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Goal: Fit patterns in static dataset 

Traditional view on machine learning



Machine learning in societal systems
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Machine learning in practice

• Click through rate prediction informs targeted 
advertising

• Zillow’s Zestimate is released to inform buyers
• Credit risk prediction is used to determine 

interest rates
• Poverty index scores are used to allocate 

resources
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predictions impact people



Predictions inform decisions

traffic in London

Release of Google maps

large roads

small roads

traffic in London

Release of Google maps

large roads

small roads



Predictions cause change in people’s behavior

Eligibility for social welfare program in Colombia
Camacho & Conover, American Economic Journal, 2011

Poverty index score 
used as targeting instrument



Predictions shape markets

“Option pricing theory—a “crown jewel” of neoclassical economics—
succeeded empirically not because it discovered preexisting price patterns 

but because it pushed the market to conform to its predictions […].” 
MacKenzie & Millo, American Journal of Sociology, 2003



… moderate public discourse 
… redirect attention 
… shape preferences

Predictions mediate our everyday lives



Lessons from economics

Grunberg, Modigliani (1954)
“The predictability of social events”
Private predictions ≠ public predictions

Goodhardt’s law (1975): 
“any statistical regularity will tend to collapse 
once pressure it put upon it for control purposes”

Lucas’ critique (1976):
Macroeconomic policy can disrupt the statistical 
patterns motivating the policy

Why it is a bad idea to ignore causal effects of predictions
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we call predictions performative when they impact the population they aim to predict

Predictions have causal powers



• Performative prediction: A general conceptual framework to reason about 
the causal powers of predictions in machine learning.

• Solution concepts
• Emerging optimization results
• Economic models

• Performative power: Measuring power in digital economies

• On the difference between learning and steering in optimization
• Connections to anti trust and market regulation

This talk 



Framework of Performative Prediction

Risk 𝜃, 𝐷 = E!∼# [ ℓ 𝑧; 𝜃 ]

[PZMH20]

Supervised learning:   

• Represent population as a fixed distribution 𝐷 over data instances Z = (𝑋, 𝑌)
• Represent the predictive model by a parameter vector 𝜃 ∈ Θ
• Find model that minimizes risk

Performativity thesis: 

The data distribution 𝐷 depends on the model 𝜃 that is being deployed.

R 𝜃 = Risk(𝜃, 𝐷)

feature label



Framework of Performative Prediction

Distribution map:  let 𝐷 𝜃 denote the distribution over data instances 𝑍 = (𝑋, 𝑌)
induced by a model 𝜃 ∈ Θ

Performative risk:   Risk of a model measured after deployment

[PZMH20]

Risk 𝜃, 𝐷 = E!∼# [ ℓ 𝑧; 𝜃 ]

• ‘Macro-level’ description of the distribution shift

PR 𝜃 = Risk 𝜃, 𝐷(𝜃)

model-dependent distribution



𝜃!" ∈ argmin# PR(𝜃) PR 𝜃 ≔ Risk(𝜃, 𝐷(𝜃))Performative optimality:

→ Exposing 𝐷(𝜃) shows new solution concepts for risk minimization

• Performative optimality minimizes risk after deployment
• Performative stability is a natural equilibrium notion in 

observation-driven optimization

we take distribution shift 
into account

Solution Concepts in Performative Prediction

𝜃!$ ∈ argmin# Risk(𝜃, 𝐷(𝜃!$))Performative stability:

[PZMH20]



𝑊! 𝐷 𝜃 , 𝐷 𝜃" ≤ 𝜖 𝜃 − 𝜃" #

Definition: We say the distribution map 𝐷(𝜃) is 𝜖-sensitive if for all 𝜃, 𝜃"

“Similar models lead to similar distributions”

Sensitivity assumption

• Self-fulfilling prophecy 
Small changes in model parameters lead 
to small changes in predictions, and hence 
outcomes

[PZMH20]
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Definition: We say the distribution map 𝐷(𝜃) is 𝜖-sensitive if for all 𝜃, 𝜃"

+-

“Similar models lead to similar distributions”

Sensitivity assumption

𝑓!
𝑓!"

