conduct inference
on θX = v (X )′ µ

• Hence, we may have a different target for inference for different
values of X

• Selection problems of this sort have been extensively studied in
the recent statistics literature
• Motivated by model selection concerns: let MX be the model

selected when realized data are X , and define θX as the target
parameter under this model

• e.g. Berk et al. (2013), Lee et al (2016), Fithian et al. (2017)

• Selection problems also arise outside the context of model
selection, however



Example: Randomized Trial

• Recall that in this example, X records the treatment-control
differences over J different subgroups

• We might be interested in the effect of treatment on the group for
whom treatment appears most effective,

θX = e′
ĵµ, ĵ = arg max Xj

• Alternatively, we might be interested in the average effect of
treatment across those subgroups where it appears helpful,

θX = v (X )′ µ, vj (X ) =
ωj1 {Xj > 0}∑
j ωj1 {Xj > 0}



Example: Randomized Trial

• As with screening, selection generally invalidates conventional
inference approaches

• To illustrate, use an example from Andrews et al. (2023)

• Calibrate a simulation based on data from a randomized trial of
job-training programs, conducted at 13 different sites
• JOBSTART Experiment, conducted by US Department of Labor
• Program at one site appeared most effective
• This site was subsequently selected as the model for a subsequent

replication study conducted at new sites
• Results in replication turned out to be disappointing



Example: Randomized Trial

Simulations take the experimental results as starting point

• Scale up/down to vary the heterogeneity in effect sizes across
sites

• For a given effect size, simulate draws of experimental results,
and ask how selecting the site with the largest estimated effect
impacts inference

• Vertical line shows scaling to match unbiased estimate for
variance of effects across sites.



Example: Randomized Trial
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Selection Problems

• We see that, like screening, selection can invalidate conventional
inference procedures
• Estimated effect sizes are biased upwards
• Conventional confidence intervals under-cover

• The selection problem introduces a new wrinkle relative to our
analysis so far: the target parameter θX is now random
• Different target parameters for different data realizations

• This suggests two possible routes forward:
• We could condition on v (X ) to remove this randomness...
• ... or we could not



Conditional Inference

• By conditioning on v (X ), I mean requiring conditional median
unbiasedness or conditional coverage

Medµ (δ (X ) |v (X ) = ṽ) = ṽ ′µ

Prµ {ṽ ′µ ∈ δ (X ) |v (X ) = ṽ} = 1− α
for all µ, ṽ

• However, this immediately returns us to the selection case by
defining S = 1 {v (X ) = ṽ}
• Hence, we know how to construct optimal estimators and

confidence sets once we condition on the target parameter

• This route was advocated by Fithian et al (2017):

Our guiding principle is: The answer must be valid, given that
the question was asked.



Unconditional Inference

• Alternatively, we could focus just on unconditional bias and
coverage, requiring that

Medµ (δ (X )− v (X )) = 0
Prµ

{
v (X )′ θ ∈ δ (X )

}
≥ 1− α

for all µ

• Unconditional inference is less demanding
• Any procedure that is conditionally valid for all ṽ is also

unconditionally valid by the law of iterated expectations
• This also means that the class of unconditionally valid procedures

is larger⇒ may be able to obtain better performance



Unconditional Inference

• Berk et al. (2013)’s initial proposal for unconditional inference
amounts to forming a joint confidence set for µ, that is, a set
CSµ = CSµ (X ) such that

Prµ {µ ∈ CSµ} ≥ 1− α for all µ,

and then forming a confidence set for θX as

δ (X ) =
{

v (X )′ µ : µ ∈ CSµ

}
• i.e. take the projection of CSµ on the dimension of interest

• This ensures (unconditional) coverage, but it can result in
confidence sets that are much longer than necessary

• On the other hand, an advantage of this approach is that we
don’t need to know the function v (·) to implement it - suffices to
know v (X )

• When v (·) is known, Andrews et al. (2023) propose a hybrid
approach that combines projection and conditioning



Example: Randomized Trial
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Open Questions



Can We Relax Information Requirements?

• The available techniques to correct for screening and selection
impose substantial information requirements
• For screening, need to know Pr {S = 1|X}
• For selection, need to know either v (·) (for conditional and hybrid

inference) or the set of possible target parameters θX (for projection
inference)

In many contexts, this is too demanding: we do not have an
explicit description of what guides our choices

• In some contexts, we may be able to estimate screening or
selection rules based on observed choices
• Andrews and Kasy (2019) do this in the case of publication bias

• In other contexts, we may resort to sample-splitting
• Screen or select based on part of the data, and use the remainder

for inference

• Are there better options?



How to Think About Screening?

• Screening invalidates conventional inference
• Motivates suggestions to reduce screening, e.g. pre-analysis

plans, registered reports (i.e. pre-result peer review)

• However, this isn’t the only option: once the form of screening is
known we can correct for it

• Moreover, there are cases where screening seems to be helpful
• Frankel and Kasy (2022) show that screening in favor of suprising

results can be optimal for a journal seeking to inform readers
• Screening based on specification tests is a common (implicit or

explicit) suggestion



Inference After Selection

When the target parameter is θX , open questions include:

• Should we condition on the target parameter selected?

• If not, what’s the right framework for optimal inference when the
target parameter is random?



Thanks very much!
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