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PREFACE

Why This Book? Why Now?

This book is about the past, present, and future of our attempt to 

understand and create intelligence. This matters, not because AI is 

rapidly becoming a pervasive aspect of the present but because it is 

the dominant technology of the future. The world’s great powers are 

 waking up to this fact, and the world’s largest corporations have known 

it for some time. We cannot predict exactly how the technology will 

develop or on what timeline. Nevertheless, we must plan for the 

possibility that machines will far exceed the human capacity for 

 decision making in the real world. What then?

Everything civilization has to offer is the product of our intelli-

gence; gaining access to considerably greater intelligence would be the 

biggest event in human history. The purpose of the book is to explain 

why it might be the last event in human history and how to make sure 

that it is not.
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xii PREFACE

Overview of the Book

The book has three parts. The first part (Chapters 1 to 3) explores the 

idea of intelligence in humans and in machines. The material requires 

no technical background, but for those who are interested, it is supple-

mented by four appendices that explain some of the core concepts 

underlying  present-  day AI systems. The second part (Chapters 4 to 6) 

discusses some problems arising from imbuing machines with intel-

ligence. I focus in particular on the problem of control: retaining 

 absolute power over machines that are more powerful than us. The 

third part (Chapters 7 to 10) suggests a new way to think about AI 

and to ensure that machines remain beneficial to humans, forever. 

The book is intended for a general audience but will, I hope, be of 

value in convincing specialists in artificial intelligence to rethink their 

fundamental assumptions.
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1

IF WE SUCCEED

A long time ago, my parents lived in Birmingham, England, in a 

house near the university. They decided to move out of the 

city and sold the house to David Lodge, a professor of English 

literature. Lodge was by that time already a well-known novelist. I 

never met him, but I decided to read some of his books: Changing 
Places and Small World. Among the principal characters were fictional 

academics moving from a fictional version of Birmingham to a fic-

tional version of Berkeley, California. As I was an actual academic 

from the actual Birmingham who had just moved to the actual Berke-

ley, it seemed that someone in the Department of Coincidences was 

telling me to pay attention.

One particular scene from Small World struck me: The protago-

nist, an aspiring literary theorist, attends a major international confer-

ence and asks a panel of leading figures, “What follows if everyone 

agrees with you?” The question causes consternation, because the 

panelists had been more concerned with intellectual combat than as-

certaining truth or attaining understanding. It occurred to me then 

that an analogous question could be asked of the leading figures in AI: 

“What if you succeed?” The field’s goal had always been to create 
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2 HUMAN COMPATIBLE

 human-  level or superhuman AI, but there was little or no consider-

ation of what would happen if we did.

A few years later, Peter Norvig and I began work on a new AI text-

book, whose first edition appeared in 1995.1 The book’s final section 

is titled “What If We Do Succeed?” The section points to the possibil-

ity of good and bad outcomes but reaches no firm conclusions. By the 

time of the third edition in 2010, many people had finally begun to 

consider the possibility that superhuman AI might not be a good 

 thing—  but these people were mostly outsiders rather than main-

stream AI researchers. By 2013, I became convinced that the issue not 

only belonged in the mainstream but was possibly the most important 

question facing humanity.

In November 2013, I gave a talk at the Dulwich Picture Gallery, a 

venerable art museum in south London. The audience consisted 

mostly of retired  people—  nonscientists with a general interest in in-

tellectual  matters—  so I had to give a completely nontechnical talk. It 

seemed an appropriate venue to try out my ideas in public for the first 

time. After explaining what AI was about, I nominated five candi-

dates for “biggest event in the future of humanity”:

1. We all die (asteroid impact, climate catastrophe, pandemic, etc.).

2. We all live forever (medical solution to aging).

3. We invent  faster-  than-  light travel and conquer the universe.

4. We are visited by a superior alien civilization.

5. We invent superintelligent AI.

I suggested that the fifth candidate, superintelligent AI, would be 

the winner, because it would help us avoid physical catastrophes and 

achieve eternal life and  faster-  than-  light travel, if those were indeed 

possible. It would represent a huge  leap—  a  discontinuity—  in our civ-

ilization. The arrival of superintelligent AI is in many ways analogous 

to the arrival of a superior alien civilization but much more likely to 
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 I F  WE SUCCEED 3

occur. Perhaps most important, AI, unlike aliens, is something over 

which we have some say.

Then I asked the audience to imagine what would happen if we 

received notice from a superior alien civilization that they would ar-

rive on Earth in thirty to fifty years. The word pandemonium doesn’t 

begin to describe it. Yet our response to the anticipated arrival of su-

perintelligent AI has  been . . . well, underwhelming begins to describe 

it. (In a later talk, I illustrated this in the form of the email exchange 

shown in figure 1.) Finally, I explained the significance of superintelli-

gent AI as follows: “Success would be the biggest event in human 

 history . . . and perhaps the last event in human history.”

From: Superior Alien Civilization <sac12@sirius.canismajor.u>

To: humanity@UN.org

Subject: Contact

Be warned: we shall arrive in  30–  50 years

From: humanity@UN.org

To: Superior Alien Civilization <sac12@sirius.canismajor.u>

Subject:

message when we return. 

FIGURE 
by a superior alien civilization. 

A few months later, in April 2014, I was at a conference in Iceland 

and got a call from National Public Radio asking if they could inter-

view me about the movie Transcendence, which had just been released 

in the United States. Although I had read the plot summaries and re-

views, I hadn’t seen it because I was living in Paris at the time, and it 

would not be released there until June. It so happened, however, that 
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4 HUMAN COMPATIBLE

I had just added a detour to Boston on the way home from Iceland, so 

that I could participate in a Defense Department meeting. So, after 

arriving at Boston’s Logan Airport, I took a taxi to the nearest theater 

showing the movie. I sat in the second row and watched as a Berkeley 

AI professor, played by Johnny Depp, was gunned down by anti- AI 

activists worried about, yes, superintelligent AI. Involuntarily, I shrank 

down in my seat. (Another call from the Department of Coinci-

dences?) Before Johnny Depp’s character dies, his mind is uploaded to 

a quantum supercomputer and quickly outruns human capabilities, 

threatening to take over the world.

On April 19, 2014, a review of Transcendence, co- authored with 

physicists Max Tegmark, Frank Wilczek, and Stephen Hawking, ap-

peared in the Huffington Post. It included the sentence from my Dul-

wich talk about the biggest event in human history. From then on, I 

would be publicly committed to the view that my own field of re-

search posed a potential risk to my own species.

The roots of AI stretch far back into antiquity, but its “official” begin-

ning was in 1956. Two young mathematicians, John McCarthy and 

Marvin Minsky, had persuaded Claude Shannon, already famous as the 

inventor of information theory, and Nathaniel Rochester, the designer 

of IBM’s first commercial computer, to join them in organizing a sum-

mer program at Dartmouth College. The goal was stated as follows:

The study is to proceed on the basis of the conjecture that every 

aspect of learning or any other feature of intelligence can in prin-

ciple be so precisely described that a machine can be made to sim-

ulate it. An attempt will be made to find how to make machines 

use language, form abstractions and concepts, solve kinds of prob-

lems now reserved for humans, and improve themselves. We think 
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 I F  WE SUCCEED 5

that a significant advance can be made in one or more of these 

problems if a carefully selected group of scientists work on it 

 together for a summer.

Needless to say, it took much longer than a summer: we are still working 

on all these problems.

In the first decade or so after the Dartmouth meeting, AI had sev-

eral major successes, including Alan Robinson’s algorithm for  general- 

purpose logical reasoning2 and Arthur Samuel’s checker-playing 

program, which taught itself to beat its creator.3 The first AI bubble 

burst in the late 1960s, when early efforts at machine learning and 

machine translation failed to live up to expectations. A report com-

missioned by the UK government in 1973 concluded, “In no part of 

the field have the discoveries made so far produced the major impact 

that was then promised.” 4 In other words, the machines just weren’t 

smart enough.

My eleven-year-old self was, fortunately, unaware of this report. 

Two years later, when I was given a Sinclair Cambridge Programmable 

calculator, I just wanted to make it intelligent. With a maximum pro-

gram size of  thirty-  six keystrokes, however, the Sinclair was not quite 

big enough for human-level AI. Undeterred, I gained access to the gi-

ant CDC 6600 supercomputer5 at Imperial College London and wrote 

a chess  program—  a stack of punched cards two feet high. It wasn’t 

very good, but it didn’t matter. I knew what I wanted to do.

By the mid-1980s, I had become a professor at Berkeley, and AI 

was experiencing a huge revival thanks to the commercial potential of 

so- called expert systems. The second AI bubble burst when these sys-

tems proved to be inadequate for many of the tasks to which they 

were applied. Again, the machines just weren’t smart enough. An AI 

winter ensued. My own AI course at Berkeley, currently bursting with 

over nine hundred students, had just  twenty-  five students in 1990.

The AI community learned its lesson: smarter, obviously, was bet-

ter, but we would have to do our homework to make that happen. The 
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6 HUMAN COMPATIBLE

field became far more mathematical. Connections were made to the 

 long-  established disciplines of probability, statistics, and control the-

ory. The seeds of today’s progress were sown during that AI winter, 

including early work on  large-  scale probabilistic reasoning systems 

and what later became known as deep learning.
Beginning around 2011, deep learning techniques began to pro-

duce dramatic advances in speech recognition, visual object recogni-

tion, and machine  translation—  three of the most important open 

problems in the field. By some measures, machines now match or ex-

ceed human capabilities in these areas. In 2016 and 2017, DeepMind’s 

AlphaGo defeated Lee Sedol, former world Go champion, and Ke Jie, 

the current  champion—  events that some experts predicted wouldn’t 

happen until 2097, if ever.6

Now AI generates  front-  page media coverage almost every day. 

Thousands of start- up companies have been created, fueled by a flood 

of venture funding. Millions of students have taken online AI and 

machine learning courses, and experts in the area command salaries in 

the millions of dollars. Investments flowing from venture funds, na-

tional governments, and major corporations are in the tens of billions 

of dollars  annually—  more money in the last five years than in the en-

tire previous history of the field. Advances that are already in the 

pipeline, such as  self-  driving cars and intelligent personal assistants, 

are likely to have a substantial impact on the world over the next de-

cade or so. The potential economic and social benefits of AI are vast, 

creating enormous momentum in the AI research enterprise. 

What Happens Next?

Does this rapid rate of progress mean that we are about to be over-

taken by machines? No. There are several breakthroughs that have 

to happen before we have anything resembling machines with super-

human intelligence.
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 I F  WE SUCCEED 7

Scientific breakthroughs are notoriously hard to predict. To get a 

sense of just how hard, we can look back at the history of another field 

with  civilization-  ending potential: nuclear physics.

In the early years of the twentieth century, perhaps no nuclear 

physicist was more distinguished than Ernest Rutherford, the discov-

erer of the proton and the “man who split the atom” (figure 2[a]). Like 

his colleagues, Rutherford had long been aware that atomic nuclei 

stored immense amounts of energy; yet the prevailing view was that 

tapping this source of energy was impossible.

On September 11, 1933, the British Association for the Advance-

ment of Science held its annual meeting in Leicester. Lord Rutherford 

addressed the evening session. As he had done several times before, he 

poured cold water on the prospects for atomic energy: “Anyone who 

looks for a source of power in the transformation of the atoms is 

talking moonshine.” Rutherford’s speech was reported in the Times of 

London the next morning (figure 2[b]).

Leo Szilard (figure 2[c]), a Hungarian physicist who had recently 

fled from Nazi Germany, was staying at the Imperial Hotel on Russell 

 (a)  (b) (c)

FIGURE 
the Times

M 9780525558613_Human_TX.indd 7 8/7/19 11:21 PM

Not 
Dist

rib
uti

on
or th

er. Lord R Lord R

several timeeveral time

omic energyc energ

ansformationsformatio

eech was rech was re

e 2[b]).[b]).



8 HUMAN COMPATIBLE

Square in London. He read the Times’ report at breakfast. Mulling over 

what he had read, he went for a walk and invented the  neutron-  induced 

nuclear chain reaction.7 The problem of liberating nuclear energy went 

from impossible to essentially solved in less than  twenty-  four hours. 

Szilard filed a secret patent for a nuclear reactor the following year. The 

first patent for a nuclear weapon was issued in France in 1939.

The moral of this story is that betting against human ingenuity is 

foolhardy, particularly when our future is at stake. Within the AI 

community, a kind of denialism is emerging, even going as far as deny-

ing the possibility of success in achieving the  long-  term goals of AI. It’s 

as if a bus driver, with all of humanity as passengers, said, “Yes, I am 

driving as hard as I can towards a cliff, but trust me, we’ll run out of 

gas before we get there!”

I am not saying that success in AI will necessarily happen, and I 

think it’s quite unlikely that it will happen in the next few years. It 

seems prudent, nonetheless, to prepare for the eventuality. If all goes 

well, it would herald a golden age for humanity, but we have to face 

the fact that we are planning to make entities that are far more pow-

erful than humans. How do we ensure that they never, ever have 

power over us?

To get just an inkling of the fire we’re playing with, consider how 

 content-  selection algorithms function on social media. They aren’t 

particularly intelligent, but they are in a position to affect the entire 

world because they directly influence billions of people. Typically, 

such algorithms are designed to maximize  click-  through, that is, the 

probability that the user clicks on presented items. The solution is 

simply to present items that the user likes to click on, right? Wrong. 

The solution is to change the user’s preferences so that they become 

more predictable. A more predictable user can be fed items that they 

are likely to click on, thereby generating more revenue. People with 

more extreme political views tend to be more predictable in which 

items they will click on. (Possibly there is a category of articles that 
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 I F  WE SUCCEED 9

 die-  hard centrists are likely to click on, but it’s not easy to imagine 

what this category consists of.) Like any rational entity, the algorithm 

learns how to modify the state of its  environment—  in this case, the 

user’s  mind—  in order to maximize its own reward.8 The consequences 

include the resurgence of fascism, the dissolution of the social contract 

that underpins democracies around the world, and potentially the end 

of the European Union and NATO. Not bad for a few lines of code, 

even if it had a helping hand from some humans. Now imagine what a 

really intelligent algorithm would be able to do.

What Went Wrong?

The history of AI has been driven by a single mantra: “The more intel-

ligent the better.” I am convinced that this is a  mistake—  not because 

of some vague fear of being superseded but because of the way we 

have understood intelligence itself.

The concept of intelligence is central to who we  are—  that’s why 

we call ourselves Homo sapiens, or “wise man.” After more than two 

thousand years of  self-  examination, we have arrived at a characteriza-

tion of intelligence that can be boiled down to this:

Humans are intelligent to the extent that our actions can be expected 

to achieve our objectives.

All those other characteristics of  intelligence—  perceiving, thinking, 

learning, inventing, and so  on—  can be understood through their con-

tributions to our ability to act successfully. From the very beginnings 

of AI, intelligence in machines has been defined in the same way:

Machines are intelligent to the extent that their actions can be expected 

to achieve their objectives.
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10 HUMAN COMPATIBLE

Because machines, unlike humans, have no objectives of their own, 

we give them objectives to achieve. In other words, we build optimiz-

ing machines, we feed objectives into them, and off they go.

This general approach is not unique to AI. It recurs throughout the 

technological and mathematical underpinnings of our society. In the 

field of control theory, which designs control systems for everything 

from jumbo jets to insulin pumps, the job of the system is to mini-

mize a cost function that typically measures some deviation from a 

desired behavior. In the field of economics, mechanisms and policies 

are designed to maximize the utility of individuals, the welfare of 

groups, and the profit of corporations.9 In operations research, which 

solves complex logistical and manufacturing problems, a solution 

maximizes an expected sum of rewards over time. Finally, in statistics, 

learning algorithms are designed to minimize an expected loss func-
tion that defines the cost of making prediction errors.

Evidently, this general  scheme—  which I will call the standard 
 model—  is widespread and extremely powerful. Unfortunately, we 
don’t want machines that are intelligent in this sense.

The drawback of the standard model was pointed out in 1960 by 

Norbert Wiener, a legendary professor at MIT and one of the leading 

mathematicians of the  mid-  twentieth century. Wiener had just seen 

Arthur Samuel’s  checker-  playing program learn to play checkers far 

better than its creator. That experience led him to write a prescient 

but  little-  known paper, “Some Moral and Technical Consequences of 

Automation.” 10 Here’s how he states the main point:

If we use, to achieve our purposes, a mechanical agency with 

whose operation we cannot interfere  effectively . . . we had better 

be quite sure that the purpose put into the machine is the purpose 

which we really desire.

“The purpose put into the machine” is exactly the objective that ma-

chines are optimizing in the standard model. If we put the wrong 
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 I F  WE SUCCEED 11

objective into a machine that is more intelligent than us, it will achieve 

the objective, and we lose. The  social-  media meltdown I described 

earlier is just a foretaste of this, resulting from optimizing the wrong 

objective on a global scale with fairly unintelligent algorithms. In 

Chapter 5, I spell out some far worse outcomes.

All this should come as no great surprise. For thousands of years, 

we have known the perils of getting exactly what you wish for. In 

 every story where someone is granted three wishes, the third wish is 

always to undo the first two wishes.

In summary, it seems that the march towards superhuman intelli-

gence is unstoppable, but success might be the undoing of the human 

race. Not all is lost, however. We have to understand where we went 

wrong and then fix it.

Can We Fix It?

The problem is right there in the basic definition of AI. We say that 

machines are intelligent to the extent that their actions can be ex-

pected to achieve their objectives, but we have no reliable way to make 

sure that their objectives are the same as our objectives.

What if, instead of allowing machines to pursue their objectives, 

we insist that they pursue our objectives? Such a machine, if it could 

be designed, would be not just intelligent but also beneficial to humans. 

So let’s try this:

Machines are beneficial to the extent that their actions can be ex-

pected to achieve our objectives.

This is probably what we should have done all along.

The difficult part, of course, is that our objectives are in us (all 

eight billion of us, in all our glorious variety) and not in the machines. 

It is, nonetheless, possible to build machines that are beneficial in 
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12 HUMAN COMPATIBLE

exactly this sense. Inevitably, these machines will be uncertain about 

our  objectives—  after all, we are uncertain about them  ourselves—  but 

it turns out that this is a feature, not a bug (that is, a good thing and 

not a bad thing). Uncertainty about objectives implies that machines 

will necessarily defer to humans: they will ask permission, they will 

accept correction, and they will allow themselves to be switched off.

Removing the assumption that machines should have a definite 

objective means that we will need to tear out and replace part of 

the foundations of artificial  intelligence—  the basic definitions of what 

we are trying to do. That also means rebuilding a great deal of the 

 superstructure—  the accumulation of ideas and methods for actually 

doing AI. The result will be a new relationship between humans and 

machines, one that I hope will enable us to navigate the next few de-

cades successfully.
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2 

INTELLIGENCE IN HUMANS 
AND MACHINES

When you arrive at a dead end, it’s a good idea to retrace 

your steps and work out where you took a wrong turn. I 

have argued that the standard model of AI, wherein ma-

chines optimize a fixed objective supplied by humans, is a dead end. 

The problem is not that we might fail to do a good job of building AI 

systems; it’s that we might succeed too well. The very definition of 

success in AI is wrong.

So let’s retrace our steps, all the way to the beginning. Let’s try to 

understand how our concept of intelligence came about and how it 

came to be applied to machines. Then we have a chance of coming up 

with a better definition of what counts as a good AI system.

Intelligence

How does the universe work? How did life begin? Where are my keys? 

These are fundamental questions worthy of thought. But who is ask-

ing these questions? How am I answering them? How can a handful 
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14 HUMAN COMPATIBLE

of  matter—  the few pounds of  pinkish-  gray blancmange we call a 

 brain—  perceive, understand, predict, and manipulate a world of un-

imaginable vastness? Before long, the mind turns to examine itself.

We have been trying for thousands of years to understand how our 

minds work. Initially, the purposes included curiosity,  self-  management, 

persuasion, and the rather pragmatic goal of analyzing mathematical 

arguments. Yet every step towards an explanation of how the mind 

works is also a step towards the creation of the mind’s capabilities in an 

 artifact—  that is, a step towards artificial intelligence.

Before we can understand how to create intelligence, it helps to 

understand what it is. The answer is not to be found in IQ tests, or 

even in Turing tests, but in a simple relationship between what we 

perceive, what we want, and what we do. Roughly speaking, an entity 

is intelligent to the extent that what it does is likely to achieve what it 

wants, given what it has perceived.

Evolutionary origins

Consider a lowly bacterium, such as E.  coli. It is equipped with 

about half a dozen  flagella—  long, hairlike tentacles that rotate at the 

base either clockwise or counterclockwise. (The rotary motor itself is 

an amazing thing, but that’s another story.) As E.  coli floats about in its 

liquid  home—  your lower  intestine—  it alternates between rotating its 

flagella clockwise, causing it to “tumble” in place, and counterclock-

wise, causing the flagella to twine together into a kind of propeller so 

the bacterium swims in a straight line. Thus, E.  coli does a sort of ran-

dom  walk—  swim, tumble, swim,  tumble—  that allows it to find and 

consume glucose rather than staying put and dying of starvation.

If this were the whole story, we wouldn’t say that E.  coli is particu-

larly intelligent, because its actions would not depend in any way on 

its environment. It wouldn’t be making any decisions, just executing a 

fixed behavior that evolution has built into its genes. But this isn’t 

the whole story. When E.  coli senses an increasing concentration of 
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 INTELL IGENCE IN HUMANS AND MACHINES  15

glucose, it swims longer and tumbles less, and it does the opposite 

when it senses a decreasing concentration of glucose. So, what it does 

(swim towards glucose) is likely to achieve what it wants (more glu-

cose, let’s assume), given what it has perceived (an increasing glucose 

concen tration).

Perhaps you are thinking, “But evolution built this into its genes 

too! How does that make it intelligent?” This is a dangerous line of 

reasoning, because evolution built the basic design of your brain into 

your genes too, and presumably you wouldn’t wish to deny your own 

intelligence on that basis. The point is that what evolution has built 

into E. coli’s genes, as it has into yours, is a mechanism whereby the 

bacterium’s behavior varies according to what it perceives in its envi-

ronment. Evolution doesn’t know, in advance, where the glucose is 

going to be or where your keys are, so putting the capability to find 

them into the organism is the next best thing.

Now, E.  coli is no intellectual giant. As far as we know, it doesn’t 

remember where it has been, so if it goes from A to B and finds no 

glucose, it’s just as likely to go back to A. If we construct an environ-

ment where every attractive glucose gradient leads only to a spot of 

phenol (which is a poison for E.  coli), the bacterium will keep follow-

ing those gradients. It never learns. It has no brain, just a few simple 

chemical reactions to do the job.

A big step forward occurred with action potentials, which are a form 

of electrical signaling that first evolved in  single-  celled organisms 

around a billion years ago. Later multicellular organisms evolved spe-

cialized cells called neurons that use electrical action potentials to carry 

signals  rapidly—  up to 120 meters per second, or 270 miles per  hour— 

 within the organism. The connections between neurons are called syn-
apses. The strength of the synaptic connection dictates how much 

electrical excitation passes from one neuron to another. By changing 

the strength of synaptic connections, animals learn.1 Learning confers a 

huge evolutionary advantage, because the animal can adapt to a range 

of circumstances. Learning also speeds up the rate of evolution itself.
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16 HUMAN COMPATIBLE

Initially, neurons were organized into nerve nets, which are distrib-

uted throughout the organism and serve to coordinate activities such 

as eating and digestion or the timed contraction of muscle cells across 

a wide area. The graceful propulsion of jellyfish is the result of a nerve 

net. Jellyfish have no brains at all.

Brains came later, along with complex sense organs such as eyes 

and ears. Several hundred million years after jellyfish emerged with 

their nerve nets, we humans arrived with our big  brains—  a hundred 

billion (1011) neurons and a quadrillion (1015) synapses. While slow 

compared to electronic circuits, the “cycle time” of a few milliseconds 

per state change is fast compared to most biological processes. The 

human brain is often described by its owners as “the most complex 

object in the universe,” which probably isn’t true but is a good excuse 

for the fact that we still understand little about how it really works. 

While we know a great deal about the biochemistry of neurons and 

synapses and the anatomical structures of the brain, the neural imple-

mentation of the cognitive  level—  learning, knowing, remembering, 

reasoning, planning, deciding, and so  on—  is still mostly anyone’s 

guess.2 (Perhaps that will change as we understand more about AI, or 

as we develop ever more precise tools for measuring brain activity.) 

So, when one reads in the media that  such-  and-  such AI technique 

“works just like the human brain,” one may suspect it’s either just 

someone’s guess or plain fiction.

In the area of consciousness, we really do know nothing, so I’m go-

ing to say nothing. No one in AI is working on making machines con-

scious, nor would anyone know where to start, and no behavior has 

consciousness as a prerequisite. Suppose I give you a program and ask, 

“Does this present a threat to humanity?” You analyze the code and 

indeed, when run, the code will form and carry out a plan whose re-

sult will be the destruction of the human race, just as a chess program 

will form and carry out a plan whose result will be the defeat of any 

human who faces it. Now suppose I tell you that the code, when run, 

also creates a form of machine consciousness. Will that change your 
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 INTELL IGENCE IN HUMANS AND MACHINES  17

prediction? Not at all. It makes absolutely no difference.3 Your predic-

tion about its behavior is exactly the same, because the prediction is 

based on the code. All those Hollywood plots about machines myste-

riously becoming conscious and hating humans are really missing the 

point: it’s competence, not consciousness, that matters.

There is one important cognitive aspect of the brain that we are 
beginning to understand—namely, the reward system. This is an inter-

nal signaling system, mediated by dopamine, that connects positive 

and negative stimuli to behavior. Its workings were discovered by 

the Swedish neuroscientist  Nils-  Åke Hillarp and his collaborators in 

the late 1950s. It causes us to seek out positive stimuli, such as  sweet- 

 tasting foods, that increase dopamine levels; it makes us avoid negative 

stimuli, such as hunger and pain, that decrease dopamine levels. In a 

sense it’s quite similar to E. coli’s  glucose-  seeking mechanism, but 

much more complex. It comes with built- in methods for learning, so 

that our behavior becomes more effective at obtaining reward over 

time. It also allows for delayed gratification, so that we learn to desire 

things such as money that provide eventual reward rather than imme-

diate reward. One reason we understand the brain’s reward system is 

that it resembles the method of reinforcement learning developed in AI, 

for which we have a very solid theory.4

From an evolutionary point of view, we can think of the brain’s 

reward system, just like E. coli’s  glucose-  seeking mechanism, as a way 

of improving evolutionary fitness. Organisms that are more effective 

in seeking  reward—  that is, finding delicious food, avoiding pain, en-

gaging in sexual activity, and so  on—  are more likely to propagate their 

genes. It is extraordinarily difficult for an organism to decide what 

actions are most likely, in the long run, to result in successful propa-

gation of its genes, so evolution has made it easier for us by providing 

built- in signposts.

These signposts are not perfect, however. There are ways to obtain 

reward that probably reduce the likelihood that one’s genes will prop-

agate. For example, taking drugs, drinking vast quantities of sugary 
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18 HUMAN COMPATIBLE

carbonated beverages, and playing video games for eighteen hours a 

day all seem counterproductive in the reproduction stakes. Moreover, 

if you were given direct electrical access to your reward system, you 

would probably  self-  stimulate without stopping until you died.5

The misalignment of reward signals and evolutionary fitness 

doesn’t affect only isolated individuals. On a small island off the coast 

of Panama lives the pygmy  three-  toed sloth, which appears to be ad-

dicted to a  Valium-  like substance in its diet of red mangrove leaves 

and may be going extinct.6 Thus, it seems that an entire species can 

disappear if it finds an ecological niche where it can satisfy its reward 

system in a maladaptive way.

Barring these kinds of accidental failures, however, learning to 

maximize reward in natural environments will usually improve one’s 

chances for propagating one’s genes and for surviving environmental 

changes.

Evolutionary accelerator

Learning is good for more than surviving and prospering. It also 

speeds up evolution. How could this be? After all, learning doesn’t 

change one’s DNA, and evolution is all about changing DNA over 

generations. The connection between learning and evolution was pro-

posed in 1896 by the American psychologist James Baldwin7 and in-

dependently by the British ethologist Conwy Lloyd Morgan8 but not 

generally accepted at the time.

The Baldwin effect, as it is now known, can be understood by 

imagining that evolution has a choice between creating an instinctive 
organism whose every response is fixed in advance and creating an 

adaptive organism that learns what actions to take. Now suppose, for 

the purposes of illustration, that the optimal instinctive organism can 

be coded as a  six-  digit number, say, 472116, while in the case of the 

adaptive organism, evolution specifies only 472*** and the organism 

itself has to fill in the last three digits by learning during its lifetime. 
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 INTELL IGENCE IN HUMANS AND MACHINES  19

Clearly, if evolution has to worry about choosing only the first three 

digits, its job is much easier; the adaptive organism, in learning the last 

three digits, is doing in one lifetime what evolution would have taken 

many generations to do. So, provided the adaptive organisms can sur-

vive while learning, it seems that the capability for learning consti-

tutes an evolutionary shortcut. Computational simulations suggest 

that the Baldwin effect is real.9 The effects of culture only accelerate 

the process, because an organized civilization protects the individual 

organism while it is learning and passes on information that the indi-

vidual would otherwise need to learn for itself.

The story of the Baldwin effect is fascinating but incomplete: it 

assumes that learning and evolution necessarily point in the same di-

rection. That is, it assumes that whatever internal feedback signal de-

fines the direction of learning within the organism is perfectly aligned 

with evolutionary fitness. As we have seen in the case of the pygmy 

 three-  toed sloth, this does not seem to be true. At best, built- in mech-

anisms for learning provide only a crude hint of the  long-  term conse-

quences of any given action for evolutionary fitness. Moreover, one has 

to ask, “How did the reward system get there in the first place?” The 

answer, of course, is by an evolutionary process, one that internalized 

a feedback mechanism that is at least somewhat aligned with evolu-

tionary fitness.10 Clearly, a learning mechanism that caused organisms 

to run away from potential mates and towards predators would not 

last long.

Thus, we have the Baldwin effect to thank for the fact that neu-

rons, with their capabilities for learning and problem solving, are so 

widespread in the animal kingdom. At the same time, it is important 

to understand that evolution doesn’t really care whether you have a 

brain or think interesting thoughts. Evolution considers you only as an 

agent, that is, something that acts. Such worthy intellectual character-

istics as logical reasoning, purposeful planning, wisdom, wit, imagina-

tion, and creativity may be essential for making an agent intelligent, or 

they may not. One reason artificial intelligence is so fascinating is that 
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20 HUMAN COMPATIBLE

it offers a potential route to understanding these issues: we may come 

to understand both how these intellectual characteristics make intel-

ligent behavior possible and why it’s impossible to produce truly intel-

ligent behavior without them.

Rationality for one

From the earliest beginnings of ancient Greek philosophy, the con-

cept of intelligence has been tied to the ability to perceive, to reason, 

and to act successfully.11 Over the centuries, the concept has become 

both broader in its applicability and more precise in its definition.

Aristotle, among others, studied the notion of successful  reasoning— 

 methods of logical deduction that would lead to true conclusions given 

true premises. He also studied the process of deciding how to  act— 

 sometimes called practical  reasoning—  and proposed that it involved 

deducing that a certain course of action would achieve a desired goal:

We deliberate not about ends, but about means. For a doctor does 

not deliberate whether he shall heal, nor an orator whether he 

shall  persuade. . . . They assume the end and consider how and by 

what means it is attained, and if it seems easily and best produced 

thereby; while if it is achieved by one means only they consider 

how it will be achieved by this and by what means this will be 

achieved, till they come to the first  cause . . . and what is last in the 

order of analysis seems to be first in the order of becoming. And if 

we come on an impossibility, we give up the search, e.g., if we 

need money and this cannot be got; but if a thing appears possible 

we try to do it.12

This passage, one might argue, set the tone for the next  two-  thousand- 

 odd years of Western thought about rationality. It says that the “end”— 

 what the person  wants—  is fixed and given; and it says that the rational 

9780525558613_Human_TX.indd 20 8/7/19 11:21 PM

Not
is is

while if it le if it 

will be achwill be ac

ed, till thed, till th

for
her he he

. They assu. They ass

ttained,ttained,

Dist
rib

uti
on

ept h

n its defints defin

successful uccessful

d to true contrue co

ess of decidss of decid

—and propnd prop

ction wouldion would

nds, but abnds, but a

hallhall



 INTELL IGENCE IN HUMANS AND MACHINES  21

action is one that, according to logical deduction across a sequence of 

actions, “easily and best” produces the end.

