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Delegation approach to econometric decisions

1. Principal (designer) observes ⌘ and chooses C ✓ RZ to minimize

E⌘ E⇡L
P(⌧̂(C); ✓)

2. Agent (researcher) observes ⇡ ⇠ P⌘ and chooses ⌧̂ 2 C to minimize

E⇡L
A(⌧̂ ; ✓)

by specifiying function class F ✓ RX , loss ` : R⇥ R ! R, mapping T : F ! C, f̂ 7! ⌧̂

3. Algorithm observes data z ⇠ P✓, chooses f̂ to minimize (optimistically)

E⇡[E✓[`(f̂ (x), y)]|z]

or (practically)

Ez [`(f̂ (x), y)]

• Robustness: T (f̂ ) 2 C for all f̂ 2 F
• E�ciency: ⌧̂ = T (f̂ ) good solution to original goal
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Data-driven decisions with multiple objectives across domains

• Robust integration of machine learning into causal inference

• Design of pre-analysis plans

• Strategic classification (Hardt et al., 2016)

• AI alignment (Hadfield-Menell and Hadfield, 2019)

• Manipulation-proof machine learning (Björkegren et al., 2020)

• Regulation of AI (Rambachan et al., 2020)

• Prediction-powered inference (Angelopoulos et al., 2023)

Claim: Integration econometrics, ML, data-driven decision making with mechanism design

• can be good frame to diagnose and address misalignment, and

• allows leveraging formal tools from mechanism design
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Motivation

• Prediction algorithms in high-stakes screening decisions (medical testing, hiring, lending)

• Incentive conflicts between agents building prediction functions and principals overseeing their use
• Medical testing: Insurance company worries hospital over-predicts risk
• Hiring: Employer concerned about fairness of interview invites by manager
• Lending: Financial regulator worries about disparate impact or model risk

• Move to automated rules allows for systematic (even ex-ante) review,

but is complicated by complexity of algorithms, leading for calls around simplicity and transparency

�!

Brain illustration: Yunus Şahin Neural network illustration: Michael Nielsen

• This project: Study in principal–agent model how can e↵ectively mitigate incentive conflicts if

black-box algorithms are too complex to be fully described, apply to credit data
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Complexity and explanations in a principal–agent model

• Starting point: Complexity of algorithms means agent cannot fully describe algorithm to principal

• First policy option: Limit agent to simple/transparent algorithms that can be fully described

• Second policy option: Principal requires agent to provide a simple description/explanation of

algorithm behavior in terms of key drivers or limited data

Neural network illustration: Michael Nielsen
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This Project

• Theoretically, make precise and justify explanations of complex ML models in a principal-agent

model where explainability is means to an end

� Ex-ante restrictions to simple, fully transparent functions

� Oversight based on a simpler representation of the algorithm (‘explainer’)

� Design the explainer to target the dimensions a↵ected most by incentive conflict (‘targeted explainer’)

• Empirically, demonstrate that results matter in two substantial applications to credit underwriting
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Contribution

1. Law and economics literature on fairness and discrimination oversight of algorithms
(e.g. Kleinberg et al., 2018; Gillis and Spiess 2019; Hellman, 2019; Yang and Dobbie, 2020)

• We derive optimal restrictions in a principal-agent model with explicit misaligned preferences

2. Nascent literatures on data analysis with conflicts of interest and replication concerns
(e.g. Glaeser, 2006; Di Tillio et al., 2017; Spiess, 2018) as well as incentive conflicts and
algorithmic design (e.g. Rambachan et al. 2020; Athey et al. 2020)

• We apply principal-agent toolbox to (realistic) case where algorithms too complex to be described

3. Finance literature on disclosure and supervision (e.g. Goldstein and Leitner, 2013; Parlatore and
Phillipon, 2020)

• We study disclosure design when available information is limited, evaluate on real-world data

4. Computer science literature on algorithmic explainability (e.g. Lakkaraju and Bastani, 2020; Slack
et al., 2020; Lakkaraju et al., 2019)

• We derive optimal explainer design from economic theory and apply on real world data

5. Mechanism-design literature on optimal delegation (including Holmstrom, 1977, 1984; Melumad
and Shibano, 1991; Alonso and Matouschek, 2008; Frankel, 2014)

• We consider delegation with a complexity constraint
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Delegation Setup

• An agent chooses a prediction function f : X ! R to maximize utility UA(f ; ✓)

• The choice is overseen by a principal with utility UP(f ; ✓)

