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Multiple hypothesis testing (MHT): Some Recap

• Multiple hypotheses because of multiple treatments, subgroups, or outcomes

• Classical motivation for multiple testing adjustments
• 100 true null hypotheses, mutually independent tests, size = level = α = 5%
• Probability of rejecting at least one true null hypothesis = 1− 0.95100 = 0.994
• Separate testing generally does not control notions of compound error at 5%.

• There is substantial variation on the choice of compound error and/or tests
• Family-wise error rate (FWER): probability of rejecting at least one true null;
• False discovery rate (FDR): expected proportion of incorrectly rejected null hypotheses;
• Indexing: aggregate outcomes into a single index [e.g., Anderson (2008)].

• Several algorithms to control compound errors (e.g., Bonferroni correction)
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Multiple subgroups in clinical trials

• FDA typically recommends two phases of sub-group analysis
• “Exploratory” – not binding for decision making but useful for future experiments
• “Confirmatory” – targeted to pre-specified sub-groups

“When clinically relevant differences in treatment effect are anticipated across age, racial, or
ethnic groups, it is important to consider proper clinical study design, sufficient enrollment of
subgroups to allow meaningful analysis, and controlling of study-wise Type 1 error for overall
and subgroup-specific hypothesis testing, if appropriate and feasible.” (Food and Drug Adminis-
tration, 2017)

• Running experiments is very costly and assessment are difficult to make
“This observed heterogeneity led two regulatory agencies to different assessments. The National
Institute for Health and Care Excellence (NICE, English and Welsh authority) concluded a clin-
ical benefit for the overall population whereas the Institut für Qualität und Wirtschaftlichkeit
im Gesundheitswesen (IQWiG, German authority) concluded efficacy only for the most beneficial
subgroup of patients (symptomatic peripheral arterial disease)” (Tanniou et al., 2016)
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Policy experiments with multiple treatments in Economics: top-5 journals
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This paper

• Study whether/how to adjust inferences in experiments based on the economics
E.g., nature of multiplicity, research costs, welfare/policy implications of hypothesis testing

• Take into account the researchers’ incentives based on three core ideas:
1. Research is a public good, and policy decisions are influenced by hypothesis tests
2. Research costs are born privately by the researcher, who decides to experiment
3. The regulator can ex-ante enforce hypothesis testing protocols

• Goal: characterize protocol that maximizes worst-case welfare over policy effects
subject to trade-off (a) motivating research and (b) generating bad policy guidance

• Model’s assumptions can justify single-hypothesis testing [Tetenov (2016)]
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We study MHT for different types of multiplicity

Key feature of our model: hypothesis tests correspond to policy decisions

• Multiple treatments (or subgroups): simple mapping betw/ tests and decisions
• Multiple outcomes: might or might not interpret as informing multiple decisions

• Research informs a single policy decision (e.g., whether to scale up an intervention)
• Research informs multiple heterogeneous policy-makers
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Literature

• Economic analysis of optimal statistical approaches [E.g., Chassang et al. (2012); Tetenov (2016);
Spiess (2018); Henry and Ottaviani (2019); Di Tillio et al. (2017); Kasy and Spiess (2023)]

• We focus on MHT

• Models of scientific communication
[E.g., Frankel and Kasy (2022); Andrews and Shapiro (2021); Banerjee et al. (2017)]

• We relate the structure of the scientific process to MHT

• Work on decision theory and hypothesis testing
[E.g., Wald (1950); Robbins (1951); Storey (2003); Lehmann and Romano (2005); Efron (2008)]

• We provide an economic model with incentives that allows for discriminating between
different MHT procedures. We show when MHT is optimal and when it is not.