Aristotle’s proposal seems reasonable, but it isn’t a complete guide 

to rational behavior. In particular, it omits the issue of uncertainty. In 

the real world, reality has a tendency to intervene, and few actions or 

sequences of actions are truly guaranteed to achieve the intended end. 

For example, it is a rainy Sunday in Paris as I write this sentence, and 

on Tuesday at 2:15 p.m. my flight to Rome leaves from Charles de 

Gaulle Airport, about  forty-  five minutes from my house. I plan to 

leave for the airport around 11:30 a.m., which should give me plenty 

of time, but it probably means at least an hour sitting in the departure 

area. Am I certain to catch the flight? Not at all. There could be huge 

traffic jams, the taxi drivers may be on strike, the taxi I’m in may 

break down or the driver may be arrested after a  high-  speed chase, 

and so on. Instead, I could leave for the airport on Monday, a whole 

day in advance. This would greatly reduce the chance of missing the 

flight, but the prospect of a night in the departure lounge is not an 

appealing one. In other words, my plan involves a  trade-  off between 

the certainty of success and the cost of ensuring that degree of cer-

tainty. The following plan for buying a house involves a similar  trade- 

 off: buy a lottery ticket, win a million dollars, then buy the house. 

This plan “easily and best” produces the end, but it’s not very likely to 

succeed. The difference between this harebrained  house-  buying plan 

and my sober and sensible airport plan is, however, just a matter of 

degree. Both are gambles, but one seems more rational than the other.

It turns out that gambling played a central role in generalizing Ar-

istotle’s proposal to account for uncertainty. In the 1560s, the Italian 

mathematician Gerolamo Cardano developed the first mathemati-

cally precise theory of  probability—  using dice games as his main ex-

ample. (Unfortunately, his work was not published until 1663.13) In 

the seventeenth century, French thinkers including Antoine Arnauld 

and Blaise Pascal  began—  for assuredly mathematical  reasons—  to 
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22 HUMAN COMPATIBLE

study the question of rational decisions in gambling.14 Consider the 

following two bets:

A: 20 percent chance of winning $10

B: 5 percent chance of winning $100

The proposal the mathematicians came up with is probably the same 

one you would come up with: compare the expected values of the bets, 

which means the average amount you would expect to get from each 

bet. For bet A, the expected value is 20 percent of $10, or $2. For bet 

B, the expected value is 5 percent of $100, or $5. So bet B is better, 

according to this theory. The theory makes sense, because if the same 

bets are offered over and over again, a bettor who follows the rule ends 

up with more money than one who doesn’t.

In the eighteenth century, the Swiss mathematician Daniel Ber-

noulli noticed that this rule didn’t seem to work well for larger amounts 

of money.15 For example, consider the following two bets:

A: 100 percent chance of getting $10,000,000  

(expected value $10,000,000)

B: 1 percent chance of getting $1,000,000,100  

(expected value $10,000,001)

Most readers of this book, as well as its author, would prefer bet A to 

bet B, even though the  expected-  value rule says the opposite! Ber-

noulli posited that bets are evaluated not according to expected mon-

etary value but according to expected utility.  Utility—  the property of 

being useful or beneficial to a  person—  was, he suggested, an internal, 

subjective quantity related to, but distinct from, monetary value. In 

particular, utility exhibits diminishing returns with respect to money. 

This means that the utility of a given amount of money is not strictly 

proportional to the amount but grows more slowly. For example, the 

utility of having $1,000,000,100 is much less than a hundred times 
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the utility of having $10,000,000. How much less? You can ask your-

self! What would the odds of winning a billion dollars have to be for 

you to give up a guaranteed ten million? I asked this question of the 

graduate students in my class and their answer was around 50 percent, 

meaning that bet B would have an expected value of $500 million to 

match the desirability of bet A. Let me say that again: bet B would 

have an expected dollar value fifty times greater than bet A, but the 

two bets would have equal utility.

Bernoulli’s introduction of  utility—  an invisible  property—  to ex-

plain human behavior via a mathematical theory was an utterly re-

markable proposal for its time. It was all the more remarkable for the 

fact that, unlike monetary amounts, the utility values of various bets 

and prizes are not directly observable; instead, utilities are to be in-
ferred from the preferences exhibited by an individual. It would be two 

centuries before the implications of the idea were fully worked out 

and it became broadly accepted by statisticians and economists. 

In the middle of the twentieth century, John von Neumann (a 

great mathematician after whom the standard “von Neumann archi-

tecture” for computers was named16) and Oskar Morgenstern pub-

lished an axiomatic basis for utility theory.17 What this means is the 

following: as long as the preferences exhibited by an individual satisfy 

certain basic axioms that any rational agent should satisfy, then neces-
sarily the choices made by that individual can be described as maxi-

mizing the expected value of a utility function. In short, a rational 
agent acts so as to maximize expected utility.

It’s hard to overstate the importance of this conclusion. In many 

ways, artificial intelligence has been mainly about working out the 

details of how to build rational machines.

Let’s look in a bit more detail at the axioms that rational entities 

are expected to satisfy. Here’s one, called transitivity: if you prefer A 

to B and you prefer B to C, then you prefer A to C. This seems pretty 

reasonable! (If you prefer sausage pizza to plain pizza, and you prefer 

plain pizza to pineapple pizza, then it seems reasonable to predict that 
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24 HUMAN COMPATIBLE

you will choose sausage pizza over pineapple pizza.) Here’s another, 

called monotonicity: if you prefer prize A to prize B, and you have a 

choice of lotteries where A and B are the only two possible outcomes, 

you prefer the lottery with the highest probability of getting A rather 

than B. Again, pretty reasonable.

Preferences are not just about pizza and lotteries with monetary 

prizes. They can be about anything at all; in particular, they can be 

about entire future lives and the lives of others. When dealing with 

preferences involving sequences of events over time, there is an addi-

tional assumption that is often made, called stationarity: if two differ-

ent futures A and B begin with the same event, and you prefer A to 

B, you still prefer A to B after the event has occurred. This sounds 

reasonable, but it has a surprisingly strong consequence: the utility of 

any sequence of events is the sum of rewards associated with each 

event (possibly discounted over time, by a sort of mental interest 

rate).18 Although this “utility as a sum of rewards” assumption is 

 widespread—  going back at least to the  eighteenth-  century “hedonic 

calculus” of Jeremy Bentham, the founder of  utilitarianism—  the sta-

tionarity assumption on which it is based is not a necessary property 

of rational agents. Stationarity also rules out the possibility that one’s 

preferences might change over time, whereas our experience indicates 

otherwise.

Despite the reasonableness of the axioms and the importance of 

the conclusions that follow from them, utility theory has been sub-

jected to a continual barrage of objections since it first became widely 

known. Some despise it for supposedly reducing everything to money 

and selfishness. (The theory was derided as “American” by some French 

authors,19 even though it has its roots in France.) In fact, it is perfectly 

rational to want to live a life of  self-  denial, wishing only to reduce the 

suffering of others. Altruism simply means placing substantial weight 

on the  well-  being of others in evaluating any given future.

Another set of objections has to do with the difficulty of obtaining 

the necessary probabilities and utility values and multiplying them 
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together to calculate expected utilities. These objections are simply 

confusing two different things: choosing the rational action and choos-

ing it by calculating expected utilities. For example, if you try to poke 

your eyeball with your finger, your eyelid closes to protect your eye; 

this is rational, but no  expected-  utility calculations are involved. Or 

suppose you are riding a bicycle downhill with no brakes and have a 

choice between crashing into one concrete wall at ten miles per hour 

or another, farther down the hill, at twenty miles per hour; which 

would you prefer? If you chose ten miles per hour, congratulations! 

Did you calculate expected utilities? Probably not. But the choice of 

ten miles per hour is still rational. This follows from two basic as-

sumptions: first, you prefer less severe injuries to more severe injuries, 

and second, for any given level of injuries, increasing the speed of 

 collision increases the probability of exceeding that level. From these 

two assumptions it follows  mathematically—  without considering any 

numbers at  all—  that crashing at ten miles per hour has higher ex-

pected utility than crashing at twenty.20 In summary, maximizing 

 expected utility may not require calculating any expectations or any 

utilities. It’s a purely external description of a rational entity.

Another critique of the theory of rationality lies in the identifica-

tion of the locus of decision making. That is, what things count as 

agents? It might seem obvious that humans are agents, but what about 

families, tribes, corporations, cultures, and  nation-  states? If we exam-

ine social insects such as ants, does it make sense to consider a single 

ant as an intelligent agent, or does the intelligence really lie in the 

colony as a whole, with a kind of composite brain made up of multiple 

ant brains and bodies that are interconnected by pheromone signaling 

instead of electrical signaling? From an evolutionary point of view, this 

may be a more productive way of thinking about ants, since the ants 

in a given colony are typically closely related. As individuals, ants and 

other social insects seem to lack an instinct for  self-  preservation as 

distinct from colony preservation: they will always throw themselves 

into battle against invaders, even at suicidal odds. Yet sometimes 
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humans will do the same even to defend unrelated humans; it is as if 

the species benefits from the presence of some fraction of individuals 

who are willing to sacrifice themselves in battle, or to go off on wild, 

speculative voyages of exploration, or to nurture the offspring of oth-

ers. In such cases, an analysis of rationality that focuses entirely on the 

individual is clearly missing something essential.

The other principal objections to utility theory are empirical—

that is, they are based on experimental evidence suggesting that hu-

mans are  irrational. We fail to conform to the  axioms in systematic 

ways.21 It is not my purpose here to defend utility theory as a formal 

model of human behavior. Indeed, humans cannot possibly behave 

rationally. Our preferences extend over the whole of our own future 

lives, the lives of our children and grandchildren, and the lives of oth-

ers, living now or in the future. Yet we cannot even play the right 

moves on the chessboard, a tiny, simple place with  well-  defined rules 

and a very short horizon. This is not because our preferences are irra-

tional but because of the complexity of the decision problem. A great 

deal of our cognitive structure is there to compensate for the mis-

match between our small, slow brains and the incomprehensibly huge 

complexity of the decision problem that we face all the time.

So, while it would be quite unreasonable to base a theory of bene-

ficial AI on an assumption that humans are rational, it’s quite reason-

able to suppose that an adult human has roughly consistent preferences 

over future lives. That is, if you were somehow able to watch two movies, 
each describing in sufficient detail and breadth a future life you might 
lead, such that each constitutes a virtual experience, you could say which 
you prefer, or express indifference.22 

This claim is perhaps stronger than necessary, if our only goal is to 

make sure that sufficiently intelligent machines are not catastrophic 

for the human race. The very notion of catastrophe entails a  definitely- 

 not-  preferred life. For catastrophe avoidance, then, we need claim 

only that adult humans can recognize a catastrophic future when it is 

spelled out in great detail. Of course, human preferences have a much 
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more  fine-  grained and, presumably, ascertainable structure than just 

“ non-  catastrophes are better than catastrophes.”

A theory of beneficial AI can, in fact, accommodate inconsistency 

in human preferences, but the inconsistent part of your preferences 

can never be satisfied and there’s nothing AI can do to help. Suppose, 

for example, that your preferences for pizza violate the axiom of 

transitivity:

ROBOT: Welcome home! Want some pineapple pizza?

YOU: No, you should know I prefer plain pizza to pineapple.

ROBOT: OK, one plain pizza coming up!

YOU: No thanks, I like sausage pizza better.

ROBOT: So sorry, one sausage pizza!

YOU: Actually, I prefer pineapple to sausage.

ROBOT: My mistake, pineapple it is!

YOU: I already said I like plain better than pineapple.

There is no pizza the robot can serve that will make you happy 

because there’s always another pizza you would prefer to have. A ro-

bot can satisfy only the consistent part of your preferences—for exam-

ple, let’s say you prefer all three kinds of pizza to no pizza at all. In 

that case, a helpful robot could give you any one of the three pizzas, 

thereby satisfying your preference to avoid “no pizza” while leaving 

you to contemplate your annoyingly inconsistent pizza topping prefer-

ences at leisure.

Rationality for two

The basic idea that a rational agent acts so as to maximize ex-

pected utility is simple enough, even if actually doing it is impossibly 

complex. The theory applies, however, only in the case of a single 

agent acting alone. With more than one agent, the notion that it’s 

 possible—  at least in  principle—  to assign probabilities to the different 
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28 HUMAN COMPATIBLE

outcomes of one’s actions becomes problematic. The reason is that 

now there’s a part of the  world—  the other  agent—  that is trying to 

 second-  guess what action you’re going to do, and vice versa, so it’s not 

obvious how to assign probabilities to how that part of the world is 

going to behave. And without probabilities, the definition of rational 

action as maximizing expected utility isn’t applicable.

As soon as someone else comes along, then, an agent will need 

some other way to make rational decisions. This is where game theory 

comes in. Despite its name, game theory isn’t necessarily about games 

in the usual sense; it’s a general attempt to extend the notion of ratio-

nality to situations with multiple agents. This is obviously important 

for our purposes, because we aren’t planning (yet) to build robots that 

live on uninhabited planets in other star systems; we’re going to put 

the robots in our world, which is inhabited by us.

To make it clear why we need game theory, let’s look at a simple ex-

ample: Alice and Bob playing soccer in the back garden (figure 3). Alice 

is about to take a penalty kick and Bob is in goal. Alice is going to shoot 

v

B
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to Bob’s left or to his right. Because she is  right-  footed, it’s a little bit 

easier and more accurate for Alice to shoot to Bob’s right. Because Alice 

has a ferocious shot, Bob knows he has to dive one way or the other right 

 away—  he won’t have time to wait and see which way the ball is going. 

Bob could reason like this: “Alice has a better chance of scoring if she 

shoots to my right, because she’s  right-  footed, so she’ll choose that, so 

I’ll dive right.” But Alice is no fool and can imagine Bob thinking this 

way, in which case she will shoot to Bob’s left. But Bob is no fool and can 

imagine Alice thinking this way, in which case he will dive to his left. 

But Alice is no fool and can imagine Bob thinking this  way. . . . OK, you 

get the idea. Put another way: if there is a rational choice for Alice, Bob 

can figure it out too, anticipate it, and stop Alice from scoring, so the 

choice couldn’t have been rational in the first place.

As early as  1713—  once again, in the analysis of gambling  games—  a 

solution was found to this conundrum.23 The trick is not to choose any 

one action but to choose a randomized strategy. For example, Alice can 

choose the strategy “shoot to Bob’s right with probability 55 percent 

and shoot to his left with probability 45 percent.” Bob could choose 

“dive right with probability 60 percent and left with probability 40 

percent.” Each mentally tosses a suitably biased coin just before act-

ing, so they don’t give away their intentions. By acting unpredictably, 

Alice and Bob avoid the contradictions of the preceding paragraph. 

Even if Bob works out what Alice’s randomized strategy is, there’s not 

much he can do about it without a crystal ball.

The next question is, What should the probabilities be? Is Alice’s 

choice of 55  percent–  45 percent rational? The specific values depend 

on how much more accurate Alice is when shooting to Bob’s right, 

how good Bob is at saving the shot when he dives the right way, and so 

on. (See the notes for the complete analysis.24) The general criterion is 

very simple, however:

1. Alice’s strategy is the best she can devise, assuming that Bob’s 

is fixed.
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30 HUMAN COMPATIBLE

2. Bob’s strategy is the best he can devise, assuming that Alice’s 

is fixed.

If both conditions are satisfied, we say that the strategies are in 

equilibrium. This kind of equilibrium is called a Nash equilibrium in 

honor of John Nash, who, in 1950 at the age of  twenty-  two, proved 

that such an equilibrium exists for any number of agents with any ra-

tional preferences and no matter what the rules of the game might be. 

After several decades’ struggle with schizophrenia, Nash eventually 

recovered and was awarded the Nobel Memorial Prize in Economics 

for this work in 1994.

For Alice and Bob’s soccer game, there is only one equilibrium. In 

other cases, there may be several, so the concept of Nash equilibria, 

unlike that of  expected-  utility decisions, does not always lead to a 

unique recommendation for how to behave.

Worse still, there are situations in which the Nash equilibrium seems 

to lead to highly undesirable outcomes. One such case is the famous 

prisoner’s dilemma, so named by Nash’s PhD adviser, Albert Tucker, in 

1950.25 The game is an abstract model of those  all-  too-  common  real- 

 world situations where mutual cooperation would be better for all 

concerned but people nonetheless choose mutual destruction.

The prisoner’s dilemma works as follows: Alice and Bob are sus-

pects in a crime and are being interrogated separately. Each has a 

choice: to confess to the police and rat on his or her accomplice, or 

to refuse to talk.26 If both refuse, they are convicted on a lesser 

charge and serve two years; if both confess, they are convicted on a 

more serious charge and serve ten years; if one confesses and the other 

refuses, the one who confesses goes free and the accomplice serves 

twenty years.

Now, Alice reasons as follows: “If Bob is going to confess, then I 

should confess too (ten years is better than twenty); if he is going to 

refuse, then I should confess (going free is better than spending two 

years in prison); so either way, I should confess.” Bob reasons the same 
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way. Thus, they both end up confessing to their crimes and serving ten 

years, even though by jointly refusing they could have served only two 

years. The problem is that joint refusal isn’t a Nash equilibrium,  because 

each has an incentive to defect and go free by confessing.

Note that Alice could have reasoned as follows: “Whatever reason-

ing I do, Bob will also do. So we’ll end up choosing the same thing. 

Since joint refusal is better than joint confession, we should refuse.” 

This form of reasoning acknowledges that, as rational agents, Alice 

and Bob will make choices that are correlated rather than indepen-

dent. It’s just one of many approaches that game theorists have tried 

in their efforts to obtain less depressing solutions to the prisoner’s 

dilemma.27

Another famous example of an undesirable equilibrium is the trag-
edy of the commons, first analyzed in 1833 by the English economist 

William Lloyd28 but named, and brought to global attention, by the 

ecologist Garrett Hardin in 1968.29 The tragedy arises when several 

people can consume a shared  resource—  such as common grazing land 

or fish  stocks—  that replenishes itself slowly. Absent any social or legal 

constraints, the only Nash equilibrium among selfish ( non-  altruistic) 

agents is for each to consume as much as possible, leading to rapid 

collapse of the resource. The ideal solution, where everyone shares the 

resource such that the total consumption is sustainable, is not an equi-

librium because each individual has an incentive to cheat and take 

more than their fair  share—  imposing the costs on others. In practice, 

of course, humans do sometimes avoid this tragedy by setting up 

mechanisms such as quotas and punishments or pricing schemes. 

They can do this because they are not limited to deciding how much 

to consume; they can also decide to communicate. By enlarging the 

decision problem in this way, we find solutions that are better for 

everyone.

These examples, and many others, illustrate the fact that extend-

ing the theory of rational decisions to multiple agents produces many 

interesting and complex behaviors. It’s also extremely important 
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32 HUMAN COMPATIBLE

because, as should be obvious, there is more than one human being. 

And soon there will be intelligent machines too. Needless to say, we 

have to achieve mutual cooperation, resulting in benefit to humans, 

rather than mutual destruction.

Computers

Having a reasonable definition of intelligence is the first ingredient in 

creating intelligent machines. The second ingredient is a machine in 

which that definition can be realized. For reasons that will soon be-

come obvious, that machine is a computer. It could have been some-

thing  different—  for example, we might have tried to make intelligent 

machines out of complex chemical reactions or by hijacking biological 

 cells30—  but devices built for computation, from the very earliest me-

chanical calculators onwards, have always seemed to their inventors to 

be the natural home for intelligence.

We are so used to computers now that we barely notice their ut-

terly incredible powers. If you have a laptop or a desktop or a smart 

phone, look at it: a small box, with a way to type characters. Just by 

typing, you can create programs that turn the box into something 

new, perhaps something that magically synthesizes moving images of 

oceangoing ships hitting icebergs or alien planets with tall blue people; 

type some more, and it translates English into Chinese; type some 

more, and it listens and speaks; type some more, and it defeats the 

world chess champion.

This ability of a single box to carry out any process that you 

can imagine is called universality, a concept first introduced by Alan 

Turing in 1936.31 Universality means that we do not need separate 

machines for arithmetic, machine translation, chess, speech under-

standing, or animation: one machine does it all. Your laptop is essen-

tially identical to the vast server farms run by the world’s largest IT 

 companies—  even those equipped with fancy,  special-  purpose tensor 
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processing units for machine learning. It’s also essentially identical to 

all future computing devices yet to be invented. The laptop can do 

exactly the same tasks, provided it has enough memory; it just takes a 

lot longer.

Turing’s paper introducing universality was one of the most im-

portant ever written. In it, he described a simple computing device 

that could accept as input the description of any other computing de-

vice, together with that second device’s input, and, by simulating the 

operation of the second device on its input, produce the same output 

that the second device would have produced. We now call this first 

device a universal Turing machine. To prove its universality, Turing in-

troduced precise definitions for two new kinds of mathematical ob-

jects: machines and programs. Together, the machine and program 

define a sequence of  events—  specifically, a sequence of state changes 

in the machine and its memory.

In the history of mathematics, new kinds of objects occur quite 

rarely. Mathematics began with numbers at the dawn of recorded his-

tory. Then, around 2000 BCE, ancient Egyptians and Babylonians 

worked with geometric objects (points, lines, angles, areas, and so on). 

Chinese mathematicians introduced matrices during the first millen-

nium BCE, while sets as mathematical objects arrived only in the 

nineteenth century. Turing’s new  objects—  machines and  programs— 

 are perhaps the most powerful mathematical objects ever invented. It 

is ironic that the field of mathematics largely failed to recognize this, 

and from the 1940s onwards, computers and computation have been 

the province of engineering departments in most major universities.

The field that  emerged—  computer  science—  exploded over the 

next seventy years, producing a vast array of new concepts, designs, 

methods, and applications, as well as seven of the eight most valuable 

companies in the world.

The central concept in computer science is that of an algorithm, 

which is a precisely specified method for computing something. Algo-

rithms are, by now, familiar parts of everyday life: a  square-  root 
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algorithm in a pocket calculator receives a number as input and re-

turns the square root of that number as output; a  chess-  playing algo-

rithm takes a chess position and returns a move; a  route-  finding 

algorithm takes a start location, a goal location, and a street map and 

returns the fastest route from start to goal. Algorithms can be de-

scribed in English or in mathematical notation, but to be implemented 

they must be coded as programs in a programming language. More 

complex algorithms can be built by using simpler ones as building 

blocks called subroutines—for example, a  self-  driving car might use a 

 route-  finding algorithm as a subroutine so that it knows where to go. 

In this way, software systems of immense complexity are built up, 

layer by layer.

Computer hardware matters because faster computers with more 

memory allow algorithms to run more quickly and to handle more 

information. Progress in this area is well known but still  mind- 

 boggling. The first commercial electronic programmable computer, 

the Ferranti Mark I, could execute about a thousand (103) instructions 

per second and had about a thousand bytes of main memory. The fast-

est computer as of early 2019, the Summit machine at the Oak Ridge 

National Laboratory in Tennessee, executes about 1018 instructions 

per second (a thousand trillion times faster) and has 2.5 × 1017 bytes of 

memory (250 trillion times more). This progress has resulted from 

advances in electronic devices and even in the underlying physics, al-

lowing an incredible degree of miniaturization.

Although comparisons between computers and brains are not es-

pecially meaningful, the numbers for Summit slightly exceed the raw 

capacity of the human brain, which, as noted previously, has about 

1015 synapses and a “cycle time” of about one hundredth of a second, 

for a theoretical maximum of about 1017 “operations” per second. The 

biggest difference is power consumption: Summit uses about a million 

times more power.

Moore’s law, an empirical observation that the number of electronic 

components on a chip doubles every two years, is expected to continue 
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until 2025 or so, although at a slightly slower rate. For some years, 

speeds have been limited by the large amount of heat generated by the 

fast switching of silicon transistors; moreover, circuit sizes cannot get 

much smaller because the wires and connectors are (as of 2019) no 

more than  twenty-  five atoms wide and five to ten atoms thick. Beyond 

2025, we will need to use more exotic physical  phenomena—  including 

negative capacitance devices,32  single-  atom transistors, graphene nano-

tubes, and  photonics—  to keep Moore’s law (or its successor) going.

Instead of just speeding up  general-  purpose computers, another 

possibility is to build  special-  purpose devices that are customized to 

perform just one class of computations. For example, Google’s tensor 

processing units (TPUs) are designed to perform the calculations re-

quired for certain machine learning algorithms. One TPU pod (2018 

version) performs roughly 1017 calculations per  second—  nearly as much 

as the Summit  machine—  but uses about one hundred times less 

power and is one hundred times smaller. Even if the underlying chip 

technology remains roughly constant, these kinds of machines can 

simply be made larger and larger to provide vast quantities of raw 

computational power for AI systems.

Quantum computation is a different kettle of fish. It uses the 

strange properties of  quantum-  mechanical wave functions to achieve 

something remarkable: with twice the amount of quantum hardware, 

you can do more than twice the amount of computation! Very roughly, 

it works like this:33 Suppose you have a tiny physical device that stores 

a quantum bit, or qubit. A qubit has two possible states, 0 and 1. 

Whereas in classical physics the qubit device has to be in one of the 

two states, in quantum physics the wave function that carries informa-

tion about the qubit says that it is in both states simultaneously. If you 

have two qubits, there are four possible joint states: 00, 01, 10, and 11. 

If the wave function is coherently entangled across the two qubits, 

meaning that no other physical processes are there to mess it up, then 

the two qubits are in all four states simultaneously. Moreover, if the 

two qubits are connected into a quantum circuit that performs some 

M 9780525558613_Human_TX.indd 35 8/7/19 11:21 PM

Not
ies e

emarkablemarkabl

do more thamore tha
ike thisike this

bb

for
for AI A

putation isputation i

off qquanuan

Dist
rib

uti
on
e cu

ple, Google, Goog

rm the calcm the calc

hms. One Ts. One 

ns per ns per sseconecon

about onbout on

smaller. Evmaller. Ev

constant, tconstant,

d larger tod larger t

ysteyste
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calculation, then the calculation proceeds with all four states simulta-

neously. With three qubits, you get eight states processed simultane-

ously, and so on. Now, there are some physical limitations so that the 

amount of work that gets done is less than exponential in the number 

of qubits,34 but we know that there are important problems for which 

quantum computation is provably more efficient than any classical 

computer.

As of 2019, there are experimental prototypes of small quantum 

processors in operation with a few tens of qubits, but there are no in-

teresting computing tasks for which a quantum processor is faster 

than a classical computer. The main difficulty is decoherence— 

processes such as thermal noise that mess up the coherence of the 

 multi-  qubit wave function. Quantum scientists hope to solve the 

decoherence problem by introducing error correction circuitry, so that 

any error that occurs in the computation is quickly detected and cor-

rected by a kind of voting process. Unfortunately,  error-  correcting 

systems require far more qubits to do the same work: while a quantum 

machine with a few hundred perfect qubits would be very powerful 

compared to existing classical computers, we will probably need a few 

million  error-  correcting qubits to actually realize those computations. 

Going from a few tens to a few million qubits will take quite a few 

years. If, eventually, we get there, that would completely change the 

picture of what we can do by sheer  brute-  force computation.35 Rather 

than waiting for real conceptual advances in AI, we might be able to 

use the raw power of quantum computation to bypass some of the 

barriers faced by current “unintelligent” algorithms.

The limits of computation

Even in the 1950s, computers were described in the popular press 

as “ super-  brains” that were “faster than Einstein.” So can we say now, 

finally, that computers are as powerful as the human brain? No. Fo-

cusing on raw computing power misses the point entirely. Speed alone 
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won’t give us AI. Running a poorly designed algorithm on a faster 

computer doesn’t make the algorithm better; it just means you get the 

wrong answer more quickly. (And with more data there are more op-

portunities for wrong answers!) The principal effect of faster ma-

chines has been to make the time for experimentation shorter, so that 

research can progress more quickly. It’s not hardware that is holding 

AI back; it’s software. We don’t yet know how to make a machine re-

ally  intelligent—  even if it were the size of the universe.

Suppose, however, that we do manage to develop the right kind of 

AI software. Are there any limits placed by physics on how powerful 

a computer can be? Will those limits prevent us from having enough 

computing power to create real AI? The answers seem to be yes, there 

are limits, and no, there isn’t a ghost of a chance that the limits will 

prevent us from creating real AI. MIT physicist Seth Lloyd has esti-

mated the limits for a  laptop-  sized computer, based on considerations 

from quantum theory and entropy.36 The numbers would raise even 

Carl Sagan’s eyebrows: 1051 operations per second and 1030 bytes of 

memory, or approximately a billion trillion trillion times faster and 

four trillion times more memory than  Summit—  which, as noted pre-

viously, has more raw power than the human brain. Thus, when one 

hears suggestions that the human mind represents an upper limit on 

what is physically achievable in our universe,37 one should at least ask 

for further clarification.

Besides limits imposed by physics, there are other limits on the 

abilities of computers that originate in the work of computer scien-

tists. Turing himself proved that some problems are undecidable by 

any computer: the problem is well defined, there is an answer, but 

there cannot exist an algorithm that always finds that answer. He gave 

the example of what became known as the halting problem: Can an 

algorithm decide if a given program has an “infinite loop” that pre-

vents it from ever finishing? 38

Turing’s proof that no algorithm can solve the halting problem39 is 

incredibly important for the foundations of mathematics, but it seems 
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to have no bearing on the issue of whether computers can be intelli-

gent. One reason for this claim is that the same basic limitation seems 

to apply to the human brain. Once you start asking a human brain to 

perform an exact simulation of itself simulating itself simulating itself, 

and so on, you’re bound to run into difficulties. I, for one, have never 

worried about my inability to do this.

Focusing on decidable problems, then, seems not to place any real 

restrictions on AI. It turns out, however, that decidable doesn’t mean 

easy. Computer scientists spend a lot of time thinking about the com-
plexity of problems, that is, the question of how much computation is 

needed to solve a problem by the most efficient method. Here’s an 

easy problem: given a list of a thousand numbers, find the biggest 

number. If it takes one second to check each number, then it takes a 

thousand seconds to solve this problem by the obvious method of 

checking each in turn and keeping track of the biggest. Is there a faster 

method? No, because if a method didn’t check some number in the 

list, that number might be the biggest, and the method would fail. So, 

the time to find the largest element is proportional to the size of the 

list. A computer scientist would say the problem has linear complex-

ity, meaning that it’s very easy; then she would look for something 

more interesting to work on.

What gets theoretical computer scientists excited is the fact that 

many problems appear40 to have exponential complexity in the worst 

case. This means two things: first, all the algorithms we know about 

require exponential  time—  that is, an amount of time exponential in 

the size of the  input—  to solve at least some problem instances; sec-

ond, theoretical computer scientists are pretty sure that more efficient 

algorithms do not exist.

Exponential growth in difficulty means that problems may be 

solvable in theory (that is, they are certainly decidable) but sometimes 

unsolvable in practice; we call such problems intractable. An example 

is the problem of deciding whether a given map can be colored with 

just three colors, so that no two adjacent regions have the same color. 
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(It is well known that coloring with four different colors is always 

possible.) With a million regions, it may be that there are some cases 

(not all, but some) that require something like 21000 computational 

steps to find the answer, which means about 10275 years on the Sum-

mit supercomputer or a mere 10242 years on Seth Lloyd’s  ultimate- 

 physics laptop. The age of the universe, about 1010 years, is a tiny blip 

compared to this.

Does the existence of intractable problems give us any reason to 

think that computers cannot be as intelligent as humans? No. There is 

no reason to suppose that humans can solve intractable problems 

 either. Quantum computation helps a bit (whether in machines or 

brains), but not enough to change the basic conclusion.

Complexity means that the  real-  world decision  problem—  the 

problem of deciding what to do right now, at every instant in one’s 

 life—  is so difficult that neither humans nor computers will ever come 

close to finding perfect solutions.

This has two consequences: first, we expect that, most of the time, 

 real-  world decisions will be at best halfway decent and certainly far 

from optimal; second, we expect that a great deal of the mental archi-
tecture of humans and  computers—  the way their decision processes 

actually  operate—  will be designed to overcome complexity to the ex-

tent possible—that is, to make it possible to find even halfway decent 

answers despite the overwhelming complexity of the world. Finally, 

we expect that the first two consequences will remain true no matter 

how intelligent and powerful some future machine may be. The ma-

chine may be far more capable than us, but it will still be far from 

perfectly rational.

Intelligent Computers

The development of logic by Aristotle and others made available pre-

cise rules for rational thought, but we do not know whether Aristotle 
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40 HUMAN COMPATIBLE

ever contemplated the possibility of machines that implemented these 

rules. In the thirteenth century, the influential Catalan philosopher, 

seducer, and mystic Ramon Llull came much closer: he actually made 

paper wheels inscribed with symbols, by means of which he could 

generate logical combinations of assertions. The great  seventeenth- 

 century French mathematician Blaise Pascal was the first to develop a 

real and practical mechanical calculator. Although it could only add 

and subtract and was used mainly in his father’s  tax-  collecting office, 

it led Pascal to write, “The arithmetical machine produces effects 

which appear nearer to thought than all the actions of animals.”

