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Clinical Trials

In clinical research, human lives are at stake
⇒ we should demand highest standards

Pressing economic incentives (large R&D costs, even larger potential profits)
⇒ conflicts of interest for investigators

Regulation: drug approval process (FDA, EMA) and ClinicalTrials.gov registry

Opportunity for economics research:
Increasing availability of data
Institutional design questions



Cournot (1843) on P-Hacking

Exposition de la théorie des chances et des probabilités

“§101 ... A person not knowing how the data were analysed and whom the
experimenter told the result of that analysis concerning the system ... but not how
many attempts he made to achieve that result, is unable to judge with a
determined chance of error whether the chances ... are equal or not...”

“... However, unsuccessful tests usually leave no traces; the public only
knows the results which the experimenter thought to be deserving notice. It
follows that a person alien to the testing is absolutely unable to regulate bets on
whether the result is, or is not attributable to anomalies of chance.”
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Value of Selected Information?

Strategic Sample Selection (EMA, 2021), with Alfredo Di Tillio and Peter N.
Sørensen

Biased researchers in observational studies:
select sample non randomly from larger presample
choose specification
omit controls

Subversion of randomization to treatment in experiments
When treatment is given to healthiest rather than random patients:

favorable outcomes become more likely
but are also less convincing that treatment is effective

How does anticipated sample selection affect the value of information?
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Impact of ANTICIPATED Selection

Compare information value of two experiments:
Random : X = θ + ε with ε ∼ F [BLUE]
Selected : max of k iid draws: Y = θ + ε(k) with ε(k) ∼ Fk [RED]



Illustration: Simple Hypothesis Testing
Here we illustrate idea for simple hypothesis testing:

θL θH

reject R R
accept θL θH

θL < R < θH , prior p = Pr(θH)

Generalizing Lehmann (1988), our results are valid for general Quah-Strulovici
(2009) IDO preferences (including single crossing and Karlin-Rubin monotone
decision problems)

Location experiment x = θ + ε, with ε ∼ F independent from θ

Assume logconcave density f ⇔ monotone likelihood ratio property

With a single draw, cutoff rule optimal: accept iff

f (x−θH)

f (x−θL)
≥ 1− p

p
R−θL

θH −R
⇔ x ≥ x̄
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Random v. Selected
1−Fk(ȳ−θL) = 1−F(x̄−θL)︸ ︷︷ ︸

Using cutoff ȳ in Y that matches False Positives

⇒ ȳ = (Fk)−1F(x̄−θL)+θL

Fk(ȳ−θH)
?
≤ F(x̄−θH)︸ ︷︷ ︸

Are False Negatives reduced? Yes, with F normal! More generally?
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Using cutoff ȳ in Y that matches False Positives
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Dispersion of Selected Experiment

When is Fk steeper than F at same quantile?

Theorem (general sample size n): Fixing sample size n, as pre-sample size k
increases, experiment becomes more (less) informative in every monotone
problem if reverse hazard rate RHR f (x|θ )/F(x|θ ) is log-supermodular
(log-submodular, w/ support unbounded above)

f (x|θ ′)/F(x|θ ′)

f (x|θ )/F(x|θ )
increasing (decreasing) in x, for all θ

′ > θ

For location Fθ (x) = F(x−θ ) experiment:

Beneficial selection: logconcave RHR f (x)
F(x) (e.g., Normal)

Neutral selection: loglinear RHR f (x)
F(x) (Gumbel)

Harmful selection: logconvex RHR f (x)
F(x) (e.g., Exponential)
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NEUTRAL Selection: Loglinear f /F

Gumbel noise: F(ε) = e−e−ε

x
Θ2Θ1 x y



HARMFUL Selection: f LESS Logconcave than F

Exponential noise: F(ε) = 1− e−ε

x
Θ2Θ1 x y



BENEFICIAL Selection: f MORE Logconcave than F

Normal noise: ε ∼ N
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Regulation of Optional Stopping
Research and the Approval Process: The Organization of Persuasion (AER,
2019), with Emeric Henry

Sender (pharma co) benefits from approval of drug with uncertain efficacy
Evaluator = FDA regulator

θ
H > 0 in state H and θ

L < 0 in state L

Researcher = pharma company benefits from approval

v > 0

Researcher sequentially acquires & diffuses costly information
instantaneous trial result from state-dependent Brownian motion

Evaluator has coarse instruments for regulation
approve/reject, ask for additional evidence [impose liability]
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Organizational Deconstruction of Wald

TWO players:
1. Researcher
a. directly controls information acquisition & pays info cost
b. but always wants approval and does not directly value info

2. Evaluator
a. directly controls approval decision with uncertain payoff
b. benefits from info, but can only obtain it indirectly from researcher

Wald’s social planner
a. controls all decisions (rejection/approval) & info acquisition
b. obtains total payoff θ+ v (evaluator+researcher) & pays info cost
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Equilibrium Persuasion

Researcher acquires costly information to persuade evaluator

Researcher stops acquiring costly information when cumulative evidence is
either favorable enough to persuade evaluator to approve
or so discouraging to make it economical to abandon research

Evaluator does not internalize research cost
optimal to commit to softening approval standard to encourage research
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P-Hacking and Incentives Across Clinical Phases

P-Hacking in Clinical Trials and How Incentives Shape the Distribution of Results
Across Phases (PNAS, 2020), with Jérôme Adda and Christian Decker

Does pressure to withhold or “beautify” unfavorable results lead to p-hacking?

