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Learning	and	Learnability
One	of	the	goals	of	theory	of	ML:

An	example	of	concept:	“Familiar	object,	such	as	a	table”.	[Valiant	‘84]

Most	basic	learning	setting:	Distribution	over	objects	that	remain	the	same.

“What	concepts	can	be	learned	from	data,	and	with	
how	many	observations?”



Learnability	for	Today’s	World

Environment
Learning	
Algorithms	



Learnability
Q1.	What	concepts	can	be	learned	in	presence	of	strategic	and	adversarial	behavior?
à Lessons	for	today’s	world	from	decades	of	efforts	for	understanding.

Q2.	How	to	design	learning	for	strategic	and	adversarial	environment?
àPrinciples	on	how	to	use/not	use	data	in	strategic	environments.

Q3.	How	can	we	design	collaborative	environment	that	encourage	learner	participation?
à Incentives	of	learning	algorithms	and	data	providers
à Deliver	the	optimal	learning	algorithms	for	agents	and	the	society.

Q4.	Generally,	how	do	these	learning	paradigms	relate	to	one	another?



Style	of	today’s	talk
Back	and	forth	between	computer	science	and	game	theory	concepts.

• High	level	applications	and	challenges	of	Learning.
• ML	abstractions	for	addressing	these	challenges
• Related	game	theoretic	concepts	and	new	perspectives



Tutorial	Overview
Basic	considerations	of	ML
• Learning	in	vanilla	(stochastic)	environments	(baseline	for	comparison)

Adversarial	Interactions
• Learnability	challenges	in	adversarial	learning	
• Infinitely	large	Zero-sum	Games	and	failure	of	minmax
• More	realistic	adversaries	and	learnability	comparisons	to	vanilla	ML.	

General	Strategic	Interactions
• General-sum	games	and	commitment	solution	concept

• Learnability	and	Stackelberg	games
• Learning	benchmarks	and	principal-agent	dynamics.



Stochastic	Settings
Usage	Example:	
Learning	to	detect	natural	phenomenon	or	
objects,	that	remain	the	same	over	time.	No	
reaction	from	the	object	or	environment!

Data	is	generated	stochastically	from	a	
fixed	distribution

Learner	learns	a	function	using	the	data

Successful	if	it	gets	good	performance	
over	the	underlying	distribution.

Not	concerned	with	the	possibility	of	
the	environment	reacting.

Stochastic	or	Offline



Unknown	distribution	𝐷 over	𝑋×𝑌 and	function	class	𝐻.
At	round	𝑡

Learner	observes	 𝑥! , 𝑦! and	incurs	a	loss	𝐿! 𝑓! , 𝑥! , 𝑦! .
Goal:	Get	regret	that	vanishes	as	𝑇 → ∞

As	𝑇 → ∞,	avg	error	of	the	learner	is	no	worst	than	the	error	of	the	best	predictor	(no-regret).		

Formal	Setup:	Stochastic	setting

Avg. REGRET =
1
𝑇
,
!"#

$

𝐿! 𝑓!, 𝑥!, 𝑦! − min
%∗∈'

1
𝑇
,
!"#

$

𝐿! ℎ∗, 𝑥!, 𝑦!

Learner	picks	prediction	rule	𝑓! ∶ 𝑋 → 𝑌,	
not	necessarily	in	𝐻.	 The	world	picks	 𝑥! , 𝑦! ∼ 𝐷

Emphasis	on	i.i.d

Learner’s	loss
Loss	of	best	function	ℎ∗

in	hindsight



Not	only	“learnability	”	is	possible,	but	also	regret	vanishes	quickly..
Avg. REGRET ≤ 𝜖 after	only	T = C/𝜖5 rounds.	C is	a	constant,	dependent	on	functions	
H.	
• Hmight	be	infinite,	but	there	is	finite	H6789: at	specific	intervals.
• H6789: accurate	approx.	of	H.

How	does	learning	happen	in	stochastic	cases?

ℎ

ℎ6789:

𝜖

Distribution	of	all	tree	images
Observed	(𝑥!, 𝑦!)s.	

ℎ∗:	Images	of	oak	trees



What	characterizes	learnability?

𝑥# 𝑥) 𝑥* …
ℎ# -1 -1 1 -1
ℎ) 1 -1 -1 1
ℎ* -1 1 -1 1
ℎ+ 1 1 1 -1
⋮

𝑋𝐻

𝑥 ∈ 𝑋

ℎ ∈ 𝐻

For	any	𝐻,	Avg.	Regret	≤ 𝑉𝐶𝐷(𝐻)/𝑇
Characterization	of	Learnability	in	the	stochastic	case

VC	dimension:	largest 𝑑 where	there	is	a	submatrix	of	𝑑 columns	and	2> unique	rows.

[Vapnik-Chervonenkis 71,	Blumer-Ehrenfeucht-Haussler-Warmuth 1989]

The	size	of	H6789: that	is	a	good	approx.	of	H.



VC	Dimension	Example	

What	is VCDim(𝐻) for	thresholds	on	a	line?	1

𝐻 = ℎ? 𝑥 = 𝑠𝑖𝑔𝑛 𝑥 − 𝑎 | 𝑎 ∈ ℝ is	the	set	of	thresholds	on	a	line.
+-

𝑎

1. Example	of	a	set	of	size	1 that	can	be	labeled	in	all	2A
ways.

2. No	set	of	size	2 can	be	labeled	in	all	25 ways.
àCan’t	label	the	smaller	one	+ and	the	larger	one	−.		

𝑥

−
+

+ −



Takeaway
In	vanilla	(stochastic)	setting

learning	is	exceedingly	easy	and	possible.

We	will	use	the	vanilla	results	as	a	point	of	
comparison	for	more	practical	but	

demanding	learning	setting.



Tutorial	Overview
Basic	considerations	of	ML
• Learning	in	vanilla	(stochastic)	environments	(baseline	for	comparison)

Adversarial	Interactions
• Learnability	challenges	in	adversarial	learning	
• Infinitely	large	Zero-sum	Games	and	failure	of	minmax
• More	realistic	adversaries	and	learnability	comparisons	to	vanilla	ML.	

General	Strategic	Interactions
• General-sum	games	and	commitment	solution	concept

• Learnability	and	Stackelberg	games
• Learning	benchmarks	and	principal-agent	dynamics.



Adversarial	Interactions
Usage	Examples:	
There	are	adversarial	manipulation	of	
future	instances	and	policies	need	updates.

Observations	evolve	in	unpredictable	ways,	
sometimes	as	a	reactions	by	environment!