Technology took a dramatic leap forward in the nineteenth cen-

tury when the British mathematician and inventor Charles Babbage 

designed the Analytical Engine, a programmable universal machine in 

the sense defined later by Turing. He was helped in his work by Ada, 

Countess of Lovelace, daughter of the romantic poet and adventurer 

Lord Byron. Whereas Babbage hoped to use the Analytical Engine 

to compute accurate mathematical and astronomical tables, Lovelace 

understood its true potential,41 describing it in 1842 as “a thinking 

 or . . . a reasoning machine” that could reason about “all subjects in the 

universe.” So, the basic conceptual elements for creating AI were in 

place! From that point, surely, AI would be just a matter of  time. . . . 

A long time,  unfortunately—  the Analytical Engine was never 

built, and Lovelace’s ideas were largely forgotten. With Turing’s theo-

retical work in 1936 and the subsequent impetus of World War II, 

universal computing machines were finally realized in the 1940s. 

Thoughts about creating intelligence followed immediately. Turing’s 

1950 paper, “Computing Machinery and Intelligence,” 42 is the best 

known of many early works on the possibility of intelligent machines. 

Skeptics were already asserting that machines would never be able to 

do X, for almost any X you could think of, and Turing refuted those 

assertions. He also proposed an operational test for intelligence, called 

the imitation game, which subsequently (in simplified form) became 

known as the Turing test. The test measures the behavior of the 
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 machine—  specifically, its ability to fool a human interrogator into 

thinking that it is human.

The imitation game serves a specific role in Turing’s paper—namely 

as a thought experiment to deflect skeptics who supposed that ma-

chines could not think in the right way, for the right reasons, with the 

right kind of awareness. Turing hoped to redirect the argument to-

wards the issue of whether a machine could behave in a certain way; 

and if it  did—  if it was able, say, to discourse sensibly on Shakespeare’s 

sonnets and their  meanings—  then skepticism about AI could not 

 really be sustained. Contrary to common interpretations, I doubt that 

the test was intended as a true definition of intelligence, in the sense 

that a machine is intelligent if and only if it passes the Turing test. 

Indeed, Turing wrote, “May not machines carry out something which 

ought to be described as thinking but which is very different from 

what a man does?” Another reason not to view the test as a definition 

for AI is that it’s a terrible definition to work with. And for that rea-

son, mainstream AI researchers have expended almost no effort to 

pass the Turing test.

The Turing test is not useful for AI because it’s an informal and 

highly contingent definition: it depends on the enormously com-

plicated and largely unknown characteristics of the human mind, 

which derive from both biology and culture. There is no way to “un-

pack” the definition and work back from it to create machines that 

will provably pass the test. Instead, AI has focused on rational behav-

ior, just as described previously: a machine is intelligent to the extent 

that what it does is likely to achieve what it wants, given what it has 

perceived.

Initially, like Aristotle, AI researchers identified “what it wants” 

with a goal that is either satisfied or not. These goals could be in toy 

worlds like the 15- puzzle, where the goal is to get all the numbered 

tiles lined up in order from 1 to 15 in a little (simulated) square tray; 

or they might be in real, physical environments: in the early 1970s, the 

Shakey robot at SRI in California was pushing large blocks into 
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42 HUMAN COMPATIBLE

desired configurations, and Freddy at the University of Edinburgh was 

assembling a wooden boat from its component pieces. All this work 

was done using logical  problem-  solvers and planning systems to con-

struct and execute guaranteed plans to achieve goals.43

By the 1980s, it was clear that logical reasoning alone could not 

suffice, because, as noted previously, there is no plan that is guaranteed 

to get you to the airport. Logic requires certainty, and the real world 

simply doesn’t provide it. Meanwhile, the  Israeli-  American computer 

scientist Judea Pearl, who went on to win the 2011 Turing Award, had 

been working on methods for uncertain reasoning based in probability 

theory.44 AI researchers gradually accepted Pearl’s ideas; they adopted 

the tools of probability theory and utility theory and thereby con-

nected AI to other fields such as statistics, control theory, economics, 

and operations research. This change marked the beginning of what 

some observers call modern AI.

Agents and environments

The central concept of modern AI is the intelligent  agent— 

 something that perceives and acts. The agent is a process occurring 

over time, in the sense that a stream of perceptual inputs is converted 

into a stream of actions. For example, suppose the agent in question is 

a  self-  driving taxi taking me to the airport. Its inputs might include 

eight RGB cameras operating at thirty frames per second; each frame 

consists of perhaps 7.5 million pixels, each with an image intensity 

value in each of three color channels, for a total of more than five giga-

bytes per second. (The flow of data from the two hundred million 

photoreceptors in the retina is even larger, which partially explains 

why vision occupies such a large fraction of the human brain.) The 

taxi also gets data from an accelerometer one hundred times per sec-

ond, as well as GPS data. This incredible flood of raw data is trans-

formed by the simply gargantuan computing power of billions of 

transistors (or neurons) into smooth, competent driving behavior. The 
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taxi’s actions include the electronic signals sent to the steering wheel, 

brakes, and accelerator, twenty times per second. (For an experienced 

human driver, most of this maelstrom of activity is unconscious: you 

may be aware only of making decisions such as “overtake this slow 

truck” or “stop for gas,” but your eyes, brain, nerves, and muscles are 

still doing all the other stuff.) For a chess program, the inputs are 

mostly just the clock ticks, with the occasional notification of the op-

ponent’s move and the new board state, while the actions are mostly 

doing nothing while the program is thinking, and occasionally choos-

ing a move and notifying the opponent. For a personal digital assis-

tant, or PDA, such as Siri or Cortana, the inputs include not just the 

acoustic signal from the microphone (sampled  forty-  eight thousand 

times per second) and input from the touch screen but also the con-

tent of each Web page that it accesses, while the actions include both 

speaking and displaying material on the screen.

The way we build intelligent agents depends on the nature of the 

problem we face. This, in turn, depends on three things: first, the 

nature of the environment the agent will operate  in—  a chessboard is 

a very different place from a crowded freeway or a mobile phone; sec-

ond, the observations and actions that connect the agent to the 

 environment—  for example, Siri might or might not have access to the 

phone’s camera so that it can see; and third, the agent’s  objective— 

 teaching the opponent to play better chess is a very different task from 

winning the game.

To give just one example of how the design of the agent depends 

on these things: If the objective is to win the game, a chess program 

need consider only the current board state and does not need any 

memory of past events.45 The chess tutor, on the other hand, should 

continually update its model of which aspects of chess the pupil does 

or does not understand so that it can provide useful advice. In other 

words, for the chess tutor, the pupil’s mind is a relevant part of the 

 environment. Moreover, unlike the board, it is a part of the environ-

ment that is not directly observable.
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44 HUMAN COMPATIBLE

The characteristics of problems that influence the design of agents 

include at least the following:46

• whether the environment is fully observable (as in chess, where 

the inputs provide direct access to all the relevant aspects of 

the current state of the environment) or partially observable 

(as in driving, where one’s field of view is limited, vehicles are 

opaque, and other drivers’ intentions are mysterious);

• whether the environment and actions are discrete (as in chess) 

or effectively continuous (as in driving);

• whether the environment contains other agents (as in chess 

and driving) or not (as in finding the shortest routes on a map);

• whether the outcomes of actions, as specified by the “rules” or 

“physics” of the environment, are predictable (as in chess) or 

unpredictable (as in traffic and weather), and whether those 

rules are known or unknown;

• whether the environment is dynamically changing, so that the 

time to make decisions is tightly constrained (as in driving) or 

not (as in tax strategy optimization);

• the length of the horizon over which decision quality is mea-

sured according to the  objective—  this may be very short (as in 

emergency braking), of intermediate duration (as in chess, 

where a game lasts up to about one hundred moves), or very 

long (as in driving me to the airport, which might take hun-

dreds of thousands of decision cycles if the taxi is deciding one 

hundred times per second).

As one can imagine, these characteristics give rise to a bewildering 

variety of problem types. Just multiplying the choices listed above gives 

192 types. One can find  real-  world problem instances for all the types. 

Some types are typically studied in areas outside AI—for  example, 

 designing an autopilot that maintains level flight is a  short-  horizon, 
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continuous, dynamic problem that is usually studied in the field of con-

trol theory.

Obviously some problem types are easier than others. AI has made 

a lot of progress on problems such as board games and puzzles that are 

observable, discrete, deterministic, and have known rules. For the eas-

ier problem types, AI researchers have developed fairly general and 

effective algorithms and a solid theoretical understanding; often, ma-

chines exceed human performance on these kinds of problems. We 

can tell that an algorithm is general because we have mathematical 

proofs that it gives optimal or  near-  optimal results with reasonable 

computational complexity across an entire class of problems, and be-

cause it works well in practice on those kinds of problems without 

needing any  problem-  specific modifications.

Video games such as StarCraft are quite a bit harder than board 

games: they involve hundreds of moving parts and time horizons of 

thousands of steps, and the board is only partially visible at any given 

time. At each point, a player might have a choice of at least 1050 moves, 

compared to about 102 in Go.47 On the other hand, the rules are 

known and the world is discrete with only a few types of objects. As 

of early 2019, machines are as good as some professional StarCraft 

players but not yet ready to challenge the very best humans.48 More 

important, it took a fair amount of  problem-  specific effort to reach 

that point;  general-  purpose methods are not quite ready for StarCraft.

Problems such as running a government or teaching molecular bi-

ology are much harder. They have complex, mostly unobservable envi-

ronments (the state of a whole country, or the state of a student’s 

mind), far more objects and types of objects, no clear definition of 

what the actions are, mostly unknown rules, a great deal of uncer-

tainty, and very long time scales. We have ideas and  off-  the-  shelf tools 

that address each of these characteristics separately but, as yet, no 

general methods that cope with all the characteristics simultaneously. 

When we build AI systems for these kinds of tasks, they tend to 
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46 HUMAN COMPATIBLE

require a great deal of  problem-  specific engineering and are often very 

brittle.

Progress towards generality occurs when we devise methods that 

are effective for harder problems within a given type or methods that 

require fewer and weaker assumptions so they are applicable to more 

problems.  General-  purpose AI would be a method that is applicable 

across all problem types and works effectively for large and difficult 

instances while making very few assumptions. That’s the ultimate 

goal of AI research: a system that needs no  problem-  specific engineer-

ing and can simply be asked to teach a molecular biology class or run 

a government. It would learn what it needs to learn from all the avail-

able resources, ask questions when necessary, and begin formulating 

and executing plans that work.

Such a  general-  purpose method does not yet exist, but we are 

moving closer. Perhaps surprisingly, a lot of this progress towards gen-

eral AI results from research that isn’t about building scary,  general- 

 purpose AI systems. It comes from research on tool AI or narrow AI, 
meaning nice, safe, boring AI systems designed for particular prob-

lems such as playing Go or recognizing handwritten digits. Research 

on this kind of AI is often thought to present no risk because it’s 

 problem-  specific and nothing to do with  general-  purpose AI.

This belief results from a misunderstanding of what kind of work 

goes into these systems. In fact, research on tool AI can and often does 

produce progress towards  general-  purpose AI, particularly when it is 

done by researchers with good taste attacking problems that are be-

yond the capabilities of current general methods. Here, good taste 
means that the solution approach is not merely an ad hoc encoding of 

what an intelligent person would do in  such-  and-  such situation but an 

attempt to provide the machine with the ability to figure out the solu-

tion for itself.

For example, when the AlphaGo team at Google DeepMind suc-

ceeded in creating their  world-  beating Go program, they did this with-
out really working on Go. What I mean by this is that they didn’t write 
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a whole lot of Go- specific code saying what to do in different kinds 

of Go situations. They didn’t design decision procedures that work 

only for Go. Instead, they made improvements to two fairly  general- 

 purpose  techniques—  lookahead search to make decisions and rein-

forcement learning to learn how to evaluate  positions—  so that they 

were sufficiently effective to play Go at a superhuman level. Those 

improvements are applicable to many other problems, including prob-

lems as far afield as robotics. Just to rub it in, a version of AlphaGo 

called AlphaZero recently learned to trounce AlphaGo at Go, and 

also to trounce Stockfish (the world’s best chess program, far better 

than any human) and Elmo (the world’s best shogi program, also bet-

ter than any human). AlphaZero did all this in one day.49

There was also substantial progress towards  general-  purpose AI in 

research on recognizing handwritten digits in the 1990s. Yann Le-

Cun’s team at AT& T Labs didn’t write special algorithms to recognize 

“8” by searching for curvy lines and loops; instead, they improved on 

existing neural network learning algorithms to produce convolutional 
neural networks. Those networks, in turn, exhibited effective charac-

ter recognition after suitable training on labeled examples. The same 

algorithms can learn to recognize letters, shapes, stop signs, dogs, cats, 

and police cars. Under the headline of “deep learning,” they have rev-

olutionized speech recognition and visual object recognition. They are 

also one of the key components in AlphaZero as well as in most of the 

current  self-  driving car projects.

If you think about it, it’s hardly surprising that progress towards 

general AI is going to occur in narrow- AI projects that address specific 

tasks; those tasks give AI researchers something to get their teeth into. 

(There’s a reason people don’t say, “Staring out the window is the 

mother of invention.”) At the same time, it’s important to understand 

how much progress has occurred and where the boundaries are. When 

AlphaGo defeated Lee Sedol and later all the other top Go players, 

many people assumed that because a machine had learned from 

scratch to beat the human race at a task known to be very difficult 
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48 HUMAN COMPATIBLE

even for highly intelligent humans, it was the beginning of the  end— 

 just a matter of time before AI took over. Even some skeptics may have 

been convinced when AlphaZero won at chess and shogi as well as Go. 

But AlphaZero has hard limitations: it works only in the class of dis-

crete, observable,  two-  player games with known rules. The approach 

simply won’t work at all for driving, teaching, running a government, 

or taking over the world.

These sharp boundaries on machine competence mean that when 

people talk about “machine IQ” increasing rapidly and threatening to 

exceed human IQ, they are talking nonsense. To the extent that the 

concept of IQ makes sense when applied to humans, it’s because hu-

man abilities tend to be correlated across a wide range of cognitive 

activities. Trying to assign an IQ to machines is like trying to get  four- 

 legged animals to compete in a human decathlon. True, horses can run 

fast and jump high, but they have a lot of trouble with  pole-  vaulting 

and throwing the discus.

Objectives and the standard model

Looking at an intelligent agent from the outside, what matters is 

the stream of actions it generates from the stream of inputs it receives. 

From the inside, the actions have to be chosen by an agent program. 

Humans are born with one agent program, so to speak, and that pro-

gram learns over time to act reasonably successfully across a huge 

range of tasks. So far, that is not the case for AI: we don’t know how 

to build one  general-  purpose AI program that does everything, so in-

stead we build different types of agent programs for different types of 

problems. I will need to explain at least a tiny bit about how these 

different agent programs work; more detailed explanations are given 

in the appendices at the end of the book for those who are interested. 

(Pointers to particular appendices are given as superscripts like thisA 

and this.D) The primary focus here is on how the standard model is 
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instantiated in these various kinds of  agents—  in other words, how the 

objective is specified and communicated to the agent.

The simplest way to communicate an objective is in the form of a 

goal. When you get into your  self-  driving car and touch the “home” 

icon on the screen, the car takes this as its objective and proceeds to 

plan and execute a route. A state of the world either satisfies the goal 

(yes, I’m at home) or it doesn’t (no, I don’t live at the San Francisco 

Airport). In the classical period of AI research, before uncertainty 

became a primary issue in the 1980s, most AI research assumed a 

world that was fully observable and deterministic, and goals made 

sense as a way to specify objectives. Sometimes there is also a cost 
function to evaluate solutions, so an optimal solution is one that mini-

mizes total cost while reaching the goal. For the car, this might be 

built  in— perhaps the cost of a route is some fixed combination of the 

time and fuel  consumption—  or the human might have the option of 

specifying the  trade-  off between the two.

The key to achieving such objectives is the ability to “mentally 

simulate” the effects of possible actions, sometimes called lookahead 
search. Your  self-  driving car has an internal map, so it knows that driv-

ing east from San Francisco on the Bay Bridge gets you to Oakland. 

Algorithms originating in the 1960s50 find optimal routes by looking 

ahead and searching through many possible action sequences.A These 

algorithms form a ubiquitous part of modern infrastructure: they pro-

vide not just driving directions but also airline travel solutions, robotic 

assembly, construction planning, and delivery logistics. With some 

modifications to handle the impertinent behavior of opponents, the 

same idea of lookahead applies to games such as  tic-  tac-  toe, chess, and 

Go, where the goal is to win according to the game’s particular defini-

tion of winning.

Lookahead algorithms are incredibly effective for their specific 

tasks, but they are not very flexible. For example, AlphaGo “knows” 

the rules of Go, but only in the sense that it has two subroutines, 
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50 HUMAN COMPATIBLE

written in a traditional programming language such as C++: one sub-

routine generates all the possible legal moves and the other encodes 

the goal, determining whether a given state is won or lost. For  Alpha Go 

to play a different game, someone has to rewrite all this C++ code. 

Moreover, if you give it a new  goal—  say, visiting the exoplanet that 

orbits Proxima  Centauri—  it will explore billions of sequences of Go 

moves in a vain attempt to find a sequence that achieves the goal. It 

cannot look inside the C++ code and determine the obvious: no 

 sequence of Go moves gets you to Proxima Centauri. AlphaGo’s 

knowledge is essentially locked inside a black box.

In 1958, two years after his Dartmouth summer meeting had ini-

tiated the field of artificial intelligence, John McCarthy proposed a 

much more general approach that opens up the black box: writing 

 general-  purpose reasoning programs that can absorb knowledge on 

any topic and reason with it to answer any answerable question.51 One 

particular kind of reasoning would be practical reasoning of the kind 

suggested by Aristotle: “Doing actions A, B,  C, . . . will achieve goal 

G.” The goal could be anything at all: make sure the house is tidy be-

fore I get home, win a game of chess without losing either of your 

knights, reduce my taxes by 50 percent, visit Proxima Centauri, and 

so on. McCarthy’s new class of programs soon became known as 

 knowledge-  based systems.52

To make  knowledge-  based systems possible requires answering 

two questions. First, how can knowledge be stored in a computer? 

Second, how can a computer reason correctly with that knowledge to 

draw new conclusions? Fortunately, ancient Greek  philosophers— 

 particularly  Aristotle—  provided basic answers to these questions long 

before the advent of computers. In fact, it seems quite likely that, had 

Aristotle been given access to a computer (and some electricity, I sup-

pose), he would have been an AI researcher. Aristotle’s answer, reiter-

ated by McCarthy, was to use formal logicB as the basis for knowledge 

and reasoning.
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There are two kinds of logic that really matter in computer sci-

ence. The first, called propositional or Boolean logic, was known to 

the Greeks as well as to ancient Chinese and Indian philosophers. It 

is the same language of AND gates, NOT gates, and so on that makes 

up the circuitry of computer chips. In a very literal sense, a modern 

CPU is just a very large mathematical  expression—  hundreds of mil-

lions of  pages—  written in the language of propositional logic. The 

second kind of logic, and the one that McCarthy proposed to use for 

AI, is called  first-  order logic.B The language of  first-  order logic is far 

more expressive than propositional logic, which means that there are 

things that can be expressed very easily in  first-  order logic that are 

painful or impossible to write in propositional logic. For example, the 

rules of Go take about a page in  first-  order logic but millions of pages 

in propositional logic. Similarly, we can easily express knowledge 

about chess, British citizenship, tax law, buying and selling, moving, 

painting, cooking, and many other aspects of our commonsense world.

In principle, then, the ability to reason with  first-  order logic gets 

us a long way towards  general-  purpose intelligence. In 1930, the bril-

liant Austrian logician Kurt Gödel had published his famous complete-
ness theorem,53 proving that there is an algorithm with the following 

property:54

For any collection of knowledge and any question expressible in  first- 

 order logic, the algorithm will tell us the answer to the question if 

there is one.

This is a pretty incredible guarantee. It means, for example, that 

we can tell the system the rules of Go and it will tell us (if we wait 

long enough) whether there is an opening move that wins the game. 

We can tell it facts about local geography, and it will tell us the way to 

the airport. We can tell it facts about geometry and motion and uten-

sils, and it will tell the robot how to lay the table for dinner. More 
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52 HUMAN COMPATIBLE

generally, given any achievable goal and sufficient knowledge of the 

effects of its actions, an agent can use the algorithm to construct a 

plan that it can execute to achieve the goal.

It must be said that Gödel did not actually provide an algorithm; 

he merely proved that one existed. In the early 1960s, real algorithms 

for logical reasoning began to appear,55 and McCarthy’s dream of gen-

erally intelligent systems based on logic seemed within reach. The 

first major mobile robot project in the world, SRI’s Shakey project, 

was based on logical reasoning (see figure 4). Shakey received a goal 

from its human designers, used vision algorithms to create logical as-

sertions describing the current situation, performed logical inference 

to derive a guaranteed plan to achieve the goal, and then executed the 

plan. Shakey was “living” proof that Aristotle’s analysis of human cog-

nition and action was at least partially correct.

Unfortunately, Aristotle’s (and McCarthy’s) analysis was far from 

being completely correct. The main problem is ignorance—not, I 

FIGURE 

are some of the objects that 

suite of rooms.
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hasten to add, on the part of Aristotle or McCarthy, but on the part of 

all humans and machines, present and future. Very little of our knowl-

edge is absolutely certain. In particular, we don’t know very much 

about the future. Ignorance is just an insuperable problem for a purely 

logical system. If I ask, “Will I get to the airport on time, if I leave 

three hours before my flight?” or “Can I obtain a house by buying a 

winning lottery ticket and then buying the house with the proceeds?” 

the correct answer will be, in each case, “I don’t know.” The reason is 

that, for each question, both yes and no are logically possible. As a 

practical matter, one can never be absolutely certain of any empirical 

question unless the answer is already known.56 Fortunately, certainty 

is completely unnecessary for action: we just need to know which ac-

tion is best, not which action is certain to succeed.

Uncertainty means that the “purpose put into the machine” can-

not, in general, be a precisely delineated goal, to be achieved at all 

costs. There is no longer such a thing as a “sequence of actions that 

achieves the goal,” because any sequence of actions will have multiple 

possible outcomes, some of which won’t achieve the goal. The likeli-

hood of success really matters: leaving for the airport three hours in 

advance of your flight may mean that you won’t miss the flight and 

buying a lottery ticket may mean that you’ll win enough to buy a new 

house, but these are very different mays. Goals cannot be rescued by 

looking for plans that maximize the probability of achieving the goal. 

A plan that maximizes the probability of getting to the airport in time 

to catch a flight might involve leaving home days in advance, organiz-

ing an armed escort, lining up many alternative means of transport in 

case the others break down, and so on. Inevitably, one must take into 

account the relative desirabilities of different outcomes as well as their 

likelihoods.

Instead of a goal, then, we could use a utility function to describe 

the desirability of different outcomes or sequences of states. Often, 

the utility of a sequence of states is expressed as a sum of rewards for 

each of the states in the sequence. Given a purpose defined by a utility 
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54 HUMAN COMPATIBLE

or reward function, the machine aims to produce behavior that maxi-

mizes its expected utility or expected sum of rewards, averaged over 

the possible outcomes weighted by their probabilities. Modern AI is 

partly a rebooting of McCarthy’s dream, except with utilities and 

probabilities instead of goals and logic.

 Pierre-  Simon Laplace, the great French mathematician, wrote in 

1814, “The theory of probabilities is just common sense reduced to 

calculus.” 57 It was not until the 1980s, however, that a practical formal 

language and reasoning algorithms were developed for probabilistic 

knowledge. This was the language of Bayesian networks,C introduced 

by Judea Pearl. Roughly speaking, Bayesian networks are the probabi-

listic cousins of propositional logic. There are also probabilistic cous-

ins of  first-  order logic, including Bayesian logic58 and a wide variety of 

probabilistic programming languages.
Bayesian networks and Bayesian logic are named after the Rever-

end Thomas Bayes, a British clergyman whose lasting contribution to 

modern  thought—  now known as Bayes’  theorem—  was published in 

1763, shortly after his death, by his friend Richard Price.59 In its mod-

ern form, as suggested by Laplace, the theorem describes in a very 

simple way how a prior  probability—  the initial degree of belief one 

has in a set of possible  hypotheses—  becomes a posterior probability as 

a result of observing some evidence. As more new evidence arrives, 

the posterior becomes the new prior and the process of Bayesian up-

dating repeats ad infinitum. This process is so fundamental that the 

modern idea of rationality as maximization of expected utility is 

sometimes called Bayesian rationality. It assumes that a rational agent 

has access to a posterior probability distribution over possible current 

states of the world, as well as over hypotheses about the future, based 

on all its past experience.

Researchers in operations research, control theory, and AI have 

also developed a variety of algorithms for decision making under un-

certainty, some dating back to the 1950s. These so- called “dynamic 

programming” algorithms are the probabilistic cousins of lookahead 
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search and planning and can generate optimal or  near-  optimal behav-

ior for all sorts of practical problems in finance, logistics, transpor-

tation, and so on, where uncertainty plays a significant role.C The 

purpose is put into these machines in the form of a reward function, 

and the output is a policy that specifies an action for every possible 

state the agent could get itself into.

For complex problems such as backgammon and Go, where the 

number of states is enormous and the reward comes only at the end of 

the game, lookahead search won’t work. Instead, AI researchers have 

developed a method called reinforcement learning, or RL for short. RL 

algorithms learn from direct experience of reward signals in the envi-

ronment, much as a baby learns to stand up from the positive reward 

of being upright and the negative reward of falling over. As with dy-

namic programming algorithms, the purpose put into an RL algorithm 

is the reward function, and the algorithm learns an estimator for the 

value of states (or sometimes the value of actions). This estimator can 

be combined with relatively myopic lookahead search to generate 

highly competent behavior.

The first successful reinforcement learning system was Arthur 

Samuel’s checkers program, which created a sensation when it was 

demonstrated on television in 1956. The program learned essentially 

from scratch, by playing against itself and observing the rewards of 

winning and losing.60 In 1992, Gerry Tesauro applied the same idea to 

the game of backgammon, achieving  world-  champion-  level play after 

1,500,000 games.61 Beginning in 2016, DeepMind’s AlphaGo and its 

descendants used reinforcement learning and  self-  play to defeat the 

best human players at Go, chess, and shogi.

Reinforcement learning algorithms can also learn how to select 

actions based on raw perceptual input. For example, DeepMind’s 

DQN system learned to play  forty-  nine different Atari video games 

entirely from  scratch—  including Pong, Freeway, and Space Invaders.62 

It used only the screen pixels as input and the game score as a reward 

signal. In most of the games, DQN learned to play better than a 
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56 HUMAN COMPATIBLE

professional human  player—  despite the fact that DQN has no a priori 

notion of time, space, objects, motion, velocity, or shooting. It is quite 

hard to work out what DQN is actually doing, besides winning.

If a newborn baby learned to play dozens of video games at super-

human levels on its first day of life, or became world champion at Go, 

chess, and shogi, we might suspect demonic possession or alien inter-

vention. Remember, however, that all these tasks are much simpler 

than the real world: they are fully observable, they involve short time 

horizons, and they have relatively small state spaces and simple, pre-

dictable rules. Relaxing any of these conditions means that the stan-

dard methods will fail.

Current research, on the other hand, is aimed precisely at going 

beyond standard methods so that AI systems can operate in larger 

classes of environments. On the day I wrote the preceding paragraph, 

for example, OpenAI announced that its team of five AI programs 

had learned to beat experienced human teams at the game Dota 2. 

(For the uninitiated, who include me: Dota 2 is an updated version of 

Defense of the Ancients, a  real-  time strategy game in the Warcraft fam-

ily; it is currently the most lucrative and competitive e- sport, with 

prizes in the millions of dollars.) Dota 2 involves communication, 

teamwork, and  quasi-  continuous time and space. Games last for tens 

of thousands of time steps, and some degree of hierarchical organiza-

tion of behavior seems to be essential. Bill Gates described the an-

nouncement as “a huge milestone in advancing artificial intelligence.” 63 

A few months later, an updated version of the program defeated the 

world’s top professional Dota 2 team.64

Games such as Go and Dota 2 are a good testing ground for rein-

forcement learning methods because the reward function comes with 

the rules of the game. The real world is less convenient, however, and 

there have been dozens of cases in which faulty definitions of rewards 

led to weird and unanticipated behaviors.65 Some are innocuous, like 

the simulated evolution system that was supposed to evolve  fast- 

 moving creatures but in fact produced creatures that were enormously 
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tall and moved fast by falling over.66 Others are less innocuous, like 

the  social-  media  click-  through optimizers that seem to be making a 

fine mess of our world.

The final category of agent program I will consider is the simplest: 

programs that connect perception directly to action, without any 

 intermediate deliberation or reasoning. In AI, we call this kind of pro-

gram a reflex agent—  a reference to the  low-  level neural reflexes ex-

hibited by humans and animals, which are not mediated by thought.67 

For example, the human blinking reflex connects the outputs of  low- 

 level processing circuits in the visual system directly to the motor area 

that controls the eyelids, so that any rapidly looming region in the vi-

sual field causes a hard blink. You can test it now by trying (not too 

hard) to poke yourself in the eye with your finger. We can think of 

this reflex system as a simple “rule” of the following form:

if <rapidly looming region in visual field> then <blink>.

The blinking reflex does not “know what it’s doing”: the objective 

(of shielding the eyeball from foreign objects) is nowhere represented; 

the knowledge (that a rapidly looming region corresponds to an object 

approaching the eye, and that an object approaching the eye might 

damage it) is nowhere represented. Thus, when the  non-  reflex part of 

you wants to put in eye drops, the reflex part still blinks.

Another familiar reflex is emergency  braking—  when the car in 

front stops unexpectedly or a pedestrian steps into the road. Quickly 

deciding whether braking is required is not easy: when a test vehicle in 

autonomous mode killed a pedestrian in 2018, Uber explained that 

“emergency braking maneuvers are not enabled while the vehicle is 

 under computer control, to reduce the potential for erratic vehicle be-

havior.” 68 Here, the human designer’s objective is  clear—  don’t kill 

 pedestrians—  but the agent’s policy (had it been activated) implements 

it incorrectly. Again, the objective is not represented in the agent: no 

autonomous vehicle today knows that people don’t like to be killed.
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58 HUMAN COMPATIBLE

Reflex actions also play a role in more routine tasks such as staying 

in lane: as the car drifts ever so slightly out of the ideal lane position, 

a simple feedback control system can nudge the steering wheel in the 

opposite direction to correct the drift. The size of the nudge would 

depend on how far the car drifted. These kinds of control systems are 

usually designed to minimize the square of the tracking error added 

up over time. The designer derives a feedback control law that, under 

certain assumptions about speed and road curvature, approximately 

implements this minimization.69 A similar system is operating all the 

time while you are standing up; if it were to stop working, you’d fall 

over within a few seconds. As with the blinking reflex, it’s quite hard 

to turn this mechanism off and allow yourself to fall over.

Reflex agents, then, implement a designer’s objective, but do not 

know what the objective is or why they are acting in a certain way. 

This means they cannot really make decisions for themselves; some-

one else, typically the human designer or perhaps the process of bio-

logical evolution, has to decide everything in advance. It is very hard 

to create a good reflex agent by manual programming except for very 

simple tasks such as  tic-  tac-  toe or emergency braking. Even in those 

cases, the reflex agent is extremely inflexible and cannot change its 

behavior when circumstances indicate that the implemented policy is 

no longer appropriate.

One possible way to create more powerful reflex agents is through 

a process of learning from examples.D Rather than specifying a rule 

for how to behave, or supplying a reward function or a goal, a human 

can supply examples of decision problems along with the correct deci-

sion to make in each case. For example, we can create a French- to- 

English translation agent by supplying examples of French sentences 

along with the correct English translations. (Fortunately, the Cana-

dian and EU parliaments generate millions of such examples every 

year.) Then a supervised learning algorithm processes the examples 

to produce a complex rule that takes any French sentence as input 
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and produces an English translation. The current champion learning 

algorithm for machine translation is a form of so- called deep learning, 

and it produces a rule in the form of an artificial neural network with 

hundreds of layers and millions of parameters.D Other deep learning 

algorithms have turned out to be very good at classifying the objects 

in images and recognizing the words in a speech signal. Machine trans-

lation, speech recognition, and visual object recognition are three of 

the most important subfields in  AI,   which is why there has been so 

much excitement about the prospects for deep learning.

