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Algorithms may amplify patterns of discrimination

[CYORLITENE  5USINESS MAY 16. 2822 18:25 AM

Feds Warn Employers Against Discriminatory Hiring Algorithms

As Al invades the interview process, the DOJ and EECC have provided guidance to protect people with disabilities from bias.

T

BUSINESS

HUD is reviewing Twitter’s and Google’s
ad practices as part of housing

discrimination probe

TECH POLICY

Facebook’s ad algorithms are still excluding
women from seeing jobs

Its ad-delivery system s excluding women from opportunities without regard to
their qualifications. That would be illegal under US employment law.

By Karen Hao Aprilg, 2021

The Death and Life of an Admissions Algorithm

U of Texas at Austin has stopped using a machine-learning system to evaluate applicants for its
Ph.D. in computer science. Critics say the system exacerbates existing inequality in the field.

By // December 14, 2020




How do we use networks to design algorithms?

1. Using networks to diagnose when and how an algorithm may amplify bias
2. Using networks to test algorithms: randomized controlled trials

3. Build interventions to mitigate algorithmic bias
a. In designing fair information diffusion campaigns
b. In designing fair committees in opinion aggregation settings

c. Atheoretical framework for navigating trade-offs
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How do we use networks to design algorithms?

3. Build interventions to mitigate algorithmic bias

a. In designing fair information diffusion campaigns



Overview of published and ongoing projects

1. Diagnosing when and how an algorithm is amplifying bias

e A.-A. Stoica, C. Riederer, and A. Chaintreau. “Algorithmic glass ceiling in social networks: the effects of social
recommendations on network diversity”. The Web Conference. 2018.

e A.-A. Stoica and A. Chaintreau. “Bias in spectral embeddings: the case of recommendation algorithms on
social networks”. Manuscript in preparation. 2022.

2. Building interventions for mitigating such bias

e A.-A. Stoica, J.X. Han, and A. Chaintreau. “Seeding network influence and the benefit of diversity”. The Web
Conference. 2020.

e A.-A. Stoica, A. Chakraborty, P. Dey, and K.P. Gummadi. “Minimizing margin of victory for political and
educational districting”. AAMAS. 2020.

e A.-A. Stoica and C. Papadimitriou. “Strategic clustering”. In submission. 2022.



Early adopters

Information diffusion
(Social influence maximization problem)

e Given a network G, with diffusion model as
independent cascade with probability p, pick the best
k early-adopters (‘seeds’) that maximize outreach:’

S* = a,rgmaXSgV(G)EquG(Sap)"
s.t. |S| <k

e Algorithms that choose based on: NP-hard

o Centrality: degree, distance centrality,

o lteratively: greedy Q

Outreach

Agnostic to communities

"Kempe, David, Jon Kleinberg, and Eva Tardos. "Maximizing the spread of influence through a social network." In Proceedings of the ninth ACM SIGKDD Conference, pp. 137-146. 2003.



Early adopters

Information diffusion
(Social influence maximization problem)

e Given a network G, with diffusion model as
independent cascade with probability p, pick the best
k early-adopters (‘seeds’) that maximize outreach:

S* = a,rgmaXSgV(G)EquG(Sap)"
s.t. |S| <k

e Algorithms that choose based on:

o Centrality: degree, distance centrality,

o lteratively: greedy Q

Outreach

= Bias in centrality measures and social structure gets reproduced?

2 Fish, Benjamin, et al. “Gaps in information access in social networks”. The World Wide Web Conference. ACM, 2019.



Information diffusion

e Parity constraint in an optimization function:

S* = argmaxsgv(g)E(|¢G(Sa p)l;
E(l¢c(S,p) NE|) _ |R]
E(l¢c(S,p) N B|)  |B|

s.t. |S| <k and

Outreach

Fairness-efficiency trade-off

Our approach: no constraint
e Partially known networks = centrality measures (# of connections etc)
e Model of network growth & tap into inactive communities

e Theoretical conditions for when equity increases efficiency (outreach)

