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Introduction

e Hi! Nice to see you all!
e Today | will present a project on forecasting research results.

e Part of a larger enterprise to bring together two fields I love.
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Introduction

e Hi! Nice to see you all!

Today | will present a project on forecasting research results.

Part of a larger enterprise to bring together two fields I love.

Behavioral science = Metascience

Dream: make them communicate to push the research frontier.

Now developing an incubator for scientific research called Lab”,
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Missions of Lab?

1. Enable experimentation at scale with many researchers and labs:

e Replications
e Multi-analyst studies
e RCTs on research practices
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Story behind the forecasting project

Sep 2020 (?) Anna Dreber hired Daniel as an RA to help on a project on
peer review. Daniel eventually became a co-author.
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Story behind the forecasting project

Sep 2020 (?) Anna Dreber hired Daniel as an RA to help on a project on
peer review. Daniel eventually became a co-author.

Fall 2022 Taisuke pitched the project to Sev. Daniel offered to join.

Oct 2022 Daniel started to read. A LOT.

May 2023 First presentation by Taisuke in Berlin. Roadmap discussion.
Jun - Dec 2023 More presentations by Daniel and Sev. Overleaf doc growing.

Today Impromptu presentation by Sev. VERY PRELIMINARY.
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Where the story is heading next (?)

Octopus growing many arms:

e Unclear how many arms we will keep
e Will present our plan and attempts

5/54



Where the story is heading next (?)

Octopus growing many arms:
e Unclear how many arms we will keep
e Will present our plan and attempts
What I'd love to hear from you:

e Which arms you would kill
e Which arms you would grow
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Motivation

e Importance of beliefs about research results:
e Billions of dollars and hours spent on research yearly.
® Researchers use beliefs to choose projects, give advice, evaluate
manuscripts.

e Usually remain implicit, but increasingly common to elicit directly.

e But..
® Despite stakes, overall accuracy and informativeness remain unknown.

e Returns to direct elicitation are unclear.

¢ Good time for a comprehensive overview
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What we do

(= Investigate the origins and history of forecasting
~» narrative review
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What we do

(= Investigate the origins and history of forecasting
~ narrative review

Llml Document current practices and forecast performance
~+ systematic review / meta-analysis

¢> Discuss possible paths forward

27* Work in progress ~» comments welcome ©
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Context for the project

Civic honesty around the globe cohn et al. (2019) science
e “Lost” wallets were given to strangers around the world
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Context for the project

Civic honesty around the globe cohn et al. (2019) science
e “Lost” wallets were given to strangers around the world

? What percent of strangers would attempt to return a wallet

Condition No Money Money ($13) Big Money (594)

Economists’ prediction 69% 69% 69%
Actual return rate 39% 57% 66%
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Research questions

1. Who participates in the “market” for predictions of research results?
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Research questions

1. Who participates in the “market” for predictions of research results?
2. Why do researchers collect predictions of research results?
3. How are forecasts elicited?

4. (When) Are predictions accurate and informative?
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(Very short) literature review

Bi Earliest example ~ “Milgram experiments” milgram (1963)

“[predictions] provide us a benchmark from which to see how
much or little we learn through the experiment” Milgram (1974)
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(Very short) literature review

Bi Earliest example ~ “Milgram experiments” milgram (1963)

“[predictions] provide us a benchmark from which to see how
much or little we learn through the experiment” Milgram (1974)

€ Difficult to obtain raw data and contact authors from old papers

® Focus efforts on more recent literature
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e development RCTS Groh et al. (2016)

3. Centralization

e Social Science Prediction Platform
DellaVigna et al. (2019)
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Prediction markets on replications

One central hypothesis for each study

Will the replication result be an effect in the same direction as the original
study with p < 0.05? Yes/No

Participants trade contracts paying $1 if study is replicated (S0 o.w.).

Prices start at $0.50. Each participant receives $50-100 endowment.

Both long- and short-selling allowed

Logarithmic scoring rule implemented by market maker.

