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Gig labor

Labor contracted and compensated on a short-term through an external 
labor market

“services delivered by companies like Amazon, 
Google, Microsoft, and Uber can only function 
smoothly thanks to the judgment and experience of 
a vast, invisible human labor force.”



Gig labor

workers consumers

Gig labor is a distinct form of economic activity

• Platform cedes some centralized managerial control 
by exposing workers to the disciplining functions of the market 
(consumer choices and evaluation)

• Platform retains power over key functions (data collection, 
task allocation, centralized optimization, pricing and revenue)

platform



Gig labor

Platform based algorithmic control can lead to

“low pay, social isolation, working unsocial and irregular hours, overwork, sleep 
deprivation and exhaustion”, 

“marked by high levels of inter-worker competition with few labor protections and a 
global oversupply of labor relative to demand.” 

- Wood, Graham, Lehdonvirta, and Hjorth (2019)

→ Problematic labor conditions, bad market outcomes for gig workers



Algorithmic Resistance

Numerous examples:

• Freelancers on Upwork strategize against evaluation metrics of the platform, sometimes in 
cooperation with clients on the platform (Rahman, 2021)

• 40% of Didi drivers use digital strategies involving mobile apps or bots (Chen, 2019)

Vincent et al. (2019, 2021): “data strikes”, “data leverage”, “conscious data contribution”

Vallas and Schor (2020) conclude: 
“the upsurge of worker mobilization should not blind us to the difficulties of organizing such a 
diverse and spatially dispersed labour force.”



Our work

Question: How can we algorithmically organize platform participants so as 
to optimize for better labor outcomes?

Focus:

1) Platform operates a learning algorithm

2) Participants engage in collective strategies:
information sharing, coordination, and scale
(not available to a single or a few individuals)



Model of algorithmic collective action

Individuals’ initial data 
𝑥, 𝑦 ∼ 𝑃!

feature label
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Model of algorithmic collective action

ML model
𝑓

1 − 𝛼

𝛼

Individuals’ initial data 
𝑥, 𝑦 ∼ 𝑃!

𝛼-fraction of the population 
joins the collective and 

impements a stratgy 
to change data

Platform observes 
mixture distribution 
𝑃 = 1 − 𝛼 𝑃! + 𝛼𝑃∗

Platform trains 
ML model 𝑓 on 𝑃

𝑃!𝑃!

𝑃∗

𝑃

Collective goal: 
Favorable property of 𝑓 

Success of a strategy is measure by 𝑆 𝛼



Main Results
We study three learning theoretic settings:

• Optimal prediction
• Convex risk minimization
• Gradient-based learning

In each setting we study natural measures of success and collective strategies

We give lower bounds on the success rate 𝑆(𝛼)

Main Takeaway: Even small collectives can succeed on ML-powered platform!

Experiments on a skill classification task involving freelancer resumes confirm our 
theoretical findings



Optimal prediction

• Platform chooses Bayes optimal classifier f over distribution 𝑃:

• We also allow approximately optimal classifiers: 𝑓 is 𝜖-optimal if it is optimal for a 
distribution 𝑄 such that 𝑇𝑉 𝑃, 𝑄 ≤ 𝜖

𝑓 𝑥 = argmax
!∈#

𝑃 𝑦 𝑥 ∀𝑥 ∈ 𝑋

ML model
𝑓

𝑃



Optimal prediction

• Platform chooses Bayes optimal classifier f over distribution 𝑃:

• We also allow approximately optimal classifiers: 𝑓 is 𝜖-optimal if it is optimal for a 
distribution 𝑄 such that 𝑇𝑉 𝑃, 𝑄 ≤ 𝜖

𝑓 𝑥 = argmax
!∈#

𝑃 𝑦 𝑥 ∀𝑥 ∈ 𝑋

ML model
𝑓

𝑃

• Collective goals involve a signal function 𝑔: 𝑋 → 𝑋

- Planting a signal 

“provoke a target classification at test time”

𝑓 𝑔 𝑥 = 𝑦∗ for 𝑥 ∼ 𝑃"

𝑥



Optimal prediction

• Platform chooses Bayes optimal classifier f over distribution 𝑃:

• We also allow approximately optimal classifiers: 𝑓 is 𝜖-optimal if it is optimal for a 
distribution 𝑄 such that 𝑇𝑉 𝑃, 𝑄 ≤ 𝜖

𝑓 𝑥 = argmax
!∈#

𝑃 𝑦 𝑥 ∀𝑥 ∈ 𝑋

ML model
𝑓

𝑃

• Collective goals involve a signal function 𝑔: 𝑋 → 𝑋

- Planting a signal 

“provoke a target classification at test time”

𝑓 𝑔 𝑥 = 𝑦∗ for 𝑥 ∼ 𝑃"

𝑔 𝑥



Optimal prediction

• Platform chooses Bayes optimal classifier f over distribution 𝑃:

• We also allow approximately optimal classifiers: 𝑓 is 𝜖-optimal if it is optimal for a 
distribution 𝑄 such that 𝑇𝑉 𝑃, 𝑄 ≤ 𝜖

