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Learning	when	data	comes	from	many	populations	and	agents	and	learning	
guarantees	must	meet	the	needs	of	many	populations	and	agents

Learning	
Algorithm

More	Data	…	More	Stakeholders



More	Data	…	More	Stakeholders
Learning	when	data	comes	from	many	populations	and	agents	and	learning	
guarantees	must	meet	the	needs	of	many	populations	and	agents

Data	sharing:	E.g.,	large	genome	studies	require	large-scale	data-sharing	and	
collaboration	between	many	institutes	and	research	labs.

Per-group	Guarantees: E.g.,	medical	research	must	provide	solutions	that	apply	to	
different	localities,	populations,	threat	models,	and	resources.	

Cost-Benefit	Tradeoffs:	E.g.,	taking	samples	in	physical	domains	is	costly	to	individuals	
and	data	curators,	e.g.,	medical	tests,	lead	pipe	testing,	…



The	Issue	with	On-Average	Guarantees
Typical	learning	algorithms	work	well	on	average	over	the	data	sources
• Good	for	when	the	data	is	homogenous	across	sources	
• Good	for	learning	across	data	centers.

Human	and	organization	data:	highly	heterogenous.

Learning	difficulty	and	exhibited	patterns	vary	significantly
à Some	populations	are	easier	to	learn	than	others.
à On-average	guarantees	don’t	lead	to	meaningful	solutions	for	all	
subpopulations.	



Example	1:	Calibrated	(valid)	predictions

A	predictor	!: # → [0,1] is	calibrated if	for	all	*,	+(",$) , ! - ≈ * ≈ *.

E.g.,	if	! predicts	heart	failure	probability	in	a	patient,	then	among	patients	
where	! predicts	0.1, 10%	truly	develop	heart	failure.

[Dawid’82]

Rather	a	weak	guarantee.

Met	by	F G := I[K].

Not	meaningful	for	any	individual.

Holding	for	each	set	of	features	in	

class	M ⊆ 2!

all	P, Q ∈ M
I K F G ≈ P, G ∈ Q ≈ P.

When	M = 2!,	satisfies	F G ≈ I[K|G]

Classical	Calibration Per-Group	Guarantee

[Dawid’82] Formalized	by	Herbert-Johnson	Kim	Reingold,	Rothblum
’18,	also	Foster	Kakade’06,	Sandroni	Smorodinsky Vohra’03	



Importance	of	Calibration	across	groups
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Predictors	are	used	for	deciding	treatment	plans. treated

Miscalibration across	groups	leads	to	different	quality	of	care.

E.g., Empirical	study	of	miscalibration	of	medical	risk	

predictors	across	race.	[Obermeyer	et	al	‘19]

Multi-calibration:

à Intuitively,	predictions	mean	the	same	across	group.

àCalibration alone	can	stereotype	entire	populations.

àF G := I[K|G ∈ Q]
àThe more intersectional groups considered	in	multi-
calibration,	the closer a multi-calibrated predictor	is	to	

Bayes	probability. Pr
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Actual	(Bayes)	prob.
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Example	2:	Accuracy	/	Prediction	Loss
A	function	ℎ: # → 0,1 has	loss	1& ℎ = +(",$)[ℓ(,, ℎ - )].

E.g.,	binary	classification,	regression	losses.

Learn	ℎ with	V, ℎ ≤ X.
Even	if	V, ℎ ≤ 0.05,	ℎ could	have	
50%	error	for	 ⁄- -. of	the	population.

Problematic	when	that	 ⁄/ /0 of	the	
population	correlates	with	a	type.

Holding	for	each	one	of	given	

distributions	\ = { /̂, … , ^1}
all	 2̂ ∈ \, V,! ℎ ≤ X.

Classical	PAC Per-Group	Guarantee

[e.g. Valiant	‘84] [formalized	by	Blum	H.	Procaccia Qiao’17.		
Related	formalisms	Kearns	Neel	Roth	Wu’18,	

Mohri Sivek Suresh	‘19,	Sagawa	Koh	Hashimoto	
Liang’20,	also	literature	on	domain	adaptation.]