• Statistical methods for MHT corrections
[E.g., Holm (1979); Westfall and Young (1993); Benjamini and Hochberg (1995); Romano et al. (2010)]

• We provide guidance for choosing appropriate methods 7



Multiple treatments (interventions or subgroups)



Players and stakeholders’ welfare

• Representative researcher
• decides whether to run a pre-specified experiment with J treatments

• If she experiments, she draws a vector of statistics X ∼ Fθ , where θ = (θ1, . . . , θJ)
⊤

• She then reports discoveries/rejections r(X) = (r1(X), . . . , rJ(X)), where rj(X) = 1 if
treatment j is recommended, and rj(X) = 0 otherwise

• Social planner chooses a testing procedure r∗ to maximize worst-case welfare
Ex FDA approval agency (or editorial standards in economics)

⇒ Policy implementation
• upon experimentation, additive welfare effects θ⊤r(X) on stakeholders (no spillovers)

• Later: settings with interactions between treatments
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Example

Ex Parameters of interest: the researcher evaluates J treatments D1, . . . , DJ using

Y = θ1D1 + · · ·+ θJDJ + ε

• Here: X = (θ̂1, . . . , θ̂J)
⊤, Fθ is the CDF of a N (θ,Σ) distribution, and Σ is known

Ex Testing protocol (t-test): rj(X) = 1{Xj/
√

Σj,j > t} for j = 1, . . . , J

⇒ In the paper general testing protocol
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Game

Stage 1: the social planner, who doesn’t know θ, chooses r to maximize worst-case welfare: for
λ ≥ 0, π ∈ Π

r∗ ∈ argmax
r

min
θ∈Θ

vr(θ)︸ ︷︷ ︸
ambiguity aversion

+λ

∫
er(θ

′)π(θ′)dθ′︸ ︷︷ ︸
subjective utility

where (
vr(θ), er(θ)

)
=


(∫

θ⊤r(x)dFθ(x), 1
)

if the researcher experiments,

(0, 0) if the researcher doesn’t experiment
Stage 2: given r, the researcher, who knows θ (can be relaxed), experiments if her expected utility βr(θ) is

positive, where

βr(θ) =

∫ J∑
j=1

rj(x)dFθ(x)︸ ︷︷ ︸
benefit from approval

(expected number of rejections)

− C(J)︸ ︷︷ ︸
research costs relative to benefits
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Returning to the FDA example

• Social planner = FDA

⇒ Ambiguity aversion = “primum non nuocere”

⇒ Utility from experimentation = “the rationale and design of confirmatory trials nearly
always rests on earlier clinical work carried out exploratory studies” (Lewis, 1999)

• Researcher = firm producing drugs
⇒ Pre-specification typically recommended

⇒ Interpret
∫ ∑

j rj(x)dFθ(x) as proportional to profits from approval

⇒ Phase 3 trials costs are betw/ 14 - 50 millions $ (Wong et al., 2014)

Some extensions (main conclusions unchanged):

• Sub-populations have varying size
• The researcher has a prior over θ
• Endogenous choice of which treatment to test (and J), but pre-specify
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Characterization of maximin protocols (λ = 0)

• Proposition: r∗ is maximin optimal if and only if

(a) βr∗(θ) ≤ 0 ∀θ ∈ Θ0 and (b) vr∗(θ) ≥ 0 ∀θ ∈ Θ \Θ0

• Connection to (weak) size control (J = 2):

(a) ⇐⇒ P (r∗1(X) = 1|θ) + P (r∗2(X) = 1|θ)︸ ︷︷ ︸
benefit from approval

≤ C(2)︸︷︷︸
costs

∀θ ∈ Θ0

Θ0

θ1

θ2

Intuition
When θ ∈ Θ0, research has only downside. The planner maximizes welfare by keeping
the approval probability low enough so the researcher doesn’t experiment.
When the testing protocol doesn’t depend on J , this condition will be violated for
large enough J due to false positives =⇒ some adjustment for J is optimal

12



Characterization of maximin protocols (λ = 0)

