Econometrics with Misaligned Preferences

Jann Spiess

Stanford GSB

May 2023

- Empirical estimates reflect not just data, but also researcher decisions and incentives
- How can we approach statistical decisions when there are conflicts of interest?
- Approach in my lecture today: embed econometric tasks in principal-agent framework, implications for pre-analysis plans
- Broader agenda: How can we make causal inference and data-driven decisions more efficient and robust?
 - Today: principal-agent model for econometric analysis, PAPs
 - Thursday: principal-agent model for explaining, regulating AI

1. "Optimal Estimation when Researcher and Social Preferences are Misaligned" (2018; revised 2022)

2. High-level model and integrating machine learning/AI

3. Pre-analysis plans and implementability (with Max Kasy)

4. Summary and conclusion

1. "Optimal Estimation when Researcher and Social Preferences are Misaligned" (2018; revised 2022)

2. High-level model and integrating machine learning/Al

3. Pre-analysis plans and implementability (with Max Kasy)

4. Summary and conclusion

- Empirical estimates reflect not just data, but also researcher decisions and incentives
 - *p*-value (Brodeur et al., 2016)
 - Sign (Andrews and Kasy, 2017)
 - Magnitude (Jelveh et al., 2015)
- How can we ensure precise estimation when researchers pursue own goals and engage in specification searches?
- I propose econometric approach rooted in mechanism design that recognizes researchers degrees of freedom and preferences
 - Constraints we should put on empirical analysis
 Estimators that have socially desirable properties
 Optimal pre-analysis plans

Researcher estimates average treatment effect in experiment

additional covariates

$$y_i = \hat{\alpha} + d_i \hat{\tau} + x'_i \hat{\gamma} + \hat{\varepsilon}_i$$
random treatment

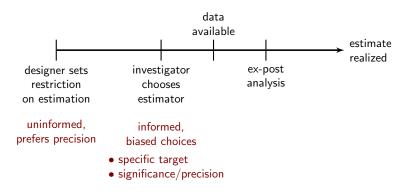
- Simple estimator: treatment-control average difference
- Giving researcher freedom to use control variables
 - **1** Can improve precision
 - 2 Can induce bias from specification searches
- One solution: forbid specification searches altogether
- \rightarrow How to leverage data and researchers expertise, but not also reflect researchers preferences?

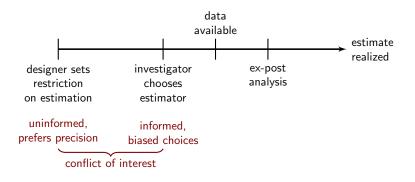
Optimal estimation with specification searches

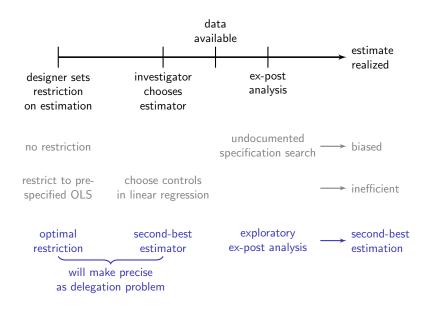
- Standard econometric approach: statistical problem
 - **1** Propose an estimator from identification result
 - 2 Statistical properties, often using large-sample approximations
- My econometric approach: mechanism-design problem
 - 1 Estimation setup, researcher choice and preferences
 - 2 Solve for optimal restrictions and estimators in finite samples

Specific application

- Precise average treatment effect on experiments
- Point estimation with explicit preferences beyond p-values
- Researcher choices, not publication process







1 Designer's solution: bias restriction

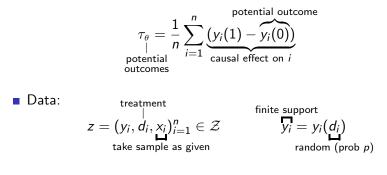
2 Investigator's solution: flexible unbiased estimators

- Sample-splitting ensures unbiasedness
- Prediction yields efficiency
- 3 Implementation: optimal pre-analysis plans
 - Specification searches without bias
 - Data distribution instead of pre-specification