Example	3:	Accuracy	vs.	Cost	Tradeoffs

A	function	ℎ: # → 0,1 has	loss	1& ℎ = +(",$)[ℓ(,, ℎ - )].

E.g.,	binary	classification,	regression	losses.

Optimal	total	number	of	samples	to	
collectively	guarantee

all	 2̂ ∈ \, V,! ℎ ≤ X.

Unfairly	distribute	the	burden	over	

distributions.

Guaranteeing	for	all	 2̂ ∈ \, V,! ℎ ≤ X
with	optimal	per-distribution	number	of	
samples.

Ensuring	optimal	tradeoffs	per	
distribution.

Classical	Tradeoffs Per-Group	Tradeoffs

[formalized	by	Blum	H.	Phillips,	Shao	’21]



Enabling	learning	processes	that	satisfy	multiple	objectives

for	several	agents from	collectively	fewer	resources.

Practical	Applications	and	considerations
• Data	sharing	and	collaborative	learning:	In	use	across	networks	of	
devices,	hospitals,	etc.,	and	behind	recent	major	scientific	discoveries.

• Robustness:	Successful	deployment	in	any	one	of	possible	scenarios.
• Fairness: Ensuring	welfare	of	representative	subpopulations.

Learning	Across	Multiple	Objectives



Foundations	of	
Multi-Objective	Statistical	Learning

Rest	of	this	talk:	
• Multi-Objective	Learning,	one	unifying	framework

1. Collaborative	and	multi-distribution	learning	
2. Multi-calibration
3. Optimal tradeoffs



Multi-Objective	Learning:	Per-Group	Guarantees

There	are	< populations	(distributions),	represented	by	
unknown	J', J(, … , J) from	which	we	can	sample.

There	are	O possible	loss	functions	ℓ', … , ℓ* ,	e.g.,	ℓ+ -, ,, Q =	1(, ≠ Q - )
or	 , − Q - 1 Q - = * , and	L,!

+ Q = + ",$ ∼,! ℓ
+ -, ,, Q
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(best	in	class	@)

Learn	a	function	Q that	is	simultaneously	good	for	every	population	and	
every	loss	function	in	consideration.	

Multi-Objective	Learning



Multi-Calibration	and	Multi-Distribution	Learning

max
A,C,D

L!
A,C,D

, − min
E∗∈<

max
A,C,D

L!
A,C,D

,∗ ≤$

Consider	the	class	of	all	predictor	` = 0,1 3,	the	set	of	loss	functions	
ℓ4,6,7 G, K, F = c , − ! - 1 ! - ≈ * 1 - ∈ \ for	] ∈ {−1,+1},	predicted	
values	* and	subgroups	\ ∈ a,	and	a	single	distribution	\.
F is	(a, b)-multicalibrated if

Multi-Calibration

= 0 by	Bayes	classifier
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For	any	hypothesis	class	- and	any	. distributions	\/, … , \1, learn	function	
d such	that

Collaborative/Multi-Distribution	Learning



A	Unifying	Perspective
In	the	past	5-7	years,	similar	models	were	introduced	by	several	different	communities.	
Mostly	inspired	by	ideas	of	fairness,	robustness,	and	collaborations.
àCollaborative	Learning	[Blum,	H,	Procaccia,	Qiao	’17]

à \2s	represent	agent	distributions.	Agents	are	willing	to	collaborate.
àAgnostic	(Fair)	Federated	Learning	[Mohri,	Sivek,	Suresh’19]

à\2s	represent	client	distributions.	Fairness	goals	and	implications.
à (Group)	Distributionally	Robust	optimization	[Sagawa,	Koh,	Hashimoto,	Liang	’19]

à\2s	represent	possible	distribution	shifts.	Robustness	and	fairness	goals.
àMulti-group	Agnostic	PAC	[Rothblum,	Yona’21]

à\2s	represent	subpopulations	and	loss	functions	capture	regret	to	optimal	loss
àMuti-Calibration	[Herbert-Johnson,	Kim,	Reingold,	Rothblum ’18]

à\ a	single	distribution,	with	calibration	loss	functions	 K − d G 1(d G = P, G ∈ Q)
taking	membership	and	predicted	value.