Initial evaluation of distribution of p-values reported to ClinicalTrials.gov

Investigate “suspicious patterns” depending on incentives resulting from
affiliation of lead sponsor (non-industry, small industry, large industry)
phase of clinical research (high-stake phase III, lower-stake phase II)
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Evidence for P-Hacking in Economics

Brodeur, Cook, and Heyes (2020)

P-hacking: intentionally or
unconsciously exploring
various ways of analyzing
data and selectively
reporting the ones that yield
best results

“Spike”/excess mass right
above significance threshold
commonly interpreted as
evidence for p-hacking
and/or selective reporting

Similar findings for results in
academic publications in
Political Science,
Psychology, Life Sciences



The ClinicalTrials.gov Registry

US online registry of clinical research studies in human volunteers,
maintained by the National Institute of Health and the Food and Drug
Administration FDA
Established in 2000 with the objective to increase transparency in clinical
research by collecting information and results of ALL trials (including
unpublished ones)

FDA Amendments Act (2007/2017) prescribes, if certain (often arguable)
criteria are met,

to register the trial no later than 21 days after enrollment of first participant
to submit results of the trial no later than twelve months after completion

In theory, fines for non-compliance, but never enforced for long time (now first
cases under way)
⇒ compliance still quite poor, though slightly improving over time
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Related Literature – P-Hacking

Evidence for P-Hacking in Academic Publications
Economics: Brodeur et al. (2016); Brodeur, Cook, and Heyes (2020)
Political Science: Gerber and Malhotra (2008); Gerber at al. (2010)
Psychology: Simonsohn, Nelson, and Simmons (2014); Hartgerink et al. (2016)
Life Sciences: Holman et al. (2015)

Methodology to Detect P-Hacking: Elliott, Kudrin, and Wüthrich (2022)



p-Values and z-Scores

Focus on p-values as comparable outcome measure for all kinds of different
trials
Only consider p-values that are reported exactly (not “p < 0.01” or “p < 0.001”)

Apply one-to-one mapping to transform p-values to z-scores

z = −Φ−1
( p

2

)
⇒ allows to investigate both overall shape of distribution and region around
significance threshold more easily
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The Distribution of z-Scores on ClinicalTrials.gov

12,621 p-values from tests
performed on primary outcomes
of 4,977 trials

Pre-approval interventional
superiority studies on drugs
(phase II and phase III)
Conducted mainly between
2007 and 2019
p-values transformed to
z-statistics
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Breakdown by Affiliation of Lead Sponsor

Takeaways
1. No spike in density

functions right above 1.96.
⇒ good news!

2. Discontinuity in phase III
density function at 1.96
(driven by small industry).
⇒ suggestive of some
selective reporting

3. Excess mass of significant
results in phase III
compared to phase II for
industry sponsored trials.
⇒ selective reporting or
selective continuation?
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Linking Trials across Phases



Selective Continuation from Phase II to Phase III

Takeaways
1. Higher phase II z-score

significantly increases the
probability of continuation to
phase III.

2. Larger companies continue
research projects more
selectively.
⇒ higher opportunity costs?
⇒ more efficient managerial
decisions?
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Controlling for Selective Continuation

Estimate phase II density
reweighting each
observation by continuation
probability predicted by
selection function
⇒ predicted phase III
density

Selection function
increasing in phase II
z-score
⇒ counterfactual z-density
rotates counter-clockwise,
increasing share of
significant results



Decomposition of the Difference in Significant Results
between Phase II and Phase III

Takeaways
1. Large sponsors: selective continuation can explain excess share of significant

results in phase III almost entirely
2. Small sponsors: selective continuation less pronounced, can only account for

less than one third of excess share



Conclusion

No indication of widespread manipulation of results reported to
ClinicalTrials.gov

⇒ research registries and result databases seem to help

Two different methodologies identify suspicious reporting patterns only for
phase III trials by smaller industry sponsors (robust to definition of large vs.
small)

⇒ economic incentives matter!
⇒ discipline of reputational concerns stronger for large companies?
⇒ disclosure regulations should focus particularly (but not exclusively) on

smaller industry sponsors
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“Any attempt to analyze one’s data without first deciding exactly how one is going
to conduct the key analysis will almost inevitably end in p-hacking. And so, for

researchers who collect new data, the solution to this problem is straight-forward:
Researchers must decide exactly how they will conduct their key analysis before

they collect their data. And then they must commit to it. This is called
pre-registration.”