Appropriate	content Inappropriate	content	
with	mask

NEWS



𝜖

Distribution	of	text	scraped	from	the	web

ℎ∗:	restricted	prompts

The	challenge	with	adversarial	interactions

ℎ6789:

0.3

Adversarial	behavior	doesn’t	come	from	a	
distribution.	It	adapts	to	current	model.	

Assuming	that data	comes	from	one	
particular	distribution is	a	bad	idea.



Adversarial	Setting
Usage	Examples:	
There	are	adversarial	manipulation	of	
future	instances	and	policies	need	
updates.

Observations	evolve	in	unpredictable	
ways,	sometimes	as	a	reactions	by	
environment!

Adversarial	Online

Data	is	generated	by	an	all-powerful	
adaptive	adversary,	who	knows	the	
learning	algorithm,	model,	and	history.

Learner	wants	good	performance	over	
adversarially generated	data.

Robust	to	any	adversarial	reactions	to	
earlier	decisions.	



Stochastic	setting:	Unknown	distribution	𝐷 over	𝑋×𝑌 and	function	class	𝐻.
At	round	𝑡

Learner	observes	 𝑥! , 𝑦! and	incurs	a	loss	𝐿! 𝑓! , 𝑥! , 𝑦!
Goal:	Get	regret	that	is	vanishing	as	𝑇 → ∞.

As	𝑇 → ∞,	avg	number	of	mistakes	Alg makes	is	no	worst	than	the	best	predictor.		

Formal	Setup:	Adversarial	vs	Stochastic	Setting

Avg. REGRET =
1
𝑇
,
!"#

$

𝐿! 𝑓!, 𝑥!, 𝑦! − min
%∗∈'

1
𝑇
,
!"#

$

𝐿! ℎ∗, 𝑥!, 𝑦!

Learner	picks	prediction	rule	𝑓! ∶ 𝑋 → 𝑌,	
not	necessarily	deterministic.

The	world	picks	 𝑥! , 𝑦! ∼ 𝐷

Adversarial	setting

Adversary	picks	 𝑥! , 𝑦! ,	knowing	the	
history	for	1,… , 𝑡 − 1 and	the	algorithm



Take	𝐻 = ℎ% 𝑥 = 𝑠𝑖𝑔𝑛 𝑥 − 𝑎 | 𝑎 ∈ ℝ is	the	set	of	thresholds	on	a	line.
Algorithm	has	to predict	labels	of	adaptively	and	adversarially selected	points.

An	Example	of	an	Adversary’s	Power

1/2

1/4 3/4

1/8 5/83/8 7/8

𝑦 = −1𝑦 = 1

1 −1

1

−11

1 1 1−1 −1 −1 −1

The	label	adversary	
claims	is	the	real	one	

Algorithm’s	prediction

Algorithm Adversary

Adversary

Consistent	threshold	h" ⋅

Algorithm

Algorithm	is	forced	to	err	at	every	round	à 𝑇 mistakes	over	𝑇 instances	à Avg	Regret	O(1).



Characterizing	Learnability	in	Adversarial	Settings
Role	of	VC	dimension:
• Finite	VC	dimension	is	not	sufficient,	because	of	thresholds	on	a	line.
• VC	dimension	focuses	on	labeling	a	set.
• But	we	need	to	consider	labelings of	sequences.

Littlestone	Tree:	Full	decision	tree	with	nodes	in	
𝑋 and	paths	determined	by	+ and − sequences.	
For	every	path,	there	is	an	ℎ ∈ 𝐻 that’s	consistent	
with	the	labels.		

𝑥∅

𝑥$

𝑥$$ 𝑥$ % 𝑥% $ 𝑥%%

𝑥%

𝑦∅ = − 𝑦∅ = +

Littlestone Dimension:	Height	of	the	largest	
Littlestone tree.

𝑦% = −

[Littlestone’87]



Recall:	Example	of	Littlestone Dimension

1/2

1/4 3/4

1/8 5/83/8 7/8

𝑦 = −1𝑦 = 1

1 −1

1

−11

1 1 1−1 −1 −1 −1

Consistent	threshold	h" ⋅

The	Littlestone dimension	of	𝐻 = ℎ% 𝑥 = 𝑠𝑖𝑔𝑛 𝑥 − 𝑎 | 𝑎 ∈ ℝ ,	the	set	of	thresholds	on	a	line,	
in	infinite.	



Two	other	Examples	of	Littlestone Dimension
Small	LDim
• Class	𝐻 where	each		ℎ ∈ 𝐻 assigns	+1	label	to	≤ 𝑑 points.
• Littlestone dimension	is	𝑑.

àWe	can	branch	right	at	most 𝑑 times.

Large	LDim
• Class	𝐻 = ℎ? 𝑥 = 1 𝑥 ∈ [𝑎, 2𝑎) | 𝑎 ∈ ℕ .
• Littlestone dimension	is	∞.

à For	any	𝑑,	the	𝐻 in	range	of	[2>, 2>NA] includes	the	set	of	all	thresholds.

2> 2>NA



Learnability	in	presence	of	Adversaries

Why	Littlestone dimension	lower	bounds	regret?
• Adversary	picks	sequence	 𝑥, 𝑦 s	for	a	uniformly	random	path.
• Learner	makes	a	mistake	with	prob	0.5 per	round.
• But	a	perfect	classifier	exists,	so	average	regret	is	0.5

Why	littlesone dimension	upper	bound	regret?	
• It	bounds	the	size	of	an	alternative	definition	of		_𝐻./012

For	any	𝐻,	the	optimal	bound	on	average	regret	is	≈ O>PQ R
S

Characterization	of	Online	Learnability

𝑥∅

𝑥$

𝑥$$ 𝑥$ % 𝑥% $ 𝑥%%

𝑥%

[Ban-David,	Pal,	and	Shalev-Shwartz’09]



TLDR

Vanilla	learnability	is	exceeding	easy

Stochastic
aΘ VCDim(H) 𝑇

Adversarial aΘ Ldim(H) 𝑇

Impossible	to	guarantee	learning	in	
presence	of	adversarial	interactions.



Tutorial	Overview
Basic	considerations	of	ML
• Learning	in	vanilla	(stochastic)	environments	(baseline	for	comparison)

Adversarial	Interactions
• Learnability	challenges	in	adversarial	learning	
• Infinitely	large	Zero-sum	Games	and	failure	of	minmax
• More	realistic	adversaries	and	learnability	comparisons	to	vanilla	ML.	

