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ABSTRACT
In this article, we study methods for estimating causal effects in settings with panel data, where some units
are exposed to a treatment during some periods and the goal is estimating counterfactual (untreated)
outcomes for the treated unit/period combinations. We propose a class of matrix completion estimators
that uses the observed elements of the matrix of control outcomes corresponding to untreated unit/periods
to impute the “missing” elements of the control outcome matrix, corresponding to treated units/periods.
This leads to a matrix that well-approximates the original (incomplete) matrix, but has lower complexity
according to the nuclear norm for matrices. We generalize results from the matrix completion literature by
allowing the patterns of missing data to have a time series dependency structure that is common in social
science applications. We present novel insights concerning the connections between the matrix completion
literature, the literature on interactive fixed effects models and the literatures on program evaluation under
unconfoundedness and synthetic control methods. We show that all these estimators can be viewed as
focusing on the same objective function. They differ solely in the way they deal with identification, in
some cases solely through regularization (our proposed nuclear norm matrix completion estimator) and
in other cases primarily through imposing hard restrictions (the unconfoundedness and synthetic control
approaches). The proposed method outperforms unconfoundedness-based or synthetic control estimators
in simulations based on real data.
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1. Introduction

In this article, we develop new methods for estimating average
causal effects in settings with panel or longitudinal data, where
some units are exposed to a binary treatment during some
periods. To estimate the average causal effect of the treatment on
the treated units in this setting, we impute the missing potential
control outcomes.

The statistics and econometrics causal inference literatures
have taken two general approaches to this problem. The lit-
erature on unconfoundedness (Rosenbaum and Rubin 1983;
Imbens and Rubin 2015) can be interpreted as imputing missing
potential control outcomes for treated units using observed con-
trol outcomes for control units with similar values for observed
outcomes in previous periods. In contrast, the recent synthetic
control literature (Abadie and Gardeazabal 2003; Abadie, Dia-
mond, and Hainmueller 2010, 2015; Doudchenko and Imbens
2016; Chernozhukov, Wuthrich, and Zhu 2017; Ben-Michael,
Feller, and Rothstein 2018; Arkhangelsky et al. 2019; Ferman
and Pinto 2019; Li 2020; Amjad, Shah, and Shen 2018, see
Abadie 2019 for a review) imputes missing control outcomes for
treated units using weighted average outcomes for control units
with the weights chosen so that the weighted lagged control out-
comes match the lagged outcomes for treated units. Although
at first sight similar, the two approaches are conceptually quite
different in terms of the correlation patterns in the data they
exploit to impute the missing potential outcomes. The uncon-
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foundedness approach assumes that patterns over time are sta-
ble across units, and the synthetic control approach assumes
that patterns across units are stable over time. In empirical
work, the two sets of methods have primarily been applied
in settings with different structures on the missing data or
assignment mechanism. In the case of the unconfoundedness
literature, the typical setting is one with the treated units all
treated in the same periods, typically only the last period, and
with a substantial number of control and treated units. The
synthetic control literature has primarily focused on the setting
with one or a small number of treated units observed prior to
the treatment over a substantial number of periods. We argue
that once regularization methods are used, the two approaches,
unconfoundedness and synthetic controls, are applicable in the
same settings, leaving the researcher with a real choice in terms
of methods. In addition this insight allows for a more systematic
comparison of their performance than has been appreciated in
the literature.

In this study, we draw on the econometric literature on
factor models and interactive fixed effects, and the computer
science and statistics literatures on matrix completion, to take
an approach to imputing the missing potential outcomes that
is different from the unconfoundedness and synthetic control
approaches. In fact, we show that it can be viewed as nesting
both. In the literature on factor models and interactive effects
(Bai and Ng 2002; Bai 2003) researchers model the observed
outcome as the sum of a linear function of covariates and an
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unobserved component that is a low rank matrix plus noise.
Estimates are typically based on minimizing the sum of squared
errors given the rank of the matrix of unobserved components,
sometimes with the rank estimated. Xu (2017) extended these
ideas to causal settings where a subset of units is treated from
a common period onward, so that complete data methods for
estimating the factors and factor loadings can be exploited. The
matrix completion literature (Candès and Recht 2009; Candès
and Plan 2010; Mazumder, Hastie, and Tibshirani 2010) focuses
on imputing missing elements in a matrix assuming that: (i) the
complete matrix is the sum of a low rank matrix plus noise and
(ii) the missingness is completely at random (except Gamarnik
and Misra (2016) that study a stylized rank one case). The
rank of the matrix is implicitly determined by the regularization
through the addition of a penalty term to the objective func-
tion. Especially with complex missing data patterns using the
nuclear norm as the regularizer is attractive for computational
reasons.

In the current article, we make three contributions. First,
we present formal results for settings where the missing data
patterns are not completely at random and have a structure
that allows for correlation over time, generalizing the results
from the matrix completion literature. In particular, we allow
for the possibility of staggered adoption (e.g., Athey and Imbens
2018; Shaikh and Toulis 2019), where units are treated from
some initial adoption date onward, but the adoption dates vary
between units. We also modify the estimators from the matrix
completion and factor model literatures to allow for unregular-
ized unit and time fixed effects. Although these can be incor-
porated in the low rank matrix, in practice the performance of
the estimator with the unregularized two-way fixed effects is
substantially better. Compared to the factor model literature in
econometrics the proposed estimator focuses on nuclear norm
regularization to avoid the computational difficulties that would
arise for complex missing data patterns with the fixed-rank
methods in Bai and Ng (2002) and Xu (2017), similar to the way
LASSO (or �1 regularization, Tibshirani 1996) is computation-
ally attractive relative to subset selection (or �0 regularization)
in linear regression models. The second contribution is to show
that the synthetic control and unconfoundedness approaches,
as well as our proposed method, can all be viewed as matrix
completion methods based on matrix factorization, all with the
same objective function based on the Fröbenius norm for the
difference between the latent matrix and the observed matrix.
Given this common objective function, the unconfoundedness
and synthetic control approaches impose different sets of restric-
tions on the factors in the matrix factorization. In contrast, the
proposed method does not impose any restrictions but uses
regularization to characterize the estimator. In our third con-
tribution we apply our methods to two real datasets where we
observe the complete matrix. We artificially designate outcomes
for some units and time periods to be missing, and then compare
the performance of different imputation estimators. We find that
the nuclear norm matrix completion estimator does well in a
range of cases, including when T is small relative to N, when T
is large relative to N, and when T and N are comparable. In con-
trast, the unconfoundedness and synthetic control approaches
break down in some of these settings in the expected pattern (the
unconfoundedness approach does not work very well if T � N,

and the synthetic control approach does not work very well if
N � T).

We discuss some extensions in the final part of the article. In
particular, we consider extensions to settings where the prob-
ability of assignment to the treatment may vary systematically
with observed characteristics. In the program evaluation lit-
erature such settings have often been addressed using inverse
propensity score weighting (Hirano, Imbens, and Ridder 2003;
Rubin 2006), which can be applied here as well.

2. Set Up

We start by stating the causal problem. Consider a setting with
N units observed over T periods. In each period each unit is
characterized by two potential outcomes, Yit(0) and Yit(1). In
period t unit i is exposed or not to a binary treatment, with
Wit = 1 indicating that the unit is exposed to the treatment
and Wit = 0 otherwise. We observe for each unit and period
the pair (Wit , Yit) where the realized outcome is Yit = Yit(Wit).
In addition to observing the matrix Y of realized outcomes and
the matrix of treatment assignments W, we may also observe
covariate matrices X ∈ R

N×P and Z ∈ R
T×Q where columns of

X are unit-specific covariates, and columns of Z are time-specific
covariates. We may also observe unit/time specific covariates
Vit ∈ R

J . Implicit in our set up is that we rule out dynamic
effects and make the stable-unit-treatment-value assumption
(Rubin 2006; Imbens and Rubin 2015): the potential outcomes
are indexed only by the contemporaneous treatment for that
unit and not by past treatments or treatments for other units.
Cases where such assumptions are restrictive include those ana-
lyzed in the dynamic treatment regime literature (Chamberlain
1993; Hernan and Robins 2010). In the case where units are
only exposed to the treatment in the last period this issue is not
material. Also, in the case with staggered adoption violations of
the no-dynamics assumption simply changes the interpretation
of the estimand, but does not in general invalidate a causal
interpretation.