Simmons, Nelson, and Simonsohn: Pre-registration: Why and How
Journal of Consumer Psychology, 2021

“A major shortcoming of preregistration as a normative standard is that the
increased transparency it provides may be more illusory than real. Under present
systems of preregistration, there is still substantial room for selective reporting and

researchers’ degrees of freedom.”

Pham and Oh: Preregistration Is Neither Sufficient nor Necessary for Good Science
Journal of Consumer Psychology, 2021
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Preregistration

Preregistration and Credibility of Clinical Trials (medRxiv, 2023)

Preregistration commonly seen as solution to p-hacking
research registries like ClinicalTrials.gov and the AEA RCT Registry have been
established (Abrams, Libgober, and List, 2020)
idea formalized in economic theory: preregistration as means for
commitment/signaling in a persuasion game between researcher and evaluator
(Williams, 2021; Felgenhauer 2021)

“Preregistration prevents p-hacking” sounds plausible, but there are some
critical voices and so far empirical evidence for this claim is limited

⇒ Our Research Question:
Is preregistration a reliable signal for credibility of clinical trials?



Preregistration

Preregistration and Credibility of Clinical Trials (medRxiv, 2023)

Preregistration commonly seen as solution to p-hacking
research registries like ClinicalTrials.gov and the AEA RCT Registry have been
established (Abrams, Libgober, and List, 2020)
idea formalized in economic theory: preregistration as means for
commitment/signaling in a persuasion game between researcher and evaluator
(Williams, 2021; Felgenhauer 2021)

“Preregistration prevents p-hacking” sounds plausible, but there are some
critical voices and so far empirical evidence for this claim is limited

⇒ Our Research Question:
Is preregistration a reliable signal for credibility of clinical trials?



Preview: It seems yes!



Sample

ClinicalTrials.gov database as of Feb 18, 2023
Focus on preapproval (Phase II & III), interventional (¬observational),
superiority (¬non-inferiority) studies on drugs (¬devices or others)

Define trial as preregistered if first submitted to registry before start date Trend

⇒ out of 50,730 trials, 22,065 (43%) report any results, and 4,810 (9.5%) provide
statistical analysis with at least one exact p-value Summary Stats Balance
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Methodology I: Density Discontinuity Tests

In the absence of p-hacking, density of p-values/z-statistics is continuous
(Andrews and Kasy, 2019; Elliott, Kudrin, and Wüthrich, 2022)

⇒ test H0 : lim
z↗c

f (z) = lim
z↘c

f (z) vs. H1 : lim
z↗c

f (z) ̸= lim
z↘c

f (z)

“Improved” version of McCrary-Test based on local polynominal density
estimators with bias correction at the boundary (Cattaneo, Jansson, and Ma, 2018,
2020)

Advantages over other methods to detect p-hacking (caliper test, p-curve,. . . )
no pre-binning
fully data-driven bandwidth selection
(potentially) exploits entire distribution



Main Result: Density Discontinuity Tests for Primary Outcomes



Placebo: Non-Primary Outcomes



Larger Registration Delay ⇒ Larger Discontinuity (Primary
Outcomes)



Selection on Observables/Unobservables?

(1) (2) (3)
non-preregistered preregistered difference (2)–(1)

data monitoring committee 0.464 0.575 0.111***
(0.499) (0.494) (0.018)

subject masked 0.711 0.768 0.057***
(0.453) (0.422) (0.014)

caregiver masked 0.420 0.444 0.024
(0.494) (0.497) (0.017)

investigator masked 0.697 0.751 0.053***
(0.460) (0.433) (0.015)

outcomes assessor masked 0.398 0.431 0.033**
(0.490) (0.495) (0.016)

mask folds 2.226 2.394 0.168***
(1.576) (1.505) (0.051)

PI no employee of sponsor 0.878 0.914 0.036***
(0.327) (0.281) (0.010)

Observations 1,206 3,604 4,810

*** p<0.01, ** p<0.05, * p<0.1

Preregistered trials tend to
have other design
characteristics that are
considered superior in
terms of integrity.
Selection on unobservable
researcher characteristics?

⇒ Is it really lack of
preregistration that opens
the door for p-hacking?