General	Strategic	Interactions
• General-sum	games	and	commitment	solution	concept

• Learnability	and	Stackelberg	games
• Learning	benchmarks	and	principal-agent	dynamics.



Zero-sum	Games	
Actions	are	played	by	self-interested	
agents	in	a	win-lose	game.

Each	player	takes	some	actions.

Equilibrium,	if	neither	can	improve	
their	position.	

Equilibria

Usage	Examples:	
Most	two-player	board/card	games.	

Competition	between	two	rival	firms,	
splitting	the	market	share.



Two	player	Games

𝑢)(ℎ, 𝑧)

𝑢#(ℎ, 𝑧)

𝑧

ℎ

𝟏

𝟐Players:	Player	1 and	2

Strategies:	Sets	of	actions	𝐻,	𝑍 = 𝑋×𝑌
Payoffs:	When	1 plays	ℎ and	2 plays	𝑧 = (𝑥, 𝑦).

1’s payoff	∶ 𝑢3(ℎ, 𝑧) 2’s payoff	∶ 𝑢4(ℎ, 𝑧)

Zero-sum	games: focus	of	this	section
−𝑢3(ℎ, 𝑧) = 𝑢4 ℎ, 𝑧

We’ll	call	one	of	the	loss	and	one	gain/utility
ℓ ℎ, 𝑧 = −𝑢3(ℎ, 𝑧)			(in	this	section)



Solution	Concepts

Learner	goes	first Adversary	goes	first
MinMax value MaxMin value

min
GH∈I J

max
(K,L)

𝐿(*ℎ, 𝑥, 𝑦) max
M∈I N×P

min
H∈J

L ℎ, D

Adversary	commits	to	a	distribution	of	
instances	𝐷

then
learner	finds	a	good	function	ℎ for	that	
distribution.

The	learner	commits	to	a	rand.	function	]ℎ.	
then

adversary	picks	a	difficult	instance	(𝑥, 𝑦).

Mixed	Strategies: picks *ℎ ∈ Δ(𝐻) and						 picks 𝐷 ∈ Δ 𝑋×𝑌 .
L *ℎ, D = 𝔼H∼GH, K,L ∼M 𝐿(ℎ, 𝑥, 𝑦) is	expected	loss.	

𝟏 𝟐

Stochastic	Setting



MinMax	Theorem

min
VW∈Y R

max
(9,:)

𝐿(]ℎ, 𝑥, 𝑦) = max
]∈Y ^×`

min
W∈R

L ℎ, D

Under	some	conditions,	e.g.,	𝐻 and	𝑋×𝑌 finite,		

Learner	plays	no-regret	over	𝐻,	the	adversary	plays	best	response	per	round

𝟏 𝟐
1
𝑇
'𝐿 ℎ! , 𝑥! , 𝑦! − min

"∗∈$

1
𝑇
'𝐿(ℎ∗, 𝑥! , 𝑦!)

Adversarial	learnability	andMinMax	are	about	interactions	with	an	adversary.

(𝑥! , 𝑦!) = max
&,(

𝐿(ℎ! , 𝑥! , 𝑦!)

MinMax	through	no-regret	learning
[Freund-Schapire’96]



Minmax	statement	requires	 𝐻 to	be	finite.	

It	never	is!

What’s	the	characterization	for	when	
Minmax	theorem	holds.

Challenges



The	Role	of	Littlestone Dimension
Is	no-regret	learnability	a	sufficient	condition	for	MinMax	to	hold?

Subtlety:
• Games	require	the	mixed	strategy	to	be	supported	on	the	predefined	action	set.
• Online	learning	doesn’t	necessarily	(can	be	“improper”).



Offline	Learning:	Unknown	distribution	𝐷 over	𝑋×𝑌 and	function	class	𝐻.
At	round	𝑡

Algorithm	makes	a	mistake	if	𝑓! 𝑥! ≠ 𝑦! .
Goal:	Get	regret	that	is	vanishing	as	𝑇 → ∞.

As	𝑇 → ∞,	avg	number	of	mistakes	Alg makes	is	no	worst	than	the	best	predictor.		

Formal	Setup:	Offline	and	Online	Learning

Avg. REGRET =
1
𝑇
d
abA

S

1 𝑓a 𝑥a ≠ 𝑦a − min
W∈R

1
𝑇
d
abA

S

1 ℎ 𝑥a ≠ 𝑦a

Learner	picks	prediction	rule	𝑓! ∶ 𝑋 → 𝑌,	
not	necessarily	deterministic.

The	world	picks	 𝑥! , 𝑦! ∼ 𝐷

Online	Learning

Adversary	picks	 𝑥! , 𝑦! ,	knowing	the	
history	for	1,… , 𝑡 − 1 and	the	algorithm

“Proper”	learning	algorithm	if	𝒇𝒕 ∈ 𝑯



The	Role	of	Littlestone Dimension
Is	no-regret	learnability	a	sufficient	condition	for	MinMax	to	hold?

Subtlety:
• Games	require	the	mixed	strategy	to	be	supported	on	the	predefined	action	set.
• Online	learning	doesn’t	necessarily	(can	be	“improper”).
• Need	for	proper	algorithms.

There	is	a	“proper”	learning	algorithm	giving	avg.	regret	6Θ )*+,
-

.

Finite	𝐿𝑑𝑖𝑚 is	sufficient	(not	necessary)	for	MinMax	to	hold.

Proper	Standard	Optimal	Algorithm

[Hanneke-Livni-Moran’21]



What	characterizes	MinMax?
Related	but	not	the	same	thing	as	finiteness	of	Littlestone dimension.

Subtlety:
• Littlestone dimension	may	be	infinite,	because	for	each	𝑑 there	is	a	Littlestone
tree	of	height	𝑑.	Even	if	no	single	tree	could	be	grown	infinitely.

• In	that	case,	no	single	triangular	subgame	of	infinite	size	might	exist.	

For	a	0/1	game	matrix,	minmax	theorem	holds	if	and	only	if	
the	game	has	no	infinite	subgame that	can	be	rearranged	
to	a	triangular	matrix.

Minmax	characterization

[Hanneke-Livni-Moran’21]

1 1 1 1

1 1 1

1 1

1

1 1 1

𝑧

ℎ

𝟏

𝟐



Takeaway
Learnability	is	very	sensitive	to	the		

adversarial		assumptions		

Stochastic.	learning
aΘ VCDim(H) 𝑇

Adversarial	learning aΘ Ldim(H) 𝑇

Zero-sum	Games	
(Minmax	theorem) Largest	triangular	subgame



Tutorial	Overview
Basic	considerations	of	ML
• Learning	in	vanilla	(stochastic)	environments	(baseline	for	comparison)

Adversarial	Interactions
• Learnability	challenges	in	adversarial	learning	
• Infinitely	large	Zero-sum	Games	and	failure	of	minmax
• More	realistic	adversaries	and	learnability	comparisons	to	vanilla	ML.	