Context

- Specification searches, researcher incentives, pre-analysis plans Leamer (1974); Glaeser (2006); Olken (2015); Coffman and Niederle (2015); Young (2017); Andrews and Kasy (2017)
- Delegation as mechanism-design problem Holmström (1978, 1984); Alonso and Matouschek (2008); Frankel (2014)
- Decision-theoretic approaches to experimental design Kasy (2016); Banerjee et al. (2016, 2017)
- Covariate adjustments and bias Freedman (2008); Lin (2013); Bloniarz et al. (2016); Wager et al. (2016); Wu and Gagnon-Bartsch (2017)
- Machine learning in causal inference Farrell (2015); Athey and Imbens (2016); Chernozhukov et al. (2017a)
- Sample-splitting as orthogonalization Hájek (1962); Angrist et al. (1999); Hansen and Racine (2012); Schorfheide and Wolpin (2012, 2016); Chernozhukov et al. (2017b); Wager and Athey (2017)
- Hold-out in multiple testing Dahl et al. (2008); Dwork et al. (2015); Fafchamps and Labonne (2016); Anderson and Magruder (2017)

Target: sample-average treatment effect (Neyman, 1923)



Goal: estimator $\hat{\tau} : \mathcal{Z} \to \mathbb{R}$

Example (Average-difference estimator)

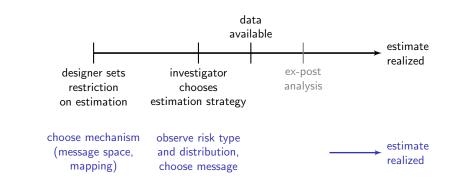
$$\hat{ au}(z) = rac{1}{n_1} \sum_{d_i=1} y_i - rac{1}{n_0} \sum_{d_i=0} y_i$$

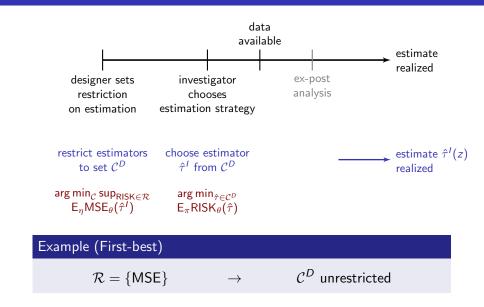
• Designer: $MSE_{\theta}(\hat{\tau}) = E_{\theta}[(\hat{\tau}(z) - \tau_{\theta})^2] \rightarrow \min$

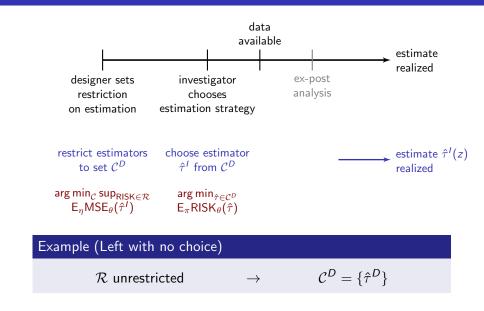
Investigator:
$$\mathsf{RISK}_{\theta}(\hat{\tau}) = \mathsf{E}_{\theta}[(\hat{\tau}(z) - \tilde{\tau}_{\theta})^2] \to \min$$

for some target $\tilde{\tau} : \Theta \to \mathbb{R}$

- No best estimator for all heta
 ightarrow weigh by $heta \sim \pi$ (Wald, 1950)
 - Investigator minimizes $E_{\pi}RISK_{\theta}(\hat{\tau})$
 - Designer would want to minimize $E_{\pi}MSE_{\theta}(\hat{\tau})$







1 Designer's solution: bias restriction

2 Investigator's solution: flexible unbiased estimators

- Sample-splitting ensures unbiasedness
- Prediction yields efficiency
- Implementation: optimal pre-analysis plans
 - Specification searches without bias
 - Data distribution instead of pre-specification

$$\mathsf{MSE}_{\theta}(\hat{\tau}) = \mathsf{E}_{\theta}[(\hat{\tau}(z) - \tau_{\theta})^{2}] \\= (\underbrace{\mathsf{E}_{\theta}[\hat{\tau}(z)] - \tau_{\theta}}_{\mathsf{bias}})^{2} + \underbrace{\mathsf{Var}_{\theta}(\hat{\tau})}_{\mathsf{variance}}$$

