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Traditional view on machine learning
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Machine learning in societal systems

Machine learning in practice

e Click through rate prediction informs targeted algorithmic
advertising predictions

e Zillow’s Zestimate is released to inform buyers

* Credit risk prediction is used to determine  _data i
interest rates 1

* Poverty index scores are used to allocate N

resources ,  predictions |



Machine learning in societal systems
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Predictions inform decisions
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Predictions cause change in people’s behavior

Poverty index score
used as targeting instrument

1995 2001
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Eligibility for social welfare program in Colombia
Camacho & Conover, American Economic Journal, 2011



Predictions shape markets

“Option pricing theory—a “crown jewel” of neoclassical economics—
succeeded empirically not because it discovered preexisting price patterns
but because it pushed the market to conform to its predictions [...].”

MacKenzie & Millo, American Journal of Sociology, 2003
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Predictions mediate our everyday lives

... moderate public discourse
... redirect attention
... Shape preferences




Lessons from economics

Why it is a bad idea to ignore causal effects of predictions

Grunberg, Modigliani (1954)
“The predictability of social events”
Private predictions # public predictions

THE JOURNAL OF

Goodhardt’s law (1975): POLITICAL ECONOMY

“any statistical regularity will tend to collapse
once pressure it put upon it for control purposes” Volume LXII DECEMBER 1954 Number 6

THE PREDICTABILITY OF SOCIAL EVENTS!

Lucas’ critique (1976):
Macroeconom/c pO/le can dlsrupt the StatlStlca/ I. THE PROBLEM nfthi.spaltcr is to in\.'cs'tigatc‘t!w validity
pOtt@l’l’)S mOt/Vthng the pO/le Tlm fact that human beings react of this claim. Since it is specifically con-

to the expectations of future cerned with the problem raised by the
events seems to create difficulties agents’ reaction to a published predic-

EMILE GRUNBERG AND FRANCO MODIGLIANI®

Carnegie Institute of Technology

for the social sciences unknown to the tion and not with the broader problem
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Predictions have causal powers

==
- o

g society
e y N o
¥ algorithmic
; 4 & : o P predictions
: v |
i Y % $ “ data |

S~ -

Why does it matter for machine learning?
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Predictions have causal powers
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we call predictions performative when they impact the population they aim to predict



This talk

* Performative prediction: A general conceptual framework to reason about
the causal powers of predictions in machine learning.

e Solution concepts
* Emerging optimization results
* Economic models

* Performative power: Measuring power in digital economies

* On the difference between learning and steering in optimization
e Connections to anti trust and market regulation



[PZMH20]

Framework of Performative Prediction

______________________________________________________

Supervised learning:

e Represent population as a fixed distribution ) over data instances
* Represent the predictive model by a parameter vector 6 € 0
* Find model that minimizes risk

R(6) = Risk(6, D)

Performativity thesis:

The data distribution D depends on the model 6 that is being deployed.



[PZMH20]

Framework of Performative Prediction

______________________________________________________

Distribution map: let denote the distribution over data instances
induced by a model 6 € ©

* ‘Macro-level” description of the distribution shift

Performative risk: Risk of a model measured after deployment

PR(0) = Risk(8, D(6))

AN

model-dependent distribution



[PZMH20]

Solution Concepts in Performative Prediction

we take distribution shift

/ into account

Performative optimality: € argming PR(0) PR(O) = Risk(6,D(0))

Performative stability: € argming Risk(6, D(0p<))

— Exposing D (8) shows new solution concepts for risk minimization

e Performative optimality minimizes risk after deployment

e Performative stability is a natural equilibrium notion in
observation-driven optimization



[PZMH20]

Sensitivity assumption

Definition: We say the distribution map D(8) is if forall 8,0’
W1 (D(6),D(8") < ello —0'l[,

________________________________________________________________________________________

“Similar models lead to similar distributions”

» Self-fulfilling prophecy
Small changes in model parameters lead
to small changes in predictions, and hence
outcomes