2 Fish, Benjamin, et al. “Gaps in information access in social networks”. The World Wide Web Conference. ACM, 2019.

Early adopters

Outreach

parity constraint



Information diffusion

Just a Few Seeds More:

Value of Network Information for Diffusion* Random seeding with extra x

nodes is comparable to optimal

Mohammad Akbarpour' seeding (for small x)
Suraj Malladi?
Amin Saberi®

Our approach:
e Partially known networks = centrality measures (# of connections etc)
e Model of network growth & tap into inactive communities

e Theoretical conditions for when equity increases efficiency (outreach)
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Information diffusion

e Our vision: bias as a sign of inefficiency

o Diversity: tap into inactivated communities
in the early adopters set

§* = argmaxgcy ) E(|¢c (S, p)l;

E(SNR]) _ IRl

E(lSnB|) — |B

e Seeding can be done with awareness of labels:
statistical parity in your campaign (even if choosing

less connected people)

s.t. |S| <k and

o Parity seeding (strict)

o Diversity seeding (relaxed)

Early adopters

Outreach
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Information diffusion

e Our vision: bias as a sign of inefficiency

o Diversity: tap into inactivated communities
in the early adopters set

§* = argmaxgcy ) E(|¢c (S, p)l;

E(SNR]) _ IRl

E(lSnB|) — |B

e Seeding can be done with awareness of labels:
statistical parity in your campaign (even if choosing

less connected people)

s.t. |S| <k and

. . . E(SNR) |R|
o Parity seeding (strict) E(SNB|) ~ |B

o Diversity seeding (relaxed)

Early adopters

Outreach
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Information diffusion

e Our vision: bias as a sign of inefficiency

o Diversity: tap into inactivated communities
in the early adopters set

§* = argmaxgcy ) E(|¢c (S, p)l;

E(SNR]) _ IRl

E(lSnB|) — |B

e Seeding can be done with awareness of labels:
statistical parity in your campaign (even if choosing

less connected people)

s.t. |S| <k and

o Parity seeding (strict) E(|S A Rl) |R|

o Diversity seeding (relaxed) €

E(SnB|) "~ |B|

Early adopters

Outreach
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Information diffusion

e Our vision: bias as a sign of inefficiency

o Diversity: tap into inactivated communities
in the early adopters set

§* = argmaxgcy ) E(|¢c (S, p)l;

E(SNR]) _ IRl

E(lSnB|) — |B

e Seeding can be done with awareness of labels:
statistical parity in your campaign (even if choosing

less connected people)

s.t. |S| <k and

o Parity seeding (strict)

o Diversity seeding (relaxed)

e Baseline: Seeding can be done agnostically: ignore
labels, already takes into account network structure

Early adopters

Outreach

3 Stoica, Ana-Andreea, Jessy Xinyi Han, and Augustin Chaintreau. "Seeding Network Influence in Biased Networks and the Benefits of Diversity." WWW. 2020.
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Color-agnostic v. Diversity Seeding

Agnostic seeding

§ Top nod

- fﬁ

4 &«

Early «
adopters < : «
(seedset) 1 o«
8 o«

§ o

N

: -
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Color-agnostic v. Diversity Seeding

Agnostic seeding Parity seeding
Top nodes : ‘ Top Blue nodes Top Red nodes
( 1 « e
‘ « o
b & ®
Early 5 « °
adopters « o
3 .< @ Degree > ks
(seedset)
8 o« H L
. | =
‘ & @
®

v @ Degree 2 kr:

Keeping the same budget!
17



Color-agnostic v. Diversity Seeding

Agnostic seeding Diversity seeding Parity seeding
: Top nodes Top Blue nodes Top Red nodes ‘ Top Blue nodes Top Red nodes
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Keeping the same budget!
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Networks modeling for building more diverse and efficient heuristics

Model

Models of network evolution:

e Explain where inequality or bias originates and how it propagates in an algorithm

Biased data

Algorithm

P{Ui=11T=0}2P{lI=11I
Biased outcome

=13

e Useful to prove guarantees about interventions to mitigate bias

19



Biased preferential attachment model (BPAM)

Minority-majority: red label and blue label
e Fraction of red nodes =r < 2

Preferential attachment (rich-get-richer): nodes connect w.p. proportional to
degree