- Generally improve precision by allowing for bias
- Researcher may have different preference over trade-off

$$\mathsf{RISK}_{\theta}(\hat{\tau}) = \mathsf{E}_{\theta}[(\hat{\tau}(z) - 42)^{2}]$$
$$= (\underbrace{\mathsf{E}_{\theta}[\hat{\tau}(z)] - \tau_{\theta}}_{\text{bias}} - (\tau_{\theta} - 42))^{2} + \underbrace{\mathsf{Var}_{\theta}(\hat{\tau})}_{\text{variance}}$$

- Generally improve precision by allowing for bias
- Researcher may have different preference over trade-off

$$\mathsf{RISK}_{\theta}(\hat{\tau}) = \mathsf{E}_{\theta}[(\hat{\tau}(z) - \tau_{\theta} - K)^{2}]$$
$$= (\underbrace{\mathsf{const}_{\theta}}_{\mathsf{bias}} - K)^{2} + \underbrace{\mathsf{Var}_{\theta}(\hat{\tau})}_{\mathsf{variance}}$$

- Generally improve precision by allowing for bias
- Researcher may have different preference over trade-off
- Among fixed-bias estimators, choices are aligned
- But is it worth the cost?

Assumptions (Risk functions, random treatment, support)

- $\mathcal{R} = \{ \mathsf{RISK}; \mathsf{RISK}_{\theta}(\hat{\tau}) = \mathsf{E}_{\theta}[(\hat{\tau}(z) \tilde{\tau}_{\theta})^2] \text{ for some } \tilde{\tau} : \Theta \to \mathbb{R} \}$
- Treatment random, outcomes have finite support
- π has full support η -a.s.

Theorem (Fixed bias is minimax optimal) • Proof sketch

There exists $\beta: \Theta \to \mathbb{R}$ such that

$$\mathcal{C}^*_eta \in rgmin \ \mathcal{C} \ \mathsf{RISK} \in \mathcal{R} \ \mathsf{E}_\eta \mathsf{MSE}(\hat{ au}')$$

where \mathcal{C}^*_{β} fixes biases $\beta_{\theta} = \mathsf{E}_{\theta}[\hat{\tau}] - \tau_{\theta}$ for all $\theta \in \Theta$

Treatment-effect estimation	Grading (Frankel, 2014)
Designer	School principal
Researcher	Teacher
Estimation	Grading
Prior distribution	Student performance
Fix the bias	Fix the grade average

$$\mathsf{E}_{\theta}[\hat{\tau}(z)] = \tau_{\theta} \cdot \lambda \qquad \longleftrightarrow \qquad \hat{\tau}^{I}(z) = (\hat{\tau}_{0}^{D}(z) + \hat{\delta}^{I}(z)) \cdot \lambda$$

$$\overset{\text{chosen by designer}}{\underset{\text{chosen by investigator, mean-zero}}{\overset{\text{chosen by investigator, mean-zero}}}$$

- $\blacksquare \ {\sf Uninformed\ about\ preference} \ \longrightarrow \ {\sf fix\ the\ bias}$
- Uninformed about treatment effect → to zero (invariant hyperprior/extend minimax)
- + Some knowledge about distribution \rightarrow e.g. shrinkage

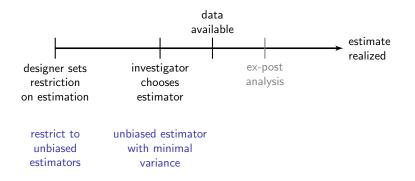
$$\mathsf{E}_{\theta}[\hat{\tau}(z)] = \tau_{\theta} \qquad \longleftrightarrow \qquad \hat{\tau}'(z) = \begin{array}{c} \overset{\text{chosen by designer,}}{\hat{\tau}_{0}^{D}(z) + \hat{\delta}'(z)} \\ \overset{\text{chosen by investigator,}}{\overset{\text{chosen by investigator,}}{\overset{\text{chosen by investigator,}}} \end{array}$$

In finite samples, aligns precision relative to some goal

- In large samples, once asymptotic Normality established, also:
 - Low p-value
 - Small standard error

$$\mathcal{N}(\tau, \sigma^2)$$

- Tight confidence interval
- Does not align investigator who does not want to reject null



Designer's solution: bias restriction

2 Investigator's solution: flexible unbiased estimators

- Sample-splitting ensures unbiasedness
- Prediction yields efficiency

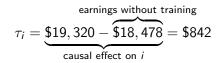
Implementation: optimal pre-analysis plans