Price ~ predicted prob. of outcome occurring (need risk neutrality)
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Replication market for Camerer et al. (2016)

de Clippel et al. (AER 2014) 076 0.00 0.00 Trade
Duffy and Puzzello (AER 2014) 0.81 0.00 0.00 Trade
Dulleck et al. (AER 2011) 0.74 0.00 0.00 Trade
Fehr et al. (AER 2013) 0.63 0.00 0.00 Trade
Friedman and Oprea (AER 2012) 0.83 0.00 0.00 Trade
Fudenberg et al. (AER 2012) 0.93 0.00 0.00 Trade
Huck et al. (AER 2017) 0.92 0.00 0.00 Trade
Ifcher and Zarghamee (AER 2011) 059 0.00 0.00 Trade
Kessler and Roth (AER 2012) 0.94 0.00 0.00 Trade
Kirchler et al (AER 2012) o7 0.00 0.00 Trade
Kogan et al. (AER 2011) 0.80 0.00 0.00 Trade
Kuziemko et al. (QJE 2014) 0.63 0.00 0.00 Trade
Marzilli Ericson and Fuster (QJE 2011) 0.62 0.00 0.00 Trade
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Replication market for Camerer et al. (2016)

Hypothesis to bet on: Subjects exert more effort (leading to higher earnings) in a real effort task if the expectations-
based reference point is increased (a comparison of the average accumulated earnings in the real effort task between

the LO treatment and the HI treatment).
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Social Science Prediction Platform (SSPP)

SOCIAL SCIENCE
Prediction
Platform

Predict research results,
improve social science

GET STARTED

SSPP ©DellaVigna and Vivalt 2019

https://socialscienceprediction.org/
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Social Science Prediction Platform (SSPP)

Public Prediction Bulletin

Long-run general eqilbrium
effects of cash transfers in

SOCIAL SCIENCE Kenya ($)
Prediction
Platform Long rn mpactsof

boarding school in France ($)

Predict research results,
improve social science

Long-run impacts of mother
tongue instruction in
Uganda ($)

Long-run impacts of a
Graduation program in
Afghanistan ()

SSPP ©DellaVigna and Vivalt 2019

https://socialscienceprediction.org/ Long-runimpacts of socal
signalling for vaccinations in
Sierra Leone ($)
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Authors Field
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Authors Field
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Authors Field
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Thomas Escande

Authors Field
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Close Date
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Close Date
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Close Date
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Close Date
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Example: Campos-Mercade et al. (2021) on SSPP

ABOUT REDICTIONS ~MYSURVEYS MY ACCOUNT

Behavioral interventions and vaccination uptake

Study ID sspp-2021-0021-v1

General Details

Project Behavioral interventions and vaccination uptake

Study ID sspp-2021-0021-v1

Study Title Behavioral interventions and vaccination uptake

Authors Pol Campos-Mercade, Armando Meier, Stephan Meier, Devin Pope, Florian Schneider, Erik Wengstrém
Completion Time 5 Minutes

Close Date Aug. 15,2021

Discipline Economics

Field Health Economics, Behavioral Economics

Country Sweden

Abstract

Our goal is to collect predictions of experts about the effects of interventions to increase COVID-19 vaccine uptake. We have not yet

/_)( analyzed the data on vaccination uptake. Your predictions will help us to contextualize the findings of our experiment.
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Example: Campos-Mercade et al. (2021) on SSPP

Please give anlestimate of the difference in share of people getting vaccinated between each treatment and the Control condition] (in
percentage points).

Remember that in the Control condition, we only encourage participants to take the COVID-19 vaccine as soon as possible and provide a
link to a website where they find information of how to book a vaccination appointment. The encouragement statement and the link are also
included in all other except the Minimal condition.

Note: Based on actual current vaccination rates and earlier representative surveys, our best guess will be thatfaround 70% of people in
the Control condition will vaccinate within the first month of availability.

Social benefits condition

Remember that in the Social benefits condition, we tell participants that the COVID-19 vaccine not only protects them, but also protects
people around them. We then ask them to make a list of 4 people who would benefit from the vaccine.