àMulti-group	Fairness	[Kearns,	Neel,	Roth,	Wu’18]
à\ a	single	distribution,	loss	functions	capturing	errors	of	various	types	on	1(G ∈ Q).



Every	agent	uses	40	
iterations.

Every	agent	has	to
use	75	iterations.

Iteration	=	#samples/64

Va
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Avg	accuracy	>0.7 min	accuracy	>0.7

[Blum,	H,	Phillips,	Shao	’21]
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Learn	a	function	Q that	is	simultaneously	good	for	every	population	and	
every	loss	function	in	consideration.	

Multi-Objective	Learning

Algorithms	with	on-average	guarantees	perform	

poorly	on	groups,	even	on	simple	datasets.

à Some	distributions	are	easier	to	learn	than	others.

à Also	depends	on	similarity	across	different	

populations.

Challenges	of	meeting	multiple	objectives



Can	we	provide	multi-objective	
learning	guarantees	from	reasonably	
small	amount	of	data?



From	One	to	Multiple	Distributions	(and	Objectives)
Well-developed	theory	for	how	much	resources	are	needed	to	learn	a	single	
distribution	under	one	loss.

Import	insights,	algorithms,	techniques,	etc.,	from	the	single	distribution	setting.

Given	sample	access	to	an	unknown	!,
find	",	s.t.	with	high	probability,	

L" " ≤ min#∗∈% L" ℎ∗ + *

One	Distribution	
(Statistical	Learning)

Multiple	Distributions

Given	sample	access	to	unknown	!', … , !( ,
find	",	s.t.	with	high	probability,	

max)∈[(] L"" " ≤ min#∗∈% max
)∈ (

L"" ℎ
∗ + *

For	comparison

ERM’s	Sample	complexity:	wΘ
HI, J
K"

Algorithm?

Sample	complexity?	

Proxy	for
#	parameters



Foundations	of	
Multi-Objective	Statistical	Learning

Rest	of	this	talk:	
• Multi-Objective	Learning,	one	unifying	framework

1. Collaborative	and	multi-distribution	learning	
2. Multi-calibration
3. Optimal tradeoffs



Multi-Distribution Learning	Needs	Interactions
Standard	algorithms	and	settings	lack	interactions
• #	of	samples,	learning	rates,	and	update	frequencies	decided	non-interactively.
• Ignores	varying	distribution	difficulty	and	relevance.	

Without	an	“interactive”	protocol,	

Multi-Distribution	learning	(almost)	ineffective	at	saving	resources	across	

multiple	learning	tasks.

Sample	complexity	of		existing	
algorithms,	for	{ agents/dists

Learning	for	1	distribution	separately= Θ { ×

[Blum,	H,	Procaccia,	Qiao	’17]

Non-Interactive

Problematic	for	fairness	and	multi-agent	collaboration	purposes.	



Multi-Objective	Learning	Needs	Interactions
Standard	algorithms	and	settings	lack	of	interactions
• #	of	samples,	learning	rates,	and	update	frequencies	decided	non-interactively.
• Ignores	varying	distribution	difficulty	and	relevance.	

= Θ { ×

There	is	an	algorithm
Overall	#	samples

Learning	for	1	agent	separately= O(log {)×

Adjusting	sample	collection	based	on	past	performance

O !"#(|&|)
(. + ) !*())

(.
[Blum,	H,	Procaccia,	Qiao ’17]

[H,	Jordan,	Zhao	’22]

To	benefit	from	cross-learning,	the	distributions	need	to	interact	adaptively.
àDecisions	about	\2 must	depend	on	how	well	\2 has	done	so	far,	compared	to	\O.