[PZMH20]

Sensitivity assumption

Definition: We say the distribution map D(8) is e-sensitive if for all 8, 8’
W1 (D(6),D(8") < ell6 — o'l

“Similar models lead to similar distributions”

+
» Self-fulfilling prophecy ® °
Small changes in model parameters lead . ° ® °
to small changes in predictions, and hence o P o ® o®
outcomes @ “* ° ¢,
o ° ® °
» Consequential decisions: .. o
Small changes to decision boundary °

impact only few individuals



Retraining converges to stable points

A heuristic for dealing with distribution shifts

Repeated risk minimization (RRM):

deploy the model 8, A
observe the induced distribution D (6;,) b
let 0.1 be the risk minimizer on D (8y)

repeat

N

Theorem [PZMH20]:

If the loss function is strongly convex and smooth in the data and the distribution map
is not too sensitive, then retraining converges to stable points at a linear rate.

— if any of the three conditions is violated convergence is not guaranteed!

[PZMH20]



Beyond risk minimization

Retraining heuristics as natural fixed point dynamic under performativity

0,.1 < argming Risk(8,D(6y))

gradient update 8, —1 E;p(g,) [V£(Z; Ok)]

« ERM and repeated gradient descent [PZMH20]

e Stochastic optimization [MPZH22]

* Proximal point methods [DX20]

e Projected gradient descent [WBD21]

* Time-dependent, stateful shifts [BSI20, BHK22,LW22, RRDF22, MTR22]
* Multi-player performative prediction [NFDFR22, PY22, LYW22]

— small enough sensitivity and appropriate loss function convergence to stable points



Beyond risk minimization
Retraining heuristics as natural fixed point dynamic under performativity

0,1 < argming N(B,D(Qk))

Empirical risk using samples of D(6y)

gradient update 8, —1 E;p(g,) [V£(Z; Ok)]

« ERM and repeated gradient descent [PZMH20]
e Stochastic optimization [MPZH22]

____________________________________________________________

Consideration for algorithm design:

. Tradeoff sample collection and deployment costs
: by deciding when to deploy
— The more samples you collect between deployments,
the more samples, but the fewer deployments you need



Performative optimality

we take distribution shift
Into account

Performative optimality: 0po € argming PR(6) /
PR(0) := Risk(8, D (#))

Performatively stable points are not necessarily performatively optimal!

loss on D (Opg)
loss on D(6pp)

HPS



Performative optimality

we take distribution shift
Into account

Performative optimality: 0po € argming PR(6) /
PR(0) := Risk(8, D (#))

Performatively stable points are not necessarily performatively optimal!

Performative optimality is a natural solution concept under experimentation and modeling

/ .

A/B testing, closed form expression
iterative policy evaluation, for distribution map, solution
black box optimization can be evaluated analytically



Exploration-based approach

“live experiments”

* deploy a model 6;

* observe distribution D (6;)

* evaluate performance on induced
distribution — PR(6,)

Black-box approach
Inspired by multi-armed bandits

PR(6;)

>0
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Exploration-based approach

“live experiments”

* deploy a model 6;

* observe distribution D (6;)

* evaluate performance on induced
distribution — PR(6,)

Black-box approach
Inspired by multi-armed bandits

PR(6;) confidence
| interval

Risk(8, D(6,))

>0



[JZM22]

Exploration-based approach

“live experiments”

* deploy a model

* observe distribution

* evaluate performance on induced
distribution

Black-box approach
Inspired by multi-armed bandits

. If the distribution map is not too sensitive and the |
confidence loss is Lipschitz in the data, then with targeted |

interval ' exploration you can find performative optima with

sublinear regret. |
Risk(6, ) o e eoooooooooooooooooo

>0



[JZM22]

Exploration-based approach

“live experiments” Limitations and open challenges:

* deploy a model - Incorporating practical constraints on exploration

* observe distribution - Respecting cost and risk of deployments

* evaluate performance on induced - Incorporating prior knowledge about distirbution
distribution shift