Here we focus on estimating the average effect for the treated,
τ = ∑

(i,t):Wit=1[Yit(1) − Yit(0)]/∑i,t Wit , although other
averages such as the overall average causal effect,

∑
i,t[Yit(1) −

Yit(0)]/(NT), could be of interest too. To estimate such average
treatment effects, one approach is to impute the missing poten-
tial outcomes. Because we focus on estimating the average effect
for the treated, all the relevant values for Yit(1) are observed,
and thus we only need to impute the missing entries in the Y(0)

matrix for treated units with Wit = 1. For the moment we focus
on the problem of imputing the missing entries in Y(0) given the
observed values of Y(0) and the observed matrix W. To ease the
notation and facilitate the connection to the matrix completion
literature we drop from here on the (0) part of Y(0) and simply
focus on imputing the missing values of a partially observed
matrix Y (with the understanding that this would be the matrix
of control outcomes Y(0)), with W the matrix of missing data
(treatment assignment) indicators. One may also wish to use
the observed values of Y(1) for imputing the missing values for
Y(0), but we do not do so here. In setting with few values of
Y(1) observed it is unlikely that the information in these values
is important. (In particular, in the case we focus on for part
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of this study, with only a single treated unit/period pair there
would be no information in this value.) Extension to the cases
that leverage also data from Y(1) require assumptions on the
treatment effect and are briefly discussed in Section 8.2.

For any positive integer n, we use notation [n] to refer to the
set {1, . . . , n} and use 1n to denote the n by 1 vector of all ones.
We define M to be the set of pairs of indices (i, t), i ∈ [N],
t ∈ [T], corresponding to the missing entries with Wit = 1 and
O to be the set of pairs of indices corresponding to the observed
entries in Y with Wit = 0. Putting aside the covariates for the
time being, the data can be thought of as consisting of two N×T
matrices, one incomplete and one complete,

Y =

⎛
⎜⎜⎜⎜⎜⎝

Y11 Y12 ? . . . Y1T
? ? Y23 . . . ?

Y31 ? Y33 . . . ?
...

...
...

. . .
...

YN1 ? YN3 . . . ?

⎞
⎟⎟⎟⎟⎟⎠ , and

W =

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 . . . 0
1 1 0 . . . 1
0 1 0 . . . 1
...

...
...

. . .
...

0 1 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠ , (1)

where

Wit =
{

1 if (i, t) ∈ M,
0 if (i, t) ∈ O,

is an indicator for the event that the corresponding component
of Y, that is, Yit , is missing. The main part of the article is about
the statistical problem of imputing the missing values in Y. Once
these are imputed we can then estimate the average causal effect
of interest, τ .

3. Patterns of Missing Data, Thin and Fat Matrices,
and Horizontal and Vertical Regression

In this section, we discuss a number of particular configurations
of the matrices Y and W that are the focus of distinct parts of
the general literature. This discussion serves to put in context
the problem, and to motivate previously developed methods
from the literature on causal inference under unconfounded-
ness, the synthetic control literature, and the interactive fixed
effect literature, and subsequently to develop formal connec-
tions between all three and the matrix completion literature.
Note that the matrix completion literature has focused primarily
on the case where W is completely random, as in Equation
(1), and where both dimensions of Y and W are large. First,
we consider patterns of missing data, that is, distributions for
W that differ from completely random. Second, we consider
different shapes of the matrix Y where the relative size of the
dimensions N and T may be very different and one or both
may be modest in magnitude. Third, we consider a number of
specific analyses in the econometrics literature that focus on
particular combinations of missing data patterns and shapes of
the matrices.

3.1. Patterns of Missing Data

In the statistics and computer science literatures on matrix
completion the focus is typically on settings with randomly
missing values, allowing for general patterns on the matrix of
missing data indicators (Candès and Tao 2010; Recht 2011). In
contrast in causal social science applications the missingness
arises from treatment assignments and the choices that lead
to these assignments. As a result are often specific structures
on the missing data that depart substantially from complete
randomness.

3.1.1. Block Structure
A leading example is a block structure, with a subset of the units
adopting an irreversible treatment at a particular point in time
T0 + 1. In the example below the � marks indicate observed
values and the ? indicate missing values.

YN×T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � � � . . . �
� � � � . . . �
� � � � . . . �
� � � ? . . . ?
� � � ? . . . ?
...

...
...

...
. . .

...
� � � ? . . . ?

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

There are two special cases of the block structure. Much of
the literature on estimating average treatment effects under
unconfoundedness (e.g., Imbens and Rubin 2015) focuses on
the case where T0 = T − 1, so that the only treated units are in
the last period. We will refer to this as the single-treated-period
block structure. In contrast, the synthetic control literature (e.g.,
Abadie, Diamond, and Hainmueller 2010; Abadie 2019) focuses
primarily on the case with a single treated unit which are treated
for a number of periods from period T0 + 1 onward, the single-
treated-unit block structure:

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � � . . . � �
� � � . . . � �
� � � . . . � ?
...

...
...

. . .
...

...
� � � . . . � ?

↑
treated period

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

� � � . . . �
� � � . . . �
� � � . . . �
...

...
...

. . .
...

� � � . . . �
� � ? . . . ? ← treated unit

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

A special case that fits in both these settings is that with a single
missing unit/time pair:

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

� � � . . . � �
� � � . . . � �
� � � . . . � �
...

...
...

. . .
...

...
� � � . . . � �
� � � . . . � ?

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.
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This specific setting is useful to contrast methods developed for
the single-treated period (unconfoundedness) case with those
developed for the single-treated unit (synthetic control) case
because both sets of methods are potentially applicable.

3.1.2. Staggered Adoption
Another setting that has received attention is the staggered
adoption design (Athey and Imbens 2018; Shaikh and Toulis
2019). Here units may differ in the time they are first exposed
to the treatment, but the treatment is irreversible. This naturally
arises in settings where the treatment is some new technology
that units can choose to adopt (e.g., Athey and Stern 2002). Here:

YN×T

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

� � � � . . . � (never adopter)
� � � � . . . ? (late adopter)
� � ? ? . . . ?
� � ? ? . . . ? (medium adopter)
...

...
...

...
. . .

...
� ? ? ? . . . ? (early adopter)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

3.2. Thin and Fat Matrices

A second classification of the problem concerns the shape of
the matrix Y. Relative to the number of time periods, we may
have many units, few units, or a comparable number. These data
configurations may make particular analyses more attractive
partly by removing the need for regularization. For example, Y
may be a thin matrix, with N � T, or a fat matrix, with N � T,
or an approximately square matrix, with N ≈ T:

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

? � ?
� ? �
? ? �
� ? �
? ? ?
...

...
...

? ? �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(thin)

Y =
⎛
⎝ ? ? � � � . . . ?

� � � � ? . . . �
? � ? � ? . . . �

⎞
⎠ (fat),

or

Y =

⎛
⎜⎜⎜⎜⎜⎝

? ? � � . . . ?
� � � � . . . �
? � ? � . . . �
...

...
...

...
. . .

...
? ? � � . . . �

⎞
⎟⎟⎟⎟⎟⎠ (approximately square).