𝑓 𝑥 = argmax
!∈#

𝑃 𝑦 𝑥 ∀𝑥 ∈ 𝑋

ML model
𝑓

𝑃

• Collective goals involve a signal function 𝑔: 𝑋 → 𝑋

- Planting a signal 
- Erasing a signal PhD student   female   CS

PhD student   female   CS

𝑓 𝑔 𝑥 = 𝑓(𝑥)

𝑥

𝑔(𝑥)“make classifier ignore x\𝑔(𝑥)”

for 𝑥 ∼ 𝑃"



Planting a signal

Example: Add a hidden watermark to a image, add a hidden character in text, 
   achieve desired output on a subpopulation, …

We consider two strategies:

a) Signal-label strategy: given (𝑥, 𝑦) report 𝑔 𝑥 , 𝑦∗

b) Signal-only strategy: given (𝑥, 𝑦) report 𝑔 𝑥 , 𝑦 if 𝑦 = 𝑦∗. Otherwise report (𝑥, 𝑦)

Ability to provoke target classification at test time

𝑆 𝛼 = P-∼.!{𝑓 𝑔 𝑥 = 𝑦∗}



Planting a signal

Theorem: The feature label strategy for planting a 𝜉-unique signal against an 
𝜖-suboptimali classifier has success rate

𝑆 𝛼 ≥ 1 −
1 − 𝛼
𝛼

Δ$ 𝜉 −
𝜖

1 − 𝜖

e.g., fraction of original CVs containing a ‘-’

We say a signal is 𝜉-unique if 
𝑃 𝑋∗ ≤ 𝜉 for  𝑋∗ = {𝑔 𝑥 : 𝑥 ∈ 𝑋}



Planting a signal
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Planting a signal

suboptimality of the learner
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Planting a signal

Theorem: The feature label strategy for planting a 𝜉-unique signal against an 
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Planting a signal

Theorem: The feature label strategy for planting a 𝜉-unique signal against an 
𝜖-suboptimali classifier has success rate

𝑆 𝛼 ≥ 1 −
1 − 𝛼
𝛼

Δ$ 𝜉 −
𝜖

1 − 𝜖

Theorem: The feature-only strategy for planting a 𝜉-unique signal against an 
𝜖-suboptimali classifier has success rate

𝑆 𝛼 ≥ 1 −
1 − 𝑝
𝑝𝛼

𝜉 −
𝜖

1 − 𝜖

Assume there is a 𝑝 > 0 such that 𝑃2 𝑦∗ 𝑥 ≥ 𝑝 for all 𝑥. No overwhelmingly strong signal 
for competing label

Takeaway: as long as the signal is chosen to be unique, small collectives can succeed

We say a signal is 𝜉-unique if 
𝑃 𝑋∗ ≤ 𝜉 for  𝑋∗ = {𝑔 𝑥 : 𝑥 ∈ 𝑋}



Experiments on a resume classification task

Data: 30,000 resumes scraped from a freelancer gig platform

Multiclass, multilabel classification problem with 10 skills from IT sector

Model: BERT-like text transformer model (DistilBERT), fine-tuned for 5 epochs

Strategy: Insert unique formatting symbol ‘-’ every 20 words

Evaluation: Frequency of target label prediction on test set

(a) Target frequency: any position (typically 2-4 tags)
(b) Top-1 frequency: top 1 position

Findings from more than two thousand model training runs



Feature-label strategy
Target class 𝑦∗ = 0

(class 0 ≈ 11% of data) 
Target class 𝑦∗ = 1

(class 1 ≈ 23% of data) 
Target class 𝑦∗ = 2

(class 2 ≈ 50% of data) 

Success at 0.1% of the data! That’s ~25 resumes.
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(class 1 ≈ 23% of data) 
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Success at 0.1% of the data! That’s ~25 resumes.

Aligned with theory for unique trigger



Feature-only strategy
Target class 𝑦∗ = 0

(class 0 ≈ 11% of data) 
Target class 𝑦∗ = 1

(class 1 ≈ 23% of data) 
Target class 𝑦∗ = 2

(class 2 ≈ 50% of data) 

Success at 1% to 5% of the dataset
depending on target class



Feature-only strategy
Target class 𝑦∗ = 0

(class 0 ≈ 11% of data) 
Target class 𝑦∗ = 1

(class 1 ≈ 23% of data) 
Target class 𝑦∗ = 2

(class 2 ≈ 50% of data) 

why does it not work well?



Strength of competing signal

According to our bound the feature-only strategy fails if 𝑃2(𝑦∗|𝑥) gets too small

This happens if features 𝑥 contain overwhelmingly strong signal about the label

Can we empirically confirm that success rate goes up as the strength 
of competing signals diminishes?



Strength of competing signal

According to our bound the feature-only strategy fails if 𝑃2(𝑦∗|𝑥) gets too small

This happens if features 𝑥 contain overwhelmingly strong signal about the label

Can we empirically confirm that success rate goes up as the strength 
of competing signals diminishes?