One can argue almost endlessly about whether deep learning will 

lead directly to  human-  level AI. My own view, which I will explain 

later, is that it falls far short of what is needed,D but for now let’s focus 

on how such methods fit into the standard model of AI, where an al-

gorithm optimizes a fixed objective. For deep learning, or indeed for 

any supervised learning algorithm, the “purpose put into the machine” 

is usually to maximize predictive  accuracy—  or, equivalently, to min-

imize error. That much seems obvious, but there are actually two 

ways to understand it, depending on the role that the learned rule is 

going to play in the overall system. The first role is a purely perceptual 

role: the network processes the sensory input and provides informa-

tion to the rest of the system in the form of probability estimates for 

what it’s perceiving. If it’s an object recognition algorithm, maybe it 

says “70 percent probability it’s a Norfolk terrier, 30 percent it’s a Nor-

wich terrier.” 70 The rest of the system decides on an external action to 

take based on this information. This purely perceptual objective is 

unproblematic in the following sense: even a “safe” superintelligent AI 

system, as opposed to an “unsafe” one based on the standard model, 

needs to have its perception system as accurate and well calibrated as 

possible.

The problem comes when we move from a purely perceptual role 

to a  decision-  making role. For example, a trained network for recog-

nizing objects might automatically generate labels for images on a 
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Web site or  social-  media account. Posting those labels is an action 

with consequences. Each labeling action requires an actual classifica-

tion decision, and unless every decision is guaranteed to be perfect, 

the human designer must supply a loss function that spells out the cost 

of misclassifying an object of type A as an object of type B. And that’s 

how Google had an unfortunate problem with gorillas. In 2015, a soft-

ware engineer named Jacky Alciné complained on Twitter that the 

Google Photos  image-  labeling service had labeled him and his friend 

as gorillas.71 While it is unclear how exactly this error occurred, it is 

almost certain that Google’s machine learning algorithm was designed 

to minimize a fixed, definite loss  function—  moreover, one that as-

signed equal cost to any error. In other words, it assumed that the cost 

of misclassifying a person as a gorilla was the same as the cost of mis-

classifying a Norfolk terrier as a Norwich terrier. Clearly, this is not 

Google’s (or their users’) true loss function, as was illustrated by the 

public relations disaster that ensued.

Since there are thousands of possible image labels, there are mil-

lions of potentially distinct costs associated with misclassifying one 

category as another. Even if it had tried, Google would have found it 

very difficult to specify all these numbers up front. Instead, the right 

thing to do would be to acknowledge the uncertainty about the true 

misclassification costs and to design a learning and classification algo-

rithm that was suitably sensitive to costs and uncertainty about costs. 

Such an algorithm might occasionally ask the Google designer ques-

tions such as “Which is worse, misclassifying a dog as a cat or misclas-

sifying a person as an animal?” In addition, if there is significant 

uncertainty about misclassification costs, the algorithm might well 

refuse to label some images.

By early 2018, it was reported that Google Photos does refuse to 

classify a photo of a gorilla. Given a very clear image of a gorilla with 

two babies, it says, “ Hmm . . . not seeing this clearly yet.” 72

I don’t wish to suggest that AI’s adoption of the standard model 

was a poor choice at the time. A great deal of brilliant work has gone 
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into developing the various instantiations of the model in logical, 

probabilistic, and learning systems. Many of the resulting systems are 

very useful; as we will see in the next chapter, there is much more to 

come. On the other hand, we cannot continue to rely on our usual 

practice of ironing out the major errors in an objective function by 

trial and error: machines of increasing intelligence and increasingly 

global impact will not allow us that luxury.
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HOW MIGHT AI PROGRESS 
IN THE FUTURE?

The Near Future

On May 3, 1997, a chess match began between Deep Blue, a chess 

computer built by IBM, and Garry Kasparov, the world chess cham-

pion and possibly the best human player in history. Newsweek billed 

the match as “The Brain’s Last Stand.” On May 11, with the match 

tied at 2½–  2½, Deep Blue defeated Kasparov in the final game. The 

media went berserk. The market capitalization of IBM increased by 

$18 billion overnight. AI had, by all accounts, achieved a massive 

breakthrough.

From the point of view of AI research, the match represented no 

breakthrough at all. Deep Blue’s victory, impressive as it was, merely 

continued a trend that had been visible for decades. The basic design 

for  chess-  playing algorithms was laid out in 1950 by Claude Shannon,1 

with major improvements in the early 1960s. After that, the chess 

ratings of the best programs improved steadily, mainly as a result of 

faster computers that allowed programs to look further ahead. In 

1994,2 Peter Norvig and I charted the numerical ratings of the best 
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chess programs from 1965 onwards, on a scale where Kasparov’s rat-

ing was 2805. The ratings started at 1400 in 1965 and improved in an 

almost perfect straight line for thirty years. Extrapolating the line for-

ward from 1994 predicts that computers would be able to defeat 

Kasparov in  1997—  exactly when it happened.

For AI researchers, then, the real breakthroughs happened thirty 

or forty years before Deep Blue burst into the public’s consciousness. 

Similarly, deep convolutional networks existed, with all the mathe-

matics fully worked out, more than twenty years before they began to 

create headlines.

The view of AI breakthroughs that the public gets from the 

 media—  stunning victories over humans, robots becoming citizens of 

Saudi Arabia, and so  on—  bears very little relation to what really hap-

pens in the world’s research labs. Inside the lab, research involves a lot 

of thinking and talking and writing mathematical formulas on white-

boards. Ideas are constantly being generated, abandoned, and redis-

covered. A good  idea—  a real  breakthrough—  will often go unnoticed 

at the time and may only later be understood as having provided the 

basis for a substantial advance in AI, perhaps when someone reinvents 

it at a more convenient time. Ideas are tried out, initially on simple 

problems to show that the basic intuitions are correct and then on 

harder problems to see how well they scale up. Often, an idea will fail 

by itself to provide a substantial improvement in capabilities, and it 

has to wait for another idea to come along so that the combination of 

the two can demonstrate value.

All this activity is completely invisible from the outside. In the 

world beyond the lab, AI becomes visible only when the gradual accu-

mulation of ideas and the evidence for their validity crosses a thresh-

old: the point where it becomes worthwhile to invest money and 

engineering effort to create a new commercial product or an impres-

sive demonstration. Then the media announce that a breakthrough 

has occurred.

One can expect, then, that many other ideas that have been 
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gestating in the world’s research labs will cross the threshold of com-

mercial applicability over the next few years. This will happen more 

and more frequently as the rate of commercial investment increases 

and as the world becomes more and more receptive to applications of 

AI. This chapter provides a sampling of what we can see coming down 

the pipe.

Along the way, I’ll mention some of the drawbacks of these tech-

nological advances. You will probably be able to think of many more, 

but don’t worry. I’ll get to those in the next chapter.

The AI ecosystem

In the beginning, the environment in which most computers oper-

ated was essentially formless and void: their only input came from 

punched cards and their only method of output was to print charac-

ters on a line printer. Perhaps for this reason, most researchers viewed 

intelligent machines as  question-  answerers; the view of machines as 

agents perceiving and acting in an environment did not become wide-

spread until the 1980s.

The advent of the World Wide Web in the 1990s opened up a 

whole new universe for intelligent machines to play in. A new word, 

softbot, was coined to describe software “robots” that operate entirely 

in a software environment such as the Web. Softbots, or bots as they 

later became known, perceive Web pages and act by emitting se-

quences of characters, URLs, and so on.

AI companies mushroomed during the  dot-  com boom ( 1997– 

 2000), providing core capabilities for search and e- commerce, including 

link analysis, recommendation systems, reputation systems, compari-

son shopping, and product categorization.

In the early 2000s, the widespread adoption of mobile phones 

with microphones, cameras, accelerometers, and GPS provided new 

access for AI systems to people’s daily lives; “smart speakers” such as 
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the Amazon Echo, Google Home, and Apple HomePod have com-

pleted this process.

By around 2008, the number of objects connected to the Internet 

exceeded the number of people connected to the  Internet—  a transi-

tion that some point to as the beginning of the Internet of Things 

(IoT). Those things include cars, home appliances, traffic lights, vend-

ing machines, thermostats, quadcopters, cameras, environmental sen-

sors, robots, and all kinds of material goods both in the manufacturing 

process and in the distribution and retail system. This provides AI 

systems with far greater sensory and control access to the real world.

Finally, improvements in perception have allowed AI- powered 

 robots to move out of the factory, where they relied on rigidly con-

strained arrangements of objects, and into the real, unstructured, 

messy world, where their cameras have something interesting to 

look at.

 Self-  driving cars

In the late 1950s, John McCarthy imagined that an automated 

vehicle might one day take him to the airport. In 1987, Ernst Dick-

manns demonstrated a  self-  driving Mercedes van on the autobahn in 

Germany; it was capable of staying in lane, following another car, 

changing lanes, and overtaking.3 More than thirty years later, we 

still don’t have a fully autonomous car, but it’s getting much closer. 

The focus of development has long since moved from academic re-

search labs to large corporations. As of 2019, the  best-  performing test 

 vehicles have logged millions of miles of driving on public roads (and 

billions of miles in driving simulators) without serious incident.4 Un-

fortunately, other autonomous and  semi-  autonomous vehicles have 

killed several people.5

Why has it taken so long to achieve safe autonomous driving? The 

first reason is that the performance requirements are exacting. 
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Human drivers in the United States suffer roughly one fatal accident 

per one hundred million miles traveled, which sets a high bar. Auton-

omous vehicles, to be accepted, will need to be much better than that: 

perhaps one fatal accident per billion miles, or  twenty-  five thousand 

years of driving forty hours per week. The second reason is that one 

anticipated  workaround—  handing control to the human when the ve-

hicle is confused or out of its safe operating  conditions—  simply doesn’t 

work. When the car is driving itself, humans quickly become disen-

gaged from the immediate driving circumstances and cannot regain 

context quickly enough to take over safely. Moreover, nondrivers and 

taxi passengers who are in the back seat are in no position to drive the 

car if something goes wrong.

Current projects are aiming at SAE Level 4 autonomy,6 which 

means that the vehicle must at all times be capable of driving autono-

mously or stopping safely, subject to geographical limits and weather 

conditions. Because weather and traffic conditions can change, and 

because unusual circumstances can arise that a Level 4 vehicle cannot 

handle, a human has to be in the vehicle and ready to take over if 

needed. (Level  5—  unrestricted  autonomy—  does not require a human 

driver but is even more difficult to achieve.) Level 4 autonomy goes far 

beyond the simple, reflex tasks of following white lines and avoiding 

obstacles. The vehicle has to assess the intent and probable future 

trajectories of all relevant objects, including objects that may not be 

visible, based on both current and past observations. Then, using look-

ahead search, the vehicle has to find a trajectory that optimizes some 

combination of safety and progress. Some projects are trying more 

direct approaches based on reinforcement learning (mainly in simula-

tion, of course) and supervised learning from recordings of hundreds 

of human drivers, but these approaches seem unlikely to reach the 

required level of safety.

The potential benefits of fully autonomous vehicles are immense. 

Every year, 1.2 million people die in car accidents worldwide and tens 

of millions suffer serious injuries. A reasonable target for autonomous 
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vehicles would be to reduce these numbers by a factor of ten. Some 

analyses also predict a vast reduction in transportation costs, parking 

structures, congestion, and pollution. Cities will shift from personal 

cars and large buses to ubiquitous  shared-  ride, autonomous electric 

vehicles, providing door- to- door service and feeding  high-  speed  mass- 

 transit connections between hubs.7 With costs as low as three cents 

per passenger mile, most cities would probably opt to provide the ser-

vice for  free—  while subjecting riders to interminable barrages of 

advertising.

Of course, to reap all these benefits, the industry has to pay atten-

tion to the risks. If there are too many deaths attributed to poorly 

designed experimental vehicles, regulators may halt planned deploy-

ments or impose extremely stringent standards that might be un-

reachable for decades.8 And people might, of course, decide not to buy 

or ride in autonomous vehicles unless they are demonstrably safe. A 

2018 poll revealed a significant decline in consumers’ level of trust in 

autonomous vehicle technology compared to 2016.9 Even if the tech-

nology is successful, the transition to widespread autonomy will be 

an awkward one: human driving skills may atrophy or disappear, and 

the reckless and antisocial act of driving a car oneself may be banned 

altogether.

Intelligent personal assistants

Most readers will by now have experienced the unintelligent per-

sonal assistant: the smart speaker that obeys purchase commands 

overheard on the television, or the cell phone chatbot that responds to 

“Call me an ambulance!” with “OK, from now on I’ll call you ‘Ann Am-
bulance.’ ” Such systems are essentially  voice-  mediated interfaces to 

applications and search engines; they are based largely on canned 

 stimulus–  response templates, an approach that dates back to the Eliza 

system in the  mid-  1960s.10

These early systems have shortcomings of three kinds: access, 
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content, and context. Access shortcomings mean that they lack sensory 

awareness of what’s going on—for example, they might be able to hear 

what the user is saying but they can’t see who the user is talking to. 

Content shortcomings mean that they simply fail to understand the 

meaning of what the user is saying or texting, even if they have access 

to it. Context shortcomings mean that they lack the ability to keep track 

of and reason about the goals, activities, and relationships that consti-

tute daily life.

Despite these shortcomings, smart speakers and cell phone assis-

tants offer just enough value to the user to have entered the homes 

and pockets of hundreds of millions of people. They are, in a sense, 

Trojan horses for AI. Because they are there, embedded in so many 

lives, every tiny improvement in their capabilities is worth billions of 

dollars.

And so, improvements are coming thick and fast. Probably the 

most important is the elementary capacity to understand  content—  to 

know that “John’s in the hospital” is not just a prompt to say “I hope it’s 
nothing serious” but contains actual information that the user’s  eight- 

 year-  old son is in a nearby hospital and may have a serious injury or 

illness. The ability to access email and text communications as well 

as phone calls and domestic conversations (through the smart speaker 

in the house) would give AI systems enough information to build a 

reasonably complete picture of the user’s  life—  perhaps even more 

 information than might have been available to the butler working 

for a  nineteenth-  century aristocratic family or the executive assistant 

working for a  modern-  day CEO.

Raw information, of course, is not enough. To be really useful, an 

assistant also needs commonsense knowledge of how the world works: 

that a child in the hospital is not simultaneously at home; that hospital 

care for a broken arm seldom lasts for more than a day or two; that the 

child’s school will need to know of the expected absence; and so on. 

Such knowledge allows the assistant to keep track of things it does not 

observe  directly—  an essential skill for intelligent systems.
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The capabilities described in the preceding paragraph are, I be-

lieve, feasible with existing technology for probabilistic reasoning,C 

but this would require a very substantial effort to construct models of 

all the kinds of events and transactions that make up our daily lives. 

Up to now, these kinds of commonsense modeling projects have gen-

erally not been undertaken (except possibly in classified systems for 

intelligence analysis and military planning) because of the costs in-

volved and the uncertain payoff. Now, however, projects like this 

could easily reach hundreds of millions of users, so the investment 

risks are lower and the potential rewards are much higher. Further-

more, access to large numbers of users allows the intelligent assistant 

to learn very quickly and fill in all the gaps in its knowledge.

Thus, one can expect to see intelligent assistants that will, for pen-

nies a month, help users with managing an increasingly large range of 

daily activities: calendars, travel, household purchases, bill payment, 

children’s homework, email and call screening, reminders, meal plan-

ning,  and—  one can but  dream—  finding my keys. These skills will not 

be scattered across multiple apps. Instead, they will be facets of a 

single, integrated agent that can take advantage of the synergies avail-

able in what military people call the common operational picture.
The general design template for an intelligent assistant involves 

background knowledge about human activities, the ability to extract 

information from streams of perceptual and textual data, and a learn-

ing process to adapt the assistant to the user’s particular circum-

stances. The same general template can be applied to at least three 

other major areas: health, education, and finances. For these applica-

tions, the system needs to keep track of the state of the user’s body, 

mind, and bank account (broadly construed). As with assistants for 

daily life, the up- front cost of creating the necessary general knowl-

edge in each of these three areas amortizes across billions of users.

In the case of health, for example, we all have roughly the same 

physiology, and detailed knowledge of how it works has already been 

encoded in  machine-  readable form.11 Systems will adapt to your 
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individual characteristics and lifestyle, providing preventive sugges-

tions and early warning of problems.

In the area of education, the promise of intelligent tutoring sys-

tems was recognized even in the 1960s,12 but real progress has been a 

long time coming. The primary reasons are shortcomings of content 

and access: most tutoring systems don’t understand the content of 

what they purport to teach, nor can they engage in  two-  way commu-

nication with their pupils through speech or text. (I imagine myself 

teaching string theory, which I don’t understand, in Laotian, which I 

don’t speak.) Recent progress in speech recognition means that auto-

mated tutors can, at last, communicate with pupils who are not yet 

fully literate. Moreover, probabilistic reasoning technology can now 

keep track of what students know and don’t know13 and can optimize 

the delivery of instruction to maximize learning. The Global Learning 

XPRIZE competition, which started in 2014, offered $15 million for 

“ open-  source, scalable software that will enable children in develop-

ing countries to teach themselves basic reading, writing and arithme-

tic within 15 months.” Results from the winners, Kitkit School and 

onebillion, suggest that the goal has largely been achieved.

In the area of personal finance, systems will keep track of invest-

ments, income streams, obligatory and discretionary expenditures, 

debt, interest payments, emergency reserves, and so on, in much the 

same way that financial analysts keep track of the finances and pros-

pects of corporations. Integration with the agent that handles daily life 

will provide an even  finer-  grained understanding, perhaps even ensur-

ing that the children get their pocket money minus any  mischief- 

 related deductions. One can expect to receive the quality of day- to- day 

financial advice previously reserved for the  ultra-  rich.

If your privacy alarm bells weren’t ringing as you read the preced-

ing paragraphs, you haven’t been keeping up with the news. There are, 

however, multiple layers to the privacy story. First, can a personal 

 assistant really be useful if it knows nothing about you? Probably not. 
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Second, can personal assistants be really useful if they cannot pool 

information from multiple users to learn more about people in general 

and people who are similar to you? Probably not. So, don’t those two 

things imply that we have to give up our privacy to benefit from AI in 

our daily lives? No. The reason is that learning algorithms can operate 

on encrypted data using the techniques of secure multiparty computa-

tion, so that users can benefit from pooling without compromising 

privacy in any way.14 Will software providers adopt  privacy-  preserving 

technology voluntarily, without legislative encouragement? That re-

mains to be seen. What seems inevitable, however, is that users will 

trust a personal assistant only if its primary obligation is to the user 

rather than to the corporation that produced it.

Smart homes and domestic robots

The smart home concept has been investigated for several decades. 

In 1966, James Sutherland, an engineer at Westinghouse, started col-

lecting surplus computer parts to build ECHO, the first  smart-  home 

controller.15 Unfortunately, ECHO weighed eight hundred pounds, con-

sumed 3.5 kilowatts, and managed just three digital clocks and the TV 

antenna. Subsequent systems required users to master control interfaces 

of  mind-  boggling complexity. Unsurprisingly, they never caught on.

Beginning in the 1990s, several ambitious projects attempted to 

design houses that managed themselves with minimal human interven-

tion, using machine learning to adapt to the lifestyles of the occupants. 

To make these experiments meaningful, real people had to live in the 

houses. Unfortunately, the frequency of erroneous decisions made the 

systems worse than  useless—  the occupants’ quality of life decreased 

rather than increased. For example, inhabitants of the 2003 MavHome 

project16 at Washington State University often had to sit in the dark if 

their visitors stayed later than the usual bedtime.17 As with the unintel-

ligent personal assistant, such failings result from inadequate sensory 
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access to the activities of the occupants and the inability to understand 

and keep track of what’s happening in the house.

A truly smart home equipped with cameras and  microphones— 

 and the requisite perceptual and reasoning  abilities—  can understand 

what the occupants are doing: visiting, eating, sleeping, watching TV, 

reading, exercising, getting ready for a long trip, or lying helpless on 

the floor after a fall. By coordinating with the intelligent personal as-

sistant, the home can have a pretty good idea of who will be in or out 

of the house at what time, who’s eating where, and so on. This under-

standing allows it to manage heating, lighting, window blinds, and 

security systems, to send timely reminders, and to alert users or emer-

gency services when a problem arises. Some newly built apartment 

complexes in the United States and Japan are already incorporating 

technology of this kind.18

The value of the smart home is limited because of its actuators: 

much simpler systems (timed thermostats and  motion-  sensitive lights 

and burglar alarms) can deliver a lot of the same functionality in ways 

that are perhaps more predictable, if less  context   sensitive. The smart 

home cannot fold the laundry, clear the dishes, or pick up the news-

paper. It really wants a physical robot to do its bidding.

FIGURE 
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It may not have too long to wait. Already, robots have demon-

strated many of the required skills. In the Berkeley lab of my colleague 

Pieter Abbeel, BRETT (the Berkeley Robot for the Elimination of 

 Tedious Tasks) has been folding piles of towels since 2011, while the 

SpotMini robot from Boston Dynamics can climb stairs and open 

doors (figure 5). Several companies are already building cooking  robots, 

although they require special, enclosed setups and  pre-  cut  ingredients 

and won’t work in an ordinary kitchen.19

Of the three basic physical capabilities required for a useful do-

mestic  robot—  perception, mobility, and  dexterity—  the latter is most 

problematic. As Stefanie Tellex, a robotics professor at Brown Univer-

sity, puts it, “Most robots can’t pick up most objects most of the time.” 

This is partly a problem of tactile sensing, partly a manufacturing 

problem (dexterous hands are currently very expensive to build), and 

partly an algorithmic problem: we don’t yet have a good understand-

ing of how to combine sensing and control to grasp and manipulate 

the huge variety of objects in a typical household. There are dozens of 

grasp types just for rigid objects and there are thousands of distinct 

manipulation skills, such as shaking exactly two pills out of a bottle, 

peeling the label off a jam jar, spreading hard butter on soft bread, 

or lifting one strand of spaghetti from the pot with a fork to see if 

it’s ready.

It seems likely that the tactile sensing and hand construction prob-

lems will be solved by 3D printing, which is already being used by 

Boston Dynamics for some of the more complex parts of their Atlas 

humanoid robot. Robot manipulation skills are advancing rapidly, 

thanks in part to deep reinforcement learning.20 The final  push— 

 putting all this together into something that begins to approximate the 

awesome physical skills of movie  robots—  is likely to come from the 

rather unromantic warehouse industry. Just one company, Amazon, 

employs several hundred thousand people who pick products out 

of bins in giant warehouses and dispatch them to customers. From 

2015 through 2017 Amazon ran an annual “Picking Challenge” to 
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accelerate the development of robots capable of doing this task.21 There 

is still some distance to go, but when the core research problems are 

 solved—  probably within a  decade—  one can expect a very rapid rollout 

of highly capable robots. Initially they will work in warehouses, then in 

other commercial applications such as agriculture and construction, 

where the range of tasks and objects is fairly predictable. We might also 

see them quite soon in the retail sector doing tasks such as stocking 

supermarket shelves and refolding clothes.

The first to really benefit from robots in the home will be the el-

derly and infirm, for whom a helpful robot can provide a degree of 

independence that would otherwise be impossible. Even if the robot 

has a limited repertoire of tasks and only rudimentary comprehension 

of what’s going on, it can still be very useful. On the other hand, the 

robot butler, managing the household with aplomb and anticipating its 

master’s every wish, is still some way  off—  it requires something ap-

proaching the generality of  human-  level AI.

Intelligence on a global scale

The development of basic capabilities for understanding speech 

and text will allow intelligent personal assistants to do things that 

human assistants can already do (but they will be doing it for pennies 

per month instead of thousands of dollars per month). Basic speech 

and text understanding also enable machines to do things that no hu-

man can  do—  not because of the depth of understanding but because 

of its scale. For example, a machine with basic reading capabilities will 

be able to read everything the human race has ever written by lunch-

time, and then it will be looking around for something else to do.22 

With speech recognition capabilities, it could listen to every radio 
and television broadcast before teatime. For comparison, it would take 

two hundred thousand  full-  time humans just to keep up with the 

world’s current level of print publication (let alone all the written 
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material from the past) and another sixty thousand to listen to current 

broadcasts.23

Such a system, if it could extract even simple factual assertions 

and integrate all this information across all languages, would represent 

an incredible resource for answering questions and revealing  patterns— 

 probably far more powerful than search engines, which are currently 

valued at around $1 trillion. Its research value for fields such as history 

and sociology would be inestimable.

Of course, it would also be possible to listen to all the world’s 

phone calls (a job that would require about twenty million people). 

There are certain clandestine agencies that would find this valuable. 

Some of them have been doing simple kinds of  large-  scale machine 

listening, such as spotting key words in conversations, for many years, 

and have now made the transition to transcribing entire conversations 

into searchable text.24 Transcriptions are certainly useful, but not 

nearly as useful as simultaneous understanding and content integra-

tion of all conversations.

Another “superpower” that is available to machines is to see the en-
tire world at once. Roughly speaking, satellites image the entire world 

every day at an average resolution of around fifty centimeters per pixel. 

At this resolution, every house, ship, car, cow, and tree on Earth is 

visible. Well over thirty million  full-  time employees would be needed 

to examine all these images;25 so, at present, no human ever sees the 

vast majority of satellite data. Computer vision algorithms could pro-

cess all this data to produce a searchable database of the whole world, 

updated daily, as well as visualizations and predictive models of eco-

nomic activities, changes in vegetation, migrations of animals and peo-

ple, the effects of climate change, and so on. Satellite companies such 

as Planet and DigitalGlobe are busy making this idea a reality.

With the possibility of sensing on a global scale comes the possi-

bility of decision making on a global scale. For example, from global 

satellite data feeds, it should be possible to create detailed models 
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for managing the global environment, predicting the effects of environ-

mental and economic interventions, and providing the necessary ana-

lytical inputs to the UN’s sustainable development goals.26 We are 

already seeing “smart city” control systems that aim to optimize traffic 

management, transit, trash collection, road repairs, environmental 

maintenance, and other functions for the benefit of citizens, and these 

may be extended to the country level. Until recently, this degree of 

coordination could be achieved only by huge, inefficient, bureaucratic 

hierarchies of humans; inevitably, these will be replaced by  mega- 

 agents that take care of more and more aspects of our collective lives. 

Along with this, of course, comes the possibility of privacy invasion and 

social control on a global scale, to which I return in the next chapter.

When Will Superintelligent AI Arrive?

I am often asked to predict when superintelligent AI will arrive, and I 

usually refuse to answer. There are three reasons for this. First, there 

is a long history of such predictions going wrong.27 For example, in 

1960, the AI pioneer and Nobel  Prize–  winning economist Herbert 

Simon wrote, “ Technologically . . . machines will be capable, within 

twenty years, of doing any work a man can do.” 28 In 1967, Marvin Min-

sky, a co- organizer of the 1956 Dartmouth workshop that started the 

field of AI, wrote, “Within a generation, I am convinced, few compart-

ments of intellect will remain outside the machine’s  realm—  the prob-

lem of creating ‘artificial intelligence’ will be substantially solved.” 29

A second reason for declining to provide a date for superintelligent 

AI is that there is no clear threshold that will be crossed. Machines 

already exceed human capabilities in some areas. Those areas will 

broaden and deepen, and it is likely that there will be superhuman 

general knowledge systems, superhuman biomedical research systems, 

superhuman dexterous and agile robots, superhuman corporate plan-

ning systems, and so on well before we have a completely general 
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superintelligent AI system. These “partially superintelligent” systems 

will, individually and collectively, begin to pose many of the same is-

sues that a generally intelligent system would.

A third reason for not predicting the arrival of superintelligent AI 

is that it is inherently unpredictable. It requires “conceptual break-

throughs,” as noted by John McCarthy in a 1977 interview.30 McCar-

thy went on to say, “What you want is 1.7 Einsteins and 0.3 of the 

Manhattan Project, and you want the Einsteins first. I believe it’ll 

take five to 500 years.” In the next section I’ll explain what some of 

the conceptual breakthroughs are likely to be. Just how unpredictable 

are they? Probably as unpredictable as Szilard’s invention of the nu-

clear chain reaction a few hours after Rutherford’s declaration that it 

was completely impossible.

Once, at a meeting of the World Economic Forum in 2015, I 

 answered the question of when we might see superintelligent AI. The 

meeting was under Chatham House rules, which means that no re-

marks may be attributed to anyone present at the meeting. Even so, 

out of an excess of caution, I prefaced my answer with “Strictly off the 

 record. . . .” I suggested that, barring intervening catastrophes, it would 

probably happen in the lifetime of my  children—  who were still quite 

young and would probably have much longer lives, thanks to advances 

in medical science, than many of those at the meeting. Less than two 

hours later, an article appeared in the Daily Telegraph citing Professor 

Russell’s remarks, complete with images of rampaging Terminator 

 robots. The headline was ‘SOCIOPATHIC’ ROBOTS COULD OVERRUN THE 

 HUMAN RACE WITHIN A GENERATION.

My timeline of, say, eighty years is considerably more conserva-

tive than that of the typical AI researcher. Recent surveys31 suggest 

that most active researchers expect  human-  level AI to arrive around the 

middle of this century. Our experience with nuclear physics suggests 

that it would be prudent to assume that progress could occur quite 

quickly and to prepare accordingly. If just one conceptual break-

through were needed, analogous to Szilard’s idea for a  neutron-  induced 
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nuclear chain reaction, superintelligent AI in some form could arrive 

quite suddenly. The chances are that we would be unprepared: if we 

built superintelligent machines with any degree of autonomy, we 

would soon find ourselves unable to control them. I am, however, 

fairly confident that we have some breathing space because there are 

several major breakthroughs needed between here and superintelli-

gence, not just one.

Conceptual Breakthroughs to Come

The problem of creating  general-  purpose,  human-  level AI is far from 

solved. Solving it is not a matter of spending money on more engi-

neers, more data, and bigger computers. Some futurists produce 

charts that extrapolate the exponential growth of computing power 

into the future based on Moore’s law, showing the dates when ma-

chines will become more powerful than insect brains, mouse brains, 

human brains, all human brains put together, and so on.32 These charts 

are meaningless because, as I have already said, faster machines just 

give you the wrong answer more quickly. If one were to collect AI’s 

leading experts into a single team with unlimited resources, with the 

goal of creating an integrated,  human-  level intelligent system by com-

bining all our best ideas, the result would be failure. The system would 

break in the real world. It wouldn’t understand what was going on; it 

wouldn’t be able to predict the consequences of its actions; it wouldn’t 

understand what people want in any given situation; and so it would 

do ridiculously stupid things.

By understanding how the system would break, AI researchers are 

able to identify the problems that have to be  solved—  the conceptual 

breakthroughs that are  needed—  in order to reach  human-  level AI. I 

will now describe some of these remaining problems. Once they are 

solved, there may be more, but not very many more.
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Language and common sense

Intelligence without knowledge is like an engine without fuel. Hu-

mans acquire a vast amount of knowledge from other humans: it is 

passed down through generations in the form of language. Some of it 

is factual: Obama became president in 2009, the density of copper is 

8.92 grams per cubic centimeter, the code of Ur- Nammu set out pun-

ishments for various crimes, and so on. A great deal of knowledge re-

sides in the language  itself—  in the concepts that it makes available. 

President, 2009, density, copper, gram, centimeter, crime, and the rest all 

carry with them a vast amount of information, which represents the 

extracted essence of the processes of discovery and organization that 

led them to be in the language in the first place.

Take, for example, copper, which refers to some collection of atoms 

in the universe, and compare it to arglebarglium, which is my name for 

an equally large collection of entirely randomly selected atoms in the 

universe. There are many general, useful, and predictive laws one can 

discover about  copper—  about its density, conductivity, malleability, 

melting point, stellar origin, chemical compounds, practical uses, and 

so on; in comparison, there is essentially nothing that can be said 

about arglebarglium. An organism equipped with a language com-

posed of words like arglebarglium would be unable to function, be-

cause it would never discover the regularities that would allow it to 

model and predict its universe.

A machine that really understands human language would be in a 

position to quickly acquire vast quantities of human knowledge, al-

lowing it to bypass tens of thousands of years of learning by the more 

than one hundred billion people who have lived on Earth. It seems 

simply impractical to expect a machine to rediscover all this from 

scratch, starting from raw sensory data.

At present, however, natural language technology is not up to 

the task of reading and understanding millions of  books—  many of 
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which would stump even a  well-  educated human. Systems such as 

IBM’s Watson, which famously defeated two human champions of the 

 Jeopardy! quiz game in 2011, can extract simple information from 

clearly stated facts but cannot build complex knowledge structures 

from text; nor can they answer questions that require extensive chains 

of reasoning with information from multiple sources. For example, 

the task of reading all available documents up to the end of 1973 and 

assessing (with explanations) the probable outcome of the Watergate 

impeachment process against then president Nixon would be well be-

yond the current state of the art.