Methodology II: Caliper Test

Compare number of z-statistics in a narrow window above and below the
significance threshold (Gerber and Malhotra, 2008)

For all z-scores in the window [c−h,c+ h] estimate regression model
(Brodeur, Cook, and Heyes, 2020)

signi f icanti j = α +β preregistered j +x′
jγ + εi j,

⇒ advantage: regression framework allows to control for other trial
characteristics x and/or fixed effects

Caution: need to choose window size h and interpretation less “clean” than
density discontinuity tests



Caliper Tests for z ∈1.96±0.2 (Primary Outcomes, LPM)
(1) (2) (3) (4) (5) (6) (7)

preregistered -0.0862** -0.0740* -0.0965** -0.0927** -0.0991* -0.116* -0.121*
(0.0350) (0.0396) (0.0377) (0.0426) (0.0508) (0.0614) (0.0704)

data monitoring committee 0.0253 0.000886 -0.0144
(0.0332) (0.0362) (0.0567)

subject masked 0.0104 -0.0200 -0.0757
(0.0868) (0.0873) (0.151)

caregiver masked 0.00782 0.00686 0.00861
(0.0443) (0.0438) (0.0658)

investigator masked -0.0787 -0.0425 0.0724
(0.0835) (0.0774) (0.135)

outcomes assessor masked 0.0416 0.0598 0.0643
(0.0427) (0.0424) (0.0645)

PI not employee of sponsor -0.0169 0.0677 0.149
(0.0599) (0.0741) (0.153)

Non-Prereg. Sig. Rate 0.633 0.633 0.638 0.638 0.610 0.610 0.602
Observations 1,033 1,033 912 912 844 844 727
No. of trials 850 850 747 747 661 661 562
R-squared 0.006 0.065 0.011 0.082 0.178 0.222 0.251
Controls ✔ ✔ ✔ ✔
Start Year FE ✔ ✔ ✔ ✔
MeSH Condition FE ✔ ✔ ✔ ✔
Sponsor FE ✔ ✔ ✔
Window 1.96±0.2 1.96±0.2 1.96±0.2 1.96±0.2 1.96±0.2 1.96±0.2 1.96±0.2

SEs clustered at trial level; *** p<0.01, ** p<0.05, * p<0.1. Controls: Phase Dummies, Sponsor Group Dummies, Placebo Control, sqrt enrollment.

Other Bandwidths



Conclusion and Future Directions

We find a discontinuity in the density at the 5% significance threshold for
non-preregistered trials, but no discontinuity for preregistered trials
Differences robust in caliper tests controlling for other trial characteristics and
sponsor FE
No evidence of p-hacking for lower-stake secondary outcomes independent of
preregistration status

Potential future directions
explicit selection and signaling model of preregistration
weighing advantages and disadvantages of preregistration (optimal policy?)
mechanisms: track outcome changes



Roadmap

1. Some theory
a. Value of Selected Information
b. Regulation of Optional Stopping

2. Clinical Trials
a. Incentives Across Clinical Phases
b. Preregistration
c. Outcome changes



Outcome Changes and Distribution of Results
Outcome Changes and Distribution of Results in Registered Clinical Trials (2024,
in progress), with Christian Decker and Marta Maxia

Preregistration signals credibility in clinical trials ⇒ underlying mechanism?
⇒ Do changes in outcome variables affect distributions of results?



Which Outcome Changes Matter?

Sample ⇒ same as in Decker and Ottaviani (2023) sample

Classification task:
1. Compare initial vs final version of primary outcome measure
2. Set variable major_change = True if:

Originally pre-specified outcome omitted
Introduction of a new outcome
Switch from primary to secondary
Switch from secondary to primary

3. Exclude typo corrections, redundant measurement details



Web Scraping Outcome Descriptions

⇓

Identify two levels of information detail:
1. Full descriptions
2. Short descriptions (blue rectangles)



Classification: Manual plus Machine Learning

Experts Database
 (Holst et al., 2023) 

 505 Trials 
with Classified Changes

Combined Dataset: 
1,005 Labeled Trials

(Major vs. 
No Major  Changes)

 Machine Learning  
Classification

Best Classifier:
Scale to all 
4,810 Trials

Performance
Evaluation  

Metrics

Initial Manual
Classification of

 500 Trials

Cosine Similarity
Fine-tuning
 BERT1.
 BioBERT 2.

Accuracy
Precision
Recall
F1 score (Data
imbalances)

BioBERT

30.4%

69.6%
62.2%

37.8%

Preregistered

Relevant Changes

No Relevant Changes

Non-Preregistered
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Experts Database
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Combined Dataset: 
1,005 Labeled Trials

(Major vs. 
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 Machine Learning  
Classification

Best Classifier:
Scale to all 
4,810 Trials
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Metrics

Initial Manual
Classification of
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F1 score (Data
imbalances)

BioBERT

30.4%

69.6%
62.2%
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Preregistered

 Major Changes
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Classification: Manual plus Machine Learning cosine fine-tuning

Experts Database
 (Holst et al., 2023) 

 505 Trials 
with Classified Changes

Combined Dataset: 
1,005 Labeled Trials

(Major vs. 
No Major Changes)

 Machine Learning  
Classification

Best Classifier:
Scale to all 
4,810 Trials

Performance
Evaluation  

Metrics

Initial Manual
Classification of

 500 Trials

Cosine Similarity
Fine-tuning
 BERT1.
 BioBERT 2.