Black-box approach
Inspired by multi-armed bandits

. If the distribution map is not too sensitive and the |
confidence loss is Lipschitz in the data, then with targeted |

interval ' exploration you can find performative optima with

sublinear regret. |
Risk(6, ) e L L LRl

>0



Model-based approach

Example: Strategic classification [HMPW16]

Distribution D(8) comes from strategic behavior
of individuals trying to adapt to decision rule

Rational agent model

x(0) = argmax y fy(x) — cost(xg, x)

S, N
gain of positive cost of feature
clasification manipulation

D(0) is “best response map“ over (x(8),y)
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Model-based approach

Example: Strategic classification [HMPW16]

Distribution D(8) comes from strategic behavior
of individuals trying to adapt to decision rule

— Performative optimum corresponds to Stackleberg
equilibrium in game between learner and population

Advantage: precise understanding
of distirbution shift allows for
analytical solutions

Rational agent model

x(0) = argmax y fy(x) — cost(xg, x)

S, N
gain of positive cost of feature
clasification manipulation

D(0) is “best response map“ over (x(8),y)



Advantage: precise understanding
of distirbution shift allows for

MOdel'based approaCh analytical solutions

Example: Strategic classification [HMPW16]

Distribution D (8) comes from strategic behavior . .
T _ ~C Tesion between micro and macro
of individuals trying to adapt to decision rule

acceptance
threshold

strategic adaptation
p(x) >

Microfoundation models can lead to degenerate
aggregates and brittle conclusions about learning
dynamics in performative prediction, as well as
large negative externalities

— Performative optimum corresponds to Stackleberg

equilibrium in game between learner and population ~ Randomized smoothing can help JMH21]



Alternate models

Behavioral modeling

- Variations in agent costs and model families
- Partial information

- Beyond rationality (e.g., approximate best response)
- Social interactions (e.g., interference, peer effects)

=0
Structural causal models
- Model impact of prediction on outcome (e.g., self-fulfilling prophecy) m
- Model interaction dynamics between decision maker and individuals

Macro-models

- Parametric assumptions on distirbution map (e.g., location-scale family [MPZ21])

Modeling assumptions permit analytical solution for performative optimality



Recap

e Performativity is everywhere!

e Performative prediction offers a conceptual framework to reason about performativity
in machine learning

e Solution concepts:

» Performative stability as a natural equilibrium notion for retraining heuristics
* Performative optimality as the optimal solution post intervention

Optimization results:

e Asensitivity assumption on the distribution shift permits interesting theory
* Performative prediction + microfoundations = strategic classification:
Modeling allows anticipating shifts and finding optima analytically



How performative are predictions?

m

S5M+ 10B+
downloads downloads




How performative are predictions?

/" \

S5M+ 10B+
downloads downloads

* |t depends on who is making the prediction
* |t depends on power

Can we use performativity to reason about power of predictive systems?

Lexical definition of power:
“the capacity or ability to direct or influence others or the course of events”



How much power do digital platforms have?




Digital platforms are tricky for market regulation

Stigler Committee on Digital platforms: Final Report 2019

“Pinpointing the locus of competition can be challenging because markets are
multisided and often ones with which economists and lawyers have little
experience. This can make market definition another hurdle to effective
enforcement.”

European Commission:

“less emphasize on analysis of market definition, and more emphasis on the
theory of harm and identification of anti-competitive strategies.



Performative Power

Informal Definition [HIM22]: Performative Power is the largest change a firm can cause to
a population J with respect to a set of algorithmic actions F and attributes

counterfactual data

L under f
P:= sup i z E [ dist(z(u), Zf (U))]

action feF |U| 1euU



Performative Power

Informal Definition [HIM22]: Performative Power is the largest change a firm can cause to
a population J with respect to a set of algorithmic actions F and attributes Z.