There are serious efforts underway to deepen the level of language 

analysis and information extraction. For example, Project Aristo at 

the Allen Institute for AI aims to build systems that can pass school 

science exams after reading textbooks and study guides.33 Here’s a 

question from a  fourth-  grade test:34

Fourth graders are planning a  roller-  skate race. Which surface 

would be the best for this race?

(A) gravel (B) sand (C) blacktop (D) grass

A machine faces at least two sources of difficulty in answering this 

question. The first is the classical  language-  understanding problem of 

working out what the sentences say: analyzing the syntactic structure, 

identifying the meanings of words, and so on. (Try this for yourself: 

use an online translation service to translate the sentences into an 

 unfamiliar language, then use a dictionary for that language to try 

translating them back to English.) The second is the need for common-

sense knowledge: to work out that a “ roller-  skate race” is probably a 

race between people wearing roller skates (on their feet) rather than 

a race between roller skates, to understand that the “surface” is what 

the skaters will skate on rather than what the spectators will sit on, to 

know what “best” means in the context of a surface for a race, and 
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so on. Think how the answer might change if we replaced “fourth grad-

ers” with “sadistic army  boot-  camp trainers.”

One way to summarize the difficulty is to say that reading requires 

knowledge and knowledge (largely) comes from reading. In other 

words, we face a classic  chicken-  and-  egg situation. We might hope for 

a bootstrapping process, whereby the system reads some easy text, 

acquires some knowledge, uses that to read more difficult text, ac-

quires still more knowledge, and so on. Unfortunately, what tends to 

happen is the opposite: the knowledge acquired is mostly erroneous, 

which causes errors in reading, which results in more erroneous knowl-

edge, and so on.

For example, the NELL ( Never-  Ending Language Learning) proj-

ect at Carnegie Mellon University is probably the most ambitious 

 language-  bootstrapping project currently underway. From 2010 to 

2018, NELL acquired over 120 million beliefs by reading English text 

on the Web.35 Some of these beliefs are accurate, such as the beliefs 

that the Maple Leafs play hockey and won the Stanley Cup. In addi-

tion to facts, NELL acquires new vocabulary, categories, and semantic 

relationships all the time. Unfortunately, NELL has confidence in only 

3 percent of its beliefs and relies on human experts to clean out false 

or meaningless beliefs on a regular  basis—  such as its beliefs that  “Nepal 
is a country also known as United States” and “value is an agricultural 
product that is usually cut into basis.”

I suspect that there may be no single breakthrough that turns the 

downward spiral into an upward spiral. The basic bootstrapping pro-

cess seems right: a program that knows enough facts can figure out 

which fact a novel sentence is referring to, and thereby learns a new 

textual form for expressing  facts—  which then lets it discover more 

facts, and so the process continues. (Sergey Brin, the co- founder of 

Google, published an important paper on the bootstrapping idea in 

1998.36) Priming the pump by supplying a good deal of manually en-

coded knowledge and linguistic information would certainly help. 
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Increasing the sophistication of the representation of  facts—  allowing 

for complex events, causal relationships, beliefs and attitudes of oth-

ers, and so  on—  and improving the handling of uncertainty about word 

meanings and sentence meanings may eventually result in a  self- 

 reinforcing rather than  self-  extinguishing process of learning.

Cumulative learning of concepts and theories

Approximately 1.4 billion years ago and 8.2 sextillion miles away, 

two black holes, one twelve million times the mass of the Earth and 

the other ten million, came close enough to begin orbiting each other. 

Gradually losing energy, they spiraled closer and closer to each other 

and faster and faster, reaching an orbital frequency of 250 times per 

second at a distance of 350 kilometers before finally colliding and 

merging.37 In the last few milliseconds, the rate of energy emission in 

the form of gravitational waves was fifty times larger than the total 

energy output of all the stars in the universe. On September 14, 2015, 

those gravitational waves arrived at the Earth. They alternately ex-

panded and compressed space itself by a factor of about one in 2.5 

sextillion, equivalent to changing the distance to Proxima Centauri 

(4.4 light years) by the width of a human hair.

Fortunately, two days earlier, the Advanced LIGO (Laser Interfer-

ometer  Gravitational-  Wave Observatory) detectors in Washington 

and Louisiana had been switched on. Using laser interferometry, they 

were able to measure the minuscule distortion of space; using calcula-

tions based on Einstein’s theory of general relativity, the LIGO re-

searchers had  predicted—  and were therefore looking  for—  the exact 

shape of the gravitational waveform expected from such an event.38

This was possible because of the accumulation and communica-

tion of knowledge and concepts by thousands of people across centu-

ries of observation and research. From Thales of Miletus rubbing 

amber with wool and observing the static charge buildup, through 
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Galileo dropping rocks from the Leaning Tower of Pisa, to Newton 

seeing an apple fall from a tree, and on through thousands more ob-

servations, humanity has gradually accumulated layer upon layer of 

concepts, theories, and devices: mass, velocity, acceleration, force, 

Newton’s laws of motion and gravitation, orbital equations, electrical 

phenomena, atoms, electrons, electric fields, magnetic fields, electro-

magnetic waves, special relativity, general relativity, quantum me-

chanics, semiconductors, lasers, computers, and so on.

Now, in principle we can understand this process of discovery as a 

mapping from all the sensory data ever experienced by all humans to 

a very complex hypothesis about the sensory data experienced by the 

LIGO scientists on September 14, 2015, as they watched their com-

puter screens. This is the purely  data-  driven view of learning: data in, 

hypothesis out, black box in between. If it could be done, it would be 

the apotheosis of the “big data, big network” deep learning approach, 

but it cannot be done. The only plausible idea we have for how intelli-

gent entities could achieve such a stupendous feat as detecting the 

merger of two black holes is that prior knowledge of physics, combined 

with the observational data from their instruments, allowed the LIGO 

scientists to infer the occurrence of the merger event. Moreover, this 

prior knowledge was itself the result of learning with prior  knowledge— 

 and so on, all the way back through history. Thus, we have a roughly 

cumulative picture of how intelligent entities can build predictive ca-

pabilities, with knowledge as the building material.

I say roughly because, of course, science has taken a few wrong 

turns over the centuries, temporarily pursuing illusory notions such as 

phlogiston and the luminiferous aether. But we know for a fact that 

the cumulative picture is what actually happened, in the sense that 

scientists all along the way wrote down their findings and theories in 

books and papers. Later scientists had access only to these forms of 

explicit knowledge, and not to the original sensory experiences of ear-

lier,  long-  dead generations. Because they are scientists, the members 
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of the LIGO team understood that all the pieces of knowledge they 

used, including Einstein’s theory of general relativity, are (and always 

will be) in their probationary period and could be falsified by experi-

ment. As it turned out, the LIGO data provided strong confirmation 

for general relativity as well as further evidence that the  graviton—  a 

hypothesized particle that mediates the force of  gravity—  is massless.

We are a very long way from being able to create machine learn-

ing systems that are capable of matching or exceeding the capacity 

for cumulative learning and discovery exhibited by the scientific 

 community—  or by ordinary human beings in their own lifetimes.39 

Deep learning systemsD are mostly  data   driven: at best, we can “wire 

in” some very weak forms of prior knowledge in the structure of the 

network. Probabilistic programming systemsC do allow for prior 

knowledge in the learning process, as expressed in the structure and 

vocabulary of the probabilistic knowledge base, but we do not yet have 

effective methods for generating new concepts and relationships and 

using them to expand such a knowledge base.

The difficulty is not one of finding hypotheses that provide a good 

fit to data; deep learning systems can find hypotheses that are a good fit 

to image data, and AI researchers have built symbolic learning pro-

grams able to recapitulate many historical discoveries of quantitative 

scientific laws.40 Learning in an autonomous intelligent agent requires 

much more than this.

First, what should be included in the “data” from which predic-

tions are made? For example, in the LIGO experiment, the model for 

predicting the amount that space stretches and shrinks when a gravi-

tational wave arrives takes into account the masses of the colliding 

black holes, the frequency of their orbits, and so on, but it doesn’t take 

into account the day of the week or the occurrence of Major League 

baseball games. On the other hand, a model for predicting traffic on 

the San Francisco Bay Bridge takes into account the day of the week 

and the occurrence of Major League baseball games but ignores the 

masses and orbital frequencies of colliding black holes. Similarly, 
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programs that learn to recognize the types of objects in images use the 

pixels as input, whereas a program that learns to estimate the value of 

an antique object would also want to know what it was made of, who 

made it and when, its history of usage and ownership, and so on. Why 

is this? Obviously, it’s because we humans already know something 

about gravitational waves, traffic, visual images, and antiques. We use 

this knowledge to decide which inputs are needed for predicting a 

specific output. This is called feature engineering, and doing it well re-

quires a good understanding of the specific prediction problem.

Of course, a real intelligent machine cannot rely on human feature 

engineers showing up every time there is something new to learn. It 

will have to work out for itself what constitutes a reasonable hypothe-

sis space for a learning problem. Presumably, it will do this by bringing 

to bear a wide range of relevant knowledge in various forms, but at 

present we have only rudimentary ideas about how to do this.41 Nel-

son Goodman’s Fact, Fiction, and  Forecast42—  written in 1954 and per-

haps one of the most important and underappreciated books on 

machine  learning—  suggests a kind of knowledge called an overhypoth-
esis, because it helps to define what the space of reasonable hypotheses 

might be. In the case of traffic prediction, for example, the relevant 

overhypothesis would be that the day of the week, time of day, local 

events, recent accidents, holidays, transit delays, weather, and sunrise 

and sunset times can influence traffic conditions. (Notice that you can 

figure out this overhypothesis from your own background knowledge 

of the world, without being a traffic expert.) An intelligent learning 

system can accumulate and use knowledge of this kind to help formu-

late and solve new learning problems.

Second, and perhaps more important, is the cumulative generation 

of new concepts such as mass, acceleration, charge, electron, and grav-

itational force. Without these concepts, scientists (and ordinary peo-

ple) would have to interpret their universe and make predictions on 

the basis of raw perceptual inputs. Instead, Newton was able to work 

with concepts of mass and acceleration developed by Galileo and 
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others; Rutherford could determine that the atom was composed of a 

dense, positively charged nucleus surrounded by electrons because the 

concept of an electron had already been developed (by numerous re-

searchers in small steps) in the late nineteenth century; indeed, all 

scientific discoveries rely on layer upon layer of concepts that stretch 

back through time and human experience.

In the philosophy of science, particularly in the early twentieth 

century, it was not uncommon to see the discovery of new concepts 

attributed to the three ineffable I’s: intuition, insight, and inspiration. 

All these were considered resistant to any rational or algorithmic ex-

planation. AI researchers, including Herbert Simon,43 have objected 

strongly to this view. Put simply, if a machine learning algorithm can 

search in a space of hypotheses that includes the possibility of adding 

definitions for new terms not present in the input, then the algorithm 

can discover new concepts.

For example, suppose that a robot is trying to learn the rules of 

backgammon by watching people playing the game. It observes how 

they roll the dice and notices that sometimes players move three or 

four pieces rather than one or two and that this happens after a roll of 

1- 1, 2- 2, 3- 3, 4- 4, 5- 5, or 6- 6. If the program can add a new concept 

of doubles, defined by equality between the two dice, it can express 

the same predictive theory much more concisely. It is a straight-

forward process, using methods such as inductive logic  programming,44 

to create programs that propose new concepts and definitions in order 

to identify theories that are both accurate and concise.

At present, we know how to do this for relatively simple cases, but 

for more complex theories the number of possible new concepts that 

could be introduced becomes simply enormous. This makes the recent 

success of deep learning methods in computer vision all the more in-

triguing. The deep networks usually succeed in finding useful inter-

mediate features such as eyes, legs, stripes, and corners, even though 

they are using very simple learning algorithms. If we can understand 

better how this happens, we can apply the same approach to learning 
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new concepts in the more expressive languages needed for science. 

This by itself would be a huge boon to humanity as well as a signifi-

cant step towards  general-  purpose AI.

Discovering actions

Intelligent behavior over long time scales requires the ability 

to plan and manage activity hierarchically, at multiple levels of 

 abstraction—  all the way from doing a PhD (one trillion actions) to a 

single motor control command sent to one finger as part of typing a 

single character in the application cover letter.

Our activities are organized into complex hierarchies with dozens 
of levels of abstraction. These levels and the actions they contain are a 

key part of our civilization and are handed down through generations 

via our language and practices. For example, actions such as catching a 
wild boar and applying for a visa and buying a plane ticket may involve 

millions of primitive actions, but we can think about them as single 

units because they are already in the “library” of actions that our lan-

guage and culture provides and because we know (roughly) how to 

do them. 

Once they are in the library, we can string these  high-  level actions 

together into still  higher-  level actions, such as having a tribal feast 

for the summer solstice or doing archaeological research for a summer 

in a remote part of Nepal. Trying to plan such activities from scratch, 

starting with the  lowest-  level motor control steps, would be com-

pletely hopeless because such activities involve millions or billions of 

steps, many of which are very unpredictable. (Where will the wild 

boar be found, and which way will he run?) With suitable  high-  level 

actions in the library, on the other hand, one need plan only a dozen 

or so steps, because each such step is a large piece of the overall activ-

ity. This is something that even our feeble human brains can  manage— 

 but it gives us the “superpower” of planning over long time scales.

There was a time when these actions didn’t exist as such—for 
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example, to obtain the right to a plane journey in 1910 would have 

required a long, involved, and unpredictable process of research, 

letter writing, and negotiation with various aeronautical pioneers. 

Other actions recently added to the library include emailing, googling, 

and ubering. As Alfred North Whitehead wrote in 1911, “Civilization 

advances by extending the number of important operations which we 

can perform without thinking about them.”45

Saul Steinberg’s famous cover for The New Yorker (figure 6) bril-

liantly shows, in spatial form, how an intelligent agent manages its 

own future. The very immediate future is extraordinarily  detailed— 

in fact, my brain has already loaded up the specific motor control 

FIGURE 6: Saul Steinberg’s View of the World from 9th Avenue -
The New Yorker magazine.
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sequences for typing the next few words. Looking a bit further ahead, 

there is less  detail—  my plan is to finish this section, have lunch, write 

some more, and watch France play Croatia in the final of the World 

Cup. Still further ahead, my plans are larger but vaguer: move back 

from Paris to Berkeley in early August, teach a graduate course, and 

finish this book. As one moves through time, the future moves closer 

to the present and the plans for it become more detailed, while new, 

vague plans may be added to the distant future. Plans for the immedi-

ate future become so detailed that they are executable directly by the 

motor control system.

At present we have only some pieces of this overall picture in place 

for AI systems. If the hierarchy of abstract actions is  provided— 

 including knowledge of how each abstract action can be refined into a 

subplan composed of more concrete  actions—  then we have algorithms 

that can construct complex plans to achieve specific goals. There are 

algorithms that can execute abstract, hierarchical plans in such a way 

that the agent always has a primitive, physical action “ready to go,” 

even if actions in the future are still at an abstract level and not yet 

executable.

The main missing piece of the puzzle is a method for constructing 

the hierarchy of abstract actions in the first place. For example, is it 

possible to start from scratch with a robot that knows only that it can 

send various electric currents to various motors and have it discover 

for itself the action of standing up? It’s important to understand that 

I’m not asking whether we can train a robot to stand up, which can be 

done simply by applying reinforcement learning with a reward for the 

robot’s head being farther away from the ground.46 Training a robot to 

stand up requires that the human trainer already knows what standing 
up means, so that the right reward signal can be defined. What we 

want is for the robot to discover for itself that standing up is a  thing—  a 

useful abstract action, one that achieves the precondition (being up-

right) for walking or running or shaking hands or seeing over a wall 

and so forms part of many abstract plans for all kinds of goals. 
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Similarly, we want the robot to discover actions such as moving from 

place to place, picking up objects, opening doors, tying knots, cooking 

dinner, finding my keys, building houses, and many other actions that 

have no names in any human language because we humans have not 

discovered them yet.

I believe this capability is the most important step needed to reach 

 human-  level AI. It would, to borrow Whitehead’s phrase again, ex-

tend the number of important operations that AI systems can perform 

without thinking about them. Numerous research groups around the 

world are hard at work on solving the problem. For example, Deep-

Mind’s 2018 paper showing  human-  level performance on Quake III 

Arena Capture the Flag claims that their learning system “constructs 

a temporally hierarchical representation space in a novel way to 

 promote . . . temporally coherent action sequences.” 47 (I’m not com-

pletely sure what this means, but it certainly sounds like progress to-

wards the goal of inventing new  high-  level actions.) I suspect that we 

do not yet have the complete answer, but this is an advance that could 

occur any moment, just by putting some existing ideas together in the 

right way.

Intelligent machines with this capability would be able to look fur-

ther into the future than humans can. They would also be able to take 

into account far more information. These two capabilities combined 

lead inevitably to better  real-  world decisions. In any kind of conflict 

situation between humans and machines, we would quickly find, like 

Garry Kasparov and Lee Sedol, that our every move has been antici-

pated and blocked. We would lose the game before it even started.

Managing mental activity

If managing activity in the real world seems complex, spare a 

thought for your poor brain, managing the activity of the “most com-

plex object in the known universe”—  itself. We don’t start out know-

ing how to think, any more than we start out knowing how to walk or 
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play the piano. We learn how to do it. We can, to some extent, choose 
what thoughts to have. (Go on, think about a juicy hamburger or Bul-

garian customs  regulations—  your choice!) In some ways, our mental 

activity is more complex than our activity in the real world, because 

our brains have far more moving parts than our bodies and those parts 

move much faster. The same is true for computers: for every move 

that AlphaGo makes on the Go board, it performs millions or billions 
of units of computation, each of which involves adding a branch to the 

lookahead search tree and evaluating the board position at the end of 

that branch. And each of those units of computation happens because 

the program makes a choice about which part of the tree to explore 

next. Very approximately, AlphaGo chooses computations that it ex-

pects will improve its eventual decision on the board.

It has been possible to work out a reasonable scheme for managing 

AlphaGo’s computational activity because that activity is simple and 

homogeneous: every unit of computation is of the same kind. Com-

pared to other programs that use that same basic unit of computation, 

AlphaGo is probably quite efficient, but it’s probably extremely ineffi-
cient compared to other kinds of programs. For example, Lee Sedol, 

AlphaGo’s human opponent in the epochal match of 2016, probably 

does no more than a few thousand units of computation per move, but 

he has a much more flexible computational architecture with many 

more kinds of units of computation: these include dividing the board 

into subgames and trying to resolve their interactions; recognizing 

possible goals to attain and making  high-  level plans with actions like 

“keep this group alive” or “prevent my opponent from connecting 

these two groups”; thinking about how to achieve a specific goal, such 

as keeping a group alive; and ruling out whole classes of moves be-

cause they fail to address a significant threat.

We simply don’t know how to organize such complex and varied 

computational  activity—  how to integrate and build on the results 

from each and how to allocate computational resources to the various 

kinds of deliberation so that good decisions are found as quickly as 
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possible. It is clear, however, that a simple computational architecture 

like AlphaGo’s cannot possibly work in the real world, where we rou-

tinely need to deal with decision horizons of not tens but billions of 

primitive steps and where the number of possible actions at any point 

is almost infinite. It’s important to remember that an intelligent agent 

in the real world is not restricted to playing Go or even finding Stuart’s 
 keys—  it’s just being. It can do anything next, but it cannot possibly 

afford to think about all the things it might do.

A system that can both discover new  high-  level  actions—  as de-

scribed  earlier—  and manage its computational activity to focus on 

units of computation that quickly deliver significant improvements in 

decision quality would be a formidable decision maker in the real 

world. Like those of humans, its deliberations would be “cognitively 

efficient,” but it would not suffer from the tiny  short-  term memory 

and slow hardware that severely limit our ability to look far into the 

future, handle a large number of contingencies, and consider a large 

number of alternative plans.

More things missing?

If we put together everything we know how to do with all the po-

tential new developments listed in this chapter, would it work? How 

would the resulting system behave? It would plow through time, ab-

sorbing vast quantities of information and keeping track of the state of 

the world on a massive scale by observation and inference. It would 

gradually improve its models of the world (which include models of 

humans, of course). It would use those models to solve complex prob-

lems and it would encapsulate and reuse its solution processes to make 

its deliberations more efficient and to enable the solution of still more 

complex problems. It would discover new concepts and actions, and 

these would allow it to improve its rate of discovery. It would make 

effective plans over increasingly long time scales.

In summary, it’s not obvious that anything else of great signifi-
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cance is missing, from the point of view of systems that are effective 

in achieving their objectives. Of course, the only way to be sure is to 

build it (once the breakthroughs have been achieved) and see what 

happens.

Imagining a Superintelligent Machine

The technical community has suffered from a failure of imagination 

when discussing the nature and impact of superintelligent AI. Often, 

we see discussions of reduced medical errors,48 safer cars,49 or other 

advances of an incremental nature. Robots are imagined as individual 

entities carrying their brains with them, whereas in fact they are likely 

to be wirelessly connected into a single, global entity that draws on 

vast stationary computing resources. It’s as if researchers are afraid of 

examining the real consequences of success in AI.

A  general-  purpose intelligent system can, by assumption, do what 

any human can do. For example, some humans did a lot of mathemat-

ics, algorithm design, coding, and empirical research to come up with 

the modern search engine. The results of all this work are very useful 

and of course very valuable. How valuable? A recent study showed 

that the median American adult surveyed would need to be paid at 

least $17,500 to give up using search engines for a year,50 which trans-

lates to a global value in the tens of trillions of dollars.

Now imagine that search engines don’t exist yet because the nec-

essary decades of work have not been done, but you have access in-

stead to a superintelligent AI system. Simply by asking the question, 

you now have access to search engine technology, courtesy of the AI 

system. Done! Trillions of dollars in value, just for the asking, and not 

a single line of additional code written by you. The same goes for any 

other missing invention or series of inventions: if humans could do it, 

so can the machine.

This last point provides a useful lower  bound—  a pessimistic 
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 estimate—  on what a superintelligent machine can do. By assumption, 

the machine is more capable than an individual human. There are 

many things an individual human cannot do, but a collection of n 

 humans can do: put an astronaut on the Moon, create a  gravitational- 

 wave detector, sequence the human genome, run a country with hun-

dreds of millions of people. So, roughly speaking, we create n software 

copies of the machine and connect them in the same  way—  with the 

same information and control  flows—  as the n humans. Now we have 

a machine that can do whatever n humans can do, except better, be-

cause each of its n components is superhuman.

This  multi-  agent cooperation design for an intelligent system is just 

a lower bound on the possible capabilities of machines because there 

are other designs that work better. In a collection of n humans, the 

total available information is kept separately in n brains and commu-

nicated very slowly and imperfectly between them. That’s why the n 

humans spend most of their time in meetings. In the machine, there 

is no need for this separation, which often prevents connecting the 

dots. For an example of disconnected dots in scientific discovery, a 

brief perusal of the long history of penicillin is quite  eye-  opening.51

Another useful method of stretching your imagination is to think 

about some particular form of sensory  input—  say,  reading—  and scale 

it up. Whereas a human can read and understand one book in a week, 

a machine could read and understand every book ever  written—  all 150 

million of  them—  in a few hours. This requires a decent amount of 

processing power, but the books can be read largely in parallel, mean-

ing that simply adding more chips allows the machine to scale up its 

reading process. By the same token, the machine can see everything at 

once through satellites, robots, and hundreds of millions of surveil-

lance cameras; watch all the world’s TV broadcasts; and listen to all 

the world’s radio stations and phone conversations. Very quickly it 

would gain a far more detailed and accurate understanding of the world 

and its inhabitants than any human could possibly hope to acquire.

One can also imagine scaling the machine’s capacity for action. A 
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human has direct control over only one body, while a machine can 

control thousands or millions. Some automated factories already ex-

hibit this characteristic. Outside the factory, a machine that controls 

thousands of dexterous robots can, for example, produce vast numbers 

of houses, each one tailored to its future occupants’ needs and desires. 

In the lab, existing robotic systems for scientific research could be 

scaled up to perform millions of experiments  simultaneously—  perhaps 

to create complete predictive models of human biology down to the 

molecular level. Note that the machine’s reasoning capabilities will 

give it a far greater capacity to detect inconsistencies between scien-

tific theories and between theories and observations. Indeed, it may 

already be the case that we have enough experimental evidence about 

biology to devise a cure for cancer: we just haven’t put it together.

In the cyber realm, machines already have access to billions of ef-

fectors—namely, the displays on all the phones and computers in the 

world. This partly explains the ability of IT companies to generate 

enormous wealth with very few employees; it also points to the severe 

vulnerability of the human race to manipulation via screens.

Scale of a different kind comes from the machine’s ability to look 

further into the future, with greater accuracy, than is possible for hu-

mans. We have seen this for chess and Go already; with the capacity 

for generating and analyzing hierarchical plans over long time scales 

and the ability to identify new abstract actions and  high-  level descrip-

tive models, machines will transfer this advantage to domains such as 

mathematics (proving novel, useful theorems) and decision making in 

the real world. Tasks such as evacuating a large city in the event of an 

environmental disaster will be relatively straightforward, with the 

machine able to generate individual guidance for every person and 

vehicle to minimize the number of casualties.

The machine might work up a slight sweat when devising pol-

icy recommendations to prevent global warming. Earth systems mod-

eling requires knowledge of physics (atmosphere, oceans), chemistry 

(carbon cycle, soils), biology (decomposition, migration), engineering 
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(renewable energy, carbon capture), economics (industry, energy use), 

human nature (stupidity, greed), and politics (even more stupidity, 

even more greed). As noted, the machine will have access to vast 

quantities of evidence to feed all these models. It will be able to sug-

gest or carry out new experiments and expeditions to narrow down 

the inevitable  uncertainties—  for example, to discover the true extent 

of gas hydrates in shallow ocean reservoirs. It will be able to consider 

a vast range of possible policy  recommendations—  laws, nudges, mar-

kets, inventions, and geoengineering  interventions—  but of course it 

will also need to find ways to persuade us to go along with them.

The Limits of Superintelligence

While stretching your imagination, don’t stretch it too far. A common 

mistake is to attribute godlike powers of omniscience to superintelli-

gent AI  systems—  complete and perfect knowledge not just of the 

present but also of the future.52 This is quite implausible because it 

requires an unphysical ability to determine the exact current state of 

the world as well as an unrealizable ability to simulate, much faster 

than real time, the operation of a world that includes the machine it-

self (not to mention billions of brains, which would still be the  second- 

 most-  complex objects in the universe).

This is not to say that it is impossible to predict some aspects of the 

future with a reasonable degree of  certainty—  for example, I know 

what class I’ll be teaching in what room at Berkeley almost a year from 

now, despite the protestations of chaos theorists about butterfly wings 

and all that. (Nor do I think that humans are anywhere close to pre-

dicting the future as well as the laws of physics allow!) Prediction 

depends on having the right  abstractions—  for example, I can predict 

that “I” will be “on stage in Wheeler Auditorium” on the Berkeley 

campus on the last Tuesday in April, but I cannot predict my exact 
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location down to the millimeter or which atoms of carbon will have 

been incorporated into my body by then.

Machines are also subject to certain speed limits imposed by the 

real world on the rate at which new knowledge of the world can 

be  acquired—  one of the valid points made by Kevin Kelly in his arti-

cle on oversimplified predictions about superhuman AI.53 For exam-

ple, to determine whether a specific drug cures a certain kind of 

cancer in an experimental animal, a  scientist—  human or  machine— 

 has two choices: inject the animal with the drug and wait several 

weeks or run a sufficiently accurate simulation. To run a simulation, 

however, requires a great deal of empirical knowledge of biology, some 

of which is currently unavailable; so, more  model-  building experi-

ments would have to be done first. Undoubtedly, these would take 

time and must be done in the real world.

On the other hand, a machine scientist could run vast numbers of 

 model-  building experiments in parallel, could integrate their out-

comes into an internally consistent (albeit very complex) model, and 

could compare the model’s predictions with the entirety of experi-

mental evidence known to biology. Moreover, simulating the model 

does not necessarily require a  quantum-  mechanical simulation of the 

entire organism down to the level of individual molecular  reactions— 

 which, as Kelly points out, would take more time than simply doing 

the experiment in the real world. Just as I can predict my future loca-

tion on Tuesdays in April with some certainty, properties of biological 

systems can be predicted accurately with abstract models. (Among 

other reasons, this is because biology operates with robust control sys-

tems based on aggregate feedback loops, so that small variations in 

initial conditions usually don’t lead to large variations in outcomes.) 

Thus, while instantaneous machine discoveries in the empirical sci-

ences are unlikely, we can expect that science will proceed much 

faster with the help of machines. Indeed, it already is.

A final limitation of machines is that they are not human. This puts 
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them at an intrinsic disadvantage when trying to model and predict 

one particular class of objects: humans. Our brains are all quite simi-

lar, so we can use them to  simulate—  to experience, if you  will—  the 

mental and emotional lives of others. This, for us, comes for free. (If 

you think about it, machines have an even greater advantage with each 

other: they can actually run each other’s code!) For example, I don’t 

need to be an expert on neural sensory systems to know what it feels 

like when you hit your thumb with a hammer. I can just hit my thumb 

with a hammer. Machines, on the other hand, have to start almost54 

from scratch in their understanding of humans: they have access only 

to our external behavior, plus all the neuroscience and psychology lit-

erature, and have to develop an understanding of how we work on that 

basis. In principle, they will be able to do this, but it’s reasonable to 

suppose that acquiring a  human-  level or superhuman understanding of 

humans will take them longer than most other capabilities.

How Will AI Benefit Humans?

Our intelligence is responsible for our civilization. With access to 

greater intelligence we could have a  greater—  and perhaps far  better— 

 civilization. One can speculate about solving major open problems 

such as extending human life indefinitely or developing  faster-  than- 

 light travel, but these staples of science fiction are not yet the driving 

force for progress in AI. (With superintelligent AI, we’ll probably be 

able to invent all sorts of  quasi-  magical technologies, but it’s hard to 

say now what those might be.) Consider, instead, a far more prosaic 

goal: raising the living standard of everyone on Earth, in a sustainable 

way, to a level that would be viewed as quite respectable in a devel-

oped country. Choosing (somewhat arbitrarily) respectable to mean 

the  eighty-  eighth percentile in the United States, the stated goal rep-

resents almost a tenfold increase in global gross domestic product 

(GDP), from $76 trillion to $750 trillion per year.55
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To calculate the cash value of such a prize, economists use the net 
present value of the income stream, which takes into account the dis-

counting of future income relative to the present. The extra income of 

$674 trillion per year has a net present value of roughly $13,500 tril-

lion,56 assuming a discount factor of 5 percent. So, in very crude terms, 

this is a ballpark figure for what  human-  level AI might be worth if it 

can deliver a respectable living standard for everyone. With numbers 

like this, it’s not surprising that companies and countries are investing 

tens of billions of dollars annually in AI research and development.57 

Even so, the sums invested are minuscule compared to the size of 

the prize.

Of course, these are all made- up numbers unless one has some 

idea of how  human-  level AI could achieve the feat of raising living 

standards. It can do this only by increasing the  per-  capita production 

of goods and services. Put another way: the average human can never 

expect to consume more than the average human produces. The ex-

ample of  self-  driving taxis discussed earlier in the chapter illustrates 

the multiplier effect of AI: with an automated service, it should be 

possible for (say) ten people to manage a fleet of one thousand vehi-

cles, so each person is producing one hundred times as much transpor-

tation as before. The same goes for manufacturing the cars and for 

extracting the raw materials from which the cars are made. Indeed, 

some iron-ore mining operations in northern Australia, where tem-

peratures regularly exceed 45 degrees Celsius (113 degrees Fahren-

heit), are almost completely automated already.58

These  present-  day applications of AI are  special-  purpose systems: 

 self-  driving cars and  self-  operating mines have required huge invest-

ments in research, mechanical design, software engineering, and test-

ing to develop the necessary algorithms and to make sure that they 

work as intended. That’s just how things are done in all spheres of 

engineering. That’s how things used to be done in personal travel too: 

if you wanted to travel from Europe to Australia and back in the sev-

enteenth century, it would have involved a huge project costing vast 
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sums of money, requiring years of planning, and carrying a high risk of 

death. Now we are used to the idea of transportation as a service 

(TaaS): if you need to be in Melbourne early next week, it just requires 

a few taps on your phone and a relatively minuscule amount of money.