Non-Interactive

Interactivity

[Blum,	H,	Procaccia,	Qiao	’17]

Learning	for	1	distribution	separatelyO # ln(#) ⋅ !"#(|&|)(.
In	this	regime
Group	DRO

Multi	group	agnostic
Agnostic	Federated	Learning

…

Sample	complexity	of		existing	
algorithms,	for	{ agents/dists



Interactive	Protocol	as	Game	Solving

Using	no-regret	algorithms	to	find	an	approximate	minmax	equilibrium.

• Sufficient	for	one	player	to	play	no-regret,	and	another	to	best	respond	or	be	no-regret.

à Best-Response	v.	No-regret,	No-regret	v.	Best-Response, No-regret	v.	No-regret

• Implementation	considerations:
à L_! d is	estimated	through	sampling	from	\2,want	quick	convergence.

Re-imagining	multi-objective	learning	as	a	zero–sum	game.

max
9∈[:]

L!! " ≤ min
;∗∈<

max
9∈[:]

L!! ℎ
∗ + $

Approximate	MinMax equilibrium

- `Minimizing	Agent:	
Minimize	the	loss	over	function	class	7

Maximizing	Agent:	Maximize	the	loss	
over	the	class	of	distributions	!', … , !( .



Interactive	Dynamics	and	Algorithm	Design

Min-player	No-Regret
Play	d/, ⋯ da online	and	see	adversarial	
choices (\/, V

/), … , (\b, V
a),	s.t.

+,##$ -$ ≤ min%∗ +,##$ ℎ∗ + 4 5

Max-player	No-Regret
Play (\/, V

/), … , (\b, V
a) online	and	see	

adversarial	choices	d/, dc, ⋯ da,	s.t.

+,##$ -$ ≥ max
%∗,'∗

+,#∗∗ -$ − 4 5

A	player	is	no-regret:	if	she	received	a	loss(utility)	that	is	near-optimal,	in	hindsight,	
over	any	sequence	of	actions	played	by	the	other	player.	

A	player	is	best-response	if	her	choice	is	per-step	near	optimal	(or	good	enough).

Time-averaged actions’	

convergence	rate	to

minmax	equilibrium

Max-Player	RegretMin-Player	Regret= +

[e.g.,	Freund	&	Schapire ’96]	

No-regret	algorithms	exists,	if	V_
O
can	be	accessed,	with	regret	 Å ln #FÇÉKÑÖ ÉÜáàâäã



Dynamics	1:	Best-Response	versus	No-Regret
An	approach:	Solve	with	a	no-regret	algorithm	against	a	best-responding	agent.

Max	Player:	The	no-regret	learning	agent.	Maintains	a	distribution	over	[{],	say	

weights	å/
h, … , å1

h over	the	agents.		Proxy	of	how	poorly	they’ve	been	doing	so	far.

Min	Player:	The	best-responding	agent.	For	any	distribution	over	[k],	å/h, … , å1h ,	it	

uses	an	Empirical	Risk	Minimizer	to	learn	ℎh ∈ ` on	the	distribution	çh = ∑å2
h

2̂

Sample

Sample

:	proportional	to	èi
j.

Depending	on	ê-, … , êjk-.



Why	does	this	work?
Simplifying	assumption:	min

l∗∈J
max
2∈[1]

L_! ℎ
∗ = 0.

Lo# ℎ
h ≤ X′ Samples	í

pqr J
Ks"

Max	Player:	The	no-regret	learning	agent.	Maintains	a	distribution	over	[{],	say	
weights	å/

h, … , å1
h over	the	agents.		Proxy	of	how	poorly	they’ve	been	doing	so	far.

|L_! ℎ
h − ìL_! ℎ

h | ≤ X′.