1
P:= sup ﬁ z E [ dist(z(u), Zf (u))]

action feF =0 \ v\
how to display population content content user
search results of internet users user clicks clicked under f
'counterfactual’




Performative Power

Informal Definition [HIM22]: Performative Power is the largest change a firm can cause to
a population J with respect to a set of algorithmic actions F and attributes Z.

average treatment effect

P:= sup 1 z E[dist(z(u),zf(u))]é

action f€F | |U| 1euU v\

how to display population content content user
search results of internet users user clicks clicked under f

'counterfactual’




Performative Power

Informal Definition [HIM22]: Performative Power is the largest change a firm can cause to
a population J with respect to a set of algorithmic actions F and attributes

Advantages
v’ gives a ‘type-signature’ to power
v does not require model for competition, concept of prices, equilibria, etc.

v’ is a causal statistical notion that can be assessed from data



Properties of performative power

How performative power relates to the economic study of competition

Multi-player strategic classificaton model O

standard
monopoly setting

individuals invest up to full surplus utility for adaptation



Properties of performative power

How performative power relates to the economic study of competition

Multi-player strategic classificaton model

v' Competition decreases performative power

competing
classifier

individuals take higher utility option if
options are exchangeable
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Multi-player strategic classificaton model

v' Competition decreases performative power

v The ability to personalize increases performative power

® personalization

extract maximum utility simultaneously
from every individual



Properties of performative power

How performative power relates to the economic study of competition

Multi-player strategic classificaton model

v' Competition decreases performative power
v The ability to personalize increases performative power

v" Outside options decrease performative power

® personalization

Sanity check: Performative power exhibits qualitatively

‘right” behavior in the presence of competition , o
extract maximum utility simultaneously

from every individual



The role of power in prediction

For any given data distribution [
PR(P) = Risk(d,D) — |[Risk(8,D) — Risk(6,D(6)) |

finding performative _ optimizing N steering towards

optima given data favorable data
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PR(#) = Risk(6,D)
finding performative  optimizing
optima given data

price-taking



The role of power in prediction

For any given data distribution [

PR(P) = Risk(d,D) — |[Risk(8,D) — Risk(6,D(0))]
finding performative _ optimizing N steering towards
optima given data favorable data

price-taking price-making



The role of power in prediction

the larger performative power,

For any given data distribution D the larger the potential for steering

PR(P) = Risk(d,D) — |[Risk(8,D) — Risk(6,D(0))]
finding performative _ optimizing N steering towards
optima given data favorable data
price-taking price-making

PR(0) — Risk(6,D(6")) < O(P) forany &'

given Lipschitzness



The potential harms of steering

Stigler Committee on Digital platforms [2019]
concerns about high market power

“Strategies such as offering addictive content at moments when
consumers lack self-control increase time spent on the platform
and profitable ad sales even as the platform lowers the quality of
content. These tactics increase the welfare costs of market power.”



Google shopping antitrust case .. ongoing since 2010

In 2017 the EU commission found that Google
has infringed Article 102 TEUF by abusing its
dominant position in the search for favoring its
own comparison shopping service over
competitors (‘self-preferencing’)

European English @) S
Commission

Home > Press corner > Antitrust: Commission fines Google €2.42 billion

Press release | 27 June 2017 | Brussels

Antitrust: Commission fines Google €2.42 billion for
abusing dominance as search engine by giving illegal
advantage to own comparison shopping service




Google shopping antitrust case .. ongoing since 2010

GO g|e buy nike shoes X o Q
Q Al Q Shopping [ Images & News (¢ Maps i More Tools
In 2017 the EU commission found that Google N

has infringed Article 102 TEUF by abusing its sponsored
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The role of performative power?

Trying to get at the causal question at the heart of an investigation

e Links the conseguences of actions to the concept of power
e Performative power offers a framework to apply tools
from causal inference for estimating power



The role of performative power?