• Self-fulfilling prophecy 
Small changes in model parameters lead 
to small changes in predictions, and hence 
outcomes

• Consequential decisions:
Small changes to decision boundary 
impact only few individuals

[PZMH20]



Retraining converges to stable points

Repeated risk minimization (RRM):

1. deploy the model 𝜃!
2. observe the induced distribution 𝐷(𝜃!)
3. let 𝜃!"# be the risk minimizer on 𝐷(𝜃!)
4. repeat 

A heuristic for dealing with distribution shifts

Theorem [PZMH20]: 

If the loss function is strongly convex and smooth in the data and the distribution map 
is not too sensitive, then retraining converges to stable points at a linear rate.

→ if any of the three conditions is violated convergence is not guaranteed!

[PZMH20]



gradient update 𝜃$ −𝜂 E%∼'()!) [∇ℓ 𝑧; 𝜃$ ]

𝜃!"# ← argmin$ Risk(𝜃, 𝐷(𝜃!))

• ERM and repeated gradient descent [PZMH20]
• Stochastic optimization [MPZH22]
• Proximal point methods [DX20]
• Projected gradient descent [WBD21]
• Time-dependent, stateful shifts [BSI20, BHK22,LW22, RRDF22, MTR22]
• Multi-player performative prediction [NFDFR22, PY22, LYW22]

Retraining heuristics as natural fixed point dynamic under performativity

Empirical risk using samples of 𝐷(𝜃$)

Beyond risk minimization

→ small enough sensitivity and appropriate loss function convergence to stable points



gradient update 𝜃$ −𝜂 E%∼'()!) [∇ℓ 𝑧; 𝜃$ ]

𝜃!"# ← argmin$ Risk(𝜃, 𝐷(𝜃!))

• ERM and repeated gradient descent [PZMH20]
• Stochastic optimization [MPZH22]

Retraining heuristics as natural fixed point dynamic under performativity

Empirical risk using samples of 𝐷(𝜃$)

Beyond risk minimization

Consideration for algorithm design:
Tradeoff sample collection and deployment costs 

by deciding when to deploy

→ The more samples you collect between deployments, 
the more samples, but the fewer deployments you need



Performative optimality

𝜃%& ∈ argmin$ PR(𝜃)

PR 𝜃 ≔ Risk(𝜃, 𝐷(𝜃))

Performative optimality:

𝜃#$
𝜃#%

loss on 𝐷(𝜃#&)

loss on 𝐷(𝜃#$)

Performatively stable points are not necessarily performatively optimal!

we take distribution shift 
into account



Performative optimality

𝜃%& ∈ argmin$ PR(𝜃)

PR 𝜃 ≔ Risk(𝜃, 𝐷(𝜃))

Performative optimality:

Performatively stable points are not necessarily performatively optimal!

Performative optimality is a natural solution concept under experimentation and modeling

closed form expression 
for distribution map, solution 
can be evaluated analytically

we take distribution shift 
into account

A/B testing, 
iterative policy evaluation,

black box optimization



Exploration-based approach

Black-box approach
Inspired by multi-armed bandits

𝜃+

PR 𝜃,

“live experiments”
• deploy a model 𝜃+
• observe distribution 𝐷(𝜃+)
• evaluate performance on induced 

distribution → PR(𝜃+)

𝜃
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If the distribution map is not too sensitive and the 
loss is Lipschitz in the data, then with targeted 
exploration you can find performative optima with 
sublinear regret. 

[JZM22]



Exploration-based approach

Black-box approach
Inspired by multi-armed bandits

𝜃+

PR 𝜃,

Risk(𝜃, 𝐷(𝜃'))

“live experiments”
• deploy a model 𝜃+
• observe distribution 𝐷(𝜃+)
• evaluate performance on induced 

distribution → PR(𝜃+)

confidence 
interval

𝜃

Limitations and open challenges:
- Incorporating practical constraints on exploration
- Respecting cost and risk of deployments
- Incorporating prior knowledge about distirbution 

shift

If the distribution map is not too sensitive and the 
loss is Lipschitz in the data, then with targeted 
exploration you can find performative optima with 
sublinear regret. 