Min	Player:	The	best-responding	agent.	For	any	distribution	over	[k],	å/h, … , å1h ,	it	uses	
an	Empirical	Risk	Minimizer	to	learn	ℎh ∈ ` on	the	distribution	çh = ∑å2

h
2̂.

1

Å
îLo# ℎ

h ≥ max
2∈ 1

1

Å
îL_! ℎ

h −
Å. log({)

Å
.X′ ≥

≤ R′ for	T = ()* +
,"#

max
2∈ 1

L_!
ñℎa when	ñℎa is	a	randomized	classifier	uniformly	from	ℎ

/, … , ℎa



(Better)	Dynamics	3:	No-Regret	versus	No-Regret
Why	we	used	best-response:

àAdaptivity	of	the	sequence	meant	that	performance	is	correlated	across	time.

àERM	ensured	that	every	step	approximates	the	no-regret	dynamics	on	the	true	

game	(with	expected	losses).

An	alternative:	Picking	ℎh before	looking	at	 Gh, Kh ∼ çh gives	unbiased	estimates.

Convergence	rate	to

multi-objective	solution
Empirical	Regret

Max-Player

Empirical	Regret

Min-Player
≈ +

[H,	Jordan,	Zhao	’22]	

Full	info: log 7 /; Bandit:	 </;

There	is	an	algorithm	for	multi-distribution	learning	with	sample	complexity
òí Xkc log H + { ln({) . [H,	Jordan,	Zhao	’22]	



Online	Learning	as	a	Powerful	Medium	
for	Interactions	in	Learning

(beyond	adversarial)

Important	Message



Foundations	of	
Multi-Objective	Statistical	Learning

Rest	of	this	talk:	
• Multi-Objective	Learning,	one	unifying	framework

1. Collaborative	and	multi-distribution	learning	
2. Multi-calibration
3. Optimal tradeoffs



Recall	Multi-Calibrated	predictions
Consider	representative	subpopulations	M ⊆ 2V .	A	predictor	is	multi-
calibrated,	if	for	every	group	S ∈ M and	every	predicted	value	P

Q R , S ≈ P, S ∈ V ≈ P

E.g.,	if	! predicts	heart	failure	probability	in	a	patient,	then	for	each	S among	
patients	of	S where	! predicts	0.1, 10%	truly	develop	heart	failure.

max
A,C,D

L!
A,C,D

, − min
E∗∈<

max
A,C,D

L!
A,C,D

,∗ ≤$

Multi-Calibration	as	Multi-Objective

= 0 by	Bayes	classifier

Consider	the	class	of	all	predictor	` = 0,1 3,	the	set	of	loss	functions	
ℓ4,6,7 G, K, F = c , − ! - 1 ! - ≈ * 1 - ∈ \ for	] ∈ {−1,+1},	predicted	
values	* and	subgroups	\ ∈ a,	and	a	single	distribution	\.
F is	(a, b)-multicalibrated if



Multi-Calibration	and	learning	Challenges
Implement	no-regret	dynamics,	while	only	sample	from	\ (can’t	see	V_

4#,6# Fh exactly).

• For	the	minimizing	player	(player	learning	Fh),	can	we
à (best	response):	Compute	Fh with	calibration	error	on	(a	random)	(Ph, Qh) is	near	0.

à Do	we	need	many	samples	from	\?

à(No-regret):	Compute	Fh with	no-regret	calibration	error	against	adaptive	adversarial	
choice	of	(P/, Q/), … , (Pa , Qa).

àHow	many	samples	from	\?	Can	the	choice	of	Fh be	deterministic?

àHow	large	is	the	regret,	given	that	number	of	predictor	H = 0,1 ! is	large.

àFor	the	maximizing	player,	can	we	play	no-regret		with	small	#	samples	from	\.

• Ideally,	we	want	a	single	predictor	F to	be	multi-calibrated,	instead	of	the	time-
averaged	distribution	over	predictors	F/, … , Fa.	Also,	want	easier-to-interpret	Fs.