Accuracy
Precision
Recall
F1 score (Data
imbalances)

BioBERT

30.4%

69.6%
62.2%

37.8%

Preregistered

Relevant Changes

No Relevant Changes

Non-Preregistered



Performance Comparison: Average Metric Scores

Precision Recall F1 Score Accuracy0.0

0.2

0.4

0.6

0.8

1.0

0.74
0.78 0.75

0.81

Full Descriptions

Precision Recall F1 Score Accuracy0.0

0.2

0.4

0.6

0.8

1.0

0.78
0.85

0.80 0.79

Short Descriptions

BioBERT BERT Similarity Threshold

Averages calculated across the two classes: major and no major changes
Highest performance ⇒ BioBERT on Short Descriptions



Is there a jump at the significance threshold for all trials?

z=1.96

discontinuity
∆1.96=0.53
p=0.012
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Significant discontinuity for trials at high risk of major change



What if we consider only preregistered trials?

z=1.96

discontinuity
∆1.96=0.49
p=0.049

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

D
en

si
ty

0 1 2 3 4
z

Major Changes (n=3,225)
A

z=1.96

discontinuity
∆1.96=-0.25
p=0.170

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

D
en

si
ty

0 1 2 3 4
z

No Major Changes (n=4,353)
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Significant discontinuity for trials at high risk of major change
⇒ In contrast to no discontinuity with pooled data (Decker and Ottaviani, 2023)

preregistration



What if we consider only non-preregistered trials?

z=1.96

discontinuity
∆1.96=0.67
p=0.028
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Discontinuity in both groups: undisclosed changes?



Adding Controls? Caliper Tests for z ∈ 1.96±0.1 - Preregistered Trials

Preregistered

(1) (2) (3) (4)

major change 0.108** 0.0862* 0.106* 0.111**
(0.0500) (0.0512) (0.0569) (0.0563)

data monitoring committee 0.0304 0.0240
(0.0566) (0.0573)

subject masked 0.0337 0.0288
(0.128) (0.137)

caregiver masked 0.0224 0.0276
(0.0767) (0.0757)

investigator masked -0.202* -0.118
(0.119) (0.131)

outcomes assessor masked 0.0259 0.0211
(0.0690) (0.0688)

PI no employee 0.163* 0.219**
(0.0936) (0.0979)

Observations 378 378 338 338
R-squared 0.012 0.127 0.153 0.179
No. of trials 336 336 299 299
Controls ✔ ✔

Start Year FE ✔ ✔ ✔

Mesh Condition FE ✔ ✔ ✔

Window 1.96±0.1 1.96±0.1 1.96±0.1 1.96±0.1
Major Changes Sig. Rate 0.671 0.671 0.684 0.684

Other Bandwidths All Trials

significanti j = α +βchange j + x′jγ + εi j , z ∈ 1.96±0.1

■ Other design features: superior research integrity

■ Additional controls as in Decker and Ottaviani (2023)
Summary Stats

■ Effect of outcome changes: seems to remain

■ Robust in probit and logit Probit Logit



Conclusion

1. BioBERT outperforms BERT and cosine similarity in classification task
2. Significant impact of outcome changes on trial results: potential manipulation
3. Non-preregistered trials: discontinuity in both groups

⇒ preregistration matters

Future Research Directions
Open questions:
⇒ What about the dark side of preregistration?
⇒ Is there a cost in terms of novelty?



Thank you!



Time Trend

back



Summary Statistics
mean sd min median max

duration [months] 32.05 25.73 0 25 261
# exact p-values from primary outcomes 2.10 2.26 1 1 30
# exact p-values from secondary outcomes 11.30 50.42 0 2 2,632
enrollment 569.93 1,623.86 4 225 27,395
placebo-controlled 0.694 0.461

preregistered 0.749 0.433

phase II 0.443 0.497
phase III 0.519 0.500
phase II/III combined 0.038 0.192

non-industry sponsor 0.257 0.437
top 10 industry sponsor 0.233 0.423
small industry sponsor 0.510 0.500

data monitoring committee 0.549 0.498
subject masked 0.754 0.431
caregiver masked 0.438 0.496
investigator masked 0.737 0.440
outcomes assessor masked 0.423 0.494
mask folds 2.35 1.52 0 2 4
PI not employee of sponsor 0.905 0.294

back



(1) (2) (3) (4) (5) (6)
exact p-values results provided, no results difference difference difference

provided but no exact p-values provided (1)–(2) (1)–(3) (2)–(3)

preregistered 0.749 0.669 0.435 0.080*** 0.314*** 0.234***
(0.433) (0.471) (0.496) (0.008) (0.008) (0.005)

data monitoring committee 0.549 0.495 0.469 0.053*** 0.079*** 0.026***
(0.498) (0.500) (0.499) (0.009) (0.008) (0.005)