Homophily: if different labels, connection is accepted w.p. p

4Avin, Chen et al. "Homophily and the glass ceiling effect in social networks." ITCS. 2015

20



Biased preferential attachment model (BPAM)
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Biased preferential attachment model (BPAM)
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Biased preferential attachment model (BPAM)
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Biased preferential attachment model (BPAM)

Preferential
attachment

24



Biased preferential attachment model (BPAM)

Preferential
attachment

23



Biased preferential attachment model (BPAM)

Oreferential

. ‘tachment

26



Biased preferential attachment model (BPAM)

Preferential
attachment
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Biased preferential attachment model (BPAM)

Minority-majority: blue label and red label
e Fraction of red nodes =r < 12

Preferential attachment (rich-get-richer): nodes connect w.p. proportional to
degree

Homophily: if different labels, connection is accepted w.p. p

= known to exhibit inequality in the degree distribution of the two communities*

top (R) ~ kP
topk(B) - k—ﬁ(B)

Thm [Avin et al]: B(R) >3 > B(B)

4Avin, Chen et al. "Homophily and the glass ceiling effect in social networks." ITCS. 2015
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Color-agnostic v. Diversity Seeding

Agnostic seeding Diversity seeding Parity seeding
: Top nodes Top Blue nodes Top Red nodes ‘ Top Blue nodes Top Red nodes
- « o e
« ® e
t &« ® ®
Early 3 « ® B °
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(seedset) | o« ¢ i d
3 e & 2 R &
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o
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Keeping the same budget!
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Theoretical analysis of diversity interventions

Theorem: for the graph sequences G(n) generated from the BPAM:

1. Diversity seeding and parity seeding leads to fairer outreach for the same budget

abs IE(|qﬁ(sdiversity,parity) N RJ) _ @ < abs E(|¢(Sagn0stic) NR)|) _ @
IE(|915(Sdivelrsi’cy,parity) nBj) [Bl)~ E(|¢(Sagnostic) N BJ) | B

2. 3 Kk*(closed form) such that when k > k*, diversity seeding and parity seeding can
outperform agnostic seeding in outreach

IE‘:(qb(sdiversity)) > E(¢(Sparity)) > E(¢(Sagnostic))’

given |Sdiversity| = |Sparity| = |Sagnostic| =k

30



Proof sketch

Our goal is to find two thresholds k%(n)and k2 (n)that give in expectation the same amount of seeds as a
general ("agnostic") threshold k(n) but better influence:

E(¢(Sk(n))) < E(¢(SkR(n) U SkB (n)))7
s.t. E(|Sk(n)|) - (|SkR(n) U Sk:B(n)D

First step: estimate first-step influence size of S,y = {v € V|deg(v) > k(n)}

Second step: extend to an estimation of E(gb(Sk(n)))

i1
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Proof sketch

Our goal is to find two thresholds k%(n)and k2 (n)that give in expectation the same amount of seeds as a
general ("agnostic") threshold k(n) but better influence:

E((b(sk(n))) < E(¢(SkR(n) U SkB (n)))7
s.t. E(|Sk(n)|) — (|SkR(n) U SkB(n)D

First step: estimate first-step influence size of Si(,) = {v € V|deg(v) > k(n)}

e We know |Sk(n)| because the degree distribution follows a power law with coefficients B(R), 3(B)

e Can compute first order influence for any threshold by computing P(v influenced by one edge|v € B)

and P(v influenced by one edge|v € R)

33



Proof sketch

Our goal is to find two thresholds kf(nand kZ(nhhat give in expectation the same amount of seeds as a
general ("agnostic") threshold k(n) but better influence:

E(¢(Sk(n))) < E((/b(SkR(n) U SkB (n)))7
s.t. E(|Sk(n)|) — (|SkR(n) U Sk:B(n)D

SetkB(n) = k(n) - z, compute kE(njpased on the budget constraint, and solve

F(z) = E(¢(Ske (n) U Skr(n))) — E($(Skn)))

34



Theoretical analysis of diversity interventions

Theorem: for the graph sequences G(n) generated from the BPAM:

1. Diversity seeding and parity seeding leads to fairer outreach for the same budget

2. 3 Kk*(closed form) such that when k > k*, diversity seeding and parity seeding can
outperform agnostic seeding in outreach

35



Theoretical analysis of
diversity interventions

— diversit}; seeding

it
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0.15 0.20 0.25 030 0.35 0.40

’ Minority fraction .