 General-  purpose AI would be everything as a service (EaaS). There 

would be no need to employ armies of specialists in different disci-

plines, organized into hierarchies of contractors and subcontractors, 

in order to carry out a project. All embodiments of  general-  purpose 

AI would have access to all the knowledge and skills of the human 

race, and more besides. The only differentiation would be in the 

 physical capabilities: dexterous legged robots for construction or sur-

gery, wheeled robots for  large-  scale goods transportation, quadcopter 

 robots for aerial inspections, and so on. In  principle—  politics and eco-

nomics  aside—  everyone could have at their disposal an entire organi-

zation composed of software agents and physical robots, capable of 

designing and building bridges, improving crop yields, cooking dinner 

for a hundred guests, running elections, or doing whatever else needs 

doing. It’s the generality of  general-  purpose intelligence that makes 

this possible.

History has shown, of course, that a tenfold increase in global GDP 

per capita is possible without  AI—  it’s just that it took 190 years (from 

1820 to 2010) to achieve that increase.59 It required the development 

of factories, machine tools, automation, railways, steel, cars, airplanes, 

electricity, oil and gas production, telephones, radio, television, com-

puters, the Internet, satellites, and many other revolutionary inven-

tions. The tenfold increase in GDP posited in the preceding paragraphs 

is predicated not on further revolutionary technologies but on the 

ability of AI systems to employ what we already have more effectively 

and at greater scale.

Of course, there will be effects besides the purely material benefit 

of raising living standards. For example, personal tutoring is known to 

be far more effective than classroom teaching, but when done by hu-

mans it is simply  unaffordable—  and always will  be—  for the vast 
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majority of people. With AI tutors, the potential of each child, no 

matter how poor, can be realized. The cost per child would be negli-

gible, and that child would live a far richer and more productive life. 

The pursuit of artistic and intellectual endeavors, whether individu-

ally or collectively, would be a normal part of life rather than a rar-

efied luxury.

In the area of health, AI systems should enable researchers to un-

ravel and master the vast complexities of human biology and thereby 

gradually banish disease. Greater insights into human psychology and 

neurochemistry should lead to broad improvements in mental health.

Perhaps more unconventionally, AI could enable far more effective 

authoring tools for virtual reality (VR) and could populate VR envi-

ronments with far more interesting entities. This might turn VR into 

the medium of choice for literary and artistic expression, creating ex-

periences of a richness and depth that is currently unimaginable.

And in the mundane world of daily life, an intelligent assistant and 

guide  would—  if well designed and not co- opted by economic and po-

litical  interests—  empower every individual to act effectively on their 

own behalf in an increasingly complex and sometimes hostile eco-

nomic and political system. You would, in effect, have a  high-  powered 

lawyer, accountant, and political adviser on call at any time. Just as 

traffic jams are expected to be smoothed out by intermixing even a 

small percentage of autonomous vehicles, one can only hope that wiser 

policies and fewer conflicts will emerge from a  better-  informed and 

 better-  advised global citizenry.

These developments taken together could change the dynamic of 

 history—  at least that part of history that has been driven by conflicts 

within and between societies for access to the wherewithal of life. If 

the pie is essentially infinite, then fighting others for a larger share 

makes little sense. It would be like fighting over who gets the most 

digital copies of the  newspaper—  completely pointless when anyone 

can make as many digital copies as they want for free.

There are some limits to what AI can provide. The pies of land and 
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raw materials are not infinite, so there cannot be unlimited popula-

tion growth and not everyone will have a mansion in a private park. 

(This will eventually necessitate mining elsewhere in the solar system 

and constructing artificial habitats in space; but I promised not to talk 

about science fiction.) The pie of pride is also finite: only 1 percent of 

people can be in the top 1 percent on any given metric. If human hap-

piness requires being in the top 1 percent, then 99 percent of humans 

are going to be unhappy, even when the bottom 1 percent has an ob-

jectively splendid lifestyle.60 It will be important, then, for our cul-

tures to gradually  down-  weight pride and envy as central elements of 

perceived  self-  worth.

As Nick Bostrom puts it at the end of his book Superintelligence, 
success in AI will yield “a civilizational trajectory that leads to a com-

passionate and jubilant use of humanity’s cosmic endowment.” If we 

fail to take advantage of what AI has to offer, we will have only our-

selves to blame.

9780525558613_Human_TX.indd 102 8/7/19 11:21 PM

Not 
for

 D
ist

rib
uti

on
ral e

book ook SuperSuper
ctory that ly that 

s cosmic ens cosmic e

to offer, wo offer, w



4

MISUSES OF AI

A compassionate and jubilant use of humanity’s cosmic endow-

ment sounds wonderful, but we also have to reckon with 

the rapid rate of innovation in the malfeasance sector.  Ill- 

intentioned people are thinking up new ways to misuse AI so quickly 

that this chapter is likely to be outdated even before it attains printed 

form. Think of it not as depressing reading, however, but as a call to 

act before it is too late.

The automated Stasi

The Ministerium für Staatsicherheit of East Germany, more com-

monly known as the Stasi, is widely regarded as “one of the most effec-

tive and repressive intelligence and secret police agencies to have ever 

existed.” 1 It maintained files on the great majority of East German 

households. It monitored phone calls, read letters, and planted hidden 

cameras in apartments and hotels. It was ruthlessly effective at identi-

fying and eliminating dissident activity. Its preferred modus operandi 
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was psychological destruction rather than imprisonment or execution. 

This level of control came at great cost, however: by some estimates, 

more than a quarter of  working-  age adults were Stasi informants. Stasi 

paper records have been estimated at twenty billion pages2 and the 

task of processing and acting on the huge incoming flows of informa-

tion began to exceed the capacity of any human organization.

It should come as no surprise, then, that intelligence agencies have 

spotted the potential for using AI in their work. For many years, they 

have been applying simple forms of AI technology, including voice 

recognition and identification of key words and phrases in both speech 

and text. Increasingly, AI systems are able to understand the content of 

what people are saying and doing, whether in speech, text, or video 

surveillance. In regimes where this technology is adopted for the pur-

poses of control, it will be as if every citizen had their own personal 

Stasi operative watching over them  twenty-  four hours a day.3

Even in the civilian sphere, in relatively free countries, we are sub-

ject to increasingly effective surveillance. Corporations collect and 

sell information about our purchases, Internet and social network us-

age, electrical appliance usage, calling and texting records, employ-

ment, and health. Our locations can be tracked through our cell 

phones and our  Internet-  connected cars. Cameras recognize our faces 

on the street. All this data, and much more, can be pieced together by 

intelligent information integration systems to produce a fairly com-

plete picture of what each of us is doing, how we live our lives, who 

we like and dislike, and how we will vote.4 The Stasi will look like 

amateurs by comparison.

Controlling your behavior

Once surveillance capabilities are in place, the next step is to mod-

ify your behavior to suit those who are deploying this technology. One 

rather crude method is automated, personalized blackmail: a system 

that understands what you are  doing—  whether by listening, reading, 
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or watching  you—  can easily spot things you should not be doing. 

Once it finds something, it will enter into correspondence with you to 

extract the largest possible amount of money (or to coerce behavior, if 

the goal is political control or espionage). The extraction of money 

works as the perfect reward signal for a reinforcement learning algo-

rithm, so we can expect AI systems to improve rapidly in their ability 

to identify and profit from misbehavior. Early in 2015, I suggested to 

a computer security expert that automated blackmail systems, driven 

by reinforcement learning, might soon become feasible; he laughed 

and said it was already happening. The first blackmail bot to be widely 

publicized was Delilah, identified in July 2016.5

A more subtle way to change people’s behavior is to modify their 

information environment so that they believe different things and 

make different decisions. Of course, advertisers have been doing this 

for centuries as a way of modifying the purchasing behavior of individ-

uals. Propaganda as a tool of war and political domination has an even 

longer history.

So what’s different now? First, because AI systems can track an 

individual’s online reading habits, preferences, and likely state of 

knowledge, they can tailor specific messages to maximize impact on 

that individual while minimizing the risk that the information will be 

disbelieved. Second, the AI system knows whether the individual 

reads the message, how long they spend reading it, and whether they 

follow additional links within the message. It then uses these signals as 

immediate feedback on the success or failure of its attempt to influ-

ence each individual; in this way, it quickly learns to become more 

effective in its work. This is how content selection algorithms on so-

cial media have had their insidious effect on political opinions.

Another recent change is that the combination of AI, computer 

graphics, and speech synthesis is making it possible to generate 

 deepfakes—  realistic video and audio content of just about anyone say-

ing or doing just about anything. The technology will require little 

more than a verbal description of the desired event, making it usable 
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106 HUMAN COMPATIBLE

by more or less anyone in the world.  Cell phone video of Senator X 

accepting a bribe from cocaine dealer Y at shady establishment Z? No 

problem! This kind of content can induce unshakeable beliefs in things 

that never happened.6 In addition, AI systems can generate millions of 

false  identities—  the so- called bot  armies—  that can pump out billions 

of comments, tweets, and recommendations daily, swamping the ef-

forts of mere humans to exchange truthful information. Online market-

places such as eBay, Taobao, and Amazon that rely on reputation 

systems7 to build trust between buyers and sellers are constantly at 

war with bot armies designed to corrupt the markets.

Finally, methods of control can be direct if a government is able to 

implement rewards and punishments based on behavior. Such a sys-

tem treats people as reinforcement learning algorithms, training them 

to optimize the objective set by the state. The temptation for a gov-

ernment, particularly one with a  top-  down, engineering mind-set, is to 

reason as follows: it would be better if everyone behaved well, had a 

patriotic attitude, and contributed to the progress of the country; 

technology enables measurement of individual behavior, attitudes, 

and contributions; therefore, everyone will be better off if we set up a 

 technology-  based system of monitoring and control based on rewards 

and punishments.

There are several problems with this line of thinking. First, it ig-

nores the psychic cost of living under a system of intrusive monitoring 

and coercion; outward harmony masking inner misery is hardly an 

ideal state. Every act of kindness ceases to be an act of kindness and 

becomes instead an act of personal score maximization and is per-

ceived as such by the recipient. Or worse, the very concept of a volun-

tary act of kindness gradually becomes just a fading memory of 

something people used to do. Visiting an ailing friend in hospital will, 

under such a system, have no more moral significance and emotional 

value than stopping at a red light. Second, the scheme falls victim to 

the same failure mode as the standard model of AI, in that it assumes 

that the stated objective is in fact the true, underlying objective. 
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Inevitably, Goodhart’s law will take over, whereby individuals opti-

mize the official measure of outward behavior, just as universities 

have learned to optimize the “objective” measures of “quality” used by 

university ranking systems instead of improving their real (but un-

measured) quality.8 Finally, the imposition of a uniform measure of 

behavioral virtue misses the point that a successful society may com-

prise a wide variety of individuals, each contributing in their own way.

A right to mental security

One of the great achievements of civilization has been the gradual 

improvement in physical security for humans. Most of us can expect 

to conduct our daily lives without constant fear of injury and death. 

Article 3 of the 1948 Universal Declaration of Human Rights states, 

“Everyone has the right to life, liberty and security of person.”

I would like to suggest that everyone should also have the right to 

mental  security—  the right to live in a largely true information envi-

ronment. Humans tend to believe the evidence of our eyes and ears. 

We trust our family, friends, teachers, and (some) media sources to 

tell us what they believe to be the truth. Even though we do not ex-

pect  used-  car salespersons and politicians to tell us the truth, we have 

trouble believing that they are lying as brazenly as they sometimes do. 

We are, therefore, extremely vulnerable to the technology of misin-

formation.

The right to mental security does not appear to be enshrined in the 

Universal Declaration. Articles 18 and 19 establish the rights of “free-

dom of thought” and “freedom of opinion and expression.” One’s 

thoughts and opinions are, of course, partly formed by one’s informa-

tion environment, which, in turn, is subject to Article 19’s “right  to . . . 

impart information and ideas through any media and regardless of 

frontiers.” That is, anyone, anywhere in the world, has the right to 

impart false information to you. And therein lies the difficulty: dem-

ocratic nations, particularly the United States, have for the most part 

M 9780525558613_Human_TX.indd 107 8/7/19 11:21 PM

Not
alesle

eving thatng that

therefore, etherefore, 

nn

for
friendsend

elieve to beelieve to b

persons ersons 

h

Dist
rib

uti
onhas been thbeen th

Most of usMost of us

t fear of injar of in

ation of Hution of Hu

ty and secuand secu

veryone shoryone sho

o live in a la live in a 

believe thbelieve th

teatea



108 HUMAN COMPATIBLE

been  reluctant—  or constitutionally  unable—  to prevent the imparting 

of false information on matters of public concern because of justifiable 

fears regarding government control of speech. Rather than pursuing 

the idea that there is no freedom of thought without access to true 

information, democracies seem to have placed a naïve trust in the idea 

that the truth will win out in the end, and this trust has left us unpro-

tected. Germany is an exception; it recently passed the Network En-

forcement Act, which requires content platforms to remove proscribed 

hate speech and fake news, but this has come under considerable crit-

icism as being unworkable and undemocratic.9

For the time being, then, we can expect our mental security to 

remain under attack, protected mainly by commercial and volunteer 

efforts. These efforts include  fact-  checking sites such as factcheck.org 

and snopes. com—  but of course other “ fact-  checking” sites are spring-

ing up to declare truth as lies and lies as truth.

The major information utilities such as Google and Facebook have 

come under extreme pressure in Europe and the United States to “do 

something about it.” They are experimenting with ways to flag or rel-

egate false  content—  using both AI and human  screeners—  and to 

 direct users to verified sources that counteract the effects of misinfor-

mation. Ultimately, all such efforts rely on circular reputation sys-

tems, in the sense that sources are trusted because trusted sources 

report them to be trustworthy. If enough false information is propa-

gated, these reputation systems can fail: sources that are actually 

trustworthy can become untrusted and vice versa, as appears to be 

occurring today with major media sources such as CNN and Fox News 

in the United States. Aviv Ovadya, a technologist working against mis-

information, has called this the “ infopocalypse—  a catastrophic failure 

of the marketplace of ideas.” 10

One way to protect the functioning of reputation systems is to 

inject sources that are as close as possible to ground truth. A single 

fact that is certainly true can invalidate any number of sources that are 
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only somewhat trustworthy, if those sources disseminate information 

contrary to the known fact. In many countries, notaries function as 

sources of ground truth to maintain the integrity of legal and  real- 

 estate information; they are usually disinterested third parties in any 

transaction and are licensed by governments or professional societies. 

(In the City of London, the Worshipful Company of Scriveners has 

been doing this since 1373, suggesting that a certain stability inheres 

in the role of  truth telling.) If formal standards, professional qualifica-

tions, and licensing procedures emerge for  fact-  checkers, that would 

tend to preserve the validity of the information flows on which we 

depend. Organizations such as the W3C Credible Web group and the 

Credibility Coalition aim to develop technological and crowdsourcing 

methods for evaluating information  providers, which would then al-

low users to filter out unreliable sources.

A second way to protect reputation systems is to impose a cost for 

purveying false information. Thus, some hotel rating sites accept re-

views concerning a particular hotel only from those who have booked 

and paid for a room at that hotel through the site, while other rating 

sites accept reviews from anyone. It will come as no surprise that rat-

ings at the former sites are far less biased, because they impose a cost 

(paying for an unnecessary hotel room) for fraudulent reviews.11 Regu-
latory penalties are more controversial: no one wants a Ministry of 

Truth, and Germany’s Network Enforcement Act penalizes only the 

content platform, not the person posting the fake news. On the other 

hand, just as many nations and many US states make it illegal to record 

telephone calls without permission, it ought, at least, to be possible to 

impose penalties for creating fictitious audio and video recordings of 

real people.

Finally, there are two other facts that work in our favor. First, al-

most no one actively wants, knowingly, to be lied to. (This is not to say 

that parents always inquire vigorously into the truthfulness of those 

who praise their children’s intelligence and charm; it’s just that they 
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110 HUMAN COMPATIBLE

are less likely to seek such approval from someone who is known to 

lie at every opportunity.) This means that people of all political per-

suasions have an incentive to adopt tools that help them distinguish 

truth from lies. Second, no one wants to be known as a liar, least of all 

news outlets. This means that information  providers—  at least those 

for who reputation  matters—  have an incentive to join industry associ-

ations and subscribe to codes of conduct that favor  truth telling. In 

turn, social media platforms can offer users the option of seeing con-

tent from only reputable sources that subscribe to these codes and 

subject themselves to  third-  party  fact-  checking.

Lethal Autonomous Weapons

The United Nations defines lethal autonomous weapons systems 

(AWS for short, because LAWS is quite confusing) as weapons sys-

tems that “locate, select, and eliminate human targets without human 

intervention.” AWS have been described, with good reason, as the 

“third revolution in warfare,” after gunpowder and nuclear weapons.

You may have read articles in the media about AWS; usually the 

article will call them killer robots and will be festooned with images 

from the Terminator movies. This is misleading in at least two ways: 

first, it suggests that autonomous weapons are a threat because they 

might take over the world and destroy the human race; second, it sug-

gests that autonomous weapons will be humanoid, conscious, and evil.

The net effect of the media’s portrayal of the issue has been to make 

it seem like science fiction. Even the German government has been 

taken in: it recently issued a statement12 asserting that “having the abil-

ity to learn and develop  self-  awareness constitutes an indispensable at-

tribute to be used to define individual functions or weapon systems as 

autonomous.” (This makes as much sense as asserting that a missile isn’t 

a missile unless it goes faster than the speed of light.) In fact, autono-

mous weapons will have the same degree of autonomy as a chess 
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program, which is given the mission of winning the game but decides by 

itself where to move its pieces and which enemy pieces to eliminate.

AWS are not science fiction. They already exist. Probably the clear-

est example is Israel’s Harop (figure 7, left), a loitering munition with a 

 ten-  foot wingspan and a  fifty-  pound warhead. It searches for up to six 

hours in a given geographical region for any target that meets a given 

criterion and then destroys it. The criterion could be “emits a radar 

signal resembling antiaircraft radar” or “looks like a tank.”

By combining recent advances in miniature quadrotor design, min-

iature cameras, computer vision chips, navigation and mapping algo-

rithms, and methods for detecting and tracking humans, it would be 

possible in fairly short order to field an antipersonnel weapon like the 

Slaughterbot13 shown in figure 7 (right). Such a weapon could be 

tasked with attacking anyone meeting certain visual criteria (age, gen-

der, uniform, skin color, and so on) or even specific individuals based 

on face recognition. I’m told that the Swiss Defense Department has 

already built and tested a real Slaughterbot and found that, as ex-

pected, the technology is both feasible and lethal.

Since 2014, diplomatic discussions have been underway in Geneva 

that may lead to a treaty banning AWS. At the same time, some of the 

major participants in these discussions (the United States, China, 

FIGURE -
Slaughterbots
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Russia, and to some extent Israel and the UK) are engaged in a danger-

ous competition to develop autonomous weapons. In the United States, 

for example, the CODE (Collaborative Operations in Denied Environ-

ments) program aims to move towards autonomy by enabling drones to 

function with at best intermittent radio contact. The drones will “hunt 

in packs, like wolves” according to the program manager.14 In 2016, the 

US Air Force demonstrated the in- flight deployment of 103 Perdix 

 micro-  drones from three F/ A- 18 fighters. According to the announce-

ment, “Perdix are not  pre-  programmed synchronized individuals, they 

are a collective organism, sharing one distributed brain for  decision- 

 making and adapting to each other like swarms in nature.” 15

You may think it’s pretty obvious that building machines that can 

decide to kill humans is a bad idea. But “pretty obvious” is not always 

persuasive to  governments—  including some of those listed in the pre-

ceding  paragraph—  who are bent on achieving what they think of as 

strategic superiority. A more convincing reason to reject autonomous 

weapons is that they are scalable weapons of mass destruction.

Scalable is a term from computer science; a process is scalable if 

you can do a million times more of it essentially by buying a million 

times more hardware. Thus, Google handles roughly five billion 

search requests per day by having not millions of employees but mil-

lions of computers. With autonomous weapons, you can do a million 

times more killing by buying a million times more weapons, pre-
cisely because the weapons are autonomous. Unlike remotely piloted 

drones or AK- 47s, they don’t need individual human supervision to do 

their work.

As weapons of mass destruction, scalable autonomous weapons 

have advantages for the attacker compared to nuclear weapons and 

carpet bombing: they leave property intact and can be applied selec-

tively to eliminate only those who might threaten an occupying force. 

They could certainly be used to wipe out an entire ethnic group or all 

the adherents of a particular religion (if adherents have visible indicia). 

Moreover, whereas the use of nuclear weapons represents a cataclys-
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mic threshold that we have (often by sheer luck) avoided crossing since 

1945, there is no such threshold with scalable autonomous weapons. 

Attacks could escalate smoothly from one hundred casualties to one 

thousand to ten thousand to one hundred thousand. In addition to 

actual attacks, the mere threat of attacks by such weapons makes them 

an effective tool for terror and oppression. Autonomous weapons will 

greatly reduce human security at all levels: personal, local, national, 

and international.

This is not to say that autonomous weapons will be the end of the 

world in the way envisaged in the Terminator movies. They need not 

be especially  intelligent—  a  self-  driving car probably needs to be 

 smarter—  and their missions will not be of the “take over the world” 

variety. The existential risk from AI does not come primarily from 

 simple-  minded killer robots. On the other hand, superintelligent ma-

chines in conflict with humanity could certainly arm themselves this 

way, by turning relatively stupid killer robots into physical extensions 

of a global control system.

Eliminating Work as We Know It

Thousands of media articles and opinion pieces and several books 

have been written on the topic of robots taking jobs from humans. 

Research centers are springing up all over the world to understand 

what is likely to happen.16 The titles of Martin Ford’s Rise of the Robots: 
Technology and the Threat of a Jobless Future17 and Calum Chace’s The 
Economic Singularity: Artificial Intelligence and the Death of Capital-
ism18 do a pretty good job of summarizing the concern. Although, as 

will soon become evident, I am by no means qualified to opine on 

what is essentially a matter for economists,19 I suspect that the issue is 

too important to leave entirely to them.

The issue of technological unemployment was brought to the fore 

in a famous article, “Economic Possibilities for Our Grandchildren,” by 
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John Maynard Keynes. He wrote the article in 1930, when the Great 

Depression had created mass unemployment in Britain, but the topic 

has a much longer history. Aristotle, in Book I of his Politics, presents 

the main point quite clearly:

For if every instrument could accomplish its own work, obeying 

or anticipating the will of  others . . . if, in like manner, the shut-

tle would weave and the plectrum touch the lyre without a hand 

to guide them, chief workmen would not want servants, nor mas-

ters slaves.

Everyone agrees with Aristotle’s observation that there is an im-

mediate reduction in employment when an employer finds a mechan-

ical method to perform work previously done by a person. The issue is 

whether the so- called compensation effects that  ensue—  and that tend 

to increase  employment—  will eventually make up for this reduction. 

The optimists say  yes—  and in the current debate, they point to all the 

new jobs that emerged after previous industrial revolutions. The pes-

simists say  no—  and in the current debate, they argue that machines 

will do all the “new jobs” too. When a machine replaces one’s physical 

labor, one can sell mental labor. When a machine replaces one’s men-

tal labor, what does one have left to sell?

In Life 3.0, Max Tegmark depicts the debate as a conversation 

 between two horses discussing the rise of the internal combustion 

engine in 1900. One predicts “new jobs for  horses. . . . That’s what’s 

always happened before, like with the invention of the wheel and the 

plow.” For most horses, alas, the “new job” was to be pet food.

The debate has persisted for millennia because there are effects in 

both directions. The actual outcome depends on which effects matter 

more. Consider, for example, what happens to housepainters as tech-

nology improves. For the sake of simplicity, I’ll let the width of the 

paintbrush stand for the degree of automation:
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• If the brush is one hair (a tenth of a millimeter) wide, it takes 

thousands of  person-  years to paint a house and essentially no 

housepainters are employed.

• With brushes a millimeter wide, perhaps a few delicate murals 

are painted in the royal palace by a handful of painters. At one 

centimeter, the nobility begin to follow suit.

• At ten centimeters (four inches), we reach the realm of practi-

cality: most homeowners have their houses painted inside and 

out, although perhaps not all that frequently, and thousands of 

housepainters find jobs.

• Once we get to wide rollers and spray  guns—  the equivalent of 

a paintbrush about a meter  wide—  the price goes down consid-

erably, but demand may begin to saturate so the number of 

housepainters drops somewhat.

• When one person manages a team of one hundred housepaint-

ing  robots—  the productivity equivalent of a paintbrush one 

hundred meters wide—then whole houses can be painted in an 

hour and very few housepainters will be working.

Thus, the direct effects of technology work both ways: at first, by 

increasing productivity, technology can increase employment by re-

ducing the price of an activity and thereby increasing demand; subse-

quently, further increases in technology mean that fewer and fewer 

humans are required. Figure 8 illustrates these developments.20

Many technologies exhibit similar curves. If, in some given sector 

of the economy, we are to the left of the peak, then improving tech-

nology increases employment in that sector;  present-  day examples 

might include tasks such as graffiti removal, environmental cleanup, 

inspection of shipping containers, and housing construction in less de-

veloped countries, all of which might become more economically fea-

sible if we have robots to help us. If we are already to the right of the 

peak, then further automation decreases employment. For example, 
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it’s not hard to predict that elevator operators will continue to be 

squeezed out. In the long run, we have to expect that most industries 

are going to be pushed to the far right on the curve. One recent article, 

based on a careful econometric study by economists David Autor and 

Anna Salomons, states that “over the last 40 years, jobs have fallen in 

every single industry that introduced technologies to enhance 

productivity.” 21

What about the compensation effects described by the economic 

optimists?

• Some people have to make the painting robots. How many? 

Far fewer than the number of housepainters the robots 

 replace—  otherwise, it would cost more to paint houses with 

robots, not less, and no one would buy the robots.

number of  
housepainters employed

effective 
brush width

0.1mm 1mm 1cm 10cm 1m 10m 100m

0

FIGURE 8: A notional graph of housepainting employment as painting technol-
ogy improves.
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• Housepainting becomes somewhat cheaper, so people call in 

the housepainters a bit more often.

• Finally, because we pay less for housepainting, we have more 

money to spend on other things, thereby increasing employ-

ment in other sectors.

Economists have tried to measure the size of these effects in vari-

ous industries experiencing increased automation, but the results are 

generally inconclusive.

Historically, most mainstream economists have argued from the 

“big picture” view: automation increases productivity, so, as a whole, 
humans are better off, in the sense that we enjoy more goods and ser-

vices for the same amount of work.

Economic theory does not, unfortunately, predict that each hu-

man will be better off as a result of automation. Generally, automa-

tion  increases the share of income going to capital (the owners of 

the housepainting robots) and decreases the share going to labor (the 

ex- housepainters). The economists Erik Brynjolfsson and Andrew 

 McAfee, in The Second Machine Age, argue that this has already been 

happening for several decades. Data for the United States are shown 

in figure 9. They indicate that between 1947 and 1973, wages and 

productivity increased together, but after 1973, wages stagnated even 

while productivity roughly doubled. Brynjolfsson and McAfee call 

this the Great Decoupling. Other leading economists have also sounded 

the alarm, including Nobel laureates Robert Shiller, Mike Spence, and 

Paul Krugman; Klaus Schwab, head of the World Economic Forum; 

and Larry Summers, former chief economist of the World Bank and 

Treasury secretary under President Bill Clinton.

Those arguing against the notion of technological unemployment 

often point to bank tellers, whose work can be done in part by ATMs, 

and retail cashiers, whose work is sped up by barcodes and RFID tags 

on merchandise. It is often claimed that these occupations are growing 
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because of technology. Indeed, the number of tellers in the United 

States roughly doubled from 1970 to 2010, although it should be noted 

that the US population grew by 50 percent and the financial sector by 

over 400 percent in the same period,22 so it is difficult to attribute all, 

or perhaps any, of the employment growth to ATMs. Unfortunately, 

between 2010 and 2016 about one hundred thousand tellers lost their 

jobs, and the US Bureau of Labor Statistics (BLS) predicts another 

forty thousand job losses by 2026: “Online banking and automation 

technology are expected to continue replacing more job duties that 

tellers traditionally performed.” 23 The data on retail cashiers are no 

more encouraging: the number per capita dropped by 5 percent from 

1997 to 2015, and the BLS says, “Advances in technology, such as  self- 

 service checkout stands in retail stores and increasing online sales, will 

continue to limit the need for cashiers.” Both sectors appear to be on 

the downslope. The same is true of almost all  low-  skilled occupations 

that involve working with machines.

Which occupations are about to decline as new, AI- based technol-
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ogy arrives? The prime example cited in the media is that of driving. 

In the United States there are about 3.5 million truck drivers; many of 

these jobs would be vulnerable to automation. Amazon, among other 

companies, is already using  self-  driving trucks for freight haulage on 

interstate freeways, albeit currently with human backup drivers.24 It 

seems very likely that the  long-  haul part of each truck journey will soon 

be autonomous, while humans, for the time being, will handle city 

traffic, pickup, and delivery. As a consequence of these expected devel-

opments, very few young people are interested in trucking as a career; 

ironically, there is currently a significant shortage of truck drivers in the 

Unites States, which is only hastening the onset of automation.

 White-  collar jobs are also at risk. For example, the BLS projects a 

13 percent decline in  per-  capita employment of insurance underwrit-

ers from 2016 to 2026: “Automated underwriting software allows 

workers to process applications more quickly than before, reducing 

the need for as many underwriters.” If language technology develops 

as expected, many sales and customer service jobs will also be vulner-

able, as well as jobs in the legal profession. (In a 2018 competition, AI 

software outscored experienced law professors in analyzing standard 

nondisclosure agreements and completed the task two hundred times 

faster.25) Routine forms of computer  programming—  the kind that is 

often outsourced  today—  are also likely to be automated. Indeed, al-

most anything that can be outsourced is a good candidate for automa-

tion, because outsourcing involves decomposing jobs into tasks that 

can be parceled up and distributed in a decontextualized form. The 

robot process automation industry produces software tools that achieve 

exactly this effect for clerical tasks performed online.

As AI progresses, it is certainly  possible—  perhaps even  likely— 

 that within the next few decades essentially all routine physical and 

mental labor will be done more cheaply by machines. Since we ceased 

to be  hunter-  gatherers thousands of years ago, our societies have used 

most people as robots, performing repetitive manual and mental tasks, 

so it is perhaps not surprising that robots will soon take on these roles. 
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When this happens, it will push wages below the poverty line for 

those people who are unable to compete for the highly skilled jobs 

that remain. Larry Summers put it this way: “It may well be that, 

given the possibilities for substitution [of capital for labor], some cat-

egories of labor will not be able to earn a subsistence income.” 26 This 

is precisely what happened to the horses: mechanical transportation 

became cheaper than the upkeep cost of a horse, so horses became pet 

food. Faced with the socioeconomic equivalent of becoming pet food, 

humans will be rather unhappy with their governments.

Faced with potentially unhappy humans, governments around the 

world are beginning to devote some attention to the issue. Most have 

already discovered that the idea of retraining everyone as a data scien-

tist or robot engineer is a  nonstarter—  the world might need five or ten 

million of these, but nowhere close to the billion or so jobs that are at 

risk. Data science is a very tiny lifeboat for a giant cruise ship.27

Some are working on “transition plans”—  but transition to what? 

We need a plausible destination in order to plan a transition—that is, 

we need a plausible picture of a desirable future economy where most 

of what we currently call work is done by machines.

One rapidly emerging picture is that of an economy where far 

fewer people work because work is unnecessary. Keynes envisaged just 

such a future in his essay “Economic Possibilities for Our Grandchil-

dren.” He described the high unemployment afflicting Great Britain 

in 1930 as a “temporary phase of maladjustment” caused by an “in-

crease of technical efficiency” that took place “faster than we can deal 

with the problem of labour absorption.” He did not, however, imagine 

that in the long  run—  after a century of further technological 

 advances—  there would be a return to full employment:

Thus for the first time since his creation man will be faced with 

his real, his permanent  problem—  how to use his freedom from 

pressing economic cares, how to occupy the leisure, which science 
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and compound interest will have won for him, to live wisely and 

agreeably and well.

Such a future requires a radical change in our economic system, 

because, in many countries, those who do not work face poverty or 

destitution. Thus, modern proponents of Keynes’s vision usually sup-

port some form of universal basic income, or UBI. Funded by  value- 

 added taxes or by taxes on income from capital, UBI would provide a 

reasonable income to every adult, regardless of circumstance. Those 

who aspire to a higher standard of living can still work without losing 

the UBI, while those who do not can spend their time as they see fit. 