Trying to get at the causal question at the heart of an investigation

e Links the conseguences of actions to the concept of power
e Performative power offers a framework to apply tools
from causal inference for estimating power

a) Insights from existing studies

Anderson, Magruder (2012) “An extra half-star rating [on Yelp] causes
restaurants to sell out 19 percentage points (49%) more frequently”
Narayanan, Kalyanam (2015) “Being ranked 2 instead of 1

in Google Ads reduces CTR by 21%”

b) New experimental designs
Powermeter: An ongoing research project
with Gabriele Carovano and Moritz Hardt

Powermeter:
Chrome Browser Extension

Implements randomized

experiment
Internet users I
browsing =
as usual -y
(=

click statistics
data base



Summary

* Predictions have causal powers, performativity is everywhere

* Performative prediction offers a conceptual framework to reason about the causal effect of
predictions in machine learning

e Simple syntactic changes to classical risk minimization allows to distinguish solution concepts,
brings forth new algorithms, and articulates important optimization challenges

* Performativity allows us to articulate the difference between learning and steering

* Performativity and the causal power of predictions plays an important role in digital market
Investigations

Framework for brining together machine learning, causality, behavioral economics, control theory,
game theory, macroeconomics and social sciences more broadly



Thanks to my great collaborators

Moritz Hardt Meena Jagadeesan Juan C. Perdomo Tijana Zrnic Gabriele Carovano
MPI-IS UC Berkeley UC Berkeley UC Berkeley Uni Tubingen

(soon Harvard) (soon Stanford)



Questions, thoughts, suggestions?

cmendler@tuebingen.mpg.de
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Causal modeling
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Performativity of Predictions

@_’ X =&x Ex ~Dx (1)

¥ = £(X,¢)) & ~Dp @

@‘Q Y —gX,¥)+& & ~Dy G

Figure 1: Performative effects in the outcome mediated by the prediction for a given f

Challenge for identifiability:
correlation of prediction with outcome and deterministic nature of predictions leads to positivity violations

Sufficient conditions for identifiability:

a) Randomization in predictions (e.g. for differential privacy or fairness)
b) Incongruence in modality + separability (e.g. discrete predictions)
c) Incongruence on functional complexity + separability (e.g. overparameterized models)



[CHM23]

Estimating Steerability of Consumption

Ct-2 Gt-1 Gt

- ©

/

@ N @

(a) standard model (b) modeling temporal confounding structure

Challenge for identifiability:
Positivity violation in confounding variable (confounder can be long rollout over past actions and states)

Our approach

Explicitly model temporal dynamics

Assume platform action is sufficiently sensitive.

Consumption shocks propagate through system and allow valid observational designs.



Proof sketch: Convergence of retraining
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Proof sketch

£,.(0): loss over D(6;)

* y-strong convexity of the loss in : [V, (0)) — V2, (0] (8, — 01) = 7|0k — 05|

* [B-smoothness of the loss in the data:  [V#,(6;) — V 017 (6, — ;) < ,8||8k — 0|

Kantorovich Rubinstein
for L-Lipschitz functions f

Exp, f(x) —Ex.p, f(x) < LW(Dq,D;)
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Proof sketch

£,,(6): loss over D(6;)

* y-strong convexity of the loss in : [V, (0)) — V2, (0] (8, — 01) = 7|0k — 05|

* [B-smoothness of the loss in the data:  [V#,(6;) — V 017 (6, — ;) < ,3||6k — 0|

= Y16k — Okll < BW( ), D(0))
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Proof sketch

£,,(6): loss over D(6;)

0
* y-strong convexity of the loss in : [V, (0)) — V2, (0] (8, — 01) = 7|0k — 05|
* [B-smoothness of the loss in the data:  [V£,(0;) — V B)17 (0, — 6;) < B16x — 01| W( ), D(6y))
= V0 = Oll = BW( ), D(6k))
e e-sensitivity of D(): < fe ||9k_1 — 9k||



Stochastic optimization in performative prediction
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Stochastic Optimization in Performative Prediction