Test: Randomize a fraction of the labels in the original data.

→ Random labels diminish strength of competing signals.



Strength of competing signal

Test confirms:
Small label uncertainty greatly increases success of signal-only strategy

Target class 𝑦∗ = 1
(class 1 ≈ 23% of data) 

“Blessing of dimensionality”



Two other predictions our theory makes

1.Suboptimality of the predictor diminishes success rate

Test: Vary number of epochs in training

2.Uniqueness of signal set matters, not how the signal is placed

Test: Vary spacing of signal placement



→ Suboptimality of predictor diminishes success rate

Feature-label 
strategy
(𝑦∗ = 1)

Feature-only 
strategy
(𝑦∗ = 1)

Variying number of epochs 𝑓 is trained



→ Uniqueness of signal set matters, not how the signal is placed

Feature-label 
strategy
(𝑦∗ = 1)

Feature-only 
strategy
(𝑦∗ = 1)

Varying trigger spacing



In praise of Bayes optimality

Simple theory for Bayes optimal predictor turns out to be surprisingly predictive

Perhaps an indication that the language model approximates likelihood well

As an aside, not the only case where Bayes optimal comes in handy in ML

Tabular data (large n, small d) generally admits models close to Bayes optimality.

There’s more theory we can do 

• Signal erasure strategies:
”success scales with unique information contained in the signal to be removed”

• Regression under squared loss: Platform chooses 𝑓 𝑥 = E[𝑦|𝑥]



Parametric risk minimization
Platform learns parametric model f% by minimizing a risk function 

Collective wants to reach target model 𝜃∗. 

𝜃 = argmin67 E8∼. ℓ(𝜃′; 𝑧)



Parametric risk minimization
Platform learns parametric model f% by minimizing a risk function 

Collective wants to reach target model 𝜃∗. 

Convex risk minimizer.

𝜃 = argmin67 E8∼. ℓ(𝜃′; 𝑧)

Proposition: The collective can reach the target 𝜃∗ for some 𝛼 ≤ 1/(1 + 𝑡)

• Gradient canceling strategy: Choose distribution P* such that for some 𝑡 > 0:  

E&∼(∗ ∇ℓ 𝜃∗; 𝑧 = −𝑡 E&∼(# ℓ ∇ 𝜃∗, 𝑧

→ target models 𝜃∗ that look more optimal on the base distribution are easier to achieve

strictly convex loss Gradient canceling 
strategy exists for 

GLMs where 
∇ℓ 𝜃; 𝑥, 𝑦 = 𝛾𝑥



Parametric risk minimization
Platform learns parametric model f% by minimizing a risk function 

Collective wants to reach target model 𝜃∗. 

Gradient learner:

• Collective gets to modify distribution in every step (e.g., federated learning)

𝜃 = argmin67 E8∼. ℓ(𝜃′; 𝑧)

non-convex

Informal Result: 
• Collective size related to the magnitude of the largest gradient 

encountered along the path 𝜃" → 𝜃∗ measured on 𝑃"
• Convergence occurs at convex rate despite non-convex loss

model update: 𝜃)*+ = 𝜃) − 𝜂 E&∼($ ∇ℓ(𝜃); 𝑧)



Free riding (Olson, 1965)

Collective can share signal function only with participants

Technology exists for that

Early adoption

Initially no inherent pay off to first participants

This is where critical threshold comes in

What about incentives?
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Critical threshold for algorithmic collective action
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Critical threshold for algorithmic collective action

𝛼

Seeding costs

collective surplus 
> seeding cost

Individual utility 
(success probability) 

Cost of participation in 
the strategy

Assumption: ‘exclusive good’, e.g., signal function is kept secret

𝛼)*+,



Imagine a future of platform labor

For each platform app There is a labor app

Uber Under

Making the market Coordinating labor

What new equilibria arise?

Potential: More favorable labor outcomes, 
more competitive markets
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Dynamics in predictive systems

society

algorithmic 
predictions       

data

predictionspredictions

Collective action:
steering predictions through data actions

Performative power:
steering population through algorithmic actions



Going further

Finite sample analysis

• Connection between collective success and signal-to-noise ratio in data
• Connection between collective success and generalization ability of the learning 

algorithm (memorization capacity)

Other collective strategies apart from signal and erasure strategies?
Other collective goals?
More complex utility functions?

Empirical work: Other data domains (vision, speech, tabular), other problems



Going further

Game-theoretic and economic considerations

• Incentive design
• How do collectives form?
• Modeling existing collective action strategies
• Relationship to power and competition in digital economies 

(cf. Performative Power [HJM22])

How to use information advantage of collectives?

Mechanisms for organizing?

Potential negative results and lower bounds



Questions, thoughts, suggestions?

cmendler@tuebingen.mpg.de



More examples

• Waze jams neighborhood
→ People carry phones through streets

• Youtube extensively upvotes polls
→ Content creators excessively use it to fix this

• Uber has a high profit margin
→ Coordinated logoffs to trigger surge pricing

• Doordash pays low vages
→ Coordinated rejection of low price offers

…