[JZM22]



Model-based approach

+
-

𝑓!

𝑥 𝜃 = argmax
-

𝛾 𝑓) 𝑥 − cost(𝑥., 𝑥)

gain of positive 
clasification

cost of feature 
manipulation

𝐷 𝜃 is “best response map“ over (𝑥 𝜃 , 𝑦)

Rational agent model

Example: Strategic classification [HMPW16]

Distribution 𝐷(𝜃) comes from strategic behavior 
of individuals trying to adapt to decision rule
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Model-based approach

→ Performative optimum corresponds to Stackleberg 
equilibrium in game between learner and population

+
-

𝑥 𝜃 = argmax
-

𝛾 𝑓) 𝑥 − cost(𝑥., 𝑥)

gain of positive 
clasification

cost of feature 
manipulation

𝐷 𝜃 is “best response map“ over (𝑥 𝜃 , 𝑦)

Rational agent model

Advantage: precise understanding 
of distirbution shift allows for 

analytical solutions

Example: Strategic classification [HMPW16]

Distribution 𝐷(𝜃) comes from strategic behavior 
of individuals trying to adapt to decision rule



Model-based approach

+
-

strategic adaptation

acceptance 
threshold

Microfoundation models can lead to degenerate 
aggregates and brittle conclusions about learning 
dynamics in performative prediction, as well as 
large negative externalities

→ Randomized smoothing can help [JMH21] 

Tesion between micro and macro

→ Performative optimum corresponds to Stackleberg 
equilibrium in game between learner and population

𝑝(𝑥)

Example: Strategic classification [HMPW16]

Distribution 𝐷(𝜃) comes from strategic behavior 
of individuals trying to adapt to decision rule

Advantage: precise understanding 
of distirbution shift allows for 

analytical solutions



Alternate models
Behavioral modeling

- Variations in agent costs and model families
- Partial information
- Beyond rationality (e.g., approximate best response)
- Social interactions (e.g., interference, peer effects)

Structural causal models
- Model impact of prediction on outcome (e.g., self-fulfilling prophecy)
- Model interaction dynamics between decision maker and individuals

Macro-models
- Parametric assumptions on distirbution map (e.g., location-scale family [MPZ21])

𝑓!

𝑋 𝑌

0𝑌

Modeling assumptions permit analytical solution for performative optimality



Recap

• Performativity is everywhere!

• Performative prediction offers a conceptual framework to reason about performativity 
in machine learning

• Solution concepts:
• Performative stability as a natural equilibrium notion for retraining heuristics
• Performative optimality as the optimal solution post intervention

• Optimization results:
• A sensitivity assumption on the distribution shift permits interesting theory
• Performative prediction + microfoundations = strategic classification:

Modeling allows anticipating shifts and finding optima analytically



How performative are predictions?

10B+ 
downloads

5M+ 
downloads



How performative are predictions?

10B+ 
downloads

5M+ 
downloads

• It depends on who is making the prediction
• It depends on power

Lexical definition of power: 
“the capacity or ability to direct or influence others or the course of events”

Can we use performativity to reason about power of predictive systems?



How much power do digital platforms have?



Digital platforms are tricky for market regulation

“Pinpointing the locus of competition can be challenging because markets are 
multisided and often ones with which economists and lawyers have little 
experience. This can make market definition another hurdle to effective 
enforcement.” 

Stigler Committee on Digital platforms: Final Report 2019

“less emphasize on analysis of market definition, and more emphasis on the 
theory of harm and identification of anti-competitive strategies. 

European Commission:



P ≔ sup
/0+123 4∈6

1
|𝑈| 1

7∈8

E dist(𝑧(𝑢), 𝑧4(𝑢))

Informal Definition [HJM22]: Performative Power is the largest change a firm can cause to 
a population 𝑈 with respect to a set of algorithmic actions 𝐹 and attributes 𝑍. 

Performative Power

counterfactual data 
under 𝑓
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E dist(𝑧(𝑢), 𝑧4(𝑢))

'counterfactual’

Informal Definition [HJM22]: Performative Power is the largest change a firm can cause to 
a population 𝑈 with respect to a set of algorithmic actions 𝐹 and attributes 𝑍. 