Perhaps surprisingly, UBI has support across the political spectrum, 

ranging from the Adam Smith Institute28 to the Green Party.29

For some, UBI represents a version of paradise.30 For others, it rep-

resents an admission of  failure—  an assertion that most people will 

have nothing of economic value to contribute to society. They can be 

fed and housed—mostly by machines—but otherwise left to their 

own devices. The truth, as always, lies somewhere in between, and it 

depends largely on how one views human psychology. Keynes, in his 

essay, made a clear distinction between those who strive and those 

who enjoy—those “purposive” people for whom “jam is not jam unless 

it is a case of jam to- morrow and never jam to- day” and those “delight-

ful” people who are “capable of taking direct enjoyment in things.” 

The UBI proposal assumes that the great majority of people are of the 

delightful variety.

Keynes suggests that striving is one of the “habits and instincts of 

the ordinary man, bred into him for countless generations” rather than 

one of the “real values of life.” He predicts that this instinct will grad-

ually disappear. Against this view, one may suggest that striving is in-

trinsic to what it means to be truly human. Rather than striving and 

enjoying being mutually exclusive, they are often inseparable: true 

enjoyment and lasting fulfillment come from having a purpose and 
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achieving it (or at least trying), usually in the face of obstacles, rather 

than from passive consumption of immediate pleasure. There is a dif-

ference between climbing Everest and being deposited on top by 

helicopter.

The connection between striving and enjoying is a central theme 

for our understanding of how to fashion a desirable future. Perhaps 

future generations will wonder why we ever worried about such a fu-

tile thing as “work.” Just in case that change in attitudes is slow in 

coming, let’s consider the economic implications of the view that most 

people will be better off with something useful to do, even though the 

great majority of goods and services will be produced by machines 

with very little human supervision. Inevitably, most people will be 

engaged in supplying interpersonal services that can be  provided—  or 

which we prefer to be  provided—  only by humans. That is, if we can no 

longer supply routine physical labor and routine mental labor, we can 

still supply our humanity. We will need to become good at being 

human.31

Current professions of this kind include psychotherapists, execu-

tive coaches, tutors, counselors, companions, and those who care for 

children and the elderly. The phrase caring professions is often used in 

this context, but that is misleading: it has a positive connotation for 

those providing care, to be sure, but a negative connotation of depen-

dency and helplessness for the recipients of care. But consider this 

observation, again from Keynes:

It will be those peoples, who can keep alive, and cultivate into 

a fuller perfection, the art of life itself and do not sell themselves 

for the means of life, who will be able to enjoy the abundance 

when it comes.

All of us need help in learning “the art of life itself.” This is not a mat-

ter of dependency but of growth. The capacity to inspire others and 

to confer the ability to appreciate and to  create—  be it in art, music, 
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literature, conversation, gardening, architecture, food, wine, or video 

 games—  is likely to be more needed than ever.

The next question is income distribution. In most countries, this 

has been moving in the wrong direction for several decades. It’s a 

 complex issue, but one thing is clear: high incomes and high social 

standing usually follow from providing high added value. The profes-

sion of childcare, to pick one example, is associated with low incomes 

and low social standing. This is, in part, a consequence of the fact that 

we don’t really know how to do it. Some practitioners are naturally 

good at it, but many are not. Contrast this with, say, orthopedic sur-

gery. We wouldn’t just hire bored teenagers who need a bit of spare 

cash and put them to work as orthopedic surgeons at five dollars an 

hour plus all they can eat from the fridge. We have put centuries of 

research into understanding the human body and how to fix it when 

it’s broken, and practitioners must undergo years of training to learn 

all this knowledge and the skills necessary to apply it. As a result, or-

thopedic surgeons are highly paid and highly respected. They are 

highly paid not just because they know a lot and have a lot of training 

but also because all that knowledge and training actually works. It en-

ables them to add a great deal of value to other people’s  lives—  especially 

people with broken bits.

Unfortunately, our scientific understanding of the mind is shock-

ingly weak and our scientific understanding of happiness and fulfill-

ment is even weaker. We simply don’t know how to add value to each 

other’s lives in consistent, predictable ways. We have had moderate 

success with certain psychiatric disorders, but we are still fighting a 

Hundred Years’ Literacy War over something as basic as teaching chil-

dren to read.32 We need a radical rethinking of our educational system 

and our scientific enterprise to focus more attention on the human 

rather than the physical world. (Joseph Aoun, president of Northeast-

ern University, argues that universities should be teaching and study-

ing “humanics.” 33) It sounds odd to say that happiness should be an 

engineering discipline, but that seems to be the inevitable conclusion. 
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Such a discipline would build on basic  science—  a better understand-

ing of how human minds work at the cognitive and emotional  levels— 

 and would train a wide variety of practitioners, ranging from life 

architects, who help individuals plan the overall shape of their life 

trajectories, to professional experts in topics such as curiosity en-

hancement and personal resilience. If based on real science, these 

 professions need be no more  woo-  woo than bridge designers and or-

thopedic surgeons are today.

Reworking our education and research institutions to create this 

basic science and to convert it into training programs and credentialed 

professions will take decades, so it’s a good idea to start now and a pity 

we didn’t start long ago. The final  result—  if it  works—  would be a 

world well worth living in. Without such a rethinking, we risk an un-

sustainable level of socioeconomic dislocation.

Usurping Other Human Roles

We should think twice before allowing machines to take over roles 

involving interpersonal services. If being human is our main selling 

point to other humans, so to speak, then making imitation humans 

seems like a bad idea. Fortunately for us, we have a distinct advantage 

over machines when it comes to knowing how other humans feel and 

how they will react. Nearly every human knows what it’s like to hit 

one’s thumb with a hammer or to feel unrequited love.

Counteracting this natural human advantage is a natural human 

disadvantage: the tendency to be fooled by  appearances—  especially 

human appearances. Alan Turing warned against making robots re-

semble humans:34

I certainly hope and believe that no great efforts will be put into 

making machines with the most distinctively human, but  non- 

intellectual, characteristics such as the shape of the human body; 
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it appears to me quite futile to make such attempts and their re-

sults would have something like the unpleasant quality of artificial 

flowers.

Unfortunately, Turing’s warning has gone unheeded. Several research 

groups have produced eerily lifelike robots, as shown in figure 10.

As research tools, the robots may provide insights into how hu-

mans interpret robot behavior and communication. As prototypes for 

future commercial products, they represent a form of dishonesty. 

They bypass our conscious awareness and appeal directly to our emo-

tional selves, perhaps convincing us that they are endowed with real 

intelligence. Imagine, for example, how much easier it would be to 

switch off and recycle a squat, gray box that was malfunctioning—

 even if it was squawking about not wanting to be switched  off—  than 

it would be to do the same for JiaJia or Geminoid DK. Imagine also 

how confusing and perhaps psychologically disturbing it would be for 

babies and small children to be cared for by entities that appear to be 

human, like their parents, but are somehow not; that appear to care 

about them, like their parents, but in fact do not.

FIGURE -

-
sity in Denmark.
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Beyond a basic capability to convey nonverbal information via fa-

cial expression and  movement—  which even Bugs Bunny manages to do 

with  ease—  there is no good reason for robots to have humanoid form. 

There are also good, practical reasons not to have humanoid form—for 

example, our bipedal stance is relatively unstable compared to qua-

drupedal locomotion. Dogs, cats, and horses fit into our lives well, and 

their physical form is a very good clue as to how they are likely to 

behave. (Imagine if a horse suddenly started behaving like a dog!) 

The same should be true of robots. Perhaps a  four-  legged,  two-  armed, 

 centaur-  like morphology would be a good standard. An accurately hu-

manoid robot makes as much sense as a Ferrari with a top speed of five 

miles per hour or a “raspberry”  ice-  cream cone made from  beetroot- 

 tinted cream of chopped liver.

The humanoid aspect of some robots has already contributed to 

political as well as emotional confusion. On October 25, 2017, Saudi 

Arabia granted citizenship to Sophia, a humanoid robot that has been 

described as little more than “a chatbot with a face” 35 and worse.36 

Perhaps this was a public relations stunt, but a proposal emanating 

from the European Parliament’s Committee on Legal Affairs is en-

tirely serious.37 It recommends

creating a specific legal status for robots in the long run, so that at 

least the most sophisticated autonomous robots could be estab-

lished as having the status of electronic persons responsible for 

making good any damage they may cause.

In other words, the robot itself would be legally responsible for damage, 

rather than the owner or manufacturer. This implies that robots will 

own financial assets and be subject to sanctions if they do not comply. 

Taken literally, this does not make sense. For example, if we were to 

imprison the robot for nonpayment, why would it care?

In addition to the needless and even absurd elevation of the status 

of robots, there is a danger that the increased use of machines in 

9780525558613_Human_TX.indd 126 8/7/19 11:21 PM

Notspecific leecific le

he most sophe most so

as havinas havin

for
 rliamenm

commendscommend
Dist

rib
uti

on
n acc

a top speetop spee

made frommade from

s has alrea has alrea

on. On Oct. On Oc

hia, a humaa, a huma

“a chatbot chatbo

elations stelations s

t’s Ct’s C



 M ISUSES  OF  A I  127

decisions affecting people will degrade the status and dignity of hu-

mans. This possibility is illustrated perfectly in a scene from the 

science-fiction movie Elysium, when Max (Matt Damon) pleads his 

case before his “parole officer” (figure 11) to explain why the exten-

sion of his sentence is unjustified. Needless to say, Max is unsuccess-

ful. The parole officer even chides him for failing to display a suitably 

deferential attitude.

One can think of such an assault on human dignity in two ways. 

The first is obvious: by giving machines authority over humans, we 

relegate ourselves to a  second-  class status and lose the right to partic-

ipate in decisions that affect us. (A more extreme form of this is giving 

machines the authority to kill humans, as discussed earlier in the 

chapter.) The second is indirect: even if you believe it is not the ma-
chines making the decision but those humans who designed and com-
missioned the machines, the fact that those human designers and 

commissioners do not consider it worthwhile to weigh the individual 

circumstances of each human subject in such cases suggests that they 

attach little value to the lives of others. This is perhaps a symptom of 

the beginning of a great separation between an elite served by humans 

and a vast underclass served, and controlled, by machines.

In the EU, Article 22 of the 2018 General Data Protection Regu-

lation, or GDPR, explicitly forbids the granting of authority to ma-

chines in such cases: 

FIGURE 11: Max (Matt Da-
mon) meets his parole offi-
cer in Elysium.
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The data subject shall have the right not to be subject to a decision 

based solely on automated processing, including profiling, which 

produces legal effects concerning him or her or similarly signifi-

cantly affects him or her.

Although this sounds admirable in principle, it remains to be  seen—  at 

least at the time of  writing—  how much impact this will have in prac-

tice. It is often so much easier, faster, and cheaper to leave the deci-

sions to the machine.

One reason for all the concern about automated decisions is the po-

tential for algorithmic  bias—  the tendency of machine learning algo-

rithms to produce inappropriately biased decisions about loans, housing, 

jobs, insurance, parole, sentencing, college admission, and so on. The 

explicit use of criteria such as race in these decisions has been illegal for 

decades in many countries and is prohibited by Article 9 of the GDPR 

for a very wide range of applications. That does not mean, of course, 

that by excluding race from the data we necessarily get racially unbi-

ased decisions. For example, beginning in the 1930s, the   government- 

 sanctioned practice of redlining caused certain zip codes in the United 

States to be  off-  limits for mortgage lending and other forms of invest-

ment, leading to declining real-estate values. It just so happened that 

those zip codes were largely populated by African Americans.

To prevent redlining, now only the first three digits of the  five-  digit 

zip code can be used in making credit decisions. In addition, the deci-

sion process must be amenable to inspection, to ensure no other “acci-

dental” biases are creeping in. The EU’s GDPR is often said to provide 

a general “right to an explanation” for any automated decision,38 but 

the actual language of Article 14 merely requires

meaningful information about the logic involved, as well as the 

significance and the envisaged consequences of such processing for 

the data subject.
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At present, it is unknown how courts will enforce this clause. It’s pos-

sible that the hapless consumer will just be handed a description of the 

particular deep learning algorithm used to train the classifier that 

made the decision.

Nowadays, the likely causes of algorithmic bias lie in the data 

rather than in the deliberate malfeasance of corporations. In 2015, 

Glamour magazine reported a disappointing finding: “The first female 

Google image search result for ‘CEO’ appears TWELVE rows  down— 

 and it’s Barbie.” (There were some actual women in the 2018 results, 

but most of them were models portraying CEOs in generic stock pho-

tos, rather than actual female CEOs; the 2019 results are somewhat 

better.) This is a consequence not of deliberate gender bias in Google’s 

image search ranking but of preexisting bias in the culture that pro-

duces the data: there are far more male than female CEOs, and when 

people want to depict an “archetypal” CEO in a captioned image, they 

almost always pick a male figure. The fact that the bias lies primarily 

in the data does not, of course, mean that there is no obligation to take 

steps to counteract the problem.

There are other, more technical reasons why the naïve applica-

tion of machine learning methods can produce biased outcomes. 

For example, minorities are, by definition, less well represented in 

 population-  wide data samples; hence, predictions for individual mem-

bers of minorities may be less accurate if such predictions are made 

largely on the basis of data from other members of the same group. 

Fortunately, a good deal of attention has been paid to the problem of 

removing inadvertent bias from machine learning algorithms, and 

there are now methods that produce unbiased results according to 

several plausible and desirable definitions of fairness.39 The mathe-

matical analysis of these definitions of fairness shows that they cannot 

be achieved simultaneously and that, when enforced, they result in 

lower prediction accuracy and, in the case of lending decisions, lower 

profit for the lender. This is perhaps disappointing, but at least it 
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makes clear the  trade-  offs involved in avoiding algorithmic bias. One 

hopes that awareness of these methods and of the issue itself will 

spread quickly among policy makers, practitioners, and users.

If handing authority over individual humans to machines is some-

times problematic, what about authority over lots of humans? That is, 

should we put machines in political and management roles? At present 

this may seem  far-  fetched. Machines cannot sustain an extended con-

versation and lack the basic understanding of the factors that are rele-

vant to making decisions with broad scope, such as whether to raise 

the minimum wage or to reject a merger proposal from another cor-

poration. The trend, however, is clear: machines are making decisions 

at higher and higher levels of authority in many areas. Take airlines, 

for example. First, computers helped in the construction of flight 

schedules. Soon, they took over allocation of flight crews, the booking 

of seats, and the management of routine maintenance. Next, they 

were connected to global information networks to provide  real-  time 

status reports to airline managers, so that managers could cope with 

disruption effectively. Now they are taking over the job of managing 

disruption: rerouting planes, rescheduling staff, rebooking passengers, 

and revising maintenance schedules.

This is all to the good from the point of view of airline economics 

and passenger experience. The question is whether the computer sys-

tem remains a tool of humans, or humans become tools of the com-

puter  system—  supplying information and fixing bugs when necessary, 

but no longer understanding in any depth how the whole thing is 

working. The answer becomes clear when the system goes down and 

global chaos ensues until it can be brought back online. For example, 

a single “computer glitch” on April 3, 2018, caused fifteen thousand 

flights in Europe to be significantly delayed or canceled.40 When trad-

ing algorithms caused the 2010 “flash crash” on the New York Stock 

Exchange, wiping out $1 trillion in a few minutes, the only solution 

was to shut down the exchange. What happened is still not well 

understood.

9780525558613_Human_TX.indd 130 8/7/19 11:21 PM

Not
theh

r experienxperien

ins a tool oins a tool 

m—m—suu

for
anes, res,

nance schednance sche

good frgood fr

Dist
rib

uti
on
m an

e making dmaking d

y areas. Tay areas. Ta

he construcconstru

n of flight cof flight c

utine mainine main

ation netwoon netwo

gers, so thagers, so th

they are tthey are t

schesche



 M ISUSES  OF  A I  131

Before there was any technology, human beings lived, like most 

animals, hand to mouth. We stood directly on the ground, so to speak. 

Technology gradually raised us up on a pyramid of machinery, increas-

ing our footprint as individuals and as a species. There are different 

ways we can design the relationship between humans and machines. 

If we design it so that humans retain sufficient understanding, author-

ity, and autonomy, the technological parts of the system can greatly 

magnify human capabilities, allowing each of us to stand on a vast 

pyramid of  capabilities—  a demigod, if you like. But consider the 

worker in an  online-  shopping fulfillment warehouse. She is more pro-

ductive than her predecessors because she has a small army of robots 

bringing her storage bins to pick items from; but she is a part of a 

larger system controlled by intelligent algorithms that decide where 

she should stand and which items she should pick and dispatch. She is 

already partly buried in the pyramid, not standing on top of it. It’s 

only a matter of time before the sand fills the spaces in the pyramid 

and her role is eliminated.
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5

OVERLY INTELLIGENT AI

The Gorilla Problem

It doesn’t require much imagination to see that making something 

smarter than yourself could be a bad idea. We understand that our 

control over our environment and over other species is a result of our 

intelligence, so the thought of something else being more intelligent 

than  us—  whether it’s a robot or an  alien—  immediately induces a 

queasy feeling.

Around ten million years ago, the ancestors of the modern gorilla 

created (accidentally, to be sure) the genetic lineage leading to modern 

humans. How do the gorillas feel about this? Clearly, if they were able 

to tell us about their species’ current situation vis- à- vis humans, the 

consensus opinion would be very negative indeed. Their species has 

essentially no future beyond that which we deign to allow. We do not 

want to be in a similar situation vis- à- vis superintelligent machines. 

I’ll call this the gorilla  problem—  specifically, the problem of whether 

humans can maintain their supremacy and autonomy in a world that 

includes machines with substantially greater intelligence.

Charles Babbage and Ada Lovelace, who designed and wrote pro-
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grams for the Analytical Engine in 1842, were aware of its potential 

but seemed to have no qualms about it.1 In 1847, however, Richard 

Thornton, editor of the Primitive Expounder, a religious journal, railed 

against mechanical calculators:2

 Mind  .  .  . outruns itself and does away with the necessity of its 

own existence by inventing machines to do its own  thinking. . . . 

But who knows that such machines when brought to greater per-

fection, may not think of a plan to remedy all their own defects 

and then grind out ideas beyond the ken of mortal mind!

This is perhaps the first speculation concerning existential risk from 

computing devices, but it remained in obscurity.

In contrast, Samuel Butler’s novel Erewhon, published in 1872, de-

veloped the theme in far greater depth and achieved immediate suc-

cess. Erewhon is a country in which all mechanical devices have been 

banned after a terrible civil war between the machinists and  anti- 

 machinists. One part of the book, called “The Book of the Machines,” 

explains the origins of this war and presents the arguments of both 

sides.3 It is eerily prescient of the debate that has re- emerged in the 

early years of the  twenty-  first century.

The  anti-  machinists’ main argument is that machines will advance 

to the point where humanity loses control:

Are we not ourselves creating our successors in the supremacy of 

the earth? Daily adding to the beauty and delicacy of their organi-

zation, daily giving them greater skill and supplying more and 

more of that  self-  regulating  self-  acting power which will be better 

than any  intellect? . . . In the course of ages we shall find ourselves 

the inferior  race. . . . 

We must choose between the alternative of undergoing much 

present suffering, or seeing ourselves gradually superseded by our 

own creatures, till we rank no higher in comparison with them, 

M 9780525558613_Human_TX.indd 133 8/7/19 11:21 PM

Not
e e t

machinisachinis

int where hint where 

for
f this whis

prescient ofrescient o

wenty-wenty-ff

Dist
rib

uti
on

mind!

ng existentig existenti

urity.ty.

ewhonewhon, pub, pub

pth and achh and ac

ich all mech all mec

war betwear betw

e book, cal book, ca

war awar a



134 HUMAN COMPATIBLE

than the beasts of the field with  ourselves. . . . Our bondage will 

steal upon us noiselessly and by imperceptible approaches.

The narrator also relates the  pro-  machinists’ principal counter-

argument, which anticipates the  man–  machine symbiosis argument 

that we will explore in the next chapter:

There was only one serious attempt to answer it. Its author said 

that machines were to be regarded as a part of man’s own physical 

nature, being really nothing but  extra-  corporeal limbs.

Although the  anti-  machinists in Erewhon win the argument, Butler 

himself appears to be of two minds. On the one hand, he complains 

that “Erewhonians  are  .  .  . quick to offer up common sense at the 

shrine of logic, when a philosopher arises among them, who carries 

them away through his reputation for especial learning” and says, 

“They cut their throats in the matter of machinery.” On the other 

hand, the Erewhonian society he describes is remarkably harmonious, 

productive, and even idyllic. The Erewhonians fully accept the folly 

of re- embarking on the course of mechanical invention, and regard 

those remnants of machinery kept in museums “with the feelings of 

an English antiquarian concerning Druidical monuments or flint ar-

row heads.”

Butler’s story was evidently known to Alan Turing, who consid-

ered the  long-  term future of AI in a lecture given in Manchester 

in 1951:4

It seems probable that once the machine thinking method had 

started, it would not take long to outstrip our feeble powers. There 

would be no question of the machines dying, and they would 

be able to converse with each other to sharpen their wits. At some 

stage therefore we should have to expect the machines to take 

control, in the way that is mentioned in Samuel Butler’s Erewhon.
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In the same year, Turing repeated these concerns in a radio lecture 

broadcast throughout the UK on the BBC Third Programme:

If a machine can think, it might think more intelligently than we 

do, and then where should we be? Even if we could keep the ma-

chines in a subservient position, for instance by turning off the 

power at strategic moments, we should, as a species, feel greatly 

 humbled. . . . This new  danger . . . is certainly something which 

can give us anxiety.

When the Erewhonian  anti-  machinists “feel seriously uneasy about 

the future,” they see it as their “duty to check the evil while we can 

still do so,” and they destroy all the machines. Turing’s response to the 

“new danger” and “anxiety” is to consider “turning off the power” (al-

though it will be clear shortly that this is not really an option). In 

Frank Herbert’s classic  science-  fiction novel Dune, set in the far fu-

ture, humanity has barely survived the Butlerian Jihad, a cataclysmic 

war with the “thinking machines.” A new commandment has emerged: 

“Thou shalt not make a machine in the likeness of a human mind.” This 

commandment precludes computing devices of any kind.

All these drastic responses reflect the inchoate fears that machine 

intelligence evokes. Yes, the prospect of superintelligent machines does 

make one uneasy. Yes, it is logically possible that such machines could 

take over the world and subjugate or eliminate the human race. If that 

is all one has to go on, then indeed the only plausible response available 

to us, at the present time, is to attempt to curtail artificial intelligence 

 research—  specifically, to ban the development and deployment of 

 general-  purpose,  human-  level AI systems.

Like most other AI researchers, I recoil at this prospect. How dare 

anyone tell me what I can and cannot think about? Anyone proposing 

an end to AI research is going to have to do a lot of convincing. Ending 

AI research would mean forgoing not just one of the principal avenues 

for understanding how human intelligence works but also a golden 
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opportunity to improve the human  condition—  to make a far better 

civilization. The economic value of  human-  level AI is measurable in 

the thousands of trillions of dollars, so the momentum behind AI re-

search from corporations and governments is likely to be enormous. It 

will overwhelm the vague objections of a philosopher, no matter how 

great his or her “reputation for especial learning,” as Butler puts it.

A second drawback to the idea of banning  general-  purpose AI is that 

it’s a difficult thing to ban. Progress on  general-  purpose AI occurs pri-

marily on the whiteboards of research labs around the world, as mathe-

matical problems are posed and solved. We don’t know in advance 

which ideas and equations to ban, and, even if we did, it doesn’t seem 

reasonable to expect that such a ban could be enforceable or effective.

To compound the difficulty still further, researchers making prog-

ress on  general-  purpose AI are often working on something else. As 

I have already argued, research on tool  AI—  those specific, innocu-

ous applications such as game playing, medical diagnosis, and travel 

planning—  often leads to progress on  general-  purpose techniques that 

are applicable to a wide range of other problems and move us closer to 

 human-  level AI.

For these reasons, it’s very unlikely that the AI  community—  or 

the governments and corporations that control the laws and research 

 budgets—  will respond to the gorilla problem by ending progress in 

AI. If the gorilla problem can be solved only in this way, it isn’t going 

to be solved.

The only approach that seems likely to work is to understand why 

it is that making better AI might be a bad thing. It turns out that we 

have known the answer for thousands of years.

Norbert Wiener, whom we met in Chapter 1, had a profound impact 

on many fields, including artificial intelligence, cognitive science, and 
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control theory. Unlike most of his contemporaries, he was particularly 

concerned with the unpredictability of complex systems operating in 

the real world. (He wrote his first paper on this topic at the age of 

ten.) He became convinced that the overconfidence of scientists and 

engineers in their ability to control their creations, whether military 

or civilian, could have disastrous consequences.

In 1950, Wiener published The Human Use of Human Beings,5 

whose  front-  cover blurb reads, “The ‘mechanical brain’ and similar 

machines can destroy human values or enable us to realize them as 

never before.” 6 He gradually refined his ideas over time and by 1960 

had identified one core issue: the impossibility of defining true human 

purposes correctly and completely. This, in turn, means that what I 

have called the standard  model—  whereby humans attempt to imbue 

machines with their own  purposes—  is destined to fail.

We might call this the King Midas problem: Midas, a legendary 

king in ancient Greek mythology, got exactly what he asked  for— 

 namely, that everything he touched should turn to gold. Too late, he 

discovered that this included his food, his drink, and his family mem-

bers, and he died in misery and starvation. The same theme is ubiqui-

tous in human mythology. Wiener cites Goethe’s tale of the sorcerer’s 

apprentice, who instructs the broom to fetch  water—  but doesn’t say 

how much water and doesn’t know how to make the broom stop.

A technical way of saying this is that we may suffer from a failure 

of value  alignment—  we may, perhaps inadvertently, imbue machines 

with objectives that are imperfectly aligned with our own. Until re-

cently, we were shielded from the potentially catastrophic conse-

quences by the limited capabilities of intelligent machines and the 

limited scope that they have to affect the world. (Indeed, most AI 

work was done with toy problems in research labs.) As Norbert Wie-

ner put it in his 1964 book God and Golem,7

In the past, a partial and inadequate view of human purpose has 

been relatively innocuous only because it has been accompanied by 
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technical limitations. . . . This is only one of the many places where 

human impotence has shielded us from the full destructive impact 

of human folly.

Unfortunately, this period of shielding is rapidly coming to an end.

We have already seen how  content-  selection algorithms on social 

media wrought havoc on society in the name of maximizing ad reve-

nues. In case you are thinking to yourself that ad revenue maximiza-

tion was already an ignoble goal that should never have been pursued, 

let’s suppose instead that we ask some future superintelligent system 

to pursue the noble goal of finding a cure for  cancer—  ideally as quickly 

as possible, because someone dies from cancer every 3.5 seconds. 

Within hours, the AI system has read the entire biomedical literature 

and hypothesized millions of potentially effective but previously un-

tested chemical compounds. Within weeks, it has induced multiple 

tumors of different kinds in every living human being so as to carry 

out medical trials of these compounds, this being the fastest way to 

find a cure. Oops.

If you prefer solving environmental problems, you might ask the 

machine to counter the rapid acidification of the oceans that results 

from higher carbon dioxide levels. The machine develops a new cata-

lyst that facilitates an incredibly rapid chemical reaction between 

ocean and atmosphere and restores the oceans’ pH levels. Unfortu-

nately, a quarter of the oxygen in the atmosphere is used up in the 

process, leaving us to asphyxiate slowly and painfully. Oops.

These kinds of  world-  ending scenarios are  unsubtle—  as one might 

expect, perhaps, for  world-  ending scenarios. But there are many sce-

narios in which a kind of mental asphyxiation “steals upon us  noiselessly 

and by imperceptible approaches.” The prologue to Max Tegmark’s 

Life 3.0 describes in some detail a scenario in which a superintelligent 

machine gradually assumes economic and political control over the 

entire world while remaining essentially undetected. The Internet and 

the global-scale machines that it supports—the ones that already 
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 interact with billions of “users” on a daily  basis—  provide the perfect 

medium for the growth of machine control over humans.

I don’t expect that the purpose put into such machines will be of 

the “take over the world” variety. It is more likely to be profit maximi-

zation or engagement maximization or, perhaps, even an apparently 

benign goal such as achieving higher scores on regular user happiness 

surveys or reducing our energy usage. Now, if we think of ourselves as 

entities whose actions are expected to achieve our objectives, there 

are two ways to change our behavior. The first is the  old-  fashioned 

way: leave our expectations and objectives unchanged, but change our 

circumstances—for example, by offering money, pointing a gun at us, 

or starving us into submission. That tends to be expensive and diffi-

cult for a computer to do. The second way is to change our expecta-

tions and objectives. This is much easier for a machine. It is in contact 

with you for hours every day, controls your access to information, and 

provides much of your entertainment through games, TV, movies, and 

social interaction.

The reinforcement learning algorithms that optimize  social-  media 

 click-  through have no capacity to reason about human  behavior—  in 

fact, they do not even know in any meaningful sense that humans 

exist. For machines with much greater understanding of human psy-

chology, beliefs, and motivations, it should be relatively easy to gradu-

ally guide us in directions that increase the degree of satisfaction of 

the machine’s objectives. For example, it might reduce our energy 

consumption by persuading us to have fewer children,  eventually— 

 and  inadvertently—  achieving the dreams of  anti-  natalist philosophers 

who wish to eliminate the noxious impact of humanity on the natu-

ral world.

With a bit of practice, you can learn to identify ways in which the 

achievement of more or less any fixed objective can result in arbi-

trarily bad outcomes. One of the most common patterns involves 

omitting something from the objective that you do actually care 

about. In such  cases—  as in the examples given  above—  the AI system 

M 9780525558613_Human_TX.indd 139 8/7/19 11:21 PM

Not
inen

iefs, and ms, and m

e us in diree us in dir

hine’s ohine’s o

for
capacapa

even know ven know

s with mwith m

Dist
rib

uti
on
, but

pointing a inting a 

be expensive expensiv

is to changto chan

r for a machfor a mach

ls your acceyour acc

ment througnt throug

ning algorining algor

ty toty to



140 HUMAN COMPATIBLE

will often find an optimal solution that sets the thing you do care 

about, but forgot to mention, to an extreme value. So, if you say to 

your  self-  driving car, “Take me to the airport as fast as possible!” and 

it interprets this literally, it will reach speeds of 180 miles per hour 

and you’ll go to prison. (Fortunately, the  self-  driving cars currently 

contemplated won’t accept such a request.) If you say, “Take me to the 

airport as fast as possible while not exceeding the speed limit,” it will 

accelerate and brake as hard as possible, swerving in and out of traffic 

to maintain the maximum speed in between. It may even push other 

cars out of the way to gain a few seconds in the scrum at the airport 

terminal. And so  on—  eventually, you will add enough considerations 

so that the car’s driving roughly approximates that of a skilled human 

driver taking someone to the airport in a bit of a hurry.

Driving is a simple task with only local impacts, and the AI sys-

tems currently being built for driving are not very intelligent. For 

these reasons, many of the potential failure modes can be anticipated; 

others will reveal themselves in driving simulators or in millions of 

miles of testing with professional drivers ready to take over if some-

thing goes wrong; still others will appear only later, when the cars are 

already on the road and something weird happens.

Unfortunately, with superintelligent systems that can have a global 

impact, there are no simulators and no do- overs. It’s certainly very 

hard, and perhaps impossible, for mere humans to anticipate and rule 

out in advance all the disastrous ways the machine could choose to 

achieve a specified objective. Generally speaking, if you have one goal 

and a superintelligent machine has a different, conflicting goal, the 

machine gets what it wants and you don’t.

If a machine pursuing an incorrect objective sounds bad enough, 

there’s worse. The solution suggested by Alan  Turing—  turning off the 
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power at strategic  moments—  may not be available, for a very simple 

reason: you can’t fetch the coffee if you’re dead.

Let me explain. Suppose a machine has the objective of fetching 

the coffee. If it is sufficiently intelligent, it will certainly understand 

that it will fail in its objective if it is switched off before completing its 

mission. Thus, the objective of fetching coffee creates, as a necessary 

subgoal, the objective of disabling the  off-  switch. The same is true for 

curing cancer or calculating the digits of pi. There’s really not a lot you 

can do once you’re dead, so we can expect AI systems to act preemp-

tively to preserve their own existence, given more or less any definite 

objective.

If that objective is in conflict with human preferences, then we 

have exactly the plot of 2001: A Space Odyssey, in which the HAL 

9000 computer kills four of the five astronauts on board the ship to 

prevent interference with its mission. Dave, the last remaining astro-

naut, manages to switch HAL off after an epic battle of  wits— 

 presumably to keep the plot interesting. But if HAL had been truly 

superintelligent, Dave would have been switched off.