3.3. Horizontal and Vertical Regressions

Two special combinations of missing data patterns and matrix
shape deserve particular attention because they are the focus of
large, mostly separate, literatures.

3.3.1. Horizontal Regression and the Unconfoundedness
Literature

The unconfoundedness literature (Rosenbaum and Rubin 1983;
Rubin 2006; Imbens and Wooldridge 2009; Abadie and Catta-
neo 2018) focuses primarily on the single-treated-period block
structure with a thin matrix (N � T), a substantial number
of treated and control units, and imputes the missing potential
outcomes in the last period using control units with similar
lagged outcomes:

Y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � �
...

...
...

� � �
� � ?
...

...
...

� � ?

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A simple version of the unconfoundedness approach is to
regress the last period outcome on the lagged outcomes and
use the estimated regression to predict the missing potential
outcomes. That is, for the units with (i, T) ∈ M, the predicted
outcome is

ŶiT = β̂0 +
T−1∑
s=1

β̂sYis, where

β̂ = arg min
β

∑
i:(i,T)∈O

(
YiT − β0 −

T−1∑
s=1

βsYis

)2

. (2)

We refer to this as a horizontal regression, where the rows of
the Y matrix form the units of observation. A more flexible,
nonparametric, version of this estimator would correspond to
matching where we find for each treated unit i a corresponding
control unit j with Yjt approximately equal to Yit for all pretreat-
ment periods t = 1, . . . , T − 1.

3.3.2. Vertical Regression and the Synthetic Control
Literature

The synthetic control literature (Abadie, Diamond, and Hain-
mueller 2010) focuses primarily on the single-treated-unit block
structure with a relatively fat (T � N) or approximately square
matrix (T ≈ N), and a substantial number of pretreatment
periods:

Y =
⎛
⎝ � � . . . � � . . . �

� � . . . � � . . . �
� � . . . � ? . . . ?

⎞
⎠ .

Doudchenko and Imbens (2016) and Ferman and Pinto (2019)
showed how the Abadie–Diamond–Hainmueller synthetic con-
trol method can be interpreted as regressing the outcomes for
the treated unit prior to the treatment on the outcomes for the
control units in the same periods. That is, for the treated unit in
period t, for t = T0, . . . , T, the predicted outcome is

ŶNt = γ̂0 +
N−1∑
i=1

γ̂iYit , where

γ̂ = arg min
γ

∑
t:(N,t)∈O

(
YNt − γ0 −

N−1∑
i=1

γiYit

)2

. (3)
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We refer to this as a vertical regression, where the columns of
the Y matrix form the units of observation. As shown in Doud-
chenko and Imbens (2016), this is generalization of the original
Abadie, Diamond, and Hainmueller (2010) synthetic control
estimator, relaxing two restriction: (i) that the coefficients are
nonnegative and (ii) that the intercept in this regression is zero.
Note that these restrictions may well be substantively plausible
and they can greatly improve precision.

Although this does not appear to have been pointed out
previously, a matching version of this estimator would corre-
spond to finding, for each period t where unit N is treated, a
corresponding period s ∈ {1, . . . , T0} such that Yis is approxi-
mately equal to YNs for all control units i = 1, . . . , N − 1. This
matching version of the synthetic control estimator may serve
to clarify the link between the treatment effect literature under
unconfoundedness and the synthetic control literature.

Suppose that the only missing entry is in the last period for
unit N, period T. In that case if we estimate the horizontal
regression in (2), it is still the case that imputed ŶNT is linear
in the observed Y1T , . . . , YN−1,T , just with different weights
than those obtained from the vertical regression. Similarly, if we
estimate the vertical regression in (3), it is still the case that ŶNT
is linear in YN1, . . . , YN,T−1, just with different weights from the
horizontal regression in (2). Note also that the restrictions that
the coefficients are nonnegative and sum to one are common
in the synthetic control literature, but could also be imposed in
the unconfoundedness literature, although they do not appear
to have been used there.

Juxtaposing the unconfoundedness and synthetic control
approaches as we have done here raises the question how they
are related, and whether there is an approach that avoids the
choice between focusing on the cross-section and time-series
correlation patterns. We further elaborate on the connection
between the horizontal and vertical regression in Section 5 after
introducing a third approach.

3.4. Fixed Effects and Factor Models

The horizontal regression focuses on a pattern in the time path
of the outcome Yit , specifically the relation between YiT and the
lagged Yit for t = 1, . . . , T − 1, for the units for whom these
values are observed, and assumes that this pattern is the same for
units with missing outcomes. The vertical regression focuses on
a pattern between units at times when we observe all outcomes,
and assumes this pattern continues to hold for periods when
some outcomes are missing. However, by focusing on only one
of these patterns, cross-section or time series, these approaches
ignore alternative patterns that may help in imputing the miss-
ing values. An alternative is to consider approaches that allow
for the exploitation of both stable patterns over time, and stable
patterns across units. Such methods have a long history in the
panel data literature, including the literature on two-way fixed
effects, and more generally, factor and interactive fixed effect
models (e.g., Chamberlain 1984; Liang and Zeger 1986; Arellano
and Honoré 2001; Bai and Ng 2002; Bai 2003, 2009; Pesaran
2006; Angrist and Pischke 2008; Moon and Weidner 2015, 2017;
Amjad, Shah, and Shen 2018). In the absence of covariates
(although in this literature the coefficients on these covariates

are typically the primary focus of the analyses), the common
two-way fixed effect model is

Yit = γi + δt + εit . (4)

More general factor models can be written as

Yit =
R∑

r=1
uirvtr + εit , or Y = UV� + ε, (5)

where U is N × R and V is T × R. Most of the early literature,
Anderson (1958) and Goldberger (1972), focused on the thin
matrix case, with N � T, where asymptotic approximations are
based on letting the number of units increase with the number
of time periods fixed. In the modern part of this literature (Bai
2003, 2009; Pesaran 2006; Moon and Weidner 2015, 2017; Bai
and Ng 2017) researchers allow for more complex asymptotics
with both N and T increasing, at rates that allow for consis-
tent estimation of the factors V and loadings U after imposing
normalizations. In this literature, it is typically assumed that
the number of factors R is fixed, although it is not necessarily
known to the researcher. Methods for estimating the rank R are
discussed in Bai and Ng (2002) and Moon and Weidner (2015).

Xu (2017) adapted this interactive fixed effect approach to
the matrix completion problem in the special case with blocked
assignment, with additional applications in Gobillon and
Magnac (2016), Kim and Oka (2014), and Hsiao, Steve Ching,
and Ki Wan (2012). The block structure greatly simplifies
the computation of the fixed rank estimators. However, this
approach is not efficient, nor computationally attractive, in
settings with more complex missing data patterns.

A closely related literature has emerged in machine learning
and statistics on matrix completion (Srebro, Alon, and Jaakkola
2005; Candès and Recht 2009; Candès and Tao 2010; Keshavan,
Montanari, and Oh 2010a), 2010b; Gross 2011; Koltchinskii,
Lounici, and Tsybakov 2011; Negahban and Wainwright 2011,
2012; Recht 2011; Rohde and Tsybakov 2011; Klopp 2014; Wang
et al. 2018. In this literature, the starting point is an incompletely
observed matrix Y, and researchers have proposed low-rank
matrix models as the basis for matrix completion, similar to
(5). The focus is not on estimating U and V consistently, but on
imputing the missing elements of Y. Instead of fixing the rank
R of the underlying matrix, a family of these estimators rely on
regularization, and in particular nuclear norm regularization.

4. The Matrix Completion With Nuclear Norm
Minimization Estimator

In the absence of covariates we model the N × T matrix of
complete outcomes data matrix Y as

Y = L∗ + ε, where E[ε|L∗] = 0 . (6)

The εit can be thought of as measurement error.