Network of ~53,000 nodes, 2 communities, homophily p = 0.135
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Theoretical analysis of
diversity interventions

— diversit}; seeding

200004

75--15%‘. Y R O g R —_

p=0.01

1,000 seeds

Agnostic seeding Parity seeding Diversity seeding

15000

10000

Seedset Size

5000

0.10 0.15 0.20 025 030 035 040 0.5

’ Minority fraction .

Network of ~53,000 nodes, 2 communities, homophily p = 0.135

Total outreach
F outreach
M outreach

F % in outreach

1,149.15 11,147.874 11,149.1
191.95 1210.456 1196.6
957.2 1937.418 19525
0.167 10.183 10.171




Theoretical analysis of
diversity interventions

— diversit}; seeding

— . parity seeding... .., .
TR seean v

200004

15000

Seedset Size

10000

Hh

5000 par

Iy

0.10 0.15 0.20 0.25 0.30 0.35 0.40
’ Minority fraction

0.45

Network of ~53,000 nodes, 2 communities, homophily p = 0.135

5,000 seeds

p=0.01  Agnostic seeding Parity seeding Diversity seeding

Total outreach 5,410.748 15,408.762 15411.191
F outreach 862.191 11,004.232 1892.11
M outreach 4,548.557 14,404.53 14,519.081

F % in outreach 0.15934 10.18567 10.165




Theoretical analysis of
diversity interventions

— diversit}; seeding

— . parity seeding... .., .
TR seean v

200004

15000

Seedset Size

10000

Hh

5000 par

Iy

0.10 0.15 0.20 0.25 0.30 0.35 0.40
’ Minority fraction

0.45

Network of ~53,000 nodes, 2 communities, homophily p = 0.135

9,100 seeds

p=0.01 Agnostic seeding Parity seeding Diversity seeding

Total outreach 9,554.934 19,555.559 19,556.349
F outreach 1,581.842 11,776.037 11,679.423
M outreach 7,973.092 17,779.522 17,876.926

F % in outreach 0.16555 10.186 10.176




Discussion

e Relation to resource-allocation settings:
o Budgetary constraints & trade-offs in objectives
e Network formation & causality questions
o Am | friends with people because we influenced each other or the other way around?°®

e |s ‘fairness’ transferable to other settings?

8 Cristali I, Veitch V. Using Embeddings for Causal Estimation of Peer Influence in Social Networks. arXiv preprint arXiv:2205.08033. 2022. 40
R
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How do we use networks to design algorithms?

3. Build interventions to mitigate algorithmic bias

b. In designing fair committees in opinion aggregation settings

42



Opinion dynamics models

e Political purposes: understanding voting patterns and changes
e Policy purposes:
o Education policy
Healthcare policy
Collective action (union formation)

Local decisions, e.g. transportation
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Opinion dynamics models

e Political purposes: understanding voting patterns and changes
e Policy purposes:
o Education policy “| think we should

have free healthcare”
Healthcare policy

Collective action (union formation) G
Local decisions, e.g. transportation Q Alice
Erica
m
A
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Opinion dynamics models

e Political purposes: understanding voting patterns and changes
e Policy purposes:

o Education policy “| think we should

have free healthcare”

Healthcare policy

“l didn’t think so, but

maybe you have a point...”

Collective action (union formation) G

Local decisions, e.g. transportation
Erica

= final consensus governs decisions in these areas

— (M) Alice
) ViV o
m
o

Bob

46




Opinion dynamics models

e [Golub & Jackson]” describe network conditions to get consensus

” %o Alice

Erica

~

AA
Bob

"Golub, B. and Jackson, M.O., 2010. Naive learning in social networks and the wisdom of crowds. American Economic Journal: Microeconomics, 2(1), pp.112-149.

