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Challenge and main idea

Empirical estimates reflect not just data, but also researcher
decisions and incentives

How can we approach statistical decisions when there are
conflicts of interest?

Approach in my lecture today: embed econometric tasks in
principal-agent framework, implications for pre-analysis plans

Broader agenda: How can we make causal inference and
data-driven decisions more e�cient and robust?

Today: principal–agent model for econometric analysis, PAPs
Thursday: principal–agent model for explaining, regulating AI



Lecture outline

1. “Optimal Estimation when Researcher and Social Preferences
are Misaligned” (2018; revised 2022)

2. High-level model and integrating machine learning/AI

3. Pre-analysis plans and implementability (with Max Kasy)

4. Summary and conclusion
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Challenge

Empirical estimates reflect not just data,
but also researcher decisions and incentives

p-value (Brodeur et al., 2016)
Sign (Andrews and Kasy, 2017)
Magnitude (Jelveh et al., 2015)

How can we ensure precise estimation when researchers
pursue own goals and engage in specification searches?

I propose econometric approach rooted in mechanism design
that recognizes researchers degrees of freedom and preferences

1 Constraints we should put on empirical analysis
2 Estimators that have socially desirable properties
3 Optimal pre-analysis plans



Treatment e↵ect estimation in experiments JTPA

Researcher estimates average treatment e↵ect in experiment

yi = ↵̂+ di
random treatment

⌧̂+

additional covariates

x 0i �̂ + "̂i

Simple estimator: treatment–control average di↵erence

Giving researcher freedom to use control variables

1 Can improve precision
2 Can induce bias from specification searches

One solution: forbid specification searches altogether

! How to leverage data and researchers expertise,
but not also reflect researchers preferences?



Optimal estimation with specification searches

Standard econometric approach: statistical problem
1 Propose an estimator from identification result
2 Statistical properties, often using large-sample approximations

My econometric approach: mechanism-design problem
1 Estimation setup, researcher choice and preferences
2 Solve for optimal restrictions and estimators in finite samples

Specific application
Precise average treatment e↵ect on experiments
Point estimation with explicit preferences beyond p-values
Researcher choices, not publication process
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Results

1 Designer’s solution: bias restriction

2 Investigator’s solution: flexible unbiased estimators
Sample-splitting ensures unbiasedness
Prediction yields e�ciency

3 Implementation: optimal pre-analysis plans
Specification searches without bias
Data distribution instead of pre-specification



Context

Specification searches, researcher incentives, pre-analysis plans
Leamer (1974); Glaeser (2006); Olken (2015); Co↵man and Niederle
(2015); Young (2017); Andrews and Kasy (2017)

Delegation as mechanism-design problem Holmström (1978, 1984);
Alonso and Matouschek (2008); Frankel (2014)

Decision-theoretic approaches to experimental design Kasy (2016);
Banerjee et al. (2016, 2017)

Covariate adjustments and bias Freedman (2008); Lin (2013); Bloniarz
et al. (2016); Wager et al. (2016); Wu and Gagnon-Bartsch (2017)

Machine learning in causal inference Farrell (2015); Athey and Imbens
(2016); Chernozhukov et al. (2017a)

Sample-splitting as orthogonalization Hájek (1962); Angrist et al.
(1999); Hansen and Racine (2012); Schorfheide and Wolpin (2012, 2016);
Chernozhukov et al. (2017b); Wager and Athey (2017)

Hold-out in multiple testing Dahl et al. (2008); Dwork et al. (2015);
Fafchamps and Labonne (2016); Anderson and Magruder (2017)



Econometric exercise

Target: sample-average treatment e↵ect (Neyman, 1923)

⌧✓
|

potential
outcomes

=
1

n

nX

i=1

(yi (1)�
potential outcomez}|{

yi (0))| {z }
causal e↵ect on i

Data:

z = (yi ,

treatment
|
di , xi

take sample as given

)ni=1 2 Z
finite support

yi = yi (di
random (prob p)

)

Goal: estimator ⌧̂ : Z ! R

Example (Average-di↵erence estimator)

⌧̂(z) =
1

n1

X

di=1

yi �
1

n0

X

di=0

yi



Preferences

Designer: MSE✓(⌧̂) = E✓[(⌧̂(z)� ⌧✓)2]! min

Investigator: RISK✓(⌧̂) = E✓[(⌧̂(z)� ⌧̃✓)2]! min
for some target ⌧̃ : ⇥! R

No best estimator for all ✓ ! weigh by ✓ ⇠ ⇡ (Wald, 1950)
Investigator minimizes E⇡RISK✓(⌧̂)
Designer would want to minimize E⇡MSE✓(⌧̂)