subject masked 0.754 0.421 0.388 0.333*** 0.366*** 0.034***
(0.431) (0.494) (0.487) (0.008) (0.007) (0.005)

caregiver masked 0.438 0.238 0.229 0.199*** 0.208*** 0.009**
(0.496) (0.426) (0.420) (0.007) (0.007) (0.004)

investigator masked 0.737 0.405 0.363 0.332*** 0.374*** 0.043***
(0.440) (0.491) (0.481) (0.008) (0.007) (0.005)

outcome assessor masked 0.423 0.237 0.224 0.187*** 0.199*** 0.013***
(0.494) (0.425) (0.417) (0.007) (0.007) (0.004)

mask folds 2.352 1.301 1.203 1.051*** 1.149*** 0.098***
(1.524) (1.604) (1.583) (0.026) (0.025) (0.015)

PI no employee of sponsor 0.905 0.781 0.124***
(0.294) (0.414) (0.006)

enrollment 569.9 242.1 245.0 327.9*** 324.9*** -2.9
(1,623.9) (999.2) (978.0) (19.0) (17.2) (9.6)

placebo-controlled 0.694 0.350 0.289 0.344*** 0.404*** 0.060***
(0.461) (0.477) (0.453) (0.008) (0.007) (0.004)

industry-sponsored 0.743 0.572 0.466 0.172*** 0.278*** 0.106***
(0.437) (0.495) (0.499) (0.008) (0.008) (0.005)

phase III 0.519 0.368 0.389 0.151*** 0.130*** -0.021***
(0.500) (0.482) (0.488) (0.008) (0.008) (0.005)

Observations 4,810 17,255 28,665 22,065 33,475 45,920

back



Caliper Test Regressions with Alternative Bandwidths
(1) (2) (3) (4) (5) (6) (7)

z ∈ 1.96±0.05 -0.0874 -0.0681 -0.120* -0.126 -0.0603 -0.101 -0.162
[N = 254] (0.0633) (0.0849) (0.0687) (0.0955) (0.112) (0.153) (0.251)
z ∈ 1.96±0.10 -0.0680 -0.0558 -0.0826* -0.0871 -0.00184 0.0688 0.0452
[N = 512] (0.0464) (0.0517) (0.0495) (0.0566) (0.0766) (0.0887) (0.114)
z ∈ 1.96±0.15 -0.0895** -0.0793* -0.115*** -0.117** -0.103* -0.0976 -0.136*
[N = 786] (0.0391) (0.0440) (0.0418) (0.0463) (0.0573) (0.0706) (0.0804)
z ∈ 1.96±0.20 -0.0862** -0.0740* -0.0965** -0.0927** -0.0991* -0.116* -0.121*
[N = 1,033] (0.0350) (0.0396) (0.0377) (0.0426) (0.0508) (0.0614) (0.0704)
z ∈ 1.96±0.25 -0.0677** -0.0505 -0.0754** -0.0658* -0.0592 -0.0523 -0.0538
[N = 1,327] (0.0316) (0.0349) (0.0332) (0.0365) (0.0442) (0.0523) (0.0572)
z ∈ 1.96±0.30 -0.0455 -0.0331 -0.0554* -0.0500 -0.0348 -0.0168 -0.0191
[N = 1,585] (0.0287) (0.0323) (0.0304) (0.0341) (0.0402) (0.0476) (0.0518)
z ∈ 1.96±0.35 -0.0458* -0.0424 -0.0511* -0.0550* -0.0250 -0.0224 -0.0146
[N = 1,826] (0.0274) (0.0310) (0.0294) (0.0326) (0.0373) (0.0445) (0.0480)
z ∈ 1.96±0.40 -0.0417 -0.0250 -0.0471* -0.0318 -0.0226 -0.00454 0.00475
[N = 2,102] (0.0256) (0.0290) (0.0272) (0.0305) (0.0344) (0.0411) (0.0436)
z ∈ 1.96±0.50 -0.0463** -0.0415 -0.0510** -0.0504* -0.0312 -0.0169 -0.0199
[N = 2,645] (0.0235) (0.0267) (0.0249) (0.0278) (0.0305) (0.0363) (0.0384)
z ∈ 1.96±0.60 -0.0413* -0.0525** -0.0372 -0.0527* -0.0233 -0.0230 -0.0232
[N = 3,135] (0.0229) (0.0257) (0.0242) (0.0269) (0.0287) (0.0334) (0.0350)

Controls no yes no yes no yes yes
Start Year FE no yes no yes no yes yes
Mesh Condition FE no yes no yes no yes yes
Other Design Features no no yes yes no no yes
Sponsor FE no no no no yes yes yes
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Cosine Similarity Optimal Threshold

SENTENCE A SENTENCE B 

BERT BERT

 Sentence-Transformers : 
        assigns similarity scores.