Performative Power

average treatment effect

how to display 
search results

population 
of internet users

content 
user clicks

content user 
clicked under 𝑓



Informal Definition [HJM22]: Performative Power is the largest change a firm can cause to 
a population 𝑈 with respect to a set of algorithmic actions 𝐹 and attributes 𝑍. 

Performative Power

Advantages
ü gives a ‘type-signature’ to power
ü  does not require model for competition, concept of prices, equilibria, etc.
ü  is a causal statistical notion that can be assessed from data



Properties of performative power

+
-

𝑓(

standard 
monopoly setting

individuals invest up to full surplus utility for adaptation

How performative power relates to the economic study of competition

Multi-player strategic classificaton model
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competing 
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ü Competition decreases performative power
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personalization

extract maximum utility simultaneously 
from every individual
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Properties of performative power
How performative power relates to the economic study of competition

personalization

extract maximum utility simultaneously 
from every individual

Sanity check: Performative power exhibits qualitatively 
‘right’ behavior in the presence of competition

Multi-player strategic classificaton model

ü Competition decreases performative power

ü The ability to personalize increases performative power

ü Outside options decrease performative power 



The role of power in prediction
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favorable data

optimizing 
given data

finding performative 
optima = +

For any given data distribution 𝐷
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The role of power in prediction

PR 𝜃 = Risk 𝜃, 𝐷 − Risk 𝜃, 𝐷 − Risk 𝜃, 𝐷 𝜃

steering towards 
favorable data

optimizing 
given data

finding performative 
optima = +

price-making price-taking 

For any given data distribution 𝐷

PR 𝜃 − Risk(𝜃, 𝐷 𝜃1 ) ≤ 𝑂 P   for any  𝜃′

the larger performative power, 
the larger the potential for steering

given Lipschitzness



“Strategies such as offering addictive content at moments when 
consumers lack self-control increase time spent on the platform 
and profitable ad sales even as the platform lowers the quality of 
content. These tactics increase the welfare costs of market power.” 

The potential harms of steering

Stigler Committee on Digital platforms [2019] 
concerns about high market power



Google shopping antitrust case

In 2017 the EU commission found that Google 
has infringed Article 102 TEUF by abusing its 
dominant position in the search for favoring its 
own comparison shopping service over 
competitors (‘self-preferencing’)

… ongoing since 2010



Google shopping antitrust case

In 2017 the EU commission found that Google 
has infringed Article 102 TEUF by abusing its 
dominant position in the search for favoring its 
own comparison shopping service over 
competitors (‘self-preferencing’)

Key technical claim:
Arrangement of content steer traffic to Google 
away from competitors

Or “how performative is google search” ?

… ongoing since 2010

Causal question of display bias at the heart of 
the investigation



The role of performative power?

Trying to get at the causal question at the heart of an investigation

• Links the consequences of actions to the concept of power
• Performative power offers a framework to apply tools 

from causal inference for estimating power



The role of performative power?

Trying to get at the causal question at the heart of an investigation

• Links the consequences of actions to the concept of power
• Performative power offers a framework to apply tools 

from causal inference for estimating power

a) Insights from existing studies
Anderson, Magruder (2012) “An extra half-star rating [on Yelp] causes 
restaurants to sell out 19 percentage points (49%) more frequently”
Narayanan, Kalyanam (2015) “Being ranked 2 instead of 1 
in Google Ads reduces CTR by 21%”

b) New experimental designs
Powermeter: An ongoing research project 
with Gabriele Carovano and Moritz Hardt

Powermeter:
Chrome Browser Extension

Implements randomized 
experiment

Internet users 
browsing
as usual

click statistics
data base



Summary

• Predictions have causal powers, performativity is everywhere

• Performative prediction offers a conceptual framework to reason about the causal effect of 
predictions in machine learning

• Simple syntactic changes to classical risk minimization allows to distinguish solution concepts, 
brings forth new algorithms, and articulates important optimization challenges 

• Performativity allows us to articulate the difference between learning and steering

• Performativity and the causal power of predictions plays an important role in digital market 
investigations 

Framework for brining together machine learning, causality, behavioral economics, control theory, 
game theory, macroeconomics and social sciences more broadly



Thanks to my great collaborators

Moritz Hardt
MPI-IS

Meena Jagadeesan
UC Berkeley

Juan C. Perdomo
UC Berkeley
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Tijana Zrnic
UC Berkeley
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Gabriele Carovano
Uni Tübingen



Questions, thoughts, suggestions?

cmendler@tuebingen.mpg.de
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Thank you!