• Proposition: r∗ is maximin optimal if and only if

(a) βr∗(θ) ≤ 0 ∀θ ∈ Θ0 and (b) vr∗(θ) ≥ 0 ∀θ ∈ Θ \Θ0

• Connection to (weak) size control (J = 2):

(a) ⇐⇒ P (r∗1(X) = 1|θ) + P (r∗2(X) = 1|θ)︸ ︷︷ ︸
benefit from approval

≤ C(2)︸︷︷︸
costs

∀θ ∈ Θ0

Θ0

θ1

θ2

Intuition
When θ ∈ Θ0, research has only downside. The planner maximizes welfare by keeping
the approval probability low enough so the researcher doesn’t experiment.
When the testing protocol doesn’t depend on J , this condition will be violated for
large enough J due to false positives =⇒ some adjustment for J is optimal

12



Characterization of maximin protocols (λ = 0)

• Proposition: r∗ is maximin optimal if and only if

(a) βr∗(θ) ≤ 0 ∀θ ∈ Θ0 and (b) vr∗(θ) ≥ 0 ∀θ ∈ Θ \Θ0

• Connection to (weak) size control (J = 2):

(a) ⇐⇒ P (r∗1(X) = 1|θ) + P (r∗2(X) = 1|θ)︸ ︷︷ ︸
benefit from approval

≤ C(2)︸︷︷︸
costs

∀θ ∈ Θ0

Θ0

θ1

θ2

Intuition
When θ ∈ Θ0, research has only downside. The planner maximizes welfare by keeping
the approval probability low enough so the researcher doesn’t experiment.
When the testing protocol doesn’t depend on J , this condition will be violated for
large enough J due to false positives =⇒ some adjustment for J is optimal

12



Characterization of maximin protocols (λ = 0)

• Proposition: r∗ is maximin optimal if and only if

(a) βr∗(θ) ≤ 0 ∀θ ∈ Θ0 and (b) vr∗(θ) ≥ 0 ∀θ ∈ Θ \Θ0

• Connection to (weak) size control (J = 2):

(a) ⇐⇒ P (r∗1(X) = 1|θ) + P (r∗2(X) = 1|θ)︸ ︷︷ ︸
benefit from approval

≤ C(2)︸︷︷︸
costs

∀θ ∈ Θ0

Θ0

θ1

θ2

Intuition
When θ ∈ Θ0, research has only downside. The planner maximizes welfare by keeping
the approval probability low enough so the researcher doesn’t experiment.
When the testing protocol doesn’t depend on J , this condition will be violated for
large enough J due to false positives =⇒ some adjustment for J is optimal

12



Characterization of maximin protocols (λ = 0)

• Proposition: r∗ is maximin optimal if and only if

(a) βr∗(θ) ≤ 0 ∀θ ∈ Θ0 and (b) vr∗(θ) ≥ 0 ∀θ ∈ Θ \Θ0

• Connection to (weak) size control (J = 2):

(a) ⇐⇒ P (r∗1(X) = 1|θ) + P (r∗2(X) = 1|θ)︸ ︷︷ ︸
benefit from approval

≤ C(2)︸︷︷︸
costs

∀θ ∈ Θ0

Θ0

θ1

θ2

Θ1

• Intuition
• When θ ∈ Θ0, research has only downside⇒ keep approval probability low
• When the cost doesn’t depend on J , this condition will be violated for large enough J

12
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Optimal protocols (λ ≥ 0)

• There are many maximin protocols (including rj(X) = 0 for all j).
• Proposition: for J > 1, no maximin recommendation function leads to higher
welfare for all θ than all other maximin recommendation functions (no UMP test)

=⇒ have to choose a suitable notion of power

• Proposition: Consider subjective priors π ∈ Π with support
on Θ1 = [0, 1]J . Then

r∗ ∈ argmax
r∈R

{
min
θ∈Θ

vr(θ) + λ

∫
Θ1

e∗r(θ)π(θ)dθ

}
,

for all λ ≥ 0 and π ∈ Π if and only if
(i) r∗ is maximin optimal (⇒ size control/non-negative welfare)

(ii) βr∗(θ) ≥ 0 for all θ ∈ Θ1 (⇒ unbiased test/power)

Θ0

θ1

θ2

Θ1
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Globally most powerful maximin protocols

• Existence of such a rule?