General	Strategic	Interactions
• General-sum	games	and	commitment	solution	concept

• Learnability	and	Stackelberg	games
• Learning	benchmarks	and	principal-agent	dynamics.



Statistical	Guarantees
Data	is	generated	stochastically	from	a	
fixed	distribution

Learner	learns	a	function	using	the	data

Successful	if	it	gets	good	performance	
over	the	underlying	distribution.

Not	concerned	with	robustness	or	what	
happens	if	the	world	were	to	change.

Stochastic	or	Offline
Adversarial	Online

Data	is	generated	by	an	all-powerful	
adaptive	adversary,	who	knows	the	
algorithm	and	history.

Successful	if	it	gets	good	performance	
over	adversarially generated	data.

Robust	to	any	adversarial	reactions	to	
earlier	decisions.	



Rethinking	Adversarial	Behavior
Adaptivity:
• Future	instances	maybe	dependent	on	earlier	decisions.
à Good	property	to	address:	Feedback	loops,	unpredictable	ways	in	
which	world	responds	to	deployed	models	and	existing	standards,	etc.

Exact	knowledge	and	control:
• Adversary	can	create	any	 𝑥, 𝑦 it	desires,	without	any	issues.
• Exact	measurements	of	𝑥 or	how	its	represented	in	the	feature	space,	no	
shaky	hands,	exact	knowledge	of	how	likely	an	error	becomes.

à Seems	stronger	than	often	found	in	nature:	there	is	very	little	
knowledge	of	how	GPT-4	works	and	processes	prompts.



Perspective	on	noise	and	source	od	randomness
1.	There	is	no	real	adversary,	just	very	unpredictable	ways	in	which	data	evolves	in	
nature	in	feedback	loops	we	create.
àSlight	differences	in	how	different	people	react	to	deployed	models

2.	Noise	and	lack	of	precision	is	inherent	part	of	how	the	adversary	interacts	with	ML	
models.
• Mismeasurement,	physical	limitations,	unpredictable	environments	in	which	
manipulations	happen.	

àE.g. physical	manipulations,	audio/video	manipulations,	

3.	Lack	of	precision	is	introduced	at	data	collection/training	by	design
à E.g.,	age	groups,	income	brackets,	zip	codes,	…	



There	is	a	function	class	𝐻 and	domain	𝑋 (𝑋 ⊆ 𝑅c has	finite	Lebesgue	measure)
At	round	𝑡

Smoothed	Adversarial	Setting

Learner	picks	prediction	rule	𝑓! ∶ 𝑋 → 𝑌 ,	
not	necessarily	deterministic.

Adversary	picks	a	𝜎-smooth	
distribution	𝐷! knowing	the	history	for	
1,… , 𝑡 − 1 and	the	algorithm

𝜎-smooth	distribution:	max	density	is	≤ A
d×base density on	𝑋

Adversary	picks	an	
instance	(𝑥̅& , g𝑦&).

(𝑥̅!, d𝑦!) randomly	perturbs	to	(𝑥-, 𝑦!)

Another	perspective	on	smoothness

[H.	Roughgarden,		Shetty	‘20]



There	is	a	function	class	𝐻 and	domain	𝑋 (𝑋 ⊆ 𝑅c has	finite	Lebesgue	measure)
At	round	𝑡

Smoothed	Adversarial	Setting

Learner	picks	prediction	rule	𝑓! ∶ 𝑋 → 𝑌 ,	
not	necessarily	deterministic.

Adversary	picks	a	𝜎-smooth	
distribution	𝐷! knowing	the	history	for	
1,… , 𝑡 − 1 and	the	algorithm

𝜎-smooth	distribution:	max	density	is	≤ A
d×uniform density on	𝑋

Goal:	Vanishing	average	regret

Avg. REGRET =
1
𝑇
d
abA

S

1 𝑓a 𝑥a ≠ 𝑦a − min
W∈R

1
𝑇
d
abA

S

1 ℎ 𝑥a ≠ 𝑦a

[H.	Roughgarden,		Shetty	‘20]



Recall
Online	Learning	Regret Perturbation

Adversarial	setting pΘ Ldim H /𝑇 No	perturbation
𝝈 = 𝟎

Stochastic	setting
pΘ VCDim H /𝑇 Maximum	perturbation

𝝈 = 𝟏

Interpreted	as	an	impossibility	result,	because	VCDim ≪ Ldim
à For	simple	classes,	Ldim = ∞ but	VCDim = 1.

In	presence	of	Adaptive	but	Smooth	Adversaries	the	regret	is	aO VCDim(H) ln 1/𝜎 /𝑇

Learnable	with	under	smoothed	analysis	if	and	only	learnable	on	a	uniform	distribution.

Smoothed	Analysis	for	online	learning

[H.,	Roughgarden,	Shetty’21]



We	could	approximate	H that’s	potentially	infinite,	with	a	finite	H′.
Why	did	the	Stochastic	Case	Work?

ℎ ℎ'()*+

𝜖

Approx Error

Alg for	worst-case	online	
learning	that	gets	for	 ℋ,𝐻 𝐻′

The	Net:	For	each	ℎ ∈ 𝐻 there	is	ℎ./012 ∈ 𝐻′,	where	𝔼 ℎ Δℎ6789: ≤ 𝜖 is	small.



We	could	approximate	H that’s	potentially	infinite,	with	a	finite	H′.
Why	did	the	Stochastic	Case	Work?

ℎ ℎ'()*+

𝜖

Approx Error

Alg for	worst-case	online	
learning	that	gets	for	 ℋ,𝐻 𝐻′

The	Net:	For	each	ℎ ∈ 𝐻 there	is	ℎ./012 ∈ 𝐻′,	where	𝔼 ℎ Δℎ6789: ≤ 𝜖 is	small.
Approx	Error	is	small:	Performance	of	every ℎ ∈ 𝐻 is	close	to	the	corresponding	ℎ./012 ∈ 𝐻′
Infinitely	many	ℎ Δℎ./012:	i.i.d instances	and	finite	VC	dimension	bounds	this.

Anti-Concentration:	
Not	too	many	points	fall	in	any	ℎ Δℎ'()*+



We	could	approximate	H that’s	potentially	infinite,	with	a	finite	H′.