Causal modeling



Performativity of Predictions 

Challenge for identifiability: 
correlation of prediction with outcome and deterministic nature of predictions leads to positivity violations

[MDW22]

Sufficient conditions for identifiability:    

a) Randomization in predictions (e.g. for differential privacy or fairness)
b) Incongruence in modality + separability (e.g. discrete predictions)
c) Incongruence on functional complexity + separability (e.g. overparameterized models)



Estimating Steerability of Consumption
[CHM23]

Challenge for identifiability: 
Positivity violation in confounding variable (confounder can be long rollout over past actions and states)

Our approach
Explicitly model temporal dynamics
Assume platform action is sufficiently sensitive.
Consumption shocks propagate through system and allow valid observational designs. 
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E.∼0! 𝑓 𝑥 − E.∼0" 𝑓 𝑥 ≤ 𝐿 𝑊(𝐷(, 𝐷))

ℓ*-( 𝜃 : loss over 𝐷(𝜃*-()

𝜃*-(∗

𝜃*∗

𝜃*

ℓ* 𝜃 : loss over 𝐷(𝜃*)



Proof sketch

• 𝛾-strong convexity of the loss in 𝜃:           [∇ℓ* 𝜃* − ∇ℓ*(𝜃*∗)], 𝜃* − 𝜃*∗ ≥ 𝛾||𝜃* − 𝜃*∗||)

• 𝛽-smoothness of the loss in the data:      [∇ℓ* 𝜃* − ∇ℓ*-( 𝜃* ], 𝜃* − 𝜃*∗ ≤ 𝛽 𝜃* − 𝜃*∗ 𝑊 𝐷(𝜃*-( , 𝐷(𝜃*))

⇒ 𝛾||𝜃* − 𝜃*∗|| ≤ 𝛽 𝑊 𝐷(𝜃*-( , 𝐷(𝜃*))

0

0

ℓ*-( 𝜃 : loss over 𝐷(𝜃*-()

𝜃*-(∗

𝜃*∗

𝜃*

ℓ* 𝜃 : loss over 𝐷(𝜃*)



Proof sketch

≤ 𝛽𝜖 𝜃*-( − 𝜃*• 𝜖-sensitivity of 𝐷(⋅):

contraction for 𝜖 < 𝛾/𝛽= 𝛽𝜖 𝜃*-( − 𝜃*-(∗

ℓ*-( 𝜃 : loss over 𝐷(𝜃*-()

𝜃*-(∗

𝜃*∗

𝜃*

ℓ* 𝜃 : loss over 𝐷(𝜃*)

• 𝛾-strong convexity of the loss in 𝜃:           [∇ℓ* 𝜃* − ∇ℓ*(𝜃*∗)], 𝜃* − 𝜃*∗ ≥ 𝛾||𝜃* − 𝜃*∗||)

• 𝛽-smoothness of the loss in the data:      [∇ℓ* 𝜃* − ∇ℓ*-( 𝜃* ], 𝜃* − 𝜃*∗ ≤ 𝛽 𝜃* − 𝜃*∗ 𝑊 𝐷(𝜃*-( , 𝐷(𝜃*))

⇒ 𝛾||𝜃* − 𝜃*∗|| ≤ 𝛽 𝑊 𝐷(𝜃*-( , 𝐷(𝜃*))

0

0
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Stochastic Optimization in Performative Prediction

greedy lazy

[MPZH20]

• Greedy deploy:   Deploy model after every single update

• Lazy deploy:     Set 𝛼 > 0 and perform 𝑐𝑘9 updates between deployments 𝑘 and 𝑘 + 1