Proposition: if X ∼ N (θ,Σ), with Σj,j = σ2

r∗j (X) = 1

{
Xj

σ
> t∗j

}
, where t∗j ≥ Φ−1 (1− C(J)/J), for j = 1, . . . , J,

is maximin optimal. It is maximin and unbiased if and only if t∗j=Φ−1 (1− C(J)/J).

• Comparison to condition for maximin optimality:
J∑

j=1

P (r∗j (X) = 1|θ)≤C(J) for all θ ∈ Θ0︸ ︷︷ ︸
maximin (condition (a))

vs.
J∑

j=1

P (r∗j (X) = 1|θ)=C(J) for θ = 0︸ ︷︷ ︸
unbiased and maximin test

⇒ Challenge here to show maximin optimality in mixed orthants

14
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Optimal MHT adjustments depend on the research costs

• Decompose the costs into fixed costs and variable costs: C(J) = cf + cv(J)

• Optimal level for separate t-tests: α(J) = (cf + cv(J))/J

• Examples
Cost function Level Intuition

Bonferroni cf = α, cv(J) = 0 α/J
Adjustment for increased benefits

due to false positives

No adjustment cf = 0, cv(J) = αJ α
MHT adjustments are “built into”

the cost structure

• General MHT adjustment based on relative costs:

α(J) =
C(J)/J

C(1)︸ ︷︷ ︸
adjustment factor

× α(1)

15
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Additional formal results in the paper

• Robustness guarantees to misspecified βr(θ)

⇒ maximin optimality using worst-case upper bounds

⇒ For example, only need to know C ′(J) ≥ C(J) for maximin optimality

⇒ Optimality for any λ, holds for a restricted class of priors Π

• Baseline model with interactions in the cost function
+ interactions in the approval rule (βr(θ) = γ

∫
1
{∑J

j=1 rj(x) ≥ κ
}
dFθ(x)−C(J))

⇒ separate t-tests with level depending on J are optimal
+ interactions in the welfare effects
⇒ rationalizes weak FWER control between groups of treatments sufficient for approval

• Other notions of power
• Worst-case power: study a ϵ deviations from the positive orthant

• Weighted Average Power: no rule most powerful for any choice of the weights

16
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Multiple outcomes (one treatment)



Setup

• There are G outcomes Y = (Y1, . . . , YG) associated with X = (X1, . . . , XG)

• Example: for g = 1, . . . , G, the researcher estimates the effect of treatment D on
outcome Yg using the regression model Yg = µ+ θgD + εg ⇒ X = (θ̂1, . . . , θ̂G)

⊤

• There is an audience of J policy-makers each with individual utility uj(θ)

• Researcher makes J recommendations, one for each policy-maker:

r(X) = (r1(X), . . . , rJ(X))

18
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Multiple policymakers (G = J)

• J policymakers and uncertainty wrt which policymaker will implement the policy

• Welfare for policymaker j is θj (each policy-maker cares about one outcome)

• Researcher reports J tests, one for each policymaker, r(X) = (r1(X), . . . , rJ(X))

• Suppose, as before, that the researcher’s payoff is

βr(θ) =

∫ J∑
j=1

rj(x)dFθ(x)− C(G)

• Isomorphic to model with multiple treatments, and optimal t-tests

r∗j (X) = 1

{
Xj√
Σj,j

≥ Φ−1

(
1− C(G)

G

)}
, ∀j.