47


https://web.archive.org/web/20170813001950id_/http://web.stanford.edu/~jacksonm/naivelearning.pdf

Opinion dynamics models

e [Golub & Jackson]” describe network conditions to get consensus

e DeGroot model® of opinion aggregation:
For a population of n agents with initial opinions {x1(0), 22(0), -+ ,2,(0)}

and a network with adjacent matrix A, opinions update at every timestep t:

J(t+1) Z Azt
Consensus is reached as t — 0o : x(00) = e - x(0) Eigencentrality matters!

"Golub, B. and Jackson, M.O., 2010. Naive learning in social networks and the wisdom of crowds. American Economic Journal: Microeconomics, 2(1), pp.112-149.
8 DeGroot, Morris H. (1974). ‘Reaching a Consensus’, Journal of the American Statistical Association 69(345): 118-121.
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Opinion dynamics models

e [Golub & Jackson]” describe network conditions to get consensus

e If different groups have different opinions, how does consensus look like?

Opinion distribution

= minority
- majority

probability

1 1
-1.0 -0.5 0.0 0.5 1.0 15 20
opinion value

"Golub, B. and Jackson, M.O., 2010. Naive learning in social networks and the wisdom of crowds. American Economic Journal: Microeconomics, 2(1), pp.112-149. 19


https://web.archive.org/web/20170813001950id_/http://web.stanford.edu/~jacksonm/naivelearning.pdf

How does a committee affect consensus?

Modeling choices for committees:

e Choose a proportion p of the population in the committee
e Assume that consensus first occurs in the committee, and then in the general population
o 2-step process:
m for a committee C c [n], (z:(0))icc =225 (z:(c0))icc (@SSUME that committee forms a click)
m initial opinions of the population: {(z;(00))icc, (%i(0))igc}
e Fairness: how many of each group do we choose?
o Proportional to their numbers in the population

o  Which individuals do we choose? The most central ones

% Ana-Andreea Stoica and Francesca Parise. Fairness in committee formation: interventions in network opinion aggregation models. Manuscript in preparation. 2023. 30



How does a committee
affect consensus?

If we choose a committee with proportions equal
to the general population (21% minority), we
actually skew the consensus more towards the

majority!

Original consensus

500 750 1000 1250 1500 1750 2000
# minority members in committee




What interventions can we enact?

1.  Choose more minority members in the
committee

= proportional representation can hurt

500 750 1000 1250 1500 1750 2000
# minority members in committee
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What interventions can we enact?

—— w=0, High —— w=0.3, High —— w=0.5, High —— w=0.7, High —— w=1, High
—— w=0, Low — w=0.3, Low — w=0.5, Low —— w=0.7, Low — w=1, Low

0.70

1.  Choose more minority members in the
committee

2. Choose less central minority members in
the committee (Low vs. High)

)
>
w
c
Q
)
c
o

o

3. Change the way committee aggregates

e Committee forms a clique
e Committee aggregates proportional to 0 250 500 750 1000 1250 1500 1750 2000
. 8 . # minority members in committee

their network eigencentrality

€ =W - €qriginal T (1—w)- €clique




What interventions can we enact?

—— w=0, High —— w=0.3, High —— w=0.5, High —— w=0.7, High —— w=1, High
—— w=0, Low — w=0.3, Low — w=0.5, Low —— w=0.7, Low — w=1, Low

0.70

—— Minority
—— Majority

0.004 +

0.003 4

)
>
w
c
Q
)
c
o

o

0.002 4

0.001 4

eigencentrality average in committee

0.000 4

0 250 500 750 1000 1250 1500 1750 2000

. . A 0 250 500 750 1000 1250 1500 1750 2000
number of minority members in committee

# minority members in committee

= Theoretical explanation for when consensus is
skewed towards one of the communities




What interventions can we enact?