0. Principal sets rules
• Ex-ante restrict lender to simple functions F ⇠= E that can be fully explained or

• Leave functions ex-ante unrestricted (F = RX ), and choose explanation mapping e : F ! E

1. Principal chooses restriction bF ✓ F based on prior ⇡

Principal cannot observe complex f 2 RX , only lossy “explanation” ef 2 E , so

bF = {f 2 F ; ef 2 bE}
• Simple proxy models, e.g. linear projection on a few covariates
• Variable-importance measures, such as SHAP for complex machine-learning models
• Evaluation at a limited number of data points x 2 X

2. Agent chooses f̂ 2 bF based on training signal ✓ ⇠ P⇡
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Lending Example

• An agent chooses a prediction function f 2 RX to maximize utility UA(f ; ✓)

• The choice is overseen by a principal with utility UP(f ; ✓)
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Lending Example

• A lender chooses a credit score f 2 RX for data (Y ,X ), where Y 2 {0, 1} repayment and
X 2 X credit file, to maximize UA(f ; ✓) = E✓[u(f (X ),Y )]

• Credit scoring utility: u(f (X ),Y ) = �(Y � f (X ))2

• Loan profit: u(f (X ),Y ) = r (f (X ) � p
⇤) Y � c (f (X ) � p

⇤) (1� Y )

• Choice is overseen by a regulator maximizing utility UP(f ; ✓)

• Risk preference (di↵erent Y |X , same X ):

U
P (f ; ✓) = E✓[u(f (X ),Y )|S=low] S 2 {high, low}

• Target population (same Y |X , di↵erent X ):

U
P (f ; ✓) = E✓[u(f (X ),Y )|D=new customers] D 2 {new customers, existing customers}

• Disparate impact (majority indicator G):

U
P (f ; ✓) = E✓[u(f (X ),Y )]��(E✓[f (X )|G = 1]� E✓[f (X )|G = 0])
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Timing and Choices

t

Rule-setting Restriction Prediction Outcomes

P(Y=1|X , S) = ↵(S) + � X1

past default

+�(S)

HELOC

X2 +� X1 · X2 S 2 {high, low}

f̂ (X ) = ↵̂+ �̂X1 + �̂X2 + �̂X1 · X2

0. Rule-setting stage: Regulator sets the rules of the game

1. Restriction stage: Regulator sets restrictions based on limited information about f̂

2. Prediction stage: Lender learns relationship (here: two covariates, binary) between features X

and repayment Y , chooses credit score f̂ (X )
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Complex Functions, Simple Explanations

t

Rule-setting Restriction Prediction Outcomes

explanation ef

• Information constraint: Regulator cannot process fully complex

f̂ (X ) = ↵̂+ �̂ X1 + �̂ X2 + �̂ X1 · X2 (or lender does not reveal)

• Low-dim explainer: Projection e : F!E , f 7!ef on one of covariates

X2 = 0 X2 = 1

X1 = 0

X1 = 1

X2 = 0 X2 = 1

X1 = 0

X1 = 1

e1 f =

 
E[f (X )|X1 = 1]

E[f (X )|X1 = 0]

!

X2 = 0 X2 = 1

X1 = 0

X1 = 1

e2 f =

 
E[f (X )|X2 = 1]

E[f (X )|X2 = 0]

!
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Baseline Policy Choices: No Regulation and Function Restrictions

Lender learns the distribution of repayment probabilities

P✓(Y = 1|X , S) = ↵(S) + � X̃1

past default

+�(S)

HELOC

X̃2 +� X̃1 · X̃2

where centered and reparametrized so that E[X̃1] = 0 = E[X̃2], X̃1 ? X̃2

Lender and regulator maximize

U
A(f ; ✓) = E✓[�(Y � f (X ))2] U

P (f ; ✓) = E✓[�(Y � f (X ))2|S=low]

Lender prefers: Regulator prefers: Both agree on:

↵̂ = ↵̄ = E✓[↵] ↵̂ = ↵(low) �̂ = �

�̂ = �̄ = E✓[�] �̂ = �(low) �̂ = �

1. No function restriction, no audit. Get maximal distortion

f̂ (X ) = ↵̄+ � X̃1 + �̄ X̃2 + � X̃1 · X̃2

2. Ex-ante restriction to explainable function. Eliminates misalignment at large cost

f̂ (X ) = ↵(low) + � X̃1 15



Policy Choices: Explainer Audits

Information constraint: Regulator cannot process fully complex f̂ (X ) = ↵̂+ �̂ X̃1 + �̂ X̃2 + �̂ X̃1 · X̃2