19
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Single policymaker

• Here r(X) ∈ {0, 1}, βr(θ) =
∫
r(x)dFθ(x)− C(G), u(θ) = θ⊤w∗

⇒ Each Xg measures the impact on an economically distinct concept. Then optimal r∗

r∗(X) = 1

{
X⊤w∗

√
w∗⊤Σw∗

> Φ−1(1− C(G))

}
,

implies economic aggregation (e.g. Bhatt et al. (2024))

⇒ Each Xg measures the same underlying effect: θ1 = · · · = θG. Then

r∗(X) = 1

{
X⊤wmin

√
wmin⊤Σwmin

> Φ−1(1− C(G))

}
,

where wmin minimizes
√
w⊤Σw st

∑
g wg = 1 (Statistical aggregation)
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Empirical studies



Clinical trials

• Sertkaya et al. (2016) estimate that 46% costs are fixed in average Phase 3 trial

• Take cost function C(J) = cf +mJ satisfying cf/(cf +mJ̄) = 0.46, where J̄ is the
number of subgroups in a typical study

• Take J̄ = 3 based on Pocock et al. (2002) implying α(J) = α(1)×
[
1+2.56/J

3.56

]

J α(1) = 0.025 α(1) = 0.05 α(1) = 0.1 α(1) = 0.15

1 0.025 0.050 0.100 0.150
2 0.016 0.032 0.064 0.096
3 0.013 0.026 0.052 0.078
4 0.012 0.023 0.046 0.069
5 0.011 0.021 0.042 0.064
9 0.009 0.018 0.036 0.054
∞ 0.007 0.014 0.028 0.042
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Broader applicability for research studies?

• Principles may apply more broadly to policy experiments economics:
⇒ cost complementarities should drive our discussion around MHT

• How do financial costs scale with number of treatment arms in economic studies?
⇒ Unique data with all J-PAL exp (focus on low-income countries ≥ 80% of obs/)

Summary of the results

• Returns to scale with number of arms⇒ some MHT adjustments are needed

• Costs are not invariant to scale⇒ Bonferroni is too stringent

• Costs vary with context⇒ in high-income countries, studies with more treatment
arms are also the cheaper (may reflect different research technology)

22
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Data visualization
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Results

Main sample

(1) (2) (3)

log(Treatment Arms) [β] 0.180 0.183 0.215
(0.077) (0.064) (0.080)

Proposal Type FEs No Yes Yes
Initiative FEs No No Yes

p-value, H0 : β = 0 0.019 0.004 0.007
p-value, H0 : β = 1 0.000 0.000 0.000

Observations 812 812 655
Adjusted R2 0.005 0.352 0.380

• Taking β̂ ≈ 0.2 for the main sample implies α(J) = α(1)J0.2−1
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Conclusions



Extensions

• Endogenous J (pre-specified by the researcher ex-ante)
• Unknown θ and researcher’s prior on θ

• Some benevolent researcher
• Additional forms of interactions
• Alternative notions of power (WAP and local power)
• Variance that might depend on J and heterogeneous variance
• Weighted welfare function
• Two sided tests

25



Conclusions
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Notes: The implications for settings with multiple treatments are based on the baseline model without
interactions in the publication process and welfare effects. The implications for practice can be different

when there are additional forms of interactions; see Section ?? and Appendix ??.
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Thank you!

Questions? Thoughts? Comments? Please reach out:
dviviano@fas.harvard.edu, kwuthrich@ucsd.edu,

pniehaus@ucsd.edu
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Digression: Can we justify the FDR?

• Suppose that uj(θ) = θj . FDR is optimal if

βr(θ) =

∫  J∑
j=1

1 {θj < 0} rj(x)∑J
j=1 rj(x)

· 1


J∑

j=1

rj(x) > 0


 dFθ(x)− C(J)

• Researcher is malevolent: her utility is increasing in the number false discoveries

• FDR does not arise as a natural solution in our frequentist maximin framework

• Complementarities betw/ Bayesian [Storey (2003)] and frequentist
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