Different	Dynamics	and	their	Tradeoffs

No-regret	v	No-regret No-Regret	v	Best	Response Best	Response	v	No-Regret

small	#	samples medium	#	samples small	#	samples

Distribution	over	predictors Single	predictor Distribution over predictors

Interpretable	predictor* More	complex	predictors More	complex	predictors

Not	robust Not	robust Robust	to	evolution	of	subpopulations

1. For	higher	moments,	having	a	single	choice	Fmatters.
e.g., heart-failure	risk	being	1	standard	deviations	from	mean.

2.		Interpretable/succinct	predictors:	F(G) is	interpreted	using	memberships	of	Q ∋ G.	
Fewer	demographic	memberships	need	to	be	accessed	and	recalled	to	describe	F.

3.	Evolution	of	subpopulations: We	might	not	know	the	populations	Q and	important	
predicted	values	P at	first	but	pick	up	on	them	as	the	need	arises.



Multi-calibrated	Best	Response	and	No-Regret
Best	response:	For	any	distribution	over	ℓ(/,0) ,	there	is	(randomized)	predictor	
! independent	of	J that	minimizes	the ℓ(/,0) calibration	loss.

[e.g.,	intuition	by	Hart’s	minmax,	or	Foster	
&	Vohra	’97,	H,	Jordan,	Zhao	’23]	

No-Regret:	For	any	adversarial	sequence	of	losses	ℓ(/,0) ,	there	is	an	explicit	
construction	for	!1 that	is	1)	deterministic,	2)	takes	no	samples	from	J,	and	3)	
has	regret	 i ln |#lmnolp| .	 [H,	Jordan,	Zhao	’23]	

Important	bits	to	remember	from	this:

• No-regret	and	Best-response	both	can	be	used	without	samples.
• No-regret	uses	deterministic	choice	of	a	predictor,	best	response	uses	a	distribution	
over	predictors.

• Regret	is	small:	convergence	can	be	very	fast.



Dynamics	1:	Best-Response	vs	No-Regret
Maximizing	player	choosing	a	population Qh predicted	value	Ph and	penalizing	
over/under	prediction	ch uses	any	no-regret	algorithm	with	regret	 Å ln #ÉÜáàâä ≈
Å ln Q /λ .

The	minimizing	player	predicts	using	a	(randomized)	best-response	Fh for	that	
subpopulation.

The	maximizing	player	estimates	V_
7#,4#,6#(Fh) using	a	single	sample	 G, K ∼ \.	

Then	the	randomized	predictor	F̅ ∼ ùäàd(F/, … , Fa) is	(M, X)-multi-calibrated	after	
Å = ln

6
{
/Xc.

Tradeoffs:	Non-deterministic	predictor,	very	fast	convergence.

Granularity	of	the	prediction	bucket



Dynamics	2:	No-Regret	vs	Best-Response
Maximizing	player	choosing	a	poorly	calibrated	population \1 predicted	value	
*1 and	penalizing	over/under	prediction	]1 uses	best-response.	

The	minimizing	player	predicts	using	a	deterministic	no-regret	!1without	
sampling.	

Then	the	randomized	predictor	!̅ ∼ stuQ(!', … , !2) is	(a, b)-multi-calibrated	
after	i = ln < /b( rounds.	In	fact,	because	!1s	are	deterministic,	at	least	one	of	
them	is	also	a	deterministic	(a, b)-multi-calibrated!	

Tradeoffs:	Deterministic predictor,	very	fast	convergence.



Dynamics	in	Multi-Objective	Learning
unifies	approaches	to	fairness,	collaboration,	

and	robustness.

Important	Message



Foundations	of	
Multi-Objective	Statistical	Learning

Rest	of	this	talk:	
• Multi-Objective	Learning,	one	unifying	framework

1. Collaborative	and	multi-distribution	learning	
2. Multi-calibration
3. Performance-Cost tradeoffs



Beyond	Accuracy	Guarantees

Agents	also	incur	cost	for	collecting	information:

• E.g.,	cost	for	data	set	curation,	privacy	cost,	etc.