𝜃,:! = 𝜃, − 𝜂,∇ℓ(𝑧, 𝜃,)   with 𝑧 ∼ 𝐷(𝜃;<=>?@(,))Samples arrive one at a time:

index of deployed model at time step 𝑡



Stochastic Optimization in Performative Prediction

Proposition: With an appropriate stepsize schedule, a solution 𝜃∗ with ||𝜃∗ − 𝜃BC|| ≤ 𝛿 is reached after

 • 𝑂(1/𝛿) updates and 𝑂(1/𝛿) deployments for greedy deploy

• 𝑂(1/𝛿
"#$
$ ) updates and 𝑂(1/𝛿

"
$) deployments for lazy deploy

[MPZH20]

Bounded second moment:  

 ED∼'(E) ∇ℓ 𝑧, 𝜃 #
# ≤ 𝜎# + 𝐿#||𝜃 − 𝜃E∗ ||   for any 𝜃, 𝜙

𝜃1∗ = argmin2 Risk(𝜃, 𝐷(𝜙))

In addition, assume a) 𝛽-smooth loss in z and 𝜃, b) 𝛾-strongly convex loss in 𝜃, c) 𝜖 < 𝛾/𝛽 

• Stepsize for greedy deploy is globally decreasing and becomes more conservative as (𝛾 − 𝜖𝛽) → 0
• Stepsize for lazy deploy is locally decreasing between deployments and is independent of 𝜖  

→ For 𝛼 ≫ 1 lazy deploy has asympthotic sample complexity 𝑂(1/𝛿) with only 𝑂(1/𝛿
"
$) deployments. 



Stochastic Optimization in Performative Prediction

𝜖 = 0.2 𝜖 = 0.6 𝜖 = 0.9

Setup: Mean estimation z ∼ 𝑁(𝜇 + 𝜖𝜃, 𝜎)) using ℓ 𝑧, 𝜃 = !
" 𝑧 − 𝜃

)

deployments
greedy: 50K

lazy: 200

[MPZH20]

→ see paper for a semi-synthetic 
credit scoring example

• Greedy deploy is better if performativity is weak.
• Lazy deploy is better at dealing with strong shifts and poor initialization.

Different regimes depending on strength of performativity



Confidence bound algorithm



Tighter confidence bounds intuition

[JZM22]

• We can use feedback about D(θ+) and knowledge of the loss to evaluate second term offline
• We only pay for uncertainty due to distribution shift

→ we need Lipschitzness of Risk(𝜃, 𝐷(𝜙)) in 𝜙 to control the first term

PR 𝜃3FG − PR 𝜃+ = Risk 𝜃3FG, 𝐷(𝜃3FG) − Risk 𝜃3FG, 𝐷(𝜃+)

+ Risk 𝜃3FG, 𝐷(𝜃+) − Risk 𝜃+, 𝐷(𝜃+)

Ignore finite sample considerations for now

• After deploying θ+ we observe D(θ+)
• What do we learn about performative risk of an unexplored 𝜃H<I?

uncertainty due to 
distribution shift
uncertainty due to 
changing predictive model

Lipschitz loss in z
+ sensitivity



Performative regret bound

• regret bound primarily scales with 𝐿D𝜖 and not with 𝐿
• as 𝜖 → 0 bound scales as Y𝑂( 𝑇) (no dimension dependence)
• no constraint on loss as a function of 𝜃

→ see [JZM22] for more details

𝐿 Lipschitz constant PR
𝑑" ≥ 𝑑 zooming dimension

Assume the distribution map 𝐷 𝜃 is 𝜖-sensitive and the loss ℓ(𝑧; 𝜃) is 𝐿D-Lipschitz in 𝑧. Then, 
there exists an algorithm that after 𝑇 deployments achieves a regret bound of

Reg 𝑇 = =𝑂 𝑇 + 𝑇
345
346 𝐿'𝜖

3
346

where 𝑑 denotes the “zooming dimension” of the problem

to deal with finite sample uncertainty we proceed in phases and progressively refine precision of risk estimate

Baseline: Lipschitz bandits [Kleinberg et al. 2008]   Reg 𝑇 = Y𝑂 𝑇
%&#"
%&#' 𝐿

%&

%&#'

Benefits of our bound: the complexity of the distribution shift