- Specification searches without bias
- Data distribution instead of pre-specification

$$y_i = \hat{\alpha} + d_i \hat{\tau} + x'_i \hat{\gamma} + \hat{\varepsilon}_i$$

(e.g. Freedman, 2008)

 $\tau_i = \underbrace{y_i(1) - y_i(0)}_{\text{causal effect on } i}$



Estimating τ_i

For

$$y_i = y_i(d_i) = \begin{cases} \$19, 320, & d_i = 1\\ \\ \$18, 478, & d_i = 0 \end{cases}$$

estimate

$$\hat{\tau}_i = 2(2d_i - 1)y_i = \begin{cases} +\$39,640, & d_i = 1 \\ -\$36,956, & d_i = 0 \end{cases}$$

is unbiased for $\tau_i =$ \$842 (e.g. Athey and Imbens, 2016) Extremely high variance Estimating τ_i

For

$$y_i = y_i(d_i) = \begin{cases} \$19, 320, & d_i = 1\\ \\ \$18, 478, & d_i = 0 \end{cases}$$

estimate

$$\hat{\tau}_i = 2(2d_i - 1)(y_i - \phi_i) = \begin{cases} +\$640, & d_i = 1\\ +\$1,044, & d_i = 0 \end{cases}$$

is unbiased for τ_i = \$842 (e.g. Athey and Imbens, 2016)
Less variance through regression adjustment
Unbiased provided φ_i uses only data from *other* units

Unbiasedness is sample-splitting (I)

Assumptions (Randomization I, finite support)

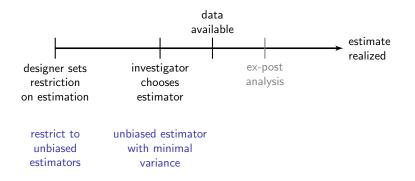
- Treatment is randomized independently with probability p
- Outcomes have finite support

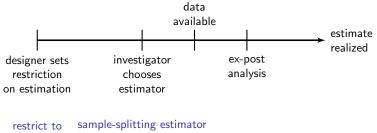
Lemma (Characterization of unbiased estimators, I) • Proof sketch

For known p, $\hat{\tau}$ is unbiased if and only if

$$\hat{\tau}(z) = \frac{1}{n} \sum_{i=1}^{n} \frac{d_i - p}{p(1-p)} (y_i - \phi_i(z_{-i}))$$

 "Leave-one-out potential outcomes" (LOOP) estimator (Wu and Gagnon-Bartsch, 2017), going back to Aronow and Middleton (2013); Horvitz and Thompson (1952)





sample-splitting with minimal estimators variance (for π)

• Estimate of τ_i :

$$\hat{\tau}_i = 2(2d_i - 1)(y_i - \phi_i)$$

• Mistake at τ_i :

$$\hat{\tau}_i - \tau_i = 2(2d_i - 1)\left(\frac{y_i(1) + y_i(0)}{2} - \phi_i\right)$$

 $\rightarrow\,$ Optimal infeasible choice:

$$\phi_i = \bar{y}_i = \frac{y_i(1) + y_i(0)}{2}$$

 \rightarrow Optimal feasible choice: best prediction of \bar{y}_i

Theorem (Solution of the investigator)

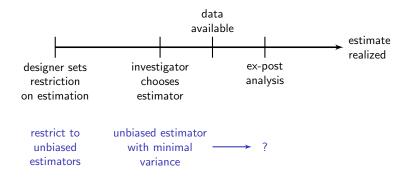
For known treatment probability p and prior π with

$$\mathsf{E}_{\pi}[\mathsf{E}_{\pi}[\bar{y}_{j}|y_{i}(1),z_{-ij}]|z_{-i}] = \mathsf{E}_{\pi}[\mathsf{E}_{\pi}[\bar{y}_{j}|y_{i}(0),z_{-ij}]|z_{-i}]$$

for $\bar{y}_i = (1 - p)y_i(1) + py_i(0)$ the investigator chooses $\hat{\tau}(z) = \frac{1}{n} \sum_{i=1}^n \frac{d_i - p}{p(1 - p)} (y_i - \mathsf{E}_{\pi}[\bar{y}_i|z_{-i}])$

Adjustment $E_{\pi}[\bar{y}_i|z_{-i}]$ minimize prediction risk $E[w(d_i)(\hat{y}_i - y_i)^2]$

with larger weight $w(d_i) = \left(\frac{(d_i-p)}{p(1-p)}\right)^2$ on smaller group Duality also holds in asymptotic approximation for K-fold