Difference in vaccination uptake between Social benefits condition and Control condition (percentage points):

Negative effect from Social benefit condition No impact Positive effect from Social benefit condition

-15 -10 -5 0 5 10 15

|
I L
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Data




Inclusion criteria

1. Primarily a social science paper.

2. Most recent version published or publicly shared in 2015 or later.
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Inclusion criteria
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. Primarily a social science paper.
2. Most recent version published or publicly shared in 2015 or later.

. Paper presents predictions of > 1 target outcome in a target study.

w

. Forecast elicitation cannot affect the target outcome(s) predicted.

ind
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Inclusion criteria

1. Primarily a social science paper.

2. Most recent version published or publicly shared in 2015 or later.
3. Paper presents predictions of > 1 target outcome in a target study.
4. Forecast elicitation cannot affect the target outcome(s) predicted.

5. Forecasts elicited by or in cooperation with the author(s) of the
target study.
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Search

e We identified 104 relevant papers:
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Search

e We identified 104 relevant papers:

e 57 published papers, 12 in “Top-5" journals

¢ 47 working papers

e Hand-coded each paper:

® > 3,000 target outcomes

e > 41,000 individual forecasters
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Coding

e What ~ Type of the “target” study and outcome
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Coding

What ~ Type of the “target” study and outcome

When / How ~ Prediction elicitation method

Who ~» Participant characteristics

Why ~» Reasons for collecting predictions
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Who participates in the market for forecasting?




Demand-side characteristics

Result 1
The practice of collecting forecasts is far more widespread among
economists and for field experiments.
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Supply-side characteristics

Result 2
Forecasters are recruited from a variety of pools with different levels and

types of expertise. However, the focus remains on academic expertise.

0.6

e 70 with outreach to academic experts

Share

e 24 studies recruited via SSPP
e 19 MTurk/Prolific
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Supply-side characteristics
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e Large heterogeneity in sample size
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Why do researchers collect forecasts?




Why using forecasts?

£ Assist with the evaluation of scientific claims
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Why using forecasts?

%

o,

Assist with the evaluation of scientific claims

Contextualizing research findings within existing scientific knowledge
Combating hindsight bias
Inoculating against publication bias

e “Surprising” null results might be more publishable

® Null effects insignificant against Hy : © = 0, but possibly significant
against Hp: © = n for some |u| > 0.

Assessing the replicability or plausibility of results
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Why using forecasts?

£ Understanding-the-world motives

e Beliefs influence choices

¢ e.g. policymaker beliefs might affect program adoption
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Why using forecasts?
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Understanding-the-world motives

Beliefs influence choices

¢ e.g. policymaker beliefs might affect program adoption

Tool for study and treatment selection

® “to quickly identify findings that are unlikely to replicate” preber et al. (2015)

e identify which treatment arm will be most impactful
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Why using forecasts?

O Different statistics taken from the distribution of forecasts may
matter depending on the goal(s) of the forecasting exercise
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Why using forecasts?

O Different statistics taken from the distribution of forecasts may
matter depending on the goal(s) of the forecasting exercise

e Select most successful intervention
~» aggregate forecasts into a single prediction

e “crowd average” often outperforms individual forecasts

e Assess riskiness of intervention
~» measure expert disagreement

e robustness concerns ~ go with lowest disagreement
¢ novelty considerations ~» go with most disagreement
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Motives for data collection
Result 3

Researchers cite the desire to contextualize their results with respect to
the prior academic consensus.
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Motives for data collection

e Hand coding identified 149 rationales across the 104 papers
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Motives for data collection

e Hand coding identified 149 rationales across the 104 papers

Combat hindsight bias or publication bias

Help with interpreting results

Obtain benchmarks or null hypotheses for results
Show whether results are surprising/novel/informa
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e Hand coding identified 149 rationales across the 104 papers
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Motives for data collection

e Hand coding identified 149 rationales across the 104 papers
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Motives for data collection

e Hand coding identified 149 rationales across the 104 papers
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Motives for data collection

e Very few attempts to quantify the value of information contained in
experiment.
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Virtually no paper presents information of this kind.