Assumption 1. ε is independent of L∗, and the elements of ε

are σ -sub-Gaussian and independent of each other. Recall that
a real-valued random variable ε is σ -sub-Gaussian if for all real
numbers t we have E[exp(tε)] ≤ exp(σ 2t2/2).
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Table 1. Matrix norms for matrix L.

Schatten norm: ‖L‖S
p ≡

(∑
i∈[N] σi(L)p

)1/p
, p ∈ (0, ∞)

Fröbenius norm: ‖L‖F ≡ ‖L‖S
2 =

(∑
i∈[N] σi(L)2

)1/2 =
(∑

i∈[N]
∑

t∈[T] L2
it

)1/2

Rank norm: ‖L‖0 ≡ limp↓0 ‖L‖S
p = ∑

i∈[N] 1σi(L)>0
Nuclear norm: ‖L‖∗ ≡ ‖L‖S

1 = ∑
i∈[N] σi(L)

Operator norm: ‖L‖op ≡ limp→∞ ‖L‖S
p = maxi∈[N] σi(L) = σ1(L)

Max norm: ‖L‖max ≡ max(i,t)∈[N]×[T] |Lit|
Element-wise �1 norm: ‖L‖1,e ≡ ∑

(i,t)∈[N]×[T] |Lit|

The goal is to estimate the matrix L∗. We note that here the
fixed effects are absorbed in L∗ since they are two rank 1 matri-
ces and their addition does not affect our low-rank assumption
on L∗.

To facilitate the characterization of the estimator, define for
any matrix A, and given a set of pairs of indices O, the two
matrices PO(A) and P⊥

O(A) with typical elements:

PO(A)it =
{

Ait if (i, t) ∈ O ,
0 if (i, t) /∈ O , and

P⊥
O(A)it =

{
0 if (i, t) ∈ O ,
Ait if (i, t) /∈ O .

A critical role is played by various matrix norms, summarized
in Table 1. Some of these depend on the singular values, where,
given the full singular value decomposition (SVD) LN×T =
SN×N�N×TR�

T×T , the singular values σi(L) are the ordered
diagonal elements of �. Now consider the problem of estimating
L∗. Directly minimizing the sum of squared differences,

min
L

1
|O|

∑
(i,t)∈O

(Yit − Lit)
2 = min

L

1
|O| ‖PO(Y − L)‖2

F , (7)

does not lead to a useful estimator: if (i, t) ∈ M the objective
function does not depend on Lit , and for pairs (i, t) ∈ O the
estimator would simply be Yit . To address this we regularize the
problem by adding a penalty term λ‖L‖ to the objective function
in (7), for some choice of the norm ‖ ·‖ and a scalar λ. However,
since we do not wish to regularize the fixed effects (that are
included in L∗), we estimate them explicitly by introducing
variables � ∈ R

N×1 and � ∈ R
T×1, and the variable L will

be used for estimating the remaining low-rank components of
L∗. This is conceptually similar to not regularizing the intercept
term in LASSO estimator, to reduce the bias created by the
regularization term (Hastie, Tibshirani, and Friedman 2009).

4.1. The Estimator

The general form of our proposed estimator for L∗ is L̂+ �̂1�
T +

1N�̂� where

(L̂, �̂, �̂)

= arg min
L,�,�

{
1

|O| ‖PO(Y − L − �1�
T − 1N��)‖2

F + λ‖L‖∗
}

.

(8)

Compared to the setting studied by Candès and Recht (2009),
Candès and Plan (2010), and Mazumder, Hastie, and Tibshi-
rani (2010), we include the fixed effects � and �. Although

formally the fixed effects can be subsumed in the matrix L (�1�
T

and 1N�� are both rank one matrices), in practice, including
these fixed effects separately and not regularizing them greatly
improves the quality of the imputations. This is partly because
compared to the settings studied in the matrix completion lit-
erature the fraction of observed values is relatively high, and
so these fixed effects can be estimated accurately. The penalty
factor λ will be chosen through cross-validation that will be
described at the end of this section. We will call this the matrix-
completion with nuclear norm minimization (MC-NNM) esti-
mator.

Other commonly used Schatten norms would not work as
well for this specific problem. For example, the Fröbenius norm
on the penalty term would not have been suitable for estimating
L∗ in the case with missing entries because the solution for Lit
for (i, t) ∈ M is always zero (which follows directly from the
representation of ‖L‖F = ∑

(i,t)∈[N]×[T] L2
it). The rank norm is

not computationally feasible for large N and T if the cardinality
and complexity of the set M are substantial. Formally, the opti-
mization problem with the rank norm is NP-hard. In contrast, a
major advantage of using the nuclear norm is that the resulting
estimator can be computed using fast convex optimization pro-
grams, for example, the soft-impute algorithm by Mazumder,
Hastie, and Tibshirani (2010) that will be described next.

4.2. Calculating the Estimator

For simplicity, let us first assume that there are no fixed effects
(so that we do not need to estimate � and �). The algorithm
for calculating our estimator goes as follows. Given the SVD for
A, A = S�R�, with singular values σ1(A), . . . , σmin(N,T)(A),
define the matrix shrinkage operator

shrinkλ(A) = S�̃R� , (9)

where �̃ is equal to � with the ith singular value σi(A)

replaced by max(σi(A) − λ, 0). Now start with the initial choice
L1(λ,O) = PO(Y). Then for k = 1, 2, . . . , define,

Lk+1(λ,O) = shrink λ|O|
2

{
PO(Y) + P⊥

O

(
Lk(λ,O)

)}
, (10)

until the sequence {Lk(λ,O)}k≥1 converges. The limiting matrix
L̂(λ,O) = limk→∞ Lk(λ,O) is our estimator given the regular-
ization parameter λ. For the case that we are estimating fixed
effects, after each iteration of obtaining Lk+1, we can estimate
�k+1 and �k+1 by using the first-order conditions since they
only appear in the squared error term. We would also replace
the PO(Y) term in (10) by PO(Y − �k1�

T − 1N��
k ).

4.3. Cross-Validation

The optimal value of λ is selected through cross-validation.
We choose K (e.g., K = 5) random subsets Ok ⊂ O with
cardinality �|O|2/NT� to ensure that the fraction of observed
data in the cross-validation datasets, |Ok/|O|, is equal to that
in the original sample, |O|/(NT). We then select a sequence
of candidate regularization parameters λ1 > · · · > λL =
0, with a large enough λ1, and for each subset Ok calculate
L̂(λ1,Ok), . . . , L̂(λL,Ok) and evaluate the average squared error
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on O \ Ok. The value of λ that minimizes the average squared
error (among the K produced estimators corresponding to that
λ) is the one chosen. It is worth noting that one can expedite the
computation by using L̂(λi,Ok) as a warm-start initialization for
calculating L̂(λi+1,Ok) for each i and k.

4.4. Confidence Intervals

Studying asymptotic distribution of L∗ − L̂ to construct
confidence intervals is beyond the scope of this article and
is an interesting future research question. However, one can
use resampling methods to view statistical fluctuations of the
imputed matrix. For example, one can again choose K random
subsets Ok ⊂ O and construct a cross-validated estimator
L̂(k) for each set Ok. Then, for each entry (i, t) use statistical
fluctuations of {L̂(k)

it }k∈[K] to construct a confidence interval for
L∗

it , related to the use of permutation methods in the synthetic
control literature (Abadie, Diamond, and Hainmueller 2010).

5. The Relationship With Horizontal and Vertical
Regressions

In the second contribution of this article, we discuss the rela-
tion between the matrix completion estimator and the hor-
izontal (unconfoundedness), vertical (synthetic control), and
difference-in-differences approaches. To facilitate the discus-
sion, we focus on the case with the set of missing pairs M
containing a single pair, unit N in period T, M = {(N, T)}.
In that case the various previously proposed versions of the
vertical and horizontal regressions are both directly applicable,
although estimating the coefficients may require regularization
depending on the relative magnitude of N and T.