ℎ ℎ'()*+

𝜖

Approx Error

Alg for	worst-case	online	
learning	that	gets	for	 ℋ,𝐻 𝐻′

The	Net:	For	each	ℎ ∈ 𝐻 there	is	ℎ./012 ∈ 𝐻′,	where	𝔼 ℎ Δℎ6789: ≤ 𝜖 is	small.
Approx	Error	is	small:	Performance	of	every ℎ ∈ 𝐻 is	close	to	the	corresponding	ℎ./012 ∈ 𝐻′
Infinitely	many	ℎ Δℎ./012:	i.i.d instances	and	finite	VC	dimension	bounds	this.

The	adversary	can	concentrate	:	
too	many	points	fall	in	any	ℎ Δℎ'()*+

What	went	wrong	for	the	online	case?



How	do	we	preserve
anti-concentration when	a	
sequence	of	smooth	distributions	
are	adaptively	chosen?

Broad	Question



Each	𝜎-smooth	distribution	is	anti-
concentrated.

The	challenge	is	correlations	between	
these	smooth	distributions.

Challenge



Probability	Couplings:	Given	distributions	𝑋 and	𝑍.	
• A	joint	distribution	on	𝑋×𝑍,	such	that	there	is	a	“nice	property”	between	the	draws	(𝑥, 𝑧).
• Couple	a	sequence	of	smooth	distributions	with	draws	from	a	uniform	distribution.

Couple	Adaptive	Smoothness	with	Uniformity

Coupling	Theorem: For	any	adaptive	sequence	of	𝑇 distributions,	there	is	a	coupling	between:
1. (𝑋3, … , 𝑋6) ∼ (𝐷3, 𝐷4, … , 𝐷6)
2. 𝑍3… , 𝑍67 ∼ 𝑈𝑛𝑖𝑓 and	independent	and	𝑘 ≈ 1/𝜎.
3. Such	that	with	high	prob.	{𝑋3, … , 𝑋6} ⊆ {𝑍3… , 𝑍67}

Uniform	distribution	is	not	“concentrated”.	So,	𝑋3, … , 𝑋6 ⊆ 𝑍3… , 𝑍67 aren’t	either.
• We	want	to	say	that	no	ℎ Δℎ./012 includes	too	many	𝑋3, … , 𝑋6 .
• Sufficient	to	say	no	ℎ Δℎ./012 includes	too	many	𝑍3… , 𝑍67 .
• 𝑍3… , 𝑍67 are	i.i.d and	guaranteed	to	be	scattered.

Adaptive	smoothed	adversaries	can’t	be	much	worst	than	stochastic	adversaries	(on	a	slightly	
longer	time	scale).



Overview	of	the	Main	Results
Theorem [H.,	Roughgarden,	Shetty	‘21]
In	presence	of	Adaptive	but	Smooth	Adversaries	the	regret	is	aΘ VCDim(H) 𝑇 ln 1/𝜎

Regret for ℋ ≤
Approx Error

+max# points in ℎ Δℎ'()*+

Alg for	worst-case	online	
learning	that	gets	

𝑂 𝑇log |ℋ,| regret
𝐻 𝐻′

Step	1:	Choose	H′ that	is	a	finite	approximation	of	H

How	do	we	select	H′?	
• Take	H′ that	such	that	𝑥 ∼ Unif ,	i.e.,	Pr8 a point falls in ℎ Δℎ./012 ≤ 𝜖.
• Works	nicely	for	𝜎-smooth	distributions	too:

𝔼9 #points in ℎ Δℎ./012 ≤ 𝑇𝜖/𝜎.



Overview	of	the	Main	Results

Regret for ℋ ≤
Approx Error

+max# points in ℎ Δℎ'()*+

Alg for	worst-case	online	
learning	that	gets	

𝑂 𝑇log |ℋ,| regret
𝐻 𝐻′

Step	2:	Apply	the	coupling

Step	1:	We	got	that	𝔼] #points in ℎ Δℎ6789: ≤ 𝑇𝜖/𝜎.

Approx Error
max
:∈<

# points ∼ 𝐷3, …D=
fall in ℎ Δℎ./012

≤
Approx Error

max
:∈<

# points ∼ 𝑈𝑛𝑖𝑓
fall in ℎ Δℎ./012

“Nice	Property”:	𝑋#, … , 𝑋$ drawn	from	𝐷#, 𝐷), … , 𝐷$ are	a	subset	of	𝑍#, … , 𝐷.$ drawn	from	uniform	
distribution.



Overview	of	the	Main	Results

Regret for ℋ ≤
Approx Error

+max# points in ℎ Δℎ'()*+

Alg for	worst-case	online	
learning	that	gets	

𝑂 𝑇log |ℋ,| regret
𝐻 𝐻′

Approx Error
max
:∈<

# points ∼ 𝐷3, …D=
fall in ℎ Δℎ./012

≤
Approx Error

max
:∈<

# points ∼ 𝑈𝑛𝑖𝑓
fall in ℎ Δℎ./012

Step	3:	Bound	the	Approx Error	for	the	uniform	distribution.
No	concerns	about	the	adversary	and	robustness.	Just	the	classical	stuff!
VC	dimension	uses	i.i.d uniform	r.v. to	show	that	approx.	error	is	small.

Step	1:	We	got	that	𝔼] #points in ℎ Δℎ6789: ≤ 𝑇𝜖/𝜎.

Step	2:	Apply	the	coupling



We	want	to	be	robust	over	T interactions	with	an	
adaptive	smooth	adversary.

Classical	algorithms	and	analysis	from	the	
stochastic	case	can	be	lifted	and	be	use	with	
smoothed	adaptive	adversaries

Main	Message



Smoothed	Adaptive	Adversaries

Get	essentially	the	same	performance	guarantees	for	the	algorithm	against	an	
adversary,	as	you	could	in	the	stochastic	world.	

Ideal	Results

Reducing	interactions	with	smooth	adaptive	adversary	to	the	stochastic	world.
Getting	rid	of	the	worst	aspect	of	being	adversarial.



Important		Message

Learnability’s	sensitive	dependence	on	
adversarial	assumptions	is	partly	“brittle”	
and	won’t	be	observed	in	the	nature.

We	need	a	reevaluation	of	the	adversarial	nature.



Important	questions
Bottom	line:	We	can’t	protect	against	every	type	of	misuse,	in	our	learning	algorithms.

