A Model of Scientific Communication

Isaiah Andrews (Harvard) Jesse Shapiro (Harvard)

Classical Model of Statistics (Wald 1950)

- Analyst observes data $X \in \mathcal{X}$
- Uses X to form estimate of unknown parameter $\theta \in \Theta$
- · Estimate is "good" if close to true value of parameter
- · Formalized by imagining a decision problem in which
 - estimate is a decision $d \in \mathcal{D}$
 - want to minimize loss $L(d, \theta)$
- Dominant paradigm for point estimation
 - e.g., $L(d, \theta) = (d \theta)^2$ gives MSE criterion
 - Foundation of most optimality claims

Classical Model of Statistics (Wald 1950)

Classical Model of Statistics (Wald 1950)

• Example: Analyst works for a firm that must make a pricing decision

Alternative Model of Statistics in Science

Alternative Model of Statistics in Science

• Example: Analyst reports to scientists with diverse opinions, policymakers with diverse objectives

Today

- Argue that these two models represent fundamentally different, and at times conflicting, views of the analyst's goal
- Can lead to very different recommended procedures
- Discuss possible implications for empirical research

Setting

Timing

- Analyst publicly commits to a rule $c : \mathcal{X} \to \mathcal{D}$
- Analyst observes data $X \in \mathcal{X}$, where $X \sim F_{\theta}$
- Analyst makes report c(X) to an audience A
- Each agent $a \in A$ selects decision d and realizes loss $L(d, \theta)$

Audience

- Agents $a \in A$ have different priors on θ
 - Write $E_a[\cdot]$ for expectation under *a*'s prior
 - Identify each agent with their prior, so $\mathcal{A} \subseteq \Delta(\Theta)$
- All disagreement expressed via priors
- Paper shows that nests cases with disagreement over
 - Loss function L
 - Likelihood F_{θ}

- Analyst tries to minimize expected loss (i.e. risk) for the agents
 - Benevolent analyst: no conflict of interest between analyst and agents
- Consider two possible definitions for the risk of rule c for agent a
 - Decision risk (classical model)

 $\mathsf{E}_{a}\left[L\left(c\left(X\right),\theta\right)\right],$

as if analyst makes decision on agent's behalf

• Communication risk (alternative model)

$$\mathsf{E}_{a}\left[\min_{d\in\mathcal{D}}\mathsf{E}_{a}\left[L\left(d,\theta\right)|c\left(X\right)\right]\right],$$

as if agent makes optimal decision given report

- In special case of squared-error loss $L(d, \theta) = (d \theta)^2$
 - Decision risk (classical model)

$$\mathsf{E}_{a}\left[L(c(X),\theta)\right]=\mathsf{E}_{a}\left[\left(c(X)-\theta\right)^{2}\right],$$

is mean squared error

• Communication risk (alternative model)

$$\mathsf{E}_{a}\left[\min_{d\in\mathcal{D}}\mathsf{E}_{a}\left[L\left(d,\theta\right)|c\left(X\right)\right]\right]=\mathsf{E}_{a}\left[\mathsf{Var}_{a}\left(\theta|c\left(X\right)\right)\right],$$

is expected posterior variance

- Decision/communication distinction irrelevant when $|\mathcal{A}| = 1$
 - Benevolent analyst will pick $c(X) = E_a[\theta|X]$, so coincide
- Distinction can matter when $|\mathcal{A}| > 1$

Example

Example

- Analyst conducts a randomized trial with a binary outcome
- Goal is to learn the success probability θ = (θ₁,...,θ_J) at each of a finite set of ordered treatments {1,...,J}
 - e.g., Probability of purchase at a set of prices
 - e.g., Probability of callback at a set of unemployment spell lengths
- Success probabilities known to be decreasing, $\theta_1 \ge \theta_2 \ge ... \ge \theta_J$
 - e.g., Demand slopes down
 - e.g., Longer unemployment spells deter employers
- Quadratic loss $L(d, \theta) = \sum_{j} (d_j \theta_j)^2$

Example

- n independent observations for each treatment
- Data $X = (X_1, ..., X_J)$ are fraction of successes for each
- Decision space $\mathcal{D} = \mathcal{X}$ rich enough to communicate full data
- Audience $\mathcal{A} = \Delta(\Theta)$ includes all possible priors
 - Everyone agrees that $\theta_j \ge \theta_{j+1}$ for all j
 - ...but may disagree about everything else

Two Rules

- Consider two possible rules
 - Full data: $c_j(X) = X_j$
 - Reports success fraction for each treatment j
 - Rearranged data: $c_{j}^{*}(X) = j$ th highest element of $\{X_{1}, ..., X_{J}\}$
 - · Sorts success fractions in descending order

Decision Risk Perspective

- Rearranged data *c** dominates full data *c* in decision risk
 - · Achieves weakly lower risk for all agents, strictly lower for some
 - Intuitively, gets closer to true parameter
 - cf. Chernozhukov et al. (2009)
- Classical model would recommend *c** over *c*

Communication Risk Perspective

- Full data *c* dominates rearranged data *c** in communication risk
 - Intuitively, preserves decision-relevant information

- So far, we've shown that different models made different selections from the pair of rules {c, c*}
- A stronger statement is true
- **Definition**: A rule is admissible (in a given notion of risk) if it is not dominated by another rule
- In this example, any rule that is admissible in decision risk is inadmissible in communication risk, and vice versa
 - No choice of rule resolves conflict between two notions of risk

- Shows conflict between goals of decision and communication
- Recommendations of classical model may not achieve goals of scientific analyst who cares about communication
- In this example, communication-optimal rules seem more in line with empirical practice
 - e.g. we're not aware of any unemployment audit studies that report only the sorted data, though many report unsorted results
 - Kroft, Lange, and Notowidigdo (2013) report both unsorted and sorted versions

Generalizations, and Implications

Generalizations

- Paper considers more general settings
- Provide sufficient conditions for admissibility conflict
- Intuition is the same: good decision rules discard useful information

Generalizations

- We also provide results for other optimality criteria
 - Weighted average of risk over the audience
 - Worst-case risk over the audience

Generalizations

- We also provide results for other optimality criteria
 - Weighted average of risk over the audience
 - Worst-case risk over the audience
- Negative results extend to weighted average case
- For worst case risk, get a positive result

- In example, analyst concerned with communication can solve problem by reporting *X*
- Doesn't seem fully satisfactory in general
 - Otherwise, why does anyone write papers?
- Suggests communication or information processing constraints
- Raises question of optimal constrained communication
 - · Optimal rules will depend on details of how model constraints
- Less ambitious: short of optimal rules, can we find simple, practical ways for analyst to reduce communication risk?
 - Andrews, Gentzkow, Shapiro (2020), "Transparency in Structural Research" discusses a range of practices
 - e.g. showing sensitivity to misspecification in the spirit of Conley, Hansen, and Rossi (2012), Andrews, Gentzkow, and Shapiro (2017)

Summary

- Focusing on communication rather than decision-making changes understanding of the goals of empirical scientist
- Leads to very different recommendations than classical decision-theoretic model in some cases
- Hope that change in perspective may help suggest good procedures for communicating scientific results

Thank you!