—— w=0, High —— w=0.3, High —— w=0.5, High —— w=0.7, High —— w=1, High
—— w=0, Low — w=0.3, Low — w=0.5, Low —— w=0.7, Low — w=1, Low

’— Minority
0.0304 — Majority

0.025

0.020

o

©

o
L

0.015 A

Consensus

o

©

o
|

0.010

0.005 A L

0.000

eigencentrality average in committee

0 20 40 60 80 100 20 40 60 80
number of minority members in committee # minority members in committee

= if the minority eigencentrality is very low,
committee impact is the same

0E. Lee, F. Karimi, C. Wagner, H.-H. Jo, M. Strohmaier, and M. Galesic. Homophily and minority-gre
2019.



What interventions can we enact?

— NiceWhite

0.016 - P t
9 arents
()
=] ]
£ 0.014
1S
S 0.012 4
=
() g \
@ 0.010 o — w=0, High
§ g —— w=0, Low
> 5 —— w=0.3, High
3,0.008- 8 w=0.3, Hig
= — w=0.3, Low
£ 0.006 Y —— w=0.5, High
I @ — w=0.5, Low
5 .
S —— w=0.7, High

0.004 - | |
.g = — w=0.7, Low

0.002 - Minc —— w=1, High

MaJ(7 episodes = —— w=1, Low
0 2 200 0 25 50 75 100 125 150 175

# minority members in committee

If you want to understand what’s wrong with our
public schools, you have to look at what is arguably
the most powerful force in shaping them: white
parents. A five-part series from the makers of
Serial and The New York Times. Hosted by Chana
Joffe-Walt.



https://addhealth.cpc.unc.edu/

What intervent

°
a9
3

Consensus

0.55

°

# minority members in committee

50 75 100 125 150

175

200

Hispanic minority of 22%

https://addhealth.cpc.unc.edu/

Consensus

Black minority of 11%

ions can we enact?

w=0, High
. Low

Consensus

o

0.9

0.8

0.7

0.6

Consensus

0.5

0.4

0.3

o

75 100 125 150
# minority members in committee

175

200

Hispanic minority of 20%

5 10 15 20 25

# minority members in committee

Consensus

0.65

0.60

0.55

o
N
&

50 75 100 125 150
# minority members in committee

Hispanic minority of 43%

25 50 75 100 125 150 175 200
# minority members in committee

Black minority of 34%

175

200
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How do we use networks to design algorithms?

3. Build interventions to mitigate algorithmic bias

c. Atheoretical framework for navigating trade-offs
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Navigating trade-offs: clustering problems

Objective(s):
e Quality g(C): minimize the number of edges cross-clusters

cut (S, S) N cut(T,T)
B T

cut(S,S) cut(T,T)
vol(S) i vol(T)

RatioCut(S,T) :=

NCut(S,T) :=

= Spectral Clustering as an approximation

e Create an embedding of the graph (e.g.
the graph Laplacian, L =D - A)

e Take the first 2 dimensions

e Apply k-means on these dimensions

3.c. A theoretical framework for navigating trade-offs

[Kleindessner et al, 2019]
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3.c. A theoretical framework for navigating trade-offs

Navigating trade-offs: clustering problems

Objective(s): v

e Quality g(C): minimize the number of edges cross-clusters e L .

cut (S, S) N cut(T,T) Re: 54
5] | Wt

cut(S,S)  cut(T,T)
vol(S) i vol(T) WA !

RatioCut(S,T) :=

NCut(S,T) :=

e Fairness / utility f(C): some measure of group representation ~ 2757 U* %
within clusters N/ T V2 .....

. [#R(C) #B(C)
Balance(C) = min min (#B(C) ! #R(C))

[Chierichetti et al, 2017]

[Kleindessner et al, 2019]
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Navigating trade-offs: clustering problems

Polynomial time algorithm for tracing
the quality-utility trade-off

o 25 A
el

, , L $ T 20
= find the Pareto frontier between objectives 2=
Qo
o =

. . . . "(z, 154
Next best point on the frontier: starting from a clustering C, 8 %
. . . [OIRT

find the optimal clustering 3o
5 ©
.. o

ch - f(C O% °
Oy max €)= SO) G g

¢’echanges(c) q(C) —q(C’) 5

1f4 1:5 1t6 1:7 1i8 1:9
. . . . C): average distance to k-centers
Key idea: transform this problem into finding an a© ?
optimal cycle in a doubly-weighted graph
4 Hakim, Stoica, and Papadimitriou. “Strategic clustering.” Manuscript in preparation. 2023. Previously at StratML @ Neurips 2021. 63