What	type	of	misuse	is	the	most	important?
• Platforms	versus	services.
• Misuse	by	content	creators	harm	outsized	number	of	users.
• Misuse	by	individuals	(intending	on	the	misuse),	seems	to	have	more	limited	harm.
• When	misuse	leads	to	statistical	invalidity.

Common	approach	to	limiting	misuse:
• Amending	the	data	set	with	examples	of	misuse	à inherent	failure	mode	of	safety.
• Even	loosely	defined	safety	goals	can	be	implemented	more	effectively	than	ad	hoc	
data	set	amendment.

à e.g.,	the	adversary	can	adapt,	but	uncertainty,	lack	of	knowledge,	and	noise	impact	
how	precisely	the	adversary	can	target	vulnerabilities.



Tutorial	Overview
Basic	considerations	of	ML
• Learning	in	vanilla	(stochastic)	environments	(baseline	for	comparison)

Adversarial	Interactions
• Learnability	challenges	in	adversarial	learning	
• Infinitely	large	Zero-sum	Games	and	failure	of	minmax
• More	realistic	adversaries	and	learnability	comparisons	to	vanilla	ML.	

General	Strategic	Interactions
• General-sum	games	and	commitment	solution	concept

• Learnability	and	Stackelberg	games
• Learning	benchmarks	and	principal-agent	dynamics.



General-sum	Games
Actions	are	played	by	self-interested	
agents.

Agents	may	have	the	ability	to	commit	
to	strategies,	in	verifiable	ways.

What	are	the	optimal	or	stable	outcome	
for	the	agents?

Usage	Examples:	
Strategic	manipulations	
• In	ride-sharing	apps,	drivers	and	riders	
manipulate	supply	and	demand	achieve	better	
deals	shortly	after	the	manipulations.

• In	lending,	admission,	hiring,	search,	
applicants	strategic	manipulate	content	to	
receive	favorable	outcomes.

Environment	responds	to	the	decisions,	but	
strategic	manipulation	are	not	meant	to	hurt	
others	necessarily.



Recall:	Two	player	Games

𝑢)(𝑥, 𝑦)

𝑢#(𝑥, 𝑦)

𝑦

𝑥

𝟏

𝟐Players:	Player	1 and	2

Strategies:	Sets	of	actions	𝑋,	𝑌
Payoffs:	When	1 plays	𝑥 and	2 plays	𝑦.

1’s payoff	∶ 𝑢3(𝑥, 𝑦) 2’s payoff	∶ 𝑢4(𝑥, 𝑦)

Zero-sum	games: focus	of	this	section
−𝑢3(𝑥, 𝑦) = 𝑢4 𝑥, 𝑦

MinMax	value	=	MaxMin value	(=	Mixed	Nash	Equilibrium	payoff)
Under	some	conditions,	e.g.,	𝑋 and	𝑌 size	or	Δ 𝑋 and	Δ 𝑌 compact,		

Von	Neumann’s	MinMax Theorm



It	Matters	Who	Goes	First
Mixed	Strategies: picks 𝑃 ∈ Δ(𝑋) and						 picks 𝑄 ∈ Δ 𝑌 .𝟏 𝟐

L R

U

D
𝟏

𝟐

What	is	the	Nash	Equilibrium?

𝟏What	if can	commit? Sequential	game

Player	1:	Dominant	strategy	to	play	U.

Player	2:	Will	play	L as	response.

Player	1:	Say,	commits	to	playing	D.	

Player	2:	Will	play	R as	response.

(1,1) (3,0)

(0,1) (2,1)

Player	1:	+2

Player	1:	+1

von	Stengel	and	Zamir’	04

0.49

0.51



Commitment	and	its	value
(Mixed)	Stackelberg	Optimal	Solution
• Player	1	(leader)	commits	to	a	𝑃 ∈ Δ(𝑋)
• Player	2	(follower)	best-responds	to	𝑃,

àplays	BR P = argmax: 𝑈5 𝑃, 𝑦
(pure)	Stackelberg	optimal	solution	defined	analogously.

Optimal	commitment:
Leader	commits	to	best	𝑃 ∈ Δ(𝑋) accounting	
for	BR(P)

argmaxw∈Y(^) 𝑈A 𝑃, 𝐵𝑅(𝑃)

In	any	general-sum	game,	leader’s	(mixed/pure)	Stackelberg	optimal	solution	is	
weakly	advantageous	to	player	1’s	payoff	under	any	(mixed/pure)	Nash	
equilibrium.

Stackelberg	vs	Nash	Equilibrium



Security	Resources
Security	Games:
• Sophisticated	attackers	target	the	weakest	point.	
• Protect	targets,	so	the	high	value	targets	are	not	
attacked.

Defender	(principal):
• 𝑋:	set	of	resources,	each	able	to	protect	some	targets.

Attacker	(agent)
• 𝑌: set	of	targets

𝑢3 𝑥, 𝑦 and 𝑢4 𝑥, 𝑦 utilities	only	depend	on	whether	𝑥
protects	𝑦.

Mixed	strategy:	Random	protection	schedules.

Tambe 2012



Ridesharing	platforms
Ride-sharing	apps	use	supply	and	demand	predictions	to	
price	rides	and	impact	user	decisions.
• Rider’s	manipulate	predictions,	by	choosing	among	
competing	platforms	or	changing	location	of	the	request.

• Driver’s	manipulate	predictions	by	strategically	turning	off	
service	at	critical	locations,	the	type	and	lengths	of	rides	
they	accept,	etc.

Principal:	𝑋 pricing	policies.
Agent	(rider/driver):	𝑌 activity	on	the	platform

𝑢3 𝑥, 𝑦 and 𝑢4 𝑥, 𝑦 utilities	capture	platform	revenue	
and	agent	values	for	the	services	accepted/rendered.



Strategic	Classification
Strategic	Classification:

• Decisions	based	on	observable	attributes	of	applicants.
• Applicants	can	attempt	to	change	this	to	improve	outcome.

Learner	(principal):
• 𝐻:	set	of	classifiers.

Distribution	of	Applicants	(agents)
• 𝑥: Initial	attributes.	Best-response	BR!(ℎ) is	the	
manipulated	attributed.

𝑢3 ℎ, BR1(ℎ) captures accuracy of ℎ on	the	new	instance.	
𝑢4 ℎ, BR1(ℎ) accounting	for	utility	of	“being	admitted”	and	
the	manipulation	costs.	

Pure	strategywith	a	parameterized	classifier	class.