The observed data are Y, an N × T matrix with the (N, T)

entry missing. We can partition this matrix as

Y =
(

Y0 y1
y�

2 ?

)
,

where Y0 is a (N −1)×(T −1) matrix, and y1 and y2 are (N −1)

and (T − 1) component vectors, respectively.
In this case, the matrix completion, horizontal regression,

vertical regression, synthetic control regression, the elastic net
version, and difference-in-differences estimators are very closely
related. They can all be characterized as focusing on the exact
same objective function, but differing in the regularization and
additional restrictions imposed on the parameters of the objec-
tive function.

To make this precise, define for a given positive integer R, an
N×R matrix A, an T×R matrix B, an N-vector γ , and a T-vector
δ the objective function

Q(Y; R, A, B, γ , δ) = 1
|O|

∥∥∥PO
(

Y − AB� − γ 1�
T − 1Nδ�)∥∥∥2

F
.

(11)
For any pair of positive integers K and L, let MK,L be the set of
all K×L real-valued matrices. When R = 0, we take the product
AB� to be the N×T matrix with all elements equal to zero. First
note that simply minimizing Q(Y; R, A, B, γ , δ) over the rank R,
the matrices A, B and the vectors γ and δ,

min
R∈{0,1,...,min(N,T)} min

A∈MN,R,B∈MT,R,γ∈MN,1,δ∈MT,1
Q(Y; R, A, B, γ , δ),

has multiple solutions for the imputations ŶNT where Ŷ =
AB�+γ 1�

T +1Nδ�. By choosing the rank R to the minimum of
N and T, we can find for any pair γ and δ a solution for A and B
such that PO

(
Y − AB� − γ 1�

T − 1Nδ�) has all elements equal
to zero, with different values for ŶNT .

The implication is that we need to add some structure to
the optimization problem. The next result shows that hori-
zontal regression, vertical regression, the Abadie–Diamond–
Hainmueller synthetic control estimator, the difference-in-
differences estimator, and the nuclear norm minimization
matrix completion can all be expressed as minimizing Q(Y; R,
A, B, γ , δ) under different restrictions on, or with different
approaches to regularization of the unknown parameters
(R, A, B, γ , δ). The following theorem lays out these differences
in hard restrictions and regularization approaches. Here the
minimization for R is over the set {0, 1, 2, . . . , min(T, N)}, and
the minimization for A and B is over the sets MN,R and M

T,R,
respectively.

Theorem 1. In the case with only the (N, T) entry missing, we
have,

(i) (nuclear norm matrix completion)

(Rmc-nnm, Amc-nnm
λ , Bmc-nnm

λ , γ mc-nnm
λ , δmc-nnm

λ ) =
argmin
R,A,B,γ ,δ

{
Q(Y; R, A, B, γ , δ) + λ

2
‖A‖2

F + λ

2
‖B‖2

F

}
,

(ii) (horizontal regression, defined if N > T)

(Rhr, Ahr, Bhr, γ hr, δhr) = argmin
R,A,γ ,δ

Q(Y; R, A, B, γ , δ),

subject to

R = T − 1, A =
(

Y0
y�

2

)
, γ = 0,

δ1 = δ2 = · · · = δT−1 = 0,

(iii) (vertical regression, defined if T > N),

(Rvt, Avt, Bvt, γ vt, δvt) = argmin
R,A,B,γ ,δ

Q(Y; R, A, B, γ , δ),

subject to

R = N − 1, B =
(

Y�
0

y�
1

)
,

γ1 = γ2 = · · · = γN−1 = 0, δ = 0,

(iv) (synthetic control),

(Rsc-adh, Asc-adh, Bsc−adh, γ sc-adh, δsc-adh)

= argmin
R,A,B,γ ,δ

Q(Y; R, A, B, γ , δ) ,

subject to

R = N − 1, B =
(

Y�
0

y�
1

)
, δ = 0, γ = 0,

∀ i, AiT ≥ 0,
N−1∑
i=1

AiT = 1,
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(v) (vertical regression, elastic net),

(Rvt−en, Avt−en, Bvt−en, γ vt−en, δvt−en)

= argmin
R,A,B,γ ,δ

{
Q(Y; R, A, B, γ , δ)

+ λ

[
1 − α

2

∥∥∥∥
(

a2
a3

)∥∥∥∥
2

F
+ α

∥∥∥∥
(

a2
a3

)∥∥∥∥
1

]}
,

subject to

R = N − 1, B =
(

Y�
0

y�
1

)
,

γ1 = γ2 = · · · = γN−1 = 0, δ = 0,

where A is partitioned as

A =
(

Ã a1
a�

2 a3

)
,

(vi) (difference-in-differences regression),

(Rdid, Adid, Bdid, γ did, δdid) = argmin
R,A,B,γ ,δ

Q(Y; R, A, B, γ , δ),

subject to

R = 0.

The proof for this result is in Section A.1.

Comment 1. There is no unique solution to minimizing
Q(Y; A, B) if we also minimize over the rank R. The nuclear
norm estimator uses regularization to get around this by
regularizing A and B. The other estimators impose restrictions
instead of (or in combination with) regularizing the estimators,
while fixing R as a function of N and T. The restrictions for
the horizontal regression on the one hand, and for the vertical
regression, synthetic control and elastic net regression on the
other hand, are quite different, and not directly comparable.
However in other settings researchers have found that it is often
better to regularize estimators than to impose hard restrictions.
We find the same in our simulations below.

Comment 2. For nuclear norm matrix completion representa-
tion a key insight is that (Mazumder, Hastie, and Tibshirani
2010, Lemma 6)

‖L‖∗ = min
A,B:L=AB�

1
2
(‖A‖2

F + ‖A‖2
F
)

.

In addition, if L̂ is the solution to Equation (8) that has rank R̂,
then one solution for A and B is given by

A = S�1/2 , B = R�1/2, (12)

where L̂ = SN×R̂�R̂×R̂R�
T×R̂

is singular value decomposition of
L̂. The proof of this fact is provided in (Mazumder, Hastie, and
Tibshirani 2010; Hastie et al. 2015).

Comment 3. For the horizontal regression the solution for B is

Bhr =

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . 1
β̂1 β̂2 . . . β̂T−1

⎞
⎟⎟⎟⎟⎟⎠ ,

where β̂ is

(β̂ , δ̂T) = arg min
β ,δT

N−1∑
i=1

(
YiT − δT −

T−1∑
t=1

βtYit

)2

.

Similarly for the vertical regression the solution for A is

Avt =

⎛
⎜⎜⎜⎜⎜⎝

1 0 . . . 0
0 1 . . . 0
...

...
...

0 0 . . . 1
α̂1 α̂2 . . . α̂N−1

⎞
⎟⎟⎟⎟⎟⎠ ,

where

(α̂, γ̂N) = arg min
α,γN

T−1∑
t=1

(
YNt − γN −

N−1∑
i=1

αiYit

)2

.

The regularization in the elastic net version only affects the last
row of this matrix, and replaces it with a regularized version
of the regression coefficients. The synthetic control estimator
further restricts the values of the γN and αi.

Comment 4. The horizontal and vertical regressions are funda-
mentally different approaches, and they cannot easily be nested.
Without some form of regularization they cannot be applied in
the same setting, because the nonregularized versions require
N > T or N < T, respectively. As a result there is also no
direct way to test the two methods against each other. Given a
particular choice for regularization, however, one can use cross-
validation methods to compare the two approaches.