X2 = 0 X2 = 1

X1 = 0

X1 = 1

Agnostic explainer: max. overall information
) e0: regress f̂ (X ) on constant and X̃1

X2 = 0 X2 = 1

X1 = 0

X1 = 1

Targeted explainer: inspect misalignment
) e⇤: regress f̂ (X ) on constant and X̃2

3. No restriction, audit w/ agnostic explainer e0. Partially aligns choices

f̂ (X ) = ↵(low) + � X̃1 + �̄ X̃2

not detectable by e0

+� X̃1 · X̃2

4. No restriction, audit w/ targeted explainer e⇤. Can achieve first best

f̂ (X ) = ↵(low) + � X̃1 + �(low) X̃2 + � X̃1 · X̃2
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Complex Functions, Simple Explanations

X2 = 0 X2 = 1

X1 = 0

X1 = 1

Neural network illustration: Michael Nielsen

X2 = 0 X2 = 1

X1 = 0

X1 = 1

X2 = 0 X2 = 1

X1 = 0

X1 = 1

“This is Truth”, viral3d.com
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General Delegation Model

• Misaligned preferences over choice f 2 RX

UA(f ; ✓) =

Z

X
uA(f (x), x ; ✓) dµA(x ; ✓) UP(f ; ✓) =

Z

X
uP(f (x), x ; ✓) dµP(x ; ✓)

• Delegation game

1. Principal chooses F̂ ✓ F
2. Agent chooses f̂ 2 F̂

• Explanation constraint

F̂ = {f 2 F ; ef 2 Ê} e : F ! E

• Consider two policy design choices

• Restrict functions from F = RX to F = E to achieve perfect alignment
• Otherwise, design of explainer e
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General Results

Covariate shifts: UA(f ; ✓) =

Z

X
u(f (x), x ; ✓) dµA(x ; ✓) UP(f ; ✓) =

Z

X
u(f (x), x ; ✓) dµP(x ; ✓)

Assume that µP(·; ✓) ⌧ µA(·; ✓) then choices from F = RX are aligned

Model shift: UA(f ; ✓) =

Z

X
uA(f (x), x ; ✓) dµ(x) UP(f ; ✓) =

Z

X
uP(f (x), x ; ✓) dµ(x)

uA(f (x), x ; ✓) = �(f (x)� f A(x ; ✓))2 uP(f (x), x ; ✓) = �(f (x)� f P(x ; ✓))2

When minS E⌘ min�
R
X (f A(x)� f P(x)� x 0

S�)
2 dµ(x) < minS E⌘ min�

R
X (f P(x)� x 0

S�)
2 dµ(x)

then optimal regulation = no ex-ante constraint + targeted explainer

Distributional preference: UP(f ; ✓) = UA(f ; ✓)� �

✓Z

X
f (x) dµ1(x)�

Z

X
f (x) dµ0(x)

◆

Equivalent to model shift with uP(f (x), x ; ✓) = u(f (x), x ; ✓)� �
⇣

dµ1
dµ � dµ0

dµ

⌘
;

optimal targeted explainer is best prediction of group identity 20
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Input-Based Restrictions vs Outcome-Based Tests

• Input-based prohibitions: do not allow use of/access to specific covariates

• Often ine�cient
• Sometimes even counterproductive

• Model-based simplicity/transparency restrictions: limit structure of models

• Comes at cost by shifting Pareto frontier
• In our data cost larger than gain

• Model-based explainability restriction: inspect key model properties

• Practical constraints on processing, IP often mean that information limited
• Well-designed model summary can close the gap to first-best

• Outcome-based audits: use realized properties of algorithmic decisions

• Does not fully leverage ability to describe and intervene before
• May not be enough for counterfactual evaluation
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Conclusion

Opportunity and challenge: Move to automated rules allows for systematic scrutiny, but complexity means we
face decision how to restrict and explain them

Broader context: Explainability, interpretability, transparency central to machine learning implementation and
called for in policy debates, but often lack clear economic definition and motivation

This project: How to regulate black-box algorithms that are too complex to be described completely?

• Answer from principal–agent model: complexity–oversight trade-o↵ leads to targeted explainers

• Calibration in data: excess cost of full transparency/simplicity, targeted explainers second best

Comments/new draft: jspiess@stanford.edu

“This is Truth”, viral3d.com finreglab.org
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