• The	protocol	shouldn’t	ask	for	“unreasonable”	amount	of	data.

àData-sharing	and	collaborative	learning	should	be	beneficial	to	all	of its	users.



How	should	we	procure	resources	
needed	for	learning?

Achieve	desirable
per-agent	tradeoff	between	accuracy	

and	sample	complexity



[Blum,	H,	Phillips,	Shao	’21]

Reasonable	Share	of	Data

Unreasonable	for	agent u if

• We	ask	u for	more	data	than	necessary,	if	he	were	to	learn	by	himself.

à Call	avoiding	this	as	individually	rationality.

• Part	of	u’s	contribution	is	exclusively	used	to	meet	the	accuracy	constraint	of	

other	agents	and	did	not	affect	agent u.

à Call	avoiding	this	as	stability	/	an	equilibrium.



State-of-the-art	algorithms	have	poor	tradeoffs

|

Per-agent	tradeoff	between	prediction	quality	and	information	(sample	complexity):
• Receiving	a	reasonable	return	in	what	resources	you	put	in.

Usability	and	stability	of	systems	over	time:
• Even	a	small	reduction	in	contribution	across	the	agents	impacts	algorithmic	
performance.

First	steps	towards	using	economic	theory	of	incentives	(individual	rationality,	
equilibria)	to	formulate	desirable	tradeoffs	[Blum,	H,	Phillips,	Shao	’21]

60%	of	agents	can	unilaterally	
reduce	their	contributions	to	5%	
of	current	levels.
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How do Dynamics Impact these	tradeoffs?

We	don’t	know	the	answers	yet	formally.

Observationally:
• Non-interactive	solutions	have	much	worst	tradeoffs	than	interactive	ones.
• Among	interactive	ones:
• There	is	some	reason	to	believe	that	No-regret	v	No-Regret	has	better	tradeoffs.
• Partly	because	it	takes	few	samples	at	any	time	but	iterate	more	over	agents.



Are	Rationality	and	Equilibria	Restrictive?
Individually	rational	allocation	always	exists.

Stable	allocations	exists,	under	some	natural	assumptions.

May	require	more	resources	than	the	optimal	collaboration!
à Rational	or	stable	allocations	can	be	very	far	from	optimal.

[Blum,	H,	Phillips,	Shao	’21]



Price	of	Rationality	and	Stability
Individually	rational	or	stable	equilibria,	require	more	collective	resources	than	the	
optimal	collaboration.

Optimal:											does	all	the	work,	
others	do	nothing.

Stable/Rational:											does	(almost)	no	
work.	Other	agents	have	to do	the	work.

Overall	#	samples	in	the	
best	IR/Stable	allocation = Ω . ×

Overall	#	samples	in	the	
optimal	collaboration

Equilibrium/Individual	Rationality:	Total	work	required	to	be	done	by	other	agents	is	large.



Optimality,	Equilibria,	and	Free	Riding
Stable	collaborations:

Judiciously	introduce	small	inefficiencies,	so	everyone	can	continue	
benefitting	from	the	system.	

Free-riding	is	a	form	of	necessary	inefficiency.

à Some	agents	must	contribute	0	samples	in	any	stable	collaboration.

Is	free-riding	all	that	bad?
à Free-riding	must	be	part	of	the	system,	but	it’s	not	bad!

à Apart	from	free-riders,	other	agents	collaborate	optimally.
à Free-riders	don’t	fundamentally	change	the	optimal	collaboration	structure	

between	participating	agents.



Important	Takeaway

New	mathematical	foundation	for	

multi-agent	statistical	and	computational	learning



Important	Takeaway

New	mathematical	foundation	for	

multi-agent	statistical	and	computational	learning

Game	theory	and	online	decision	making	are	powerful	tools	for	

for	considering	per-agent	incentives,	objectives,	and	tradeoffs.