6. Theoretical Bounds for the Estimation Error

In this section, we focus on the case that there are no covariates
or fixed effects, and provide theoretical results for the estimation
error. Let Lmax be a positive constant such that ‖L∗‖max ≤ Lmax
(recall that ‖L∗‖max = maxi,t |L∗

it|). We also assume that L∗ is a
deterministic matrix. Then consider the following estimator for
L∗.

L̂ = arg min
L:‖L‖max≤Lmax

{
1

|O| ‖PO(Y − L)‖2
F + λ‖L‖∗

}
. (13)

6.1. Additional Notation

First, we start by introducing some new notation. Recall that for
each positive integer n notation [n] refers to the set of integers
{1, 2, . . . , n}. For any two real numbers a and b, we denote their
maximum by a ∨ b. In addition, for any pair of integers i, n with
i ∈ [n] define ei(n) to be the n dimensional column vector with



1724 S. ATHEY ET AL.

all of its entries equal to 0 except the ith entry that is equal to
1. In other words, {e1(n), e2(n), . . . , en(n)} forms the standard
basis for Rn. For any two matrices A, B of the same dimensions
define the inner product 〈A, B〉 ≡ trace(A�B). Note that with
this definition, 〈A, A〉 = ‖A‖2

F .
Next, we describe a random observation process that defines

the set O. Consider N independent random variables {ti}i∈[N]
on [T] with distributions {π(i)}i∈[N]. Specifically, for each
(i, t) ∈ [N] × [T], define π

(i)
t ≡ P[ti = t]. We also use

the short notation Eπ when taking expectation with respect
to all distributions {π(i)}i∈[N]. Now, O can be written as
O = ⋃N

i=1

{
(i, 1), (i, 2), . . . , (i, ti)

}
. The equivalent of the

unconfoundedness assumption in the program evaluation
literature is that the adoption dates are independent of each
other and of the idiosyncratic part of the outcomes, conditional
on the systematic part. Formally, we make the following
assumption:

Assumption 2. Conditional on L∗, the adoption dates ti are
independent of each other and of ε.

Remark 6.1. This assumption is similar to the unconfound-
edness assumption. In the setting where researchers use that
assumption, with a single treated period, the only stochastic
component of W is the last column. In that case the assumption
is that conditional on the first T−1 rows of Y, the last column of
the assignment W is independent of the last column of Y. As we
show in Section 5, in the unconfoundedness approach the first
T−1 columns of the matrix L are taken to be identical to the first
T−1 columns of the matrix Y (and the last column of L is a linear
combination of the first T − 1 columns), so the conditioning on
the first T − 1 columns of Y is identical to conditioning on L.

Also, for each (i, t) ∈ O, we use the notation Ait to refer to
ei(N)et(T)� which is a N by T matrix with all entries equal to
zero except the (i, t) entry that is equal to 1. The data generating
model can now be written as

Yit = 〈Ait , L∗〉 + εit , ∀ (i, t) ∈ O ,

where noise variables εit satisfy Assumptions 1 and 2.
Note that the number of control units (Nc) is equal to the

number of rows that have all entries observed (i.e., Nc =∑N
i=1 I{ti=T}). Therefore, the expected number of control units

can be written as Eπ [Nc] = ∑N
i=1 π

(i)
T . Defining

pc ≡ min
1≤i≤N

π
(i)
T ,

we expect to have (on average) at least Npc control units. The
parameter pc will play an important role in our main theoretical
results. To provide some intuition, assume L∗ is a matrix that is
zero everywhere except in its ith row. Such L∗ is clearly low-rank.
But recovering the entry L∗

iT is impossible when ti < T which
means π

(i)
T cannot be too small. Since i is arbitrary, in general,

pc cannot be too small.

Remark 6.2. It is worth noting that the sources of randomness
in our observation process O are the random variables {ti}N

i=1
that are assumed to be independent of each other. But we allow

that distributions of these random variables to be functions of
L∗. We also assume that the noise variables {εit}it∈[N]×[T] are
independent of each other and are independent of {ti}N

i=1. In
Section 8 we discuss how our results could generalize to the
cases with correlations among these noise variables.

Remark 6.3. The estimator (13) penalizes the error terms (Yit −
Lit)2, for (i, t) ∈ O, equally. But the ex ante probability of
missing entries in each row, the propensity score, increases as
t increases. In Section 8.4, we discuss how the estimator can
be modified by considering a weighted loss function based on
propensity scores for the missing entries.

6.2. Main Result

The main result of this section is the next theorem (proved in
Section A.2) that provides an upper bound for ‖L∗− L̂‖F/

√
NT,

the root-mean-squared-error (RMSE) of the estimator L̂.

Theorem 2. Suppose Assumptions 1 and 2 hold, rank of L∗ is R,
T ≥ C0 log(N +T) for a constant C0, and the penalty parameter
λ is a constant multiple of

σ

[√
N log(N + T) ∨

√
T log3(N + T)

]
|O| .

Then there is a constant C such that with probability greater than
1 − 2(N + T)−2,

‖L∗ − L̂‖F√
NT

≤ C

[(√
L2

max log(N + T)

N pc
∨
√

σ 2R log(N + T)

T p2
c

∨
√

σ 2R log3(N + T)

N p2
c

⎞
⎠+

√
L2

maxRT
Np2

c

⎤
⎦ . (14)

6.2.1. Interpretation of Theorem 2
To see when the RMSE of L̂ converges to zero as N and T grow,
we note that the right-hand side of (14) converges to 0 when
L∗ is low-rank (R is constant), N ≥ T, and pc � (

√
1/T ∨√

T/N) log3/2(N+T) . For example, when T is the same order as
N1/3, a sufficient condition for the latter is that the lower bound
for the average number of control units (Npc) grows larger than a
constant times N5/6 log3/2(N). In Section 8, we will discuss how
the estimator L̂ should be modified to obtain a sharper result
that would hold for a smaller number of control units.

6.2.2. Comparison With Existing Theory on
Matrix-Completion

Our estimator and its theoretical analysis are motivated by
and generalize existing research on matrix-completion (Sre-
bro, Alon, and Jaakkola 2005; Candès and Recht 2009; Candès
and Tao 2010; Keshavan, Montanari, and Oh 2010a, 2010b;
Mazumder, Hastie, and Tibshirani 2010; Gross 2011; Koltchin-
skii, Lounici, and Tsybakov 2011; Negahban and Wainwright
2011, 2012; Recht 2011; Rohde and Tsybakov 2011; Klopp 2014).
The main difference is in our observation model O. Existing
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articles assume that entries (i, t) ∈ O are independent random
variables whereas we allow for a time series dependency struc-
ture. In particular, this includes the staggered adoption setting
where if (i, t) ∈ O then (i, t′) ∈ O for all t′ < t. The impact of
this additional correlation is that the estimation error deterio-
rates significantly compared to the ones in prior literature. For
example, as discussed above, in the case of N1/3 = T, to have
a consistent estimation we need more data. Specifically, a factor
N5/6 (up to logarithmic factors) more entries per column should
be observed, than in the matrix completion literature.

Remark 6.4. We note that in statement of Theorem 2, the lower
bound on λ depends on O which is a random variable. The left-
hand side of the inequality (14) is also random, depending on O
and the noise, but the right-hand side of (14) is deterministic. To
understand the role of randomness, we describe the main three
steps of the proof. First, in Lemma 1, we prove a deterministic
upper bound for

∑
(i,t)∈O〈Ait , L∗ − L̂〉2/|O| that holds for

every realization of the random variable O, when λ grows by
operator norm of a certain error matrix,

∑
(i,t)∈O εitAit . Next,

in Lemma 2, we use randomness of O and noise to prove a
probabilistic bound on the operator norm of this error matrix.
The final step, Lemma 3, also uses randomness of O and noise
to show that

∑
(i,t)∈O〈Ait , L∗ − L̂〉2/|O| concentrates and (with

high probability) is larger than a constant fraction of its expec-
tation up to an additive constant.