It is important to understand that  self-  preservation doesn’t have to 

be any sort of built- in instinct or prime directive in machines. (So 

Isaac Asimov’s Third Law of Robotics,8 which begins “A robot must 

protect its own existence,” is completely unnecessary.) There is no 

need to build  self-  preservation in because it is an instrumental  goal—  a 

goal that is a useful subgoal of almost any original objective.9 Any 

entity that has a definite objective will automatically act as if it also 

has instrumental goals.

In addition to being alive, having access to money is an instrumen-

tal goal within our current system. Thus, an intelligent machine might 

want money, not because it’s greedy but because money is useful for 

achieving all sorts of goals. In the movie Transcendence, when Johnny 

Depp’s brain is uploaded into the quantum supercomputer, the first 

thing the machine does is copy itself onto millions of other computers 

on the Internet so that it cannot be switched off. The second thing it 
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does is make a quick killing on the stock market to fund its expan-

sion plans.

And what, exactly, are those expansion plans? They include de-

signing and building a much larger quantum supercomputer; doing AI 

research; and discovering new knowledge of physics, neuroscience, and 

biology. These resource  objectives—  computing power, algorithms, and 

knowledge—  are also instrumental goals, useful for achieving any over-

arching objective.10 They seem harmless enough until one realizes 

that the acquisition process will continue without limit. This seems to 

create inevitable conflict with humans. And of course, the machine, 

equipped with  ever-  better models of human decision making, will 

anticipate and defeat our every move in this conflict.

Intelligence Explosions

I. J. Good was a brilliant mathematician who worked with Alan Turing 

at Bletchley Park, breaking German codes during World War II. He 

shared Turing’s interests in machine intelligence and statistical infer-

ence. In 1965, he wrote what is now his  best-  known paper, “Specula-

tions Concerning the First Ultraintelligent Machine.” 11 The first sentence 

suggests that Good, alarmed by the nuclear brinkmanship of the Cold 

War, regarded AI as a possible savior for humanity: “The survival of man 

depends on the early construction of an ultraintelligent machine.” As 

the paper proceeds, however, he becomes more circumspect. He intro-

duces the notion of an intelligence explosion, but, like Butler, Turing, and 

Wiener before him, he worries about losing control:

Let an ultraintelligent machine be defined as a machine that can 

far surpass all the intellectual activities of any man however clever. 

Since the design of machines is one of these intellectual activities, 

an ultraintelligent machine could design even better machines; 

there would then unquestionably be an “intelligence explosion,” 
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and the intelligence of man would be left far behind. Thus the first 

ultraintelligent machine is the last invention that man need ever 

make, provided that the machine is docile enough to tell us how to 

keep it under control. It is curious that this point is made so sel-

dom outside science fiction.

This paragraph is a staple of any discussion of superintelligent AI, 

although the caveats at the end are usually left out. Good’s point can 

be strengthened by noting that not only could the ultraintelligent ma-

chine improve its own design; it’s likely that it would do so because, as 

we have seen, an intelligent machine expects to benefit from improv-

ing its hardware and software. The possibility of an intelligence explo-

sion is often cited as the main source of risk to humanity from AI 

because it would give us so little time to solve the control problem.12

Good’s argument certainly has plausibility via the natural analogy 

to a chemical explosion in which each molecular reaction releases 

enough energy to initiate more than one additional reaction. On the 

other hand, it is logically possible that there are diminishing returns to 

intelligence improvements, so that the process peters out rather than 

exploding.13 There’s no obvious way to prove that an explosion will 

necessarily occur.

The  diminishing-  returns scenario is interesting in its own right. It 

could arise if it turns out that achieving a given percentage improve-

ment becomes much harder as the machine becomes more intelligent. 

(I’m assuming for the sake of argument that general-purpose machine 

intelligence is measurable on some kind of linear scale, which I doubt 

will ever be strictly true.) In that case, humans won’t be able to cre-

ate superintelligence either. If a machine that is already superhuman 

runs out of steam when trying to improve its own intelligence, then 

humans will run out of steam even sooner.

Now, I’ve never heard a serious argument to the effect that creat-

ing any given level of machine intelligence is simply beyond the capac-

ity of human ingenuity, but I suppose one must concede it’s logically 
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possible. “Logically possible” and “I’m willing to bet the future of the 

human race on it” are, of course, two completely different things. Bet-

ting against human ingenuity seems like a losing strategy.

If an intelligence explosion does occur, and if we have not already 

solved the problem of controlling machines with only slightly super-

human  intelligence—  for example, if we cannot prevent them from 

making these recursive  self-  improvements—  then we would have no 

time left to solve the control problem and the game would be over. 

This is Bostrom’s hard takeoff scenario, in which the machine’s intelli-

gence increases astronomically in just days or weeks. In Turing’s words, 

it is “certainly something which can give us anxiety.”

The possible responses to this anxiety seem to be to retreat from 

AI research, to deny that there are risks inherent in developing ad-

vanced AI, to understand and mitigate the risks through the design of 

AI systems that necessarily remain under human control, and to 

 resign—  simply to cede the future to intelligent machines.

Denial and mitigation are the subjects of the remainder of the book. 

As I have already argued, retreat from AI research is both unlikely to 

happen (because the benefits forgone are too great) and very difficult 

to bring about. Resignation seems to be the worst possible response. It 

is often accompanied by the idea that AI systems that are more intelli-

gent than us somehow deserve to inherit the planet, leaving humans to 

go gentle into that good night, comforted by the thought that our bril-

liant electronic progeny are busy pursuing their objectives. This view 

was promulgated by the roboticist and futurist Hans Moravec,14 who 

writes, “The immensities of cyberspace will be teeming with unhuman 

superminds, engaged in affairs that are to human concerns as ours are 

to those of bacteria.” This seems to be a mistake. Value, for humans, is 

defined primarily by conscious human experience. If there are no hu-

mans and no other conscious entities whose subjective experience mat-

ters to us, there is nothing of value occurring.
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6 

THE NOT- SO- GREAT 
AI DEBATE

The implications of introducing a second intelligent species onto 

Earth are far-reaching enough to deserve hard thinking.”1 So 

ended The Economist magazine’s review of Nick Bostrom’s Super-
intelligence. Most would interpret this as a classic example of British 

understatement. Surely, you might think, the great minds of today are 

already doing this hard thinking—engaging in serious debate, weigh-

ing up the risks and benefits, seeking solutions, ferreting out loopholes 

in solutions, and so on. Not yet, as far as I am aware.

When one first introduces these ideas to a technical audience, one 

can see the thought bubbles popping out of their heads, beginning 

with the words “But, but,  but . . .” and ending with exclamation marks.

The first kind of but takes the form of denial. The deniers say, 

“But this can’t be a real problem, because XYZ.” Some of the XYZs 

reflect a reasoning process that might charitably be described as wish-

ful thinking, while others are more substantial. The second kind of 

but takes the form of deflection: accepting that the problems are 

real but arguing that we shouldn’t try to solve them, either because 
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they’re unsolvable or because there are more important things to fo-

cus on than the end of civilization or because it’s best not to mention 

them at all. The third kind of but takes the form of an oversimpli-

fied, instant solution: “But can’t we just do ABC?” As with denial, 

some of the ABCs are instantly regrettable. Others, perhaps by acci-

dent, come closer to identifying the true nature of the problem.

I don’t mean to suggest that there cannot be any reasonable objec-

tions to the view that poorly designed superintelligent machines would 

present a serious risk to humanity. It’s just that I have yet to see such 

an objection. Since the issue seems to be so important, it deserves a 

public debate of the highest quality. So, in the interests of having that 

debate, and in the hope that the reader will contribute to it, let me 

provide a quick tour of the highlights so far, such as they are.

Denial

Denying that the problem exists at all is the easiest way out. Scott 

Alexander, author of the Slate Star Codex blog, began a  well-  known 

article on AI risk as follows:2 “I first became interested in AI risk back 

around 2007. At the time, most people’s response to the topic was 

‘Haha, come back when anyone believes this besides random Internet 

crackpots.’ ”

Instantly regrettable remarks

A perceived threat to one’s lifelong vocation can lead a perfectly 

intelligent and usually thoughtful person to say things they might 

wish to retract on further analysis. That being the case, I will not 

name the authors of the following arguments, all of whom are  well- 

 known AI researchers. I’ve included refutations of the arguments, even 

though they are quite unnecessary.
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• Electronic calculators are superhuman at arithmetic. Calcula-

tors didn’t take over the world; therefore, there is no reason to 

worry about superhuman AI.

• Refutation: intelligence is not the same as arithmetic, and the 

arithmetic ability of calculators does not equip them to take 

over the world.

• Horses have superhuman strength, and we don’t worry about 

proving that horses are safe; so we needn’t worry about proving 

that AI systems are safe.

• Refutation: intelligence is not the same as physical strength, and 

the strength of horses does not equip them to take over the world.

• Historically, there are zero examples of machines killing mil-

lions of humans, so, by induction, it cannot happen in the 

future.

• Refutation: there’s a first time for everything, before which there 

were zero examples of it happening.

• No physical quantity in the universe can be infinite, and that 

includes intelligence, so concerns about superintelligence are 

overblown.

• Refutation: superintelligence doesn’t need to be infinite to be 

problematic; and physics allows computing devices billions of 

times more powerful than the human brain.

• We don’t worry about  species-  ending but highly unlikely pos-

sibilities such as black holes materializing in  near-  Earth orbit, 

so why worry about superintelligent AI?

• Refutation: if most physicists on Earth were working to make 

such black holes, wouldn’t we ask them if it was safe?

It’s complicated

It is a staple of modern psychology that a single IQ number cannot 

characterize the full richness of human intelligence.3 There are, the 
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theory says, different dimensions of intelligence: spatial, logical, lin-

guistic, social, and so on. Alice, our soccer player from Chapter 2, 

might have more spatial intelligence than her friend Bob, but less so-

cial intelligence. Thus, we cannot line up all humans in strict order of 

intelligence.

This is even more true of machines, because their abilities are 

much narrower. The Google search engine and AlphaGo have almost 

nothing in common, besides being products of two subsidiaries of the 

same parent corporation, and so it makes no sense to say that one is 

more intelligent than the other. This makes notions of “machine IQ” 

problematic and suggests that it’s misleading to describe the future as 

a  one-  dimensional IQ race between humans and machines.

Kevin Kelly, founding editor of Wired magazine and a remarkably 

perceptive technology commentator, takes this argument one step 

further. In “The Myth of a Superhuman AI,” 4 he writes, “Intelligence 

is not a single dimension, so ‘smarter than humans’ is a meaningless 

concept.” In a single stroke, all concerns about superintelligence are 

wiped away.

Now, one obvious response is that a machine could exceed human 

capabilities in all relevant dimensions of intelligence. In that case, 

even by Kelly’s strict standards, the machine would be smarter than a 

human. But this rather strong assumption is not necessary to refute 

Kelly’s argument. Consider the chimpanzee. Chimpanzees probably 

have better  short-  term memory than humans, even on  human- 

 oriented tasks such as recalling sequences of digits.5  Short-  term mem-

ory is an important dimension of intelligence. By Kelly’s argument, 

then, humans are not smarter than chimpanzees; indeed, he would 

claim that “smarter than a chimpanzee” is a meaningless concept. This 

is cold comfort to the chimpanzees (and bonobos, gorillas, orangutans, 

whales, dolphins, and so on) whose species survive only because we 

deign to allow it. It is colder comfort still to all those species that we 

have already wiped out. It’s also cold comfort to humans who might 

be worried about being wiped out by machines.
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It’s impossible

Even before the birth of AI in 1956, august intellectuals were har-

rumphing and saying that intelligent machines were impossible. Alan 

Turing devoted much of his seminal 1950 paper, “Computing Machin-

ery and Intelligence,” to refuting these arguments. Ever since, the AI 

community has been fending off similar claims of impossibility from 

philosophers,6 mathematicians,7 and others. In the current debate over 

superintelligence, several philosophers have exhumed these impossi-

bility claims to prove that humanity has nothing to fear.8,9 This comes 

as no surprise.

The One Hundred Year Study on Artificial Intelligence, or AI100, 

is an ambitious,  long-  term project housed at Stanford University. Its 

goal is to keep track of AI, or, more precisely, to “study and anticipate 

how the effects of artificial intelligence will ripple through every as-

pect of how people work, live and play.” Its first major report, “Artifi-

cial Intelligence and Life in 2030,” does come as a surprise.10 As might 

be expected, it emphasizes the benefits of AI in areas such as medical 

diagnosis and automotive safety. What’s unexpected is the claim that 

“unlike in the movies, there is no race of superhuman robots on the 

horizon or probably even possible.”

To my knowledge, this is the first time that serious AI researchers 

have publicly espoused the view that  human-  level or superhuman AI 

is  impossible—  and this in the middle of a period of extremely rapid 

progress in AI research, when barrier after barrier is being breached. 

It’s as if a group of leading cancer biologists announced that they had 

been fooling us all along: they’ve always known that there will never 

be a cure for cancer.

What could have motivated such a  volte-  face? The report provides 

no arguments or evidence whatever. (Indeed, what evidence could 

there be that no physically possible arrangement of atoms outperforms 

the human brain?) I suspect there are two reasons. The first is the 

natural desire to disprove the existence of the gorilla problem, which 
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presents a very uncomfortable prospect for the AI researcher; cer-

tainly, if  human-  level AI is impossible, the gorilla problem is neatly 

dispatched. The second reason is  tribalism—  the instinct to circle the 

wagons against what are perceived to be “attacks” on AI.

It seems odd to perceive the claim that superintelligent AI is pos-

sible as an attack on AI, and even odder to defend AI by saying that AI 

will never succeed in its goals. We cannot insure against future ca-

tastrophe simply by betting against human ingenuity.

We have made such bets before and lost. As we saw earlier, the 

physics establishment of the early 1930s, personified by Lord Ruther-

ford, confidently believed that extracting atomic energy was impossi-

ble; yet Leo Szilard’s invention of the  neutron-  induced nuclear chain 

reaction in 1933 proved that confidence to be misplaced.

Szilard’s breakthrough came at an unfortunate time: the begin-

ning of an arms race with Nazi Germany. There was no possibility of 

developing nuclear technology for the greater good. A few years later, 

having demonstrated a nuclear chain reaction in his laboratory, Szilard 

wrote, “We switched everything off and went home. That night, there 

was very little doubt in my mind that the world was headed for grief.”

It’s too soon to worry about it

It’s common to see  sober-  minded people seeking to assuage public 

concerns by pointing out that because  human-  level AI is not likely to 

arrive for several decades, there is nothing to worry about. For exam-

ple, the AI100 report says there is “no cause for concern that AI is an 

imminent threat to humankind.”

This argument fails on two counts. The first is that it attacks a 

straw man. The reasons for concern are not predicated on imminence. 

For example, Nick Bostrom writes in Superintelligence, “It is no part of 

the argument in this book that we are on the threshold of a big break-

through in artificial intelligence, or that we can predict with any pre-

cision when such a development might occur.” The second is that a 
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 long-  term risk can still be cause for immediate concern. The right 

time to worry about a potentially serious problem for humanity de-

pends not just on when the problem will occur but also on how long 

it will take to prepare and implement a solution.

For example, if we were to detect a large asteroid on course to 

collide with Earth in 2069, would we say it’s too soon to worry? Quite 

the opposite! There would be a worldwide emergency project to de-

velop the means to counter the threat. We wouldn’t wait until 2068 

to start working on a solution, because we can’t say in advance how 

much time is needed. Indeed, NASA’s Planetary Defense project is 

already working on possible solutions, even though “no known aster-

oid poses a significant risk of impact with Earth over the next 100 

years.” In case that makes you feel complacent, they also say, “About 

74 percent of  near-  Earth objects larger than 460 feet still remain to be 

discovered.”

And if we consider the global catastrophic risks from climate 

change, which are predicted to occur later in this century, is it too 

soon to take action to prevent them? On the contrary, it may be too 

late. The relevant time scale for superhuman AI is less predictable, but 

of course that means it, like nuclear fission, might arrive considerably 

sooner than expected.

One formulation of the “it’s too soon to worry” argument that has 

gained currency is Andrew Ng’s assertion that “it’s like worrying about 

overpopulation on Mars.” 11 (He later upgraded this from Mars to Al-

pha Centauri.) Ng, a former Stanford professor, is a leading expert on 

machine learning, and his views carry some weight. The assertion ap-

peals to a convenient analogy: not only is the risk easily managed and 

far in the future but also it’s extremely unlikely we’d even try to 

move billions of humans to Mars in the first place. The analogy is a 

false one, however. We are already devoting huge scientific and tech-

nical resources to creating  ever-  more-  capable AI systems, with very 

little thought devoted to what happens if we succeed. A more apt 

analogy, then, would be working on a plan to move the human race to 
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Mars with no consideration for what we might breathe, drink, or eat 

once we arrive. Some might call this plan unwise. Alternatively, one 

could take Ng’s point literally, and respond that landing even a single 

person on Mars would constitute overpopulation, because Mars has a 

carrying capacity of zero. Thus, groups that are currently planning to 

send a handful of humans to Mars are worrying about overpopulation 

on Mars, which is why they are developing life-support systems.

We’re the experts

In every discussion of technological risk, the  pro-  technology camp 

wheels out the claim that all concerns about risk arise from ignorance. 

For example, here’s Oren Etzioni, CEO of the Allen Institute for AI 

and a noted researcher in machine learning and natural language 

understanding:12

At the rise of every technology innovation, people have been scared. 

From the weavers throwing their shoes in the mechanical looms at 

the beginning of the industrial era to today’s fear of killer robots, 

our response has been driven by not knowing what impact the new 

technology will have on our sense of self and our  livelihoods. And 

when we don’t know, our fearful minds fill in the details.

Popular Science published an article titled “Bill Gates Fears AI, but AI 

Researchers Know Better”:13

When you talk to A.I.  researchers—  again, genuine A.I. research-

ers, people who grapple with making systems that work at all, 

much less work too  well—  they are not worried about superintelli-

gence sneaking up on them, now or in the future. Contrary to the 

spooky stories that Musk seems intent on telling, A.I. researchers 

aren’t frantically installing firewalled summoning chambers and 

 self-  destruct countdowns.
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This analysis was based on a sample of four, all of whom in fact said in 

their interviews that the  long-  term safety of AI was an important issue.

Using very similar language to the Popular Science article, David 

Kenny, at that time a vice president at IBM, wrote a letter to the US 

Congress that included the following reassuring words:14

When you actually do the science of machine intelligence, and when 

you actually apply it in the real world of business and society—  as 

we have done at IBM to create our pioneering cognitive computing 

system,  Watson—  you understand that this technology does not 

support the  fear-  mongering commonly associated with the AI de-

bate today.

The message is the same in all three cases: “Don’t listen to them; we’re 

the experts.” Now, one can point out that this is really an ad hominem 

argument that attempts to refute the message by delegitimizing the 

messengers, but even if one takes it at face value, the argument doesn’t 

hold water. Elon Musk, Stephen Hawking, and Bill Gates are certainly 

very familiar with scientific and technological reasoning, and Musk 

and Gates in particular have supervised and invested in many AI re-

search projects. And it would be even less plausible to argue that Alan 

Turing, I. J. Good, Norbert Wiener, and Marvin Minsky are unquali-

fied to discuss AI. Finally, Scott Alexander’s blog piece mentioned 

earlier, which is titled “AI Researchers on AI Risk,” notes that “AI re-

searchers, including some of the leaders in the field, have been instru-

mental in raising issues about AI risk and superintelligence from the 

very beginning.” He lists several such researchers, and the list is now 

much longer.

Another standard rhetorical move for the “defenders of AI” is to 

describe their opponents as Luddites. Oren Etzioni’s reference to 

“weavers throwing their shoes in the mechanical looms” is just this: the 

Luddites were artisan weavers in the early nineteenth century protest-

ing the introduction of machinery to replace their skilled labor. In 2015, 

M 9780525558613_Human_TX.indd 153 8/7/19 11:21 PM

Not
AnA

Good, Nood, N

discuss AI. discuss AI

which is which is 

for
entifictifi

cular have sular have

d it woud it wou

Dist
rib

uti
on
ogy y

d with the with the 

es: “Don’t lis: “Don’t li

t that this ishat this i

e the messthe mess

kes it at fackes it at fa

phen Hawphen Haw

andand



154 HUMAN COMPATIBLE

the Information Technology and Innovation Foundation gave its annual 

Luddite Award to “alarmists touting an artificial intelligence apoca-

lypse.” It’s an odd definition of “Luddite” that includes Turing, Wiener, 

Minsky, Musk, and Gates, who rank among the most prominent con-

tributors to technological progress in the twentieth and  twenty- first 

centuries.

The accusation of Luddism represents a misunderstanding of the 

nature of the concerns raised and the purpose for raising them. It is as 

if one were to accuse nuclear engineers of Luddism if they point out 

the need for control of the fission reaction. As with the strange phe-

nomenon of AI researchers suddenly claiming that AI is impossible, I 

think we can attribute this puzzling episode to tribalism in defense of 

technological progress.

Deflection

Some commentators are willing to accept that the risks are real, but 

still present arguments for doing nothing. These arguments include 

the impossibility of doing anything, the importance of doing some-

thing else entirely, and the need to keep quiet about the risks.

You can’t control research

A common answer to suggestions that advanced AI might present 

risks to humanity is to claim that banning AI research is impossible. 

Note the mental leap here: “Hmm, someone is discussing risks! They 

must be proposing a ban on my research!!” This mental leap might be 

appropriate in a discussion of risks based only on the gorilla problem, 

and I would tend to agree that solving the gorilla problem by prevent-

ing the creation of superintelligent AI would require some kind of 

constraints on AI research.

Recent discussions of risks have, however, focused not on the gen-
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eral gorilla problem (journalistically speaking, the humans vs. super-

intelligence smackdown) but on the King Midas problem and variants 

thereof. Solving the King Midas problem also solves the gorilla 

 problem—  not by preventing superintelligent AI or finding a way to 

defeat it but by ensuring that it is never in conflict with humans in 

the first place. Discussions of the King Midas problem generally avoid 

proposing that AI research be curtailed; they merely suggest that at-

tention be paid to the issue of preventing negative consequences of 

poorly designed systems. In the same vein, a discussion of the risks of 

containment failure in nuclear plants should be interpreted not as an 

attempt to ban nuclear physics research but as a suggestion to focus 

more effort on solving the containment problem.

There is, as it happens, a very interesting historical precedent for 

cutting off research. In the early 1970s, biologists began to be con-

cerned that novel recombinant DNA  methods—  splicing genes from 

one organism into  another—  might create substantial risks for human 

health and the global ecosystem. Two meetings at Asilomar in Califor-

nia in 1973 and 1975 led first to a moratorium on such experiments 

and then to detailed biosafety guidelines consonant with the risks 

posed by any proposed experiment.15 Some classes of experiments, 

such as those involving toxin genes, were deemed too hazardous to be 

allowed.

Immediately after the 1975 meeting, the National Institutes of 

Health (NIH), which funds virtually all basic medical research in the 

United States, began the process of setting up the Recombinant DNA 

Advisory Committee. The RAC, as it is known, was instrumental in 

developing the NIH guidelines that essentially implemented the Asi-

lomar recommendations. Since 2000, those guidelines have included 

a ban on funding approval for any protocol involving human germline 
 alteration—  the modification of the human genome in ways that can be 

inherited by subsequent generations. This ban was followed by legal 

prohibitions in over fifty countries.

The goal of “improving the human stock” had been one of the 
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dreams of the eugenics movement in the late nineteenth and early 

twentieth centuries. The development of  CRISPR-  Cas9, a very pre-

cise method for genome editing, has reignited this dream. An interna-

tional summit held in 2015 left the door open for future applications, 

calling for restraint until “there is broad societal consensus about the 

appropriateness of the proposed application.” 16 In November 2018, 

the Chinese scientist He Jiankui announced that he had edited the 

genomes of three human embryos, at least two of which had led to 

live births. An international outcry followed, and at the time of 

 writing, Jiankui appears to be under house arrest. In March 2019, an 

international panel of leading scientists called explicitly for a formal 

moratorium.17

The lesson of this debate for AI is mixed. On the one hand, it 

shows that we can refrain from proceeding with an area of research 

that has huge potential. The international consensus against germline 

alteration has been almost completely successful up to now. The fear 

that a ban would simply drive the research underground, or into coun-

tries with no regulation, has not materialized. On the other hand, 

germline alteration is an easily identifiable process, a specific use case 

of more general knowledge about genetics that requires specialized 

equipment and real humans to experiment on. Moreover, it falls within 

an  area—  reproductive  medicine—  that is already subject to close over-

sight and regulation. These characteristics do not apply to  general- 

 purpose AI, and, as yet, no one has come up with any plausible form 

that a regulation to curtail AI research might take.

Whataboutery

I was introduced to the term whataboutery by an adviser to a Brit-

ish politician who had to deal with it on a regular basis at public meet-

ings. No matter the topic of the speech he was giving, someone would 

invariably ask, “What about the plight of the Palestinians?”
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In response to any mention of risks from advanced AI, one is likely 

to hear, “What about the benefits of AI?” For example, here is Oren 

Etzioni:18

 Doom-  and-  gloom predictions often fail to consider the potential 

benefits of AI in preventing medical errors, reducing car  accidents, 

and more.

And here is Mark Zuckerberg, CEO of Facebook, in a recent  media- 

 fueled exchange with Elon Musk:19

If you’re arguing against AI, then you’re arguing against safer cars 

that aren’t going to have accidents and you’re arguing against being 

able to better diagnose people when they’re sick.

Leaving aside the tribal notion that anyone mentioning risks is “against 

AI,” both Zuckerberg and Etzioni are arguing that to talk about risks 

is to ignore the potential benefits of AI or even to negate them.

This is precisely backwards, for two reasons. First, if there were no 

potential benefits of AI, there would be no economic or social impe-

tus for AI research and hence no danger of ever achieving  human- 

 level AI. We simply wouldn’t be having this discussion at all. Second, 

if the risks are not successfully mitigated, there will be no benefits. The 

potential benefits of nuclear power have been greatly reduced because 

of the partial core meltdown at Three Mile Island in 1979, the uncon-

trolled reaction and catastrophic releases at Chernobyl in 1986, and 

the multiple meltdowns at Fukushima in 2011. Those disasters se-

verely curtailed the growth of the nuclear industry. Italy abandoned 

nuclear power in 1990 and Belgium, Germany, Spain, and Switzer-

land have announced plans to do so. Since 1990, the worldwide rate of 

commissioning of nuclear plants has been about a tenth of what it was 

before Chernobyl.
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Silence

The most extreme form of deflection is simply to suggest that we 

should keep silent about the risks. For example, the aforementioned 

AI100 report includes the following admonition:

If society approaches these technologies primarily with fear and 

suspicion, missteps that slow AI’s development or drive it under-

ground will result, impeding important work on ensuring the 

safety and reliability of AI technologies.

Robert Atkinson, director of the Information Technology and In-

novation Foundation (the very same foundation that gives out the 

Luddite Award), made a similar argument in a 2015 debate.20 While 

there are valid questions about precisely how risks should be described 

when talking to the media, the overall message is clear: “Don’t men-

tion the risks; it would be bad for funding.” Of course, if no one were 

aware of the risks, there would be no funding for research on risk 

mitigation and no reason for anyone to work on it.

The renowned cognitive scientist Steven Pinker gives a more opti-

mistic version of Atkinson’s argument. In his view, the “culture of 

safety in advanced societies” will ensure that all serious risks from AI 

will be eliminated; therefore, it is inappropriate and counterproduc-

tive to call attention to those risks.21 Even if we disregard the fact that 

our advanced culture of safety has led to Chernobyl, Fukushima, and 

runaway global warming, Pinker’s argument entirely misses the point. 

The culture of safety consists precisely of people pointing to possible 

failure modes and finding ways to ensure they don’t happen. (And 

with AI, the standard model is the failure mode.) Saying that it’s ridic-

ulous to point to a failure mode because the culture of safety will fix 

it anyway is like saying no one should call an ambulance when they see 

a  hit-  and-  run accident because someone will call an ambulance.

In attempting to portray the risks to the public and to policy mak-
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ers, AI researchers are at a disadvantage compared to nuclear physi-

cists. The physicists did not need to write books explaining to the 

public that assembling a critical mass of highly enriched uranium 

might present a risk, because the consequences had already been 

demonstrated at Hiroshima and Nagasaki. It did not require a great 

deal of further persuasion to convince governments and funding agen-

cies that safety was important in developing nuclear energy.

Tribalism

In Butler’s Erewhon, focusing on the gorilla problem leads to a prema-

ture and false dichotomy between  pro-  machinists and  anti-  machinists. 

The  pro-  machinists believe the risk of machine domination to be min-

imal or nonexistent; the  anti-  machinists believe it to be insuperable 

unless all machines are destroyed. The debate becomes tribal, and no 

one tries to solve the underlying problem of retaining human control 

over the machines.

To varying degrees, all the major technological issues of the 

 twentieth  century—  nuclear power, genetically modified organisms 

(GMOs), and fossil  fuels—  succumbed to tribalism. On each issue, 

there are two sides,  pro and  anti. The dynamics and outcomes of 

each have been different, but the symptoms of tribalism are similar: 

mutual distrust and denigration, irrational arguments, and a refusal to 

concede any (reasonable) point that might favor the other tribe. On 

the  pro-  technology side, one sees denial and concealment of risks 

combined with accusations of Luddism; on the  anti side, one sees a 

conviction that the risks are insuperable and the problems unsolvable. 

A member of the  pro-  technology tribe who is too honest about a prob-

lem is viewed as a traitor, which is particularly unfortunate as the 

 pro-  technology tribe usually includes most of the people qualified to 

solve the problem. A member of the  anti-  technology tribe who dis-

cusses possible mitigations is also a traitor, because it is the technology 
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itself that has come to be viewed as evil, rather than its possible ef-

fects. In this way, only the most extreme  voices—  those least likely to 

be listened to by the other  side—  can speak for each tribe.

In 2016, I was invited to No. 10 Downing Street to meet with 

some of then prime minister David Cameron’s advisers. They were 

worried that the AI debate was starting to resemble the GMO 

 debate—  which, in Europe, had led to what the advisers considered to 

be premature and overly restrictive regulations on GMO production 

and labeling. They wanted to avoid the same thing happening to AI. 

Their concerns had some validity: the AI debate is in danger of be-

coming tribal, of creating pro- AI and anti- AI camps. This would be 

damaging to the field because it’s simply not true that being concerned 

about the risks inherent in advanced AI is an anti- AI stance. A physi-

cist who is concerned about the risks of nuclear war or the risk of a 

poorly designed nuclear reactor exploding is not “ anti-  physics.” To say 

that AI will be powerful enough to have a global impact is a compli-

ment to the field rather than an insult.

It is essential that the AI community own the risks and work to 

mitigate them. The risks, to the extent that we understand them, are 

neither minimal nor insuperable. We need to do a substantial amount 

of work to avoid them, including reshaping and rebuilding the founda-

tions of AI.

 . . . switch it off ?

Once they understand the basic idea of existential risk, whether in 

the form of the gorilla problem or the King Midas problem, many 

 people—  myself  included—  immediately begin casting around for an 

easy solution. Often, the first thing that comes to mind is switching 

off the machine. For example, Alan Turing himself, as quoted earlier, 
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speculates that we might “keep the machines in a subservient posi-

tion, for instance by turning off the power at strategic moments.”

This won’t work, for the simple reason that a superintelligent 

 entity will already have thought of that possibility and taken steps to 

prevent it. And it will do that not because it wants to stay alive but 

because it is pursuing whatever objective we gave it and knows that it 

will fail if it is switched off.

There are some systems being contemplated that really cannot 

be switched off without ripping out a lot of the plumbing of our 

 civilization. These are systems implemented as so- called smart  contracts 

in the blockchain. The blockchain is a highly distributed form of com-

puting and record keeping based on encryption; it is specifically de-

signed so that no datum can be deleted and no smart contract can be 

interrupted without essentially taking control of a very large number of 

machines and undoing the chain, which might in turn  destroy a large 

part of the Internet and/ or the financial system. It is debatable whether 

this incredible robustness is a feature or a bug. It’s certainly a tool that a 

superintelligent AI system could use to protect itself.

 . . . put it in a box?

If you can’t switch AI systems off, can you seal the machines inside 

a kind of firewall, extracting useful  question-  answering work from 

them but never allowing them to affect the real world directly? This is 

the idea behind Oracle AI, which has been discussed at length in the 

AI safety community.22 An Oracle AI system can be arbitrarily intel-

ligent, but can answer only yes or no (or give corresponding probabil-

ities) to each question. It can access all the information the human 

race possesses through a  read-  only connection—that is, it has no di-

rect access to the Internet. Of course, this means giving up on super-