Distribution ⇡ private information of investigator
! Designer faces a delegation problem
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R = {MSE} ! CD unrestricted
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Example (Left with no choice)

R unrestricted ! CD = {⌧̂D}



Results

1 Designer’s solution: bias restriction

2 Investigator’s solution: flexible unbiased estimators
Sample-splitting ensures unbiasedness
Prediction yields e�ciency

3 Implementation: optimal pre-analysis plans
Specification searches without bias
Data distribution instead of pre-specification



Bias–variance trade-o↵

MSE✓(⌧̂) = E✓[(⌧̂(z)� ⌧✓)
2]

= ( E✓[⌧̂(z)]� ⌧✓| {z }
bias

)2 + Var✓(⌧̂)| {z }
variance

Generally improve precision by allowing for bias

Researcher may have di↵erent preference over trade-o↵

Among fixed-bias estimators, choices are aligned

But is it worth the cost?
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Bias–variance trade-o↵

RISK✓(⌧̂) = E✓[(⌧̂(z)� ⌧✓ � K )2]

= (const✓| {z }
bias

� K )2 + Var✓(⌧̂)| {z }
variance

Generally improve precision by allowing for bias

Researcher may have di↵erent preference over trade-o↵

Among fixed-bias estimators, choices are aligned

But is it worth the cost?



Designer’s solution

Assumptions (Risk functions, random treatment, support)

R = {RISK; RISK✓(⌧̂) = E✓[(⌧̂(z)�⌧̃✓)2] for some ⌧̃ : ⇥! R}
Treatment random, outcomes have finite support

⇡ has full support ⌘-a.s.

Theorem (Fixed bias is minimax optimal) Proof sketch

There exists � : ⇥! R such that

C⇤
� 2 argmin

C
sup

RISK2R
E⌘MSE(⌧̂ I )

where C⇤
� fixes biases �✓ = E✓[⌧̂ ]� ⌧✓ for all ✓ 2 ⇥



Aligned delegation analogy

Treatment-e↵ect estimation Grading (Frankel, 2014)

Designer School principal
Researcher Teacher
Estimation Grading
Prior distribution Student performance

Fix the bias Fix the grade average



Estimation with fixed bias

E✓[⌧̂(z)] = ⌧✓·�  ! ⌧̂ I (z) = (

chosen by designer,
unbiased

⌧̂D0 (z)+ �̂I (z)

chosen by investigator,
mean-zero

) ·
chosen by designer

�

Uninformed about preference ! fix the bias

Uninformed about treatment e↵ect ! to zero
(invariant hyperprior/extend minimax)

Some knowledge about distribution ! e.g. shrinkage



Unbiased estimation

E✓[⌧̂(z)] = ⌧✓

+�✓

 ! ⌧̂ I (z) =

(

chosen by designer,
unbiased

⌧̂D0 (z)+ �̂I (z)

chosen by investigator,
mean-zero

) ·
chosen by designer

�

In finite samples, aligns precision relative to some goal

In large samples, once asymptotic Normality established, also:
Low p-value
Small standard error N (⌧,�2)
Tight confidence interval

Does not align investigator who does not want to reject null
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Linear regression

yi = ↵̂+ di ⌧̂
biased

(e.g. Freedman, 2008)

+

ine�cient

x 0i �̂ + "̂i



Causal e↵ect on i (Rubin, 1974)

⌧i = yi (1)�
potential outcomez}|{

yi (0)| {z }
causal e↵ect on i



Causal e↵ect on i (Rubin, 1974)

⌧i = $19, 320�
earnings without trainingz }| {

$18, 478| {z }
causal e↵ect on i

= $842



Estimating ⌧i

For

yi = yi (di
prob p = .5

) =

(
$19, 320, di = 1

$18, 478, di = 0

estimate

⌧̂i = 2(2di � 1)yi =

(
+$39, 640, di = 1

�$36, 956, di = 0

is unbiased for ⌧i = $842 (e.g. Athey and Imbens, 2016)

Extremely high variance

Unbiased provided �i uses only data from other units



Estimating ⌧i

For

yi = yi (di
prob p = .5

) =

(
$19, 320, di = 1

$18, 478, di = 0

estimate

⌧̂i = 2(2di � 1)(yi �
=$19,000

�i ) =

(
+$640, di = 1

+$1, 044, di = 0

is unbiased for ⌧i = $842 (e.g. Athey and Imbens, 2016)