5 Golitschek, M.v. “Optimal cycles in doubly weighted graphs and approximation of bivariate functions by univariate ones”. Numerische Mathematik 39 (1), 65-84. 1982.
6 Lawler, E.L. “Optimal cycles in doubly weighted directed linear graphs”. In Proceedings of the International Symposium of Theory of Graphs. 209-232. 1966.



Sketch of algorithm

Next best point on the frontier: starting from a clustering C,
find the optimal clustering

) f(€) - £(©)
¢ =arg c'eclﬁfalges(C) q(C) —q(C)

Decompose finding C’ into a set of elementary changes:
e Nodes u and v switch clusters
e Node u moves to another cluster

Create a doubly-weighted graph where each edge is the quality

(fairness) delta from an elementary change

Lawler: we can find the minimum cycle Af/Aq
< deciding whether there is a neg cycle

4 Hakim, Stoica, and Papadimitriou. “Strategic clustering.” Manuscript in preparation. 2023. Previously at StratML @ Neurips 2021.
5 Golitschek, M.v. “Optimal cycles in doubly weighted graphs and approximation of bivariate functions by univariate ones”. Numerische Mathematik 39 (1), 65-84. 1982.
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Doubly weighted graph

(Ag, Af)
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Challenges: local optimality

Lawler: we can find the minimum cycle Af/Aq
< deciding whether there is a neg cycle

IF there are no negative cycles in the g-weight!

< we are at an optimal clustering in the quality metric

Solution: optimality of ¢(C) + a - f(C), for some «

When does this work?
e Linear functions for g and f: great, but we could
use a greedy algorithm as well
e Non-linear functions: NP-hard instance for some
cases, empirically good results

4 Hakim, Stoica, and Papadimitriou. “Strategic clustering.” Manuscript in preparation. 2023. Previously at StratML @ Neurips 2021.
5 Golitschek, M.v. “Optimal cycles in doubly weighted graphs and approximation of bivariate functions by univariate ones”. Numerische Mathematik 39 (1), 65-84. 1982.

f(C): difference between R/B
ratio and statistical parity

N
w
L
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q(C): average distance to k-centers
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6 Lawler, E.L. “Optimal cycles in doubly weighted directed linear graphs”. In Proceedings of the International Symposium of Theory of Graphs. 209-232. 1966.
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Challenges: local optimality

Lawler: we can find the minimum cycle Af/Aq

< deciding whether there is a neg cycle T
@ 25 » greedy alg
Tz
IF there are no negative cycles in the g-weight! § 8 50
. L : . 38
< we are at an optimal clustering in the quality metric < % 35
¢ %
[CIR7)
u(]:) -8 10 A
Solution: optimality of ¢(C) 4+ a - f(C'), for some « 5
c% °f
When does this work? N
e Linear functions for g and f: great, but we could e 15 1s 17 18 19
use a greedy algorithm as well q(C): average distance to k-centers
e Non-linear functions: NP-hard instance for some
cases, empirically good results
4 Hakim, Stoica, and Papadimitriou. “Strategic clustering.” Manuscript in preparation. 2023. Previously at StratML @ Neurips 2021. 66

5 Golitschek, M.v. “Optimal cycles in doubly weighted graphs and approximation of bivariate functions by univariate ones”. Numerische Mathematik 39 (1), 65-84. 1982.
6 Lawler, E.L. “Optimal cycles in doubly weighted directed linear graphs”. In Proceedings of the International Symposium of Theory of Graphs. 209-232. 1966.



L Thank youl!
Future directions

e Normative questions regarding interventions & policy implications

o Budgetary constraints imply strong trade-offs

o Constraints vs. multi-objective optimization
e Power & inequality:

o Bias can be a sign of inefficiency
m objectives are really hard to achieve and proxies fail

m long-term dynamics differ from short-term interventions
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