Designer's solution: bias restriction

2 Investigator's solution: flexible unbiased estimators

- Sample-splitting ensures unbiasedness
- Prediction yields efficiency
- 3 Implementation: optimal pre-analysis plans
 - Specification searches without bias
 - Data distribution instead of pre-specification

"Cross-estimation" (Wager et al., 2016) implementation

$$\hat{\tau}(z) = \frac{2}{n} \sum_{i=1}^{n} (2d_i - 1)(y_i - \hat{y}_i)$$

"Cross-estimation" (Wager et al., 2016) implementation

$$\hat{\tau}(z) = \frac{2}{n} \sum_{i=1}^{n} (2d_i - 1)(y_i - \hat{f}_i(x_i))$$
Sample (1) (2) (3) (4) (5) (6)
Build \hat{f}_i from Adjust at x_i
Split 1 (2) (3) (4) (5) (6) (1)
Split 2 (1) (3) (4) (5) (6) (2)
Split 3 (1) (2) (3) (4) (5) (6) (3)
Split 4 (1) (2) (3) (4) (5) (6) (5)
Split 5 (1) (2) (3) (4) (5) (6)

"Cross-estimation" (Wager et al., 2016) implementation

$$\hat{\tau}(z) = \frac{2}{n} \sum_{i=1}^{n} (2d_i - 1)(y_i - \hat{f}_i(x_i))$$
Sample (1) (2) (3) (4) (5) (6)
Build \hat{f}_i from Adjust at x_i
Split 1 (2) (3) (4) (5) (6) (1)
Split 2 (1) (3) (4) (5) (6) (2)
Split 3 (1) (2) (4) (5) (6) (3)
Split 4 (1) (2) (3) (4) (5) (6) (4)
Split 5 (1) (2) (3) (4) (5) (6)

 $\hat{\tau} \qquad \longleftrightarrow \qquad \hat{y}_i$

Pre-specify an algorithm that engages in specification searches

- Divide the sample into K folds
- Go through every fold k
 - **1** Train prediction function \hat{f} on (y_j, d_j, x_j) , j not in fold k with

 $\mathsf{E}[w(d)(y - \hat{f}(x))^2] \to \min$

2 Adjust y_i by $\hat{f}(x_i)$, *i* in fold *k*

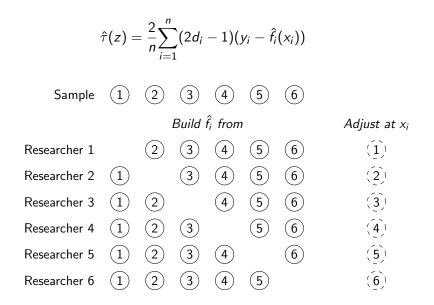
Estimate ATE from adjusted outcome

$$\mathsf{Var}(\hat{\tau}) pprox rac{1}{np(1-p)} \left(\mathsf{E}[w(d)(y-\hat{f}(x))^2] - p(1-p) au
ight)$$

 Always unbiased, quality estimable → nonparametrics (Wager et al., 2016; Wu and Gagnon-Bartsch, 2017)

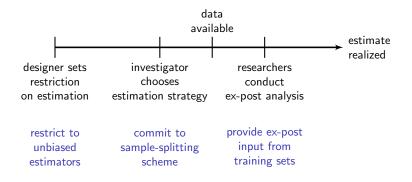
Model selection, model averaging, shrinkage

Second solution



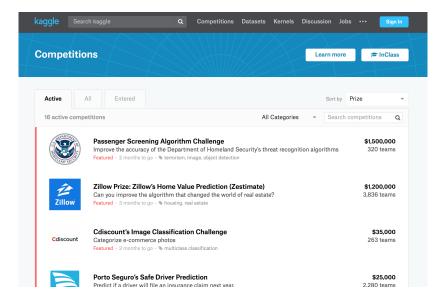
Second solution

$$\hat{\tau}(z) = \frac{2}{n} \sum_{k=1}^{K} \sum_{i \in S^{k}} (2d_{i} - 1)(y_{i} - \hat{f}^{k}(x_{i}))$$
Sample (1) (2) (3) (4) (5) (6)
Build \hat{f}^{k} from Adjust at x_{i}
Researcher 1 (4) (5) (6) (1) (2) (3)
Researcher 2 (1) (2) (3) (4) (5) (6)