Two approaches:

1. Modeling in a Bayesian framework (cf work of Rachael Meager)
= normative benchmark
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learning. Distinction between surprisingness and novelty?
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Motives for data collection

Result 4
A large fraction of researchers collect forecasts after observing the

findings of their study, reflecting a desire to make sense of their results.
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Implications of forecast timing (1)

e Q: Does timing predict distributions of effect sizes/null effects?
e.g., authors see null results and collect forecasts ex-post.
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e Difficulties of measurement:

¢ Lack of information about forecast timing.
e Lag between decision to collect forecasts and collection date.

e “Pre”-registration before forecasts, but after seeing target results.
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Implications of forecast timing (1)

e Q: Does timing predict distributions of effect sizes/null effects?
e.g., authors see null results and collect forecasts ex-post.

e Difficulties of measurement:

¢ Lack of information about forecast timing.
e Lag between decision to collect forecasts and collection date.

e “Pre”-registration before forecasts, but after seeing target results.

e Approach: identify papers pre-registered before forecasts and results
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Implications of forecast timing (2)

e N =667 (blue) vs. N = 167 (red) outcomes.
e Failure to pre-register predicts concentration of effects ~ 0 (p < 0.001)

i
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|| Pre-reg before seeing resuits

7.5

2.5

0.0-— T + T T
-0.50 -0.25 0.00 0.25 0.50

Effect size

33/54



Motives for data collection

On the to-do list:

e Compare the distribution of null results for papers with and without
forecasts.

e Are papers with null results more likely to contain forecasts relative
to close neighbors?

e Understand how selection affects inference.
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How are forecasts elicited?




Elicitation of forecasts

Result 5

Authors primarily elicit forecasts of treatment effects and use surveys
rather than markets. However, considerable heterogeneity in survey
elicitation methods exists.

35/54



Elicitation of forecasts

Result 5

Authors primarily elicit forecasts of treatment effects and use surveys
rather than markets. However, considerable heterogeneity in survey
elicitation methods exists.

e Heterogeneity in
e type ~ probability, proportion, raw mean, standardized effect, ...

e procedure ~ individual vs. market, incentives for accuracy, framing, ...
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Elicitation of forecasts

e Primary focus on the forecasting of treatment effects

e Huge variation in terms of standardization, benchmark info, ...
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Elicitation of forecasts

e All 104 used individual elicitation

e 7 also used prediction markets
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Elicitation of forecasts

e All 104 used individual elicitation
e 7 also used prediction markets
e Surveys use a mix of text, sliders and buttons
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(When) Are predictions accurate and informative?
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Individual-level forecaster dataset

e Based on a subset of papers for which we have the individual-level
raw forecast data

e i studies: 34
* ft forecasters: 15,336
e # forecasts: 228,246
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Individual-level forecaster dataset

e Based on a subset of papers for which we have the individual-level
raw forecast data

e i studies: 34
* ft forecasters: 15,336
e # forecasts: 228,246

e For a subset of analyses below, we separate

® treatment effect SDs
¢ binary outcomes
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Forecast evaluation

1. Accuracy

e Multiple dimensions (directional or size of deviations)

e Necessity of benchmarking, but sensitivity to the choice of benchmark
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Forecast evaluation

1. Accuracy

e Multiple dimensions (directional or size of deviations)

e Necessity of benchmarking, but sensitivity to the choice of benchmark
2. Bias

e Forecasters can be very close to the truth but also biased.

® On average, do they over- or underpredict effects?
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Struggles with standardization and aggregation
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Meaningless means...
N\
“ DATA

Thinking about evidence, and vice versa
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[104] Meaningless Means: Some Fundamental
Problems With Meta-Analytic Averages

Posted on November 1, 2022 by Uri, Joe, & Leif

This post is an introduction to a series of posts about meta-analysis [1]. We think that many, perhaps most,
meta-analyses in the behavioral sciences are invalid. In this introductory post, we make that case with
arguments. In subsequent posts, we will make that case by presenting examples taken from published meta-
analyses.