E.g.,	Hardt,	Megiddo,	Papadimitriou,	Wootters ‘15



Optimal	Commitment
argmaxw∈Y ^ 𝑈A 𝑃, 𝐵𝑅(𝑃) , where BR(𝑃) = argmax: 𝑈5 𝑃, 𝑦

𝑈A 𝑃, 𝐵𝑅(𝑃) or	𝑈A 𝑥, 𝐵𝑅(𝑥) demonstrate	nice	structures:	Piece-wise	linearity,	
concavity,	Lipschitzness,	etc,	which	aids	the	computation	of	optimal	commitments.

argmax9∈^ 𝑈A 𝑥, 𝐵𝑅(𝑥) , where BR(𝑥) = argmax: 𝑈5 𝑥, 𝑦(Pure)	
(Mixed)	

Security	Games
Piece-wise	linearity

Classification
Diminishing	returns	in	revenue

Pricing	Policies
Soft	truncation	of	distributions

Prob.	Protect	gorillas

Pr
ob
.	P
ro
te
ct
	e
le
ph
an
ts

scales	with	prob.	
of	protection.

price

re
ve
nu
e

Reported	income	distribution	



Tutorial	Overview
Basic	considerations	of	ML
• Learning	in	vanilla	(stochastic)	environments	(baseline	for	comparison)

Adversarial	Interactions
• Learnability	challenges	in	adversarial	learning	
• Infinitely	large	Zero-sum	Games	and	failure	of	minmax
• More	realistic	adversaries	and	learnability	comparisons	to	vanilla	ML.	

General	Strategic	Interactions
• General-sum	games	and	commitment	solution	concept

• Learnability	and	Stackelberg	games
• Learning	benchmarks	and	principal-agent	dynamics.



Learning	Optimal	Commitments
What	do	we	typically	know?	And	what	has	to be learned?
• We	typically	know	the	principal’s	utility	𝑢A 𝑥, 𝑦 but	not	the	agent’s	utility	𝑢5 𝑥, 𝑦 .

àWe	are	able	to observe	𝐵𝑅(𝑃) or	something	representative	of	it.

We	must	interact	with	the	agent	repeatedly	to	find	a	good	solution.

Stackelberg Regret = max
.∗

1
𝑇 '
!∈ -

𝑈/ 𝑃∗, BR! 𝑃∗ −
1
𝑇 '
!∈ -

𝑈/ 𝑃! , BR! 𝑃!

Balcan,	Blum,	H.	,	Procaccia ’15

𝐵𝑅a 𝑃∗ allows	for	having	different	types	of	agents	per	round.

Principal’s	utility	for	optimal	commitment Principal’s	utility	per	round	

Dong,	Roth,	Schutzman,	Waggoner,	Wu	‘18



Stackelberg	Regret	vs	(External)	Regret

Stackelberg Regret = max
.∗

1
𝑇
'
!∈ -

𝑈/ 𝑃∗, BR! 𝑃∗ −
1
𝑇
'
!∈ -

𝑈/ 𝑃! , BR! 𝑃!

Principal’s	utility	for	optimal	commitment

(External) Regret = max
.∗

1
𝑇
'
!∈ -

𝑈/ 𝑃∗, BR! 𝑃! −
1
𝑇
'
!∈ -

𝑈/ 𝑃! , BR! 𝑃!

Hypothetical	principal’s	utility,	on	
historical	observations	

Recall	the	notion	of	regret	from	earlier	(aka	External	Regret)



Commitment	vs	Stability

Principal’s	optimal	commitment	utility
(optimality)

Principal’s	hypothetical	utility	if	observed	
reactions	remained	the	same.

(stability)

Stackelberg	and	External	Regret	are	worst-case	incompatible
• Any	no-regret	algorithm,	will	have	O(1)	Stackelberg	regret	in	some	cases.
• Any	no-Stackelberg-regret	algorithm,	will	have	O(1)	external	regret	in	some	cases.

Comparison	between	Regret	notions

Chen,	Liu,	Podimata’19

Why?
• The	advantage	of	Stackelberg	optimal	commitment	is	that	it’s	not	a	best-response	to	the	
follower	(that’s	Nash’s	job)	
à Optimal	commitment	is	not	optimal	over	the	past	à large	external	regret	should	exist.

• External	regret	does	not	account	for	the	fact	that	the	follower	will	adapt	her	response.

VS



We	can	not	have	best	of	both	world.	

Need	to	know	whether	we	are	after	
stable	solutions	or	optimal	

commitments.

Takeaway



How	to	Learn	Optimal	Commitments

Stackelberg Regret = max
w∗

1
𝑇
d
a∈ S

𝑈A 𝑃∗, BRa 𝑃∗ −
1
𝑇
d
a∈ S

𝑈A 𝑃a, BRa 𝑃a

Generally	online	Stackelberg	games	are	partial-information	optimization	problems

How	is	this	different	than	No-(external)regret	learning	from	the	first	part?	
• Observation	in	one	round	𝑓a 𝑃a does’t	reveal	𝑓a 𝑃y .
• More	than	bandit	information,	we	see	BRa 𝑃a .
• Algorithmic	solution	are	more	tuned	to	the	information	structure,	e.g.,	piecewise	
Lipschitz,	concavity,	etc.	Somewhat	ad	hoc	choice	of	algorithms.

Extrernal Regret = max
w∗

1
𝑇
d
a∈ S

𝑓a(𝑃∗) −
1
𝑇
d
a∈ S

𝑓a(𝑃a)



How	to	Learn	Optimal	Commitments

Stackelberg Regret = max
w∗

1
𝑇
d
a∈ S

𝑈A 𝑃∗, BRa 𝑃∗ −
1
𝑇
d
a∈ S

𝑈A 𝑃a, BRa 𝑃a

Generally	online	Stackelberg	games	are	partial-information	optimization	problems

Extrernal Regret = max
w∗

1
𝑇
d
a∈ S

𝑓a(𝑃∗) −
1
𝑇
d
a∈ S

𝑓a(𝑃a)

Characterization	of	“bandit”	learnability	for	infinite	hypothesis	classes	is	subtle	and	open.
• Promising	framework:	Decision-Estimation	Coefficient	(DEC)	for	characterizing	
statistical	complexity	of	interactive	decision	making.

• Interesting	question:	How	do	economic	models	of	behavior	come	into	the	picture	
within	DEC	framework?

[Foster,	Kakade,	Qian,	Rakhlin ’22]



Tutorial	Overview
Basic	considerations	of	ML
• Learning	in	vanilla	(stochastic)	environments	(baseline	for	comparison)

Adversarial	Interactions
• Learnability	challenges	in	adversarial	learning	
• Infinitely	large	Zero-sum	Games	and	failure	of	minmax
• More	realistic	adversaries	and	learnability	comparisons	to	vanilla	ML.	