7. Two Illustrations

The objective of this section is to compare the accuracy of impu-
tation for the matrix completion method with previously used
methods. In particular, in a real data matrix Y where no unit is
treated (no entries in the matrix are missing), we choose a subset
of units as hypothetical treated units and aim to predict their
values (for time periods following a randomly selected initial
time). Then, we report the average root-mean-squared-error
(RMSE) of each algorithm on values for the pseudo-treated
(time, period) pairs. In these cases, there is not necessarily a
single right algorithm. Rather, we wish to assess which of the
algorithms generally performs well, and which ones are robust
to a variety of settings, including different adoption regimes and
different configurations of the data.

We compare the following five estimators:

• DID: Difference-in-differences based on regressing the
observed outcomes on unit and time fixed effects and a
dummy for the treatment.

• VT-EN: The vertical regression with elastic net regulariza-
tion, relaxing the restrictions from the synthetic control esti-
mator.

• HR-EN: The horizontal regression with elastic net regular-
ization, similar to unconfoundedness type regressions.

• SC-ADH: The original synthetic control approach by Abadie,
Diamond, and Hainmueller (2010), based on the vertical
regression with Abadie–Diamond–Hainmueller restrictions.
Although this estimator is not necessarily well-defined if
N � T, the restrictions ensured that it was well-defined in
all the settings we used.

• MC-NNM: Our proposed matrix completion approached via
nuclear norm minimization, explained in Section 4.

The comparison between MC-NNM and the two versions
of the elastic net estimator, HR-EN and VT-EN, is particu-
larly salient. In much of the literature researchers choose ex
ante between vertical and horizontal type regressions. The MC-
NNM method allows one to sidestep that choice in a data-driven
manner.

7.1. The Abadie–Diamond–Hainmueller California
Smoking Data

We use the control units from the California smoking data
studied in Abadie, Diamond, and Hainmueller (2010) with N =
38, T = 31. Note that in the original dataset there are 39 units
but one of them (state of California) is treated which will be
removed in this section since the untreated values for that unit
are not available. We then artificially designate some units and
time periods to be treated, and compare predicted values for
those unit/time-periods to the actual values.

We consider two settings for the treatment adoption:

• Case 1: Simultaneous adoption where randomly selected Nt
units adopt the treatment in period T0+1, and the remaining
units never adopt the treatment.

• Case 2: Staggered adoption where randomly Nt units adopt
the treatment in some period after period T, with the actual
adoption date varying randomly among these units.

In each case, the average RMSE, for different ratios T0/T, is
reported in Figure 1. For clarity of the figures, for each T0/T,
while all 95% sampling intervals of various methods are calcu-
lated using the same ratio T0/T, in the figure they are slightly jit-
tered to the left or right. In the simultaneous adoption case, DID
generally does poorly, suggesting that the data are rich enough
to support more complex models. For small values of T0/T, SC-
ADH and HR-EN perform poorly while VT-EN is superior. As
T0/T grows closer to one, VT-EN, HR-EN, SC-ADH, and MC-
NNM methods all do well. The staggered adoption results are
similar with some notable differences; VT-EN performs poorly
(similar to DID) and MC-NNM is the superior approach. The
performance improvement of MC-NNM can be attributed to its
use of additional observations (pretreatment values of treatment
units).

7.2. Stock Market Data

In the next illustration, we use a financial dataset—daily returns
for 2453 stocks over 10 years (3082 days). Since we only have
access to a single instance of the data, to observe statistical
fluctuations of the RMSE, for each N and T we create 50 sub-
samples by looking at the first T daily returns of N randomly
sampled stocks for a range of pairs of (N, T), always with N ×
T = 4900, ranging from very thin to very fat, (N, T) =
(490, 10), . . . , (N, T) = (70, 70), . . . , (N, T) = (10, 490), with
in each case the second half the entries missing for a randomly
selected half the units (so 25% of the entries missing overall), in
a block design. Here we focus on the comparison between the
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Figure 1. California smoking data.

Figure 2. Stock market data.

HR-EN, VT-EN, and MC-NNM estimators as the shape of the
matrix changes. We report the average RMSE. Figure 2 shows
the results. In the T � N case the VT-EN estimator does poorly,
not surprisingly because it attempts to do the vertical regression
with too few time periods to estimate that well. When N � T,
the HR-EN estimator does poorly for the same reason: it is trying
to do the horizontal regression with too few observations rela-
tive to the number of regressors. The most interesting finding
is that the proposed MC-NNM method adapts well to both
regimes and does as well as the best estimator in both settings,
and better than both in the approximately square setting.

The bottom graph in Figure 2 shows that MC-NNM approx-
imates the data with a matrix of rank 4–12, where smaller ranks
are used as N grows relative to T. This validates the fact that

there is a stronger correlation between daily return of different
stocks than between returns for different time periods of the
same stock.

8. Generalizations

Here we provide a brief discussion on how our estimator and its
analysis should be adapted to more general settings.

8.1. The Model With Covariates

In Section 2, we described the basic model, and discussed the
specification and estimation for the case without covariates.
In this section we extend that to the case with unit-specific,
time-specific, and unit-time specific covariates. For unit i we
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observe a vector of unit-specific covariates denoted by Xi, and
X denoting the N × P matrix of covariates with ith row equal to
X�

i . Similarly, Zt denotes the time-specific covariates for period
t, with Z denoting the T × Q matrix with tth row equal to Z�

t .
In addition we allow for a unit-time specific J by 1 vector of
covariates Vit .

The model we consider is

Yit = L∗
it +

P∑
p=1

Q∑
q=1

XipH∗
pqZqt + γ ∗

i + δ∗
t + V�

it β∗ + εit (15)

the εit is random noise. We are interested in estimating the
unknown parameters L∗, H∗, γ ∗, δ∗ and β∗. This model allows
for traditional econometric fixed effects for the units (the γ ∗

i )
and time effects (the δ∗

t ). It also allows for fixed covariate (these
have time varying coefficients) and time covariates (with indi-
vidual coefficients) and time varying individual covariates. Note
that although we can subsume the unit and time fixed effects
into the matrix L∗, we do not do so because we regularize the
estimates of L∗, but do not wish to regularize the estimates of
the fixed effects.

The model can be rewritten as
Y = L∗ + XH∗Z� +�∗1�

T + 1N(�∗)� +
[

V�
it β∗]

it
+ ε . (16)

Here L∗ is in R
N×T , H∗ is in R

P×Q, �∗ is in R
N×1 and �∗ is in

R
T×1. A slightly richer version of this model that allows linear

terms in covariates can be defined as by

Y = L∗ + X̃H̃∗Z̃� + �∗1�
T + 1N(�∗)� +

[
V�

it β∗]
it

+ ε, (17)

where X̃ = [X|IN×N], Z̃ = [Z|IT×T], and

H̃∗ =
[

H∗
X,Z H∗

X
H∗

Z 0

]
,

where H∗
XZ ∈ R

P×Q, H∗
Z ∈ R

N×Q, and H∗
X ∈ R

P×T . In
particular,

Y = L∗ + X̃H̃∗
X,ZZ̃� + H̃∗

ZZ̃� + XH̃∗
X + �∗1�

T + 1N(�∗)�

+
[

V�
it β∗]

it
+ ε. (18)

From now on, we will use the richer model (18) but abuse the
notation and use notation X, H∗, Z instead of X̃, H̃∗, Z̃. There-
fore, the matrix H∗ will be in R

(N+P)×(T+Q).
We estimate H∗, L∗, δ∗, γ ∗, and β∗ by solving the following

convex program,

min
H,L,δ,γ ,β

⎡
⎣ ∑

(i,t)∈O

1
|O|

⎛
⎝Yit − Lit −

P∑
p=1

Q∑
q=1

XipHpqZqt − γi

− δt − Vitβ

⎞
⎠

2

+ λL‖L‖∗ + λH‖H‖1,e

⎤
⎦ .