We have recently written a short article for Nature Reviews Psychology in which we briefly described some
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fundamental problems with meta-analysis, and proposed an alternative way to generate more productive and
less misleading literature reviews (.him). Because of space constraints, in that article we couldn't fully
articulate our concerns with meta-analysis, and we were unable to include many examples. But we can do
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Directionality: Continuous outcomes

Average prediction

e Do forecasters get the direction of effects right?

e Standardized effect sizes
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e Weak correlation (p = 0.28)
e Study-specific features may

influence performance.
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Directionality: Continuous outcomes

e Do forecasters get the direction of effects right?

e Standardized effect sizes by type
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Directionality: Discrete outcomes
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e Good discriminatory power
e Type | errors more frequent
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Directionality: Binary replication outcomes
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Point accuracy

e Forecasters can get point estimates very off even if they are right
about the direction.

e Various ways of measuring prediction error
= Today: mean-squared error of average forecast

e Performance relative to two benchmarks

1. random (“monkey”) benchmark (all outcomes equally likely)
2. uninformed (“null”) model (e.g., no effect of intervention; 50%
replication)
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Point accuracy

vs. random benchmark
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Point accuracy

vs. random benchmark @ vs. uninformed benchmark
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Point accuracy - other benchmarks

Exploring two other benchmarks:

e LLM benchmark: takes into account the published literature up to the
forecast data collection date.

e Omniscient benchmark: knows sample estimate but accounts for
sampling error.
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Biasedness

Result 6

Predictions of treatment effect sizes and replicability tend to be biased
upwards.

A We do not know the distribution of true effects
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Biasedness

e Qverestimation = forecast mean — effect size
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Biasedness

e Mean predicted replication probabilities
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“Wisdom of Crowds” (WoC)

Result 7

(Tentative) Individual forecasts are very noisy and WoC estimates
significantly improve upon individual forecasts. Most of the improvement

emerges for crowds as small as N = 5.

e Conduct bootstrap simulations with 1,000 samples
e Calculate the WoC estimate for crowds of size N
e Today: will just contrast performance of full-size crowd to individuals.
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Skill of individuals vs. crowds

Skill relative to random benchmark Skill relative to uninformed benchmark
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Preliminary summary on performance

1. Forecasts are informative but median is an overestimate

® In line with literature on overconfidence/overoptimism

e Conjecture: authors seek forecasts for null results + forecasters not
conditioning on this?
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Preliminary summary on performance

1. Forecasts are informative but median is an overestimate

® In line with literature on overconfidence/overoptimism
e Conjecture: authors seek forecasts for null results + forecasters not
conditioning on this?
2. WoC estimates improve quickly with crowd size N

e |f goal is to get accurate estimates, no need to collect 1,000 forecasts

® To do: understand when WoC does worse and why

3. Other to do’s: individual-level determinants of forecasting accuracy

e Characteristics of superforecasters?

e Understand trade-off between quality and quantity
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Discussion




Looking forward (1)

O Too early for definitive conclusions

¢> Some thoughts on this use of this practice:
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Looking forward (1)

O Too early for definitive conclusions

¢> Some thoughts on this use of this practice:

e Importance of collecting forecasts before seeing results (?)
Less arbitrary selection rules for how to sample forecasters
Elicit predictions and confidence jointly

Proper statistical testing that accounts for uncertainty
Forecasts for theory/macro papers?

e More usage of forecasts for study design/selection
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Looking forward (2)

¢> More thoughts on challenges and unknowns:

54/ 54



Looking forward (2)

¢> More thoughts on challenges and unknowns:

e How to solve the public good problem of forecast production?
ML/hybrid models?

Scientific value of forecast production? Helpful for null results?
How to address the incentive problem re timing? Should we worry?
How to improve forecast accuracy? What is an “expert”?

Broadening the use of forecasts to study QRPs, research impact, or
for peer review?
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