Optimal threshold maximizes F1 score: 
        best separates “Relevant Changes”  
        from “No Relevant Changes”. 

-1 ... 1

0.2 0.0 0.2 0.4 0.6 0.8 1.0
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Fine-Tuning Large Language Models

Fine-tuning

0.85*Labeled
Dataset

0.15*Labeled
Dataset

Performance
Metrics

Fine-tuning:
Updated model

Entire Labeled
Dataset

Pre-trained model

Training Set Evaluation Set

Fine-tuning of two large language models
1. BERT: Bidirectional Encoder Representations from Transformers, developed by

Google (Devlin et al., 2018)
2. BioBERT: BERT for Biomedical Text Mining, domain-specific (Lee et al., 2019)
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Summary Statistics of Trials at a High Risk vs at a Low Risk of
Change

(1) (2) (3)
no major change major change difference (2)-(1)

preregistered 0.775 0.702 -0.073***
(0.418) (0.458) (0.013)

data monitoring committee 0.521 0.600 0.079***
(0.500) (0.490) (0.016)

subject masked 0.780 0.707 -0.073***
(0.414) (0.455) (0.013)

caregiver masked 0.467 0.384 -0.083***
(0.499) (0.487) (0.015)

investigator masked 0.765 0.685 -0.080***
(0.424) (0.465) (0.014)

outcomes assessor masked 0.446 0.381 -0.066***
(0.497) (0.486) (0.015)

PI no employee 0.913 0.890 -0.022***
(0.282) (0.312) (0.009)

industry 0.778 0.679 -0.099***
(0.416) (0.467) (0.014)

top10rev 0.243 0.216 -0.027**
(0.429) (0.411) (0.013)

phase III 0.521 0.514 -0.007
(0.500) (0.500) (0.015)

placebo 0.720 0.645 -0.075***
(0.449) (0.479) (0.014)

enrollment 507.2 685 177.7***
(1,408.8) (1,953.1) (53.7)

Observations 3,113 1,697 4,810
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Caliper Tests Probit - Preregistered Trials
Preregistered

(1) (2) (3) (4)

z ∈ 1.96±0.10 .11** .089* .11** .11**
[N = 378] (0.049) (0.048) (0.052) (0.051)
z ∈ 1.96±0.15 .096** .081** .095** .097**
[N = 591] (0.041) (0.04) (0.042) (0.042)
z ∈ 1.96±0.20 .058 .053 .061 .064*
[N = 782] (0.036) (0.035) (0.038) (0.038)
z ∈ 1.96±0.25 .073** .072** .084** .085**
[N = 995] (0.032) (0.031) (0.034) (0.034)
z ∈ 1.96±0.30 .059** .063** .075** .076**
[N = 1,177] (0.03) (0.03) (0.032) (0.032)
z ∈ 1.96±0.35 .038 .043 .057* .057*
[N = 1,364] (0.029) (0.029) (0.031) (0.031)
z ∈ 1.96±0.40 .044 .045* .049* .051*
[N = 1,564] (0.027) (0.027) (0.029) (0.029)
Controls ✔ ✔

Other Design Features ✔ ✔

Start Year FE ✔ ✔ ✔

Mesh Condition FE ✔ ✔ ✔
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Caliper Tests Logit - Preregistered Trials
Preregistered

(1) (2) (3) (4)

z ∈ 1.96±0.10 .11** .09* .11** .12**
[N = 378] (0.049) (0.049) (0.054) (0.052)
z ∈ 1.96±0.15 .095** .081** .095** .099**
[N = 591] (0.04) (0.04) (0.043) (0.042)
z ∈ 1.96±0.20 .058 .053 .06 .064*
[N = 782] (0.036) (0.035) (0.038) (0.038)
z ∈ 1.96±0.25 .073** .071** .083** .085**
[N = 995] (0.032) (0.031) (0.034) (0.034)
z ∈ 1.96±0.30 .059** .063** .075** .076**
[N = 1,177] (0.03) (0.03) (0.032) (0.032)
z ∈ 1.96±0.35 .038 .042 .057* .057*
[N = 1,364] (0.029) (0.029) (0.031) (0.031)
z ∈ 1.96±0.40 .044 .045* .049* .051*
[N = 1,564] (0.027) (0.027) (0.029) (0.029)
Controls ✔ ✔