How DataRobot works

- 1 Ingest your data
- 2 Select the target variable
- ③ Build 100s of models in one click
- ④ Explore top models and get insights
- 5 Deploy best model and make predictions



1 Designer's solution: bias restriction

2 Investigator's solution: flexible unbiased estimators

- Sample-splitting ensures unbiasedness
- Prediction yields efficiency
- 3 Implementation: optimal pre-analysis plans
 - Specification searches without bias
 - Data distribution instead of pre-specification

Conclusion

- Econometric approach that acknowledges researcher degrees of freedom and preferences → research protocols
 - Experimental analysis
 - + Endogenous treatment
- Connection between causal estimation and nonparametric prediction → beneficial specification searches
 - Control variables
 - + Other implicit prediction tasks, e.g. instrumental variables

1. "Optimal Estimation when Researcher and Social Preferences are Misaligned" (2018; revised 2022)

2. High-level model and integrating machine learning/Al

3. Pre-analysis plans and implementability (with Max Kasy)

4. Summary and conclusion

Delegation approach to econometric decisions

1 Designer observes η and chooses $C \subseteq \mathbb{R}^{\mathcal{Z}}$ to minimize $\mathsf{E}_{\eta} \mathsf{E}_{\pi} L^{D}(\hat{\tau}(C); \theta)$

2 Researcher observes $\pi \sim P_{\eta}$ and chooses $\hat{\tau} \in C$ to minimize $\mathsf{E}_{\pi} L^{R}(\hat{\tau}; \theta)$

Delegation approach to econometric decisions

1 Designer observes η and chooses $C \subseteq \mathbb{R}^{\mathcal{Z}}$ to minimize $\mathsf{E}_{\eta} \mathsf{E}_{\pi} L^{D}(\hat{\tau}(C); \theta)$

2 Researcher observes $\pi \sim \mathsf{P}_{\eta}$ and chooses $\hat{\tau} \in \mathcal{C}$ to minimize $\mathsf{E}_{\pi} \mathsf{L}^{\mathsf{R}}(\hat{\tau}; \theta)$

by specifiying a function class $\mathcal{F} \subseteq \mathbb{R}^{\mathcal{X}}$, loss function $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, and mapping $\mathcal{T} : \mathcal{F} \to \mathcal{C}, \hat{f} \mapsto \hat{\tau}$

3 Machine-learning algorithm observes data $z \sim P_{\theta}$, chooses \hat{f} to minimize (optimistically)

$$\mathsf{E}_{\pi}[\mathsf{E}_{\theta}[\ell(\hat{f}(x), y)]|z]$$

or (practically)

 $\mathbb{E}_{z}[\ell(\hat{f}(x), y)]$

Goal: Assume we want to choose $\hat{\tau} \in \mathcal{C} \subseteq \mathbb{R}^{\mathcal{Z}}$ to minimize

 $\mathsf{E}_{\pi}L(\hat{\tau};\theta)$

Delegation view: Design a function class *F*, loss function *l*, optimization routine (empirical risk minimization)

 $\arg\min_{f} \mathbb{E}_{z}[\ell(f(x), y)],$

and mapping $T : \mathcal{F} \to \mathcal{C}$ **Robustness:** $T(\hat{f}) \in \mathcal{C}$ for all $\hat{f} \in \mathcal{F}$ **Efficiency:** $\hat{\tau} = T(\hat{f})$ good solution to original goal

- Strategic classification (Hardt et al., 2016)
- Manipulation-proof machine learning (Björkegren et al., 2020)
- Performative prediction (Perdomo et al., 2020)
- Regulation of AI (Rambachan et al., 2020)
- Al alignment (Hadfield-Menell and Hadfield, 2019)
- Prediction-powered inference (Angelopoulos et al., 2023)

1. "Optimal Estimation when Researcher and Social Preferences are Misaligned" (2018; revised 2022)

2. High-level model and integrating machine learning/Al

3. Pre-analysis plans and implementability (with Max Kasy)

4. Summary and conclusion

Delegation with misaligned preferences, private info

- Delegation with misaligned preferences, private info
 - Designer wants to implement a mapping
 a: (private info, data) → decision ∈ {accept, deny},
 but lacks private info
 - Researcher has private info, but always prefers accept