Less variance through regression adjustment

Unbiased provided �i uses only data from other units



Unbiasedness is sample-splitting (I)

Assumptions (Randomization I, finite support)

Treatment is randomized independently with probability p

Outcomes have finite support

Lemma (Characterization of unbiased estimators, I) Proof sketch

For known p, ⌧̂ is unbiased if and only if

⌧̂(z) =
1

n

nX

i=1

di � p

p(1� p)
(yi�

leave-one-out adjustment

�i (z�i ))

“Leave-one-out potential outcomes” (LOOP) estimator (Wu
and Gagnon-Bartsch, 2017), going back to Aronow and
Middleton (2013); Horvitz and Thompson (1952)
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Investigator’s choice of adjustment

Estimate of ⌧i :

⌧̂i = 2(2di � 1)(yi � �i )

Mistake at ⌧i :

⌧̂i � ⌧i = 2(2di � 1)

✓
yi (1) + yi (0)

2
� �i

◆

! Optimal infeasible choice:

�i = ȳi =
yi (1) + yi (0)

2

! Optimal feasible choice: best prediction of ȳi



Investigator’s second-best analysis plan

Theorem (Solution of the investigator)

For known treatment probability p and prior ⇡ with

E⇡[E⇡[ȳj |yi (1), z�ij ]|z�i ] = E⇡[E⇡[ȳj |yi (0), z�ij ]|z�i ]

for ȳi = (1� p)yi (1) + pyi (0) the investigator chooses

⌧̂(z) =
1

n

nX

i=1

di � p

p(1� p)
(yi � E⇡[ȳi |z�i ])

Adjustment E⇡[ȳi |z�i ] minimize prediction risk

E[w(di )(ŷi � yi )
2]

with larger weight w(di ) =
⇣

(di�p)
p(1�p)

⌘2
on smaller group

Duality also holds in asymptotic approximation for K -fold
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“Cross-estimation” (Wager et al., 2016) implementation

⌧̂(z) =
2

n

nX

i=1

(2di � 1)(yi � ŷi )

Sample 1 2 3 4 5 6

Researcher 4

Build f̂i from Adjust at xi

Split 1 2 3 4 5 6 1

Split 2 1 3 4 5 6 2

Split 3 1 2 4 5 6 3

Split 4 1 2 3 5 6 4

Split 5 1 2 3 4 6 5

Split 6 1 2 3 4 5 6
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First solution

⌧̂  ! ŷi

Pre-specify an algorithm that engages in specification searches

Divide the sample into K folds
Go through every fold k

1 Train prediction function f̂ on (yj , dj , xj), j not in fold k with

E[w(d)(y � f̂ (x))2] ! min

2 Adjust yi by f̂ (xi ), i in fold k

Estimate ATE from adjusted outcome

Var(⌧̂) ⇡ 1

np(1� p)

⇣
E[w(d)(y � f̂ (x))2]� p(1� p)⌧

⌘

Always unbiased, quality estimable �! nonparametrics
(Wager et al., 2016; Wu and Gagnon-Bartsch, 2017)

Model selection, model averaging, shrinkage



Second solution

⌧̂(z) =
2

n

nX

i=1

(2di � 1)(yi � f̂i (xi ))

Sample 1 2 3 4 5 6

Researcher 4

Build f̂i from Adjust at xi

Researcher 1 2 3 4 5 6 1

Researcher 2 1 3 4 5 6 2

Researcher 3 1 2 4 5 6 3

Researcher 4 1 2 3 5 6 4

Researcher 5 1 2 3 4 6 5

Researcher 6 1 2 3 4 5 6



Second solution

⌧̂(z) =
2

n

KX

k=1

X

i2Sk

(2di � 1)(yi � f̂ k(xi ))

Sample 1 2 3 4 5 6

Researcher 4

Build f̂ k from Adjust at xi

Researcher 1 4 5 6 1 2 3

Researcher 2 1 2 3 4 5 6

Researcher 3 1 2 3 4 5 6

Researcher 4 1 2 3 5 6 4

Researcher 5 1 2 3 4 6 5

Researcher 6 1 2 3 4 5 6



Timeline
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investigator
chooses

estimation strategy
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researchers
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Prediction on demand Summary



Causal prediction competitions Summary Pre-analysis plan



Results

1 Designer’s solution: bias restriction

2 Investigator’s solution: flexible unbiased estimators
Sample-splitting ensures unbiasedness
Prediction yields e�ciency

3 Implementation: optimal pre-analysis plans
Specification searches without bias
Data distribution instead of pre-specification