Other Design Features ✔ ✔

Start Year FE ✔ ✔ ✔

Mesh Condition FE ✔ ✔ ✔
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Adding Controls? Caliper Tests - All Trials
(1) (2) (3) (4) (5) (6)

z ∈ 1.96±0.05 0.041 0.043 0.11 -0.025 -0.014 0.027
[N = 254] (0.059) (0.059) (0.1) (0.059) (0.068) (0.064)
z ∈ 1.96±0.10 0.097** 0.094** 0.054 0.049 0.064 0.062
[N = 512] (0.042) (0.042) (0.077) (0.043) (0.049) (0.048)
z ∈ 1.96±0.15 0.085** 0.079** 0.027 0.055 0.07* 0.069*
[N = 786] (0.035) (0.035) (0.066) (0.035) (0.039) (0.038)
z ∈ 1.96±0.20 0.053* 0.047 0.012 0.03 0.045 0.041
[N = 1,033] (0.031) (0.031) (0.06) (0.031) (0.034) (0.034)
z ∈ 1.96±0.25 0.071** 0.068** 0.053 0.055** 0.072** 0.069**
[N = 1,327] (0.028) (0.028) (0.054) (0.028) (0.03) (0.03)
z ∈ 1.96±0.30 0.066*** 0.063** 0.074 0.055** 0.067** 0.066**
[N = 1,585] (0.025) (0.026) (0.049) (0.026) (0.029) (0.028)
z ∈ 1.96±0.35 0.05** 0.047* 0.073 0.043* 0.054** 0.054**
[N = 1,826] (0.024) (0.024) (0.047) (0.025) (0.027) (0.027)
z ∈ 1.96±0.40 0.048** 0.046** 0.052 0.043* 0.046* 0.046
[N = 2,102] (0.023) (0.023) (0.044) (0.023) (0.025) (0.025)
Preregistration Status ✔ ✔ ✔ ✔ ✔

Controls ✔ ✔

Other Design Features ✔ ✔

Start Year FE ✔ ✔ ✔

Mesh Condition FE ✔ ✔ ✔

Interaction effect ✔

Bandwidth values vary
between 0.05 and 0.4
Other design features:
superior research integrity
Same controls as in
Decker and Ottaviani (2023)
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Caliper Test with Alternative Bandwidths - Preregistered Trials
Preregistered

(1) (2) (3) (4)

z ∈ 1.96±0.05 0.021 -0.027 0.00072 0.042
[N = 188] (0.071) (0.073) (0.085) (0.082)
z ∈ 1.96±0.10 0.11** 0.086* 0.11* 0.11**
[N = 378] (0.05) (0.051) (0.057) (0.056)
z ∈ 1.96±0.15 0.096** 0.08* 0.095** 0.095**
[N = 591] (0.041) (0.041) (0.044) (0.044)
z ∈ 1.96±0.20 0.059 0.052 0.061 0.061
[N = 782] (0.036) (0.036) (0.039) (0.039)
z ∈ 1.96±0.25 0.073** 0.071** 0.084** 0.085**
[N = 995] (0.032) (0.032) (0.035) (0.035)
z ∈ 1.96±0.30 0.059** 0.062** 0.075** 0.076**
[N = 1,177] (0.03) (0.03) (0.033) (0.033)
z ∈ 1.96±0.35 0.038 0.042 0.057* 0.057*
[N = 1,364] (0.029) (0.029) (0.032) (0.031)
z ∈ 1.96±0.40 0.044 0.044 0.049 0.051*
[N = 1,564] (0.027) (0.027) (0.03) (0.029)
Controls ✔ ✔

Other Design Features ✔ ✔

Start Year FE ✔ ✔ ✔

Mesh Condition FE ✔ ✔ ✔

Bandwidth values vary
between 0.05 and 0.4
Other design features:
superior research integrity
Same controls as in
Decker and Ottaviani (2023)
Effect of outcome changes:
remains for preregistered
trials
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Sponsor Fixed effects ? Preregistered Trials
Preregistered

(1) (2) (3) (4)

z ∈ 1.96±0.05 -.14 -.24 -.24 -.39*
[N = 114] (0.14) (0.17) (0.21) (0.23)
z ∈ 1.96±0.10 .0061 .015 .088 .09
[N = 263] (0.08) (0.091) (0.12) (0.12)
z ∈ 1.96±0.15 .011 .025 .068 .052
[N = 453] (0.061) (0.065) (0.075) (0.076)
z ∈ 1.96±0.20 .03 .058 .085 .09
[N = 630] (0.051) (0.053) (0.061) (0.061)
z ∈ 1.96±0.25 .051 .06 .078 .079
[N = 814] (0.044) (0.045) (0.052) (0.052)
z ∈ 1.96±0.30 .033 .036 .055 .053
[N = 999] (0.04) (0.042) (0.047) (0.047)
z ∈ 1.96±0.35 .011 .014 .031 .024
[N = 1,177] (0.038) (0.039) (0.044) (0.044)
z ∈ 1.96±0.40 .016 .013 .026 .018
[N = 1,369] (0.035) (0.036) (0.04) (0.04)
Controls ✔ ✔

Other Design Features ✔ ✔

Start Year FE ✔ ✔ ✔

Mesh Condition FE ✔ ✔ ✔

Sponsor FE ✔ ✔ ✔ ✔

Effect of outcome changes:
absorbed
Unobserved characteristics
of researchers or their
sponsoring organizations?
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