First idea: role of pre-analysis plans

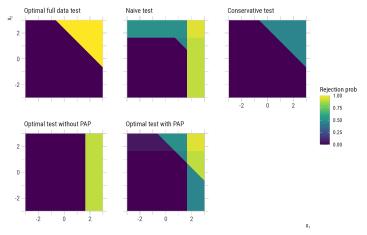
- Common view: pre-analysis plan (PAP) ensures valid inference
- First idea: PAPs increase implementable decision rules

■ Baseline (no PAP): mechanism of form (post-data message, data) → decision limits which decision rules *a* can be implemented

- Pre-commitment (PAP): mechanisms (pre-data message, data) → decision increase space of implementable decision rules a
- → Characterization of implementable decision rules and optimal PAPs (allows for simplicity constraints on message space)

- Data availability ex-ante uncertain, may be selectively reported
- Second idea: Value of PAPs with partial verifiability
 - Designer wants to implement a mapping (private info, available data) → decision but does not know which data is available
 - Researcher learns availability, decides what to report
 - Mechanisms with PAP of form

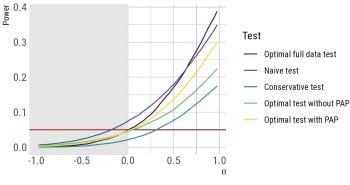
(pre-data message, reported data) \mapsto decision



Rejection probabilities for different testing rules

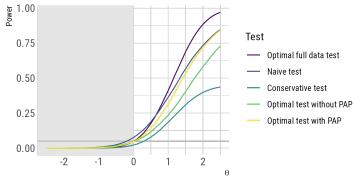
 $X_1, X_2 = N(\theta, 1)$, independently. H0: $\theta < 0$. Probabilities of observing X_1 and X_2 are 0.9 and 0.5.

Power curves for different testing rules

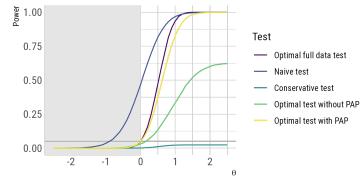


H0: $\theta < 0$. Nominal rejection probability: .05

Power curves for different testing rules



H0: θ < 0. Nominal rejection probability: .05. Dimension n=2



H0: θ < 0. Nominal rejection probability: .05. Dimension n=10

1. "Optimal Estimation when Researcher and Social Preferences are Misaligned" (2018; revised 2022)

2. High-level model and integrating machine learning/Al

Pre-analysis plans and implementability (with Max Kasy)

4. Summary and conclusion

Summary and conclusion

- Empirical estimates reflect not just data, but also researcher decisions and incentives
- How can we approach statistical decisions when there are conflicts of interest?
- Approach in my lecture today: embed data-driven decisions in principal-agent framework
 - Can be good frame to diagnose and address misalignment
 - Allows leveraging formal tools from mechanism design
- Has been and can be applied widely across fields
 - Design of pre-analysis plans
 - Integrating ML into causal inference
 - Regulation of AI

jspiess@stanford.edu

- Angelopoulos, A. N., Bates, S., Fannjiang, C., Jordan, M. I., and Zrnic, T. (2023). Prediction-powered inference. arXiv preprint arXiv:2301.09633.
- Björkegren, D., Blumenstock, J. E., and Knight, S. (2020). Manipulation-proof machine learning. arXiv preprint arXiv:2004.03865.
- Hadfield-Menell, D. and Hadfield, G. K. (2019). Incomplete contracting and ai alignment. In Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society, pages 417–422.
- Hardt, M., Megiddo, N., Papadimitriou, C., and Wootters, M. (2016). Strategic classification. In Proceedings of the 2016 ACM conference on innovations in theoretical computer science, pages 111–122.
- Hirano, K. and Porter, J. R. (2009). Asymptotics for statistical treatment rules. Econometrica, 77(5):1683-1701.
- Perdomo, J., Zrnic, T., Mendler-Dünner, C., and Hardt, M. (2020). Performative prediction. In International Conference on Machine Learning, pages 7599–7609. PMLR.
- Rambachan, A., Kleinberg, J., Mullainathan, S., and Ludwig, J. (2020). An economic approach to regulating algorithms. Technical report, National Bureau of Economic Research.