Samples arrive one atatime:  Opy1 = 0y — nVE(2,0¢) with 2 ~ D(Ogepioy(r))

b\

index of deployed model at time step t
* Greedy deploy: Deploy model after every single update

* Lazy deploy: Set @ > 0 and perform ck® updates between deployments k and k + 1

greedy lazy

X/\. X/*
‘0\‘././'&



[MPZH20]

Stochastic Optimization in Performative Prediction

Bounded second moment: / 64 = argming Risk(6, D(¢))

2 *
E;~p(¢) [|IV€(Z,9)I|2] <%+ 1?0 — Oyl forany6,¢

In addition, assume a) f-smooth loss in z and 6, b) y-strongly convex lossin 8, c) e <y /b

Proposition: With an appropriate stepsize schedule, a solution 8™ with [|8* — Opg|| < & is reached after
* 0(1/6) updates and 0(1/6) deployments for greedy deploy

1+« 1

* 0(1/6 « ) updatesand O(1/6«) deployments for lazy deploy

1
— For a > 1 lazy deploy has asympthotic sample complexity O(1/6) with only O(1/6«) deployments.

» Stepsize for greedy deploy is globally decreasing and becomes more conservative as (y — €f) = 0
e Stepsize for lazy deploy is locally decreasing between deployments and is independent of €



[MPZH20]

Stochastic Optimization in Performative Prediction

Different regimes depending on strength of performativity deployments

greedy: 50K
* Greedy deploy is better if performativity is weak. lazy: 200
* Lazy deploy is better at dealing with strong shifts and poor initialization. /
e =0.2 € =0.6 e =09
10! * —— greedy deploy . * —— greedy deploy 102 ] —— greedy deploy
0 —— lazy deploy o 1073 —— lazy deploy © —— lazy deploy
D 100 D ] D 10!
8 s S 10°4 2 ]
Y 107! 9 ] Y 1004
: S 107 5 10-1.
- E -1
7 107 B ; £ 10
T o3 © 10—2_g O 102
10~4 1 ; ; : ; : 1073 L ; ; : : ' 103 14 : ' ; : :
0 10k 20k 30k 40k 50k 0 10k 20k 30k 40k 50k 0 10k 20k 30k 40k 50k
number of samples collected number of samples collected number of samples collected
Setup: Mean estimation z ~ N(u + €6,02) using £(z,0) = 3(z — 0)* - see paper for a semi-synthetic

credit scoring example



Confidence bound algorithm



[JZM22]

Tighter confidence bounds intuition

lgnore finite sample considerations for now

After deploying 8; we observe D(6;)
What do we learn about performative risk of an unexplored 6,6, ?

PR(Opew) — PR(6By) = Risk(Bpew, D(Onew)) — Risk(Bpew, D (6r))

+ Risk(Bpew, D (6y)) — Risk(8, D (6,)) uncertainty due to

changing predictive model

We can use feedback about D(08;¢) and knowledge of the loss to evaluate second term offline
We only pay for uncertainty due to distribution shift

Lipschitz loss in z
+ Sensitivity

— we need Lipschitzness of Risk(8, D(¢)) in ¢ to control the



Performative regret bound

— see [JZM?22] for more details

to deal with finite sample uncertainty we proceed in phases and progressively refine precision of risk estimate

_____________________________________________________________________________________________________________________

 Assume the distribution map D(0) is e-sensitive and the loss €(z; 0) is L,-Lipschitz in z. Then,
there exists an algorithm that after " deployments achieves a regret bound of

~ d+l 4
Reg(T) = 0 ( + Ta+z( )d+z)

where d denotes the “zooming dimension” of the problem

______________________________________________________________________________________________________________________

Baseline: Lipschitz bandits [Kleinberg et al. 2008] Reg(T) = 0 (Td’+2

d' +1

dl

Benefits of our bound:

regret bound primarily scales with and not with

as € = 0 bound scales as O( \/7) (no dimension dependence)
no constraint on loss as a function of @

d’+2

)

L Lipschitz constant PR
d' = d zooming dimension