Here ‖H‖1,e = ∑
i,t |Hit| is the element-wise �1 norm. We

choose λL and λH through cross-validation.
Solving this convex program is similar to the covariate-

free case. In particular, by using a similar operator to shrinkλ,
defined in Section 2, that performs coordinate descent with
respect to H. Then we can apply this operator after each step of
using shrinkλ. Coordinate descent with respect to γ , δ, and β

is performed similarly but using a simpler operation since the
function is smooth with respect to them.

8.2. Leveraging Data From Treated Units

In previous sections, we only focused on imputing Y(0) to
solve the treatment effect estimation problem. We note that this
approach allows for very general assumptions on the treatment
effect. For example if treatment effect has no (low-dimensional)
patterns, imputing Y(0) is the best one can do because Y(1)

would not have any pattern that can be used for imputation.
We also note that in many of the applications there are very few
treated unit/periods, so imputing the missing entries in Y(1)

would be much more challenging in practice.
However, when the treatment effect is constant or has a

low-rank pattern we can extend our approach and leverage the
additional data from Y(1). We describe these next.

(a) When treatment effect is constant. If the treatment effect
is constant for every pair (i, t), then we can consider the
following natural extension of our estimator (8).

(L̂, �̂, �̂, τ̂ ) = arg min
L,�,�,τ

{
1

NT
‖Y − L − �1�

T − 1N��

− τW‖2
F + λ‖L‖∗

}
, (19)

where variable τ ∈ R is used for estimating the constant
treatment effect. Also, recall that W is the binary treatment
matrix. Note that here the squared error term includes all
entries (i, t) ∈ [N] × [T].

(b) When treatment effect has a low-rank pattern. Assume the
treatment effect is not constant but is such that the matrix
Y(1) has a low-rank expectation. Then we can impute Y(1)

the same way we impute Y(0), using our estimator (8)
applied to treated entries. Then we can use imputed matrix
Ŷ(0) and Ŷ(1) to estimate the treatment effect matrix Y(1)−
Y(0).

8.3. Autocorrelated Errors

One drawback of MC-NNM is that it does not take into account
the time series nature of the observations. It is likely that the
εit are correlated over time. We can take this into account by
modifying the objective function. Let us consider this in the case
without covariates, and, for illustrative purposes, let us use an
autoregressive model of order one. Let Yi· and Li· be the ith row
of Y and L, respectively. The original objective function for O =
[N] × [T] is

1
|O|

N∑
i=1

T∑
t=1

(Yit − Lit)
2 + λL‖L‖∗

= 1
|O|

N∑
i=1

(Yi· − Li·)(Yi· − Li·)� + λL‖L‖∗.

We can modify this to
∑N

i=1(Yi· − Li·)�−1(Yi· − Li·)�/|O| +
λL‖L‖∗, where the choice for the T × T matrix � would reflect
the autocorrelation in the εit . For example, with a first-order
autoregressive process, we would use �ts = σ 2ρ|t−s|, with ρ an
estimate of the autoregressive coefficient. Similarly, for the more
general version O ⊂ [N] × [T], we can use the function

1
|O|

∑
(i,t)∈O

∑
(i,s)∈O

(Yit − Lit)[�−1]ts(Yis − Lis) + λL‖L‖∗ .
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8.4. Weighted Loss Function

Another limitation of MC-NNM is that it puts equal weight
on all observed elements of the difference Y − L (ignoring
the covariates). Ultimately we care solely about predictions of
the model for the missing elements of Y, and for that reason
it is natural to emphasize the fit of the model for elements
of Y that are observed, but that are similar to the elements
that are missing. In the program evaluation literature this is
often achieved by weighting the fit by the propensity score, the
probability of outcomes for a unit being missing.

We can do so in the current setting by modeling this proba-
bility in terms of the covariates and a latent factor structure. Let
the propensity score be eit = P(Wit = 1|Xi, Zt , Vit), and let E be
the N × T matrix with typical element eit . Let us again consider
the case without covariates. In that case we may wish to model
the assignment W as

WN×T = EN×T + ηN×T .

We can estimate this using the same matrix completion methods
as before, now without any missing values:

Ê = arg min
E

1
NT

∑
(i,t)

(Wit − eit)
2 + λL‖E‖∗ .

Given the estimated propensity score we can then weight the
objective function for estimating L∗:

L̂ = arg min
L

1
|O|

∑
(i,t)∈O

êit
1 − êit

(Yit − Lit)
2 + λL‖L‖∗ .

8.5. Relaxing the Dependence of Theorem 2 on pc

Recall from Section 6.1 that the average number of control
units is

∑N
i=1 π

(i)
T . Therefore, the fraction of control units is∑N

i=1 π
(i)
T /N. However, the estimation error in Theorem 2

depends on pc = min1≤i≤N π
(i)
T rather than

∑N
i=1 π

(i)
T /N. The

reason for this, as discussed in Section 6.1 is due to special
classes of matrices L∗ where most of the rows are nearly zero
(e.g., when only one row is nonzero). To relax this constraint we
would need to restrict the family of matrices L∗. An example of
such restriction is given by Negahban and Wainwright (2012)
where they assume L∗ is not too spiky. Formally, they assume
the ratio ‖L∗‖max/‖L∗‖F should be of order 1/

√
NT up to

logarithmic terms. To see the intuition for this, in a matrix
with all equal entries this ratio is 1/

√
NT whereas in a matrix

where only the (1, 1) entry is nonzero the ratio is 1. While both
matrices have rank 1, in the former matrix the value of ‖L∗‖F
is obtained from most of the entries. In such situations, one can
extend our results and obtain an upper bound that depends on∑N

i=1 π
(i)
T /N.

8.6. Nearly Low-Rank Matrices

Another possible extension of Theorem 2 is to the cases where
L∗ may have high rank, but most of its singular values are
small. More formally, if σ1 ≥ · · · > σmin(N,T) are singular
values of L∗, one can obtain upper bounds that depend on k and

∑min(N,T)

r=k+1 σr for any k ∈ [min(N, T)]. One can then optimize
the upper bound by selecting the best k. In the low-rank case
such optimization leads to selecting k equal to R. This type of
more general upper bound has been proved in some of prior
matrix completion literature (e.g., Negahban and Wainwright
2012). We expect their analyses would be generalize-able to our
setting (when entries of O are not independent).

8.7. Additional Missing Entries

In Section 6.1, we assumed that all entries (i, t) of Y for t ≤ ti
are observed. However, it may be possible that some such values
are missing due to lack of data collection. This does not mean
that any treatment occurred in the pretreatment period. Rather,
such scenario can occur when measuring outcome values is
costly. In this case, one can extend Theorem 2 to the setting with
O =

[⋃N
i=1

{
(i, 1), (i, 2), . . . , (i, ti)

}]
\Omiss, where each (i, t) ∈

∪N
i=1{(i, 1), (i, 2), . . . , (i, ti)} can be inOmiss, independently, with

probability p for p that is not too large.

9. Conclusions

We present new results for estimation of causal effects in panel
or longitudinal data settings. The proposed estimator, building
on the interactive fixed effects and matrix completion literatures
has attractive computational properties in settings with large
N and T, and allows for a relatively large number of factors.
We show how this set up relates to the program evaluation
and synthetic control literatures. In illustrations we show that
the method adapts well to different configurations of the data,
and find that generally it outperforms the synthetic control
estimators proposed Abadie, Diamond, and Hainmueller (2010)
and the elastic net estimators proposed by Doudchenko and
Imbens (2016).
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