Conclusion

Econometric approach that acknowledges researcher degrees
of freedom and preferences ! research protocols

Experimental analysis
Endogenous treatment

Connection between causal estimation and nonparametric
prediction ! beneficial specification searches

Control variables
Other implicit prediction tasks, e.g. instrumental variables

Thank you!

jspiess@fas.harvard.edu
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Delegation approach to econometric decisions

1 Designer observes ⌘ and chooses C ✓ RZ to minimize

E⌘ E⇡L
D(⌧̂(C); ✓)

2 Researcher observes ⇡ ⇠ P⌘ and chooses ⌧̂ 2 C to minimize

E⇡L
R(⌧̂ ; ✓)

by specifiying a function class F ✓ RX , loss function
` : R⇥ R ! R, and mapping T : F ! C, f̂ 7! ⌧̂

3 Machine-learning algorithm observes data z ⇠ P✓, chooses
f̂ to minimize (optimistically)

E⇡[E✓[`(f̂ (x), y)]|z ]

or (practically)

Ez [`(f̂ (x), y)]



Delegation approach to econometric decisions

1 Designer observes ⌘ and chooses C ✓ RZ to minimize
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E⇡L
R(⌧̂ ; ✓)

by specifiying a function class F ✓ RX , loss function
` : R⇥ R ! R, and mapping T : F ! C, f̂ 7! ⌧̂

3 Machine-learning algorithm observes data z ⇠ P✓, chooses
f̂ to minimize (optimistically)

E⇡[E✓[`(f̂ (x), y)]|z ]

or (practically)

Ez [`(f̂ (x), y)]



Delegation view on integrating ML into econometrics

Goal: Assume we want to choose ⌧̂ 2 C ✓ RZ to minimize

E⇡L(⌧̂ ; ✓)

Delegation view: Design a function class F , loss function `,
optimization routine (empirical risk minimization)

argmin
f

Ez [`(f (x), y)],

and mapping T : F ! C
Robustness: T (f̂ ) 2 C for all f̂ 2 F
E�ciency: ⌧̂ = T (f̂ ) good solution to original goal



Data-driven decisions with multiple objectives across domains

Strategic classification (Hardt et al., 2016)

Manipulation-proof machine learning (Björkegren et al., 2020)

Performative prediction (Perdomo et al., 2020)

Regulation of AI (Rambachan et al., 2020)

AI alignment (Hadfield-Menell and Hadfield, 2019)

Prediction-powered inference (Angelopoulos et al., 2023)
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Pre-analysis plans and implementability (with Max Kasy)

Delegation with misaligned preferences, private info

Designer wants to implement a mapping

a : (private info, data) 7! decision 2 {accept, deny},
but lacks private info

Researcher has private info, but always prefers accept



Pre-analysis plans and implementability (with Max Kasy)

Delegation with misaligned preferences, private info

Designer wants to implement a mapping

a : (private info, data) 7! decision 2 {accept, deny},
but lacks private info

Researcher has private info, but always prefers accept



First idea: role of pre-analysis plans

Common view: pre-analysis plan (PAP) ensures valid inference

First idea: PAPs increase implementable decision rules

Baseline (no PAP): mechanism of form

(post-data message, data) 7! decision

limits which decision rules a can be implemented

Pre-commitment (PAP): mechanisms

(pre-data message, data) 7! decision

increase space of implementable decision rules a

! Characterization of implementable decision rules and optimal
PAPs (allows for simplicity constraints on message space)



Second idea: PAPs with partial verifiability

Data availability ex-ante uncertain, may be selectively reported

Second idea: Value of PAPs with partial verifiability

Designer wants to implement a mapping

(private info, available data) 7! decision

but does not know which data is available

Researcher learns availability, decides what to report

Mechanisms with PAP of form

(pre-data message, reported data) 7! decision



Illustration: joint testing of ✓  0, X1,X2 ⇠ N (✓, 1)
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Illustration: joint testing of ✓  0, X1,X2 ⇠ N (✓, 1)
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Summary and conclusion

Empirical estimates reflect not just data, but also researcher
decisions and incentives

How can we approach statistical decisions when there are
conflicts of interest?

Approach in my lecture today: embed data-driven decisions
in principal-agent framework

Can be good frame to diagnose and address misalignment
Allows leveraging formal tools from mechanism design

Has been and can be applied widely across fields
Design of pre-analysis plans
Integrating ML into causal inference
Regulation of AI

jspiess@stanford.edu
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