General	Strategic	Interactions
• General-sum	games	and	commitment	solution	concept

• Learnability	and	Stackelberg	games
• Learning	benchmarks	and	principal-agent	dynamics.



Learning	and	Commitment	Revisited	
Learning	from	repeated	interactions	is	antithetical	to	commitment.
• Advantage	of	Stackelberg	(over	Nash)	is	the	power	to	commit.
• Learners	don’t	commit	to	per-round	strategies;	they	commit	to	algorithms.
• Agents	may	not	best	respond:	non-myopic,	not	know	the	current	principal	strategy,	…

Debate	on	
• what	is	the	role	of	the	principal?	
• what’s	the	achievable	utility	for	principal	and	agent?	
• what	are	even	the	right	benchmarks?



Impact	of	Agent’s	Behavior
What	agent	knows	and	algorithmically	does	matters	a	lot.
• If	agent	knows	𝑃a and	best	responds	BRa 𝑃a
àPrincipal’s	utility	is	at	least	that	of	optimal	commitment.
àAgent	is	no-(external)	regret,	but might	get	less	compared	to	her	Stackelberg	utility.

In	many	cases	agent	doesn’t	know	𝑃a (so	can’t	best	respond	BRa 𝑃a )
• Strategic	classification:	Agent	might	not	know	the	current	classifier	𝑃a fully.
• Security	application:	Attacker	wouldn’t	know	the	exact	mixed	strategy	for	that	day
• Ride-sharing:	Riders	and	drivers	don’t	know	updated	prices	for	given	
supply/demand.



Impact	of	Agent’s	Behavior
What	agent	knows	and	algorithmically	does	matters	a	lot.
• If	agent	knows	𝑃a and	best	responds	BRa 𝑃a
àPrincipal’s	utility	is	at	least	that	of	optimal	commitment.
àAgent	is	no-(external)	regret,	but might	get	less	compared	to	her	Stackelberg	utility.

What	if	agent	doesn’t	know	𝑃a (so	can’t	best	respond	BRa 𝑃a )
• Agent’s	action	may	be	a	map	from	historic	observation	to	today’s	actions.
• Historical	best	response	and	no-regret	maps:	

à Give	the	principal	too	much	advantage
à Principal	can	almost	exactly	predict	agent’s	action	and	𝑃a as	a	response.
à Utility	of	optimal	commitment	is	not	predictive	of	principal’s	utility.
àWelfare	also	is	impacted	by	this.	



Agent’s	algorithmic	behavior	and	
guarantees	have	unpredictable	impact	
on	principal-agent	utilities.	

Often,	a	notion	of	“regret”	captures	
quality	of	outcomes,	but	not	here!

TLDR



Statistical	Judgment	behind	the	Algorithm
In	most	cases,	(everything	in	this	tutorial)	a	notion	of	regret	of	an	algorithm	captures	
quality	of	outcomes,	but	not	here.

Return	to	underlying	beliefs	that	algorithm	design	may	be	based	on.

𝟏 𝟐

Principal Agent

Return	to	underlying	beliefs	that	algorithm	design	may	be	based	on.

I	will	play	mixed	
strategy	𝑃!

I	predict	that	
principal’s	action	
comes	from	𝑄!

I	will	play	
𝑦! = 𝐵𝑅(𝑄!)



Calibration	Characterizes	optimal	Commitment	Utility
Agent’s	beliefs	 𝑄A, … , 𝑄S is	“calibrated”	over	times	with	respect	to	𝑃A, … , 𝑃S

lim
-→1

1
𝑇
'
!∈ -

𝑈/ 𝑃! , 𝑦! ≤ max
.∗

𝑈/ 𝑃∗, BR! 𝑃∗

[H.,	Podimata,	Yang	’23]

And, the	principal	has	an	algorithm	for	setting		𝑃A, … , 𝑃S such	that	

lim
-→1

1
𝑇
'
!∈ -

𝑈/ 𝑃! , 𝑦! = max
.∗

𝑈/ 𝑃∗, BR! 𝑃∗

What	is	”calibration”?
• A	common	and	desirable	statistical	property	of	a	predictor.
• Among	outcomes	that	are	predicted	to	happen	with	prob.	𝑣,	a	𝑣 fraction	of	them	truly	
happen.

• Many	methods	for	ensuring	calibration	against	arbitrary	sequence	of	𝑃A, … , 𝑃S.	E.g.,	
[Foster,	and	Vohra	’98]



Calibration	Characterizes	optimal	Commitment	Utility
Agent’s	beliefs	 𝑄A, … , 𝑄S is	“calibrated”	over	times	with	respect	to	𝑃A, … , 𝑃S

lim
-→1

1
𝑇
'
!∈ -

𝑈/ 𝑃! , 𝑦! ≤ max
.∗

𝑈/ 𝑃∗, BR! 𝑃∗

[H.,	Podimata,	Yang	’23]

And, the	principal	has	an	algorithm	for	setting		𝑃A, … , 𝑃S such	that	

lim
-→1

1
𝑇
'
!∈ -

𝑈/ 𝑃! , 𝑦! = max
.∗

𝑈/ 𝑃∗, BR! 𝑃∗

What	does	this	mean?
• If	the	principal	gets	any	more	than	the	stackelberg value,	then	the	agent	was	
deliberately	not	calibrated.	

• If	the	principal	gets	any	less	than	the	Stackelberg	value,	then	the	principal’s	algorithm	
was	not	optimal.	



Takeaway

Algorithmic	and	Statistical	perspective	
on	decision	making	needed	to	get	the	
better	bigger	picture.



Tutorial	Overview
Basic	considerations	of	ML
• Learning	in	vanilla	(stochastic)	environments	(baseline	for	comparison)

Adversarial	Interactions
• Learnability	challenges	in	adversarial	learning	
• Infinitely	large	Zero-sum	Games	and	failure	of	minmax
• More	realistic	adversaries	and	learnability	comparisons	to	vanilla	ML.	

General	Strategic	Interactions
• General-sum	games	and	commitment	solution	concept

• Learnability	and	Stackelberg	games
• Learning	benchmarks	and	principal-agent	dynamics.



Learnability	for	Today’s	World

Environment
Learning	
Algorithms	



Want	to	learn	more?
A	four-hour	tutorial	at	Simons	Institute.

Four	videos	on	Youtube.

Slides:		https://tinyurl.com/25wme25

https://t.co/C6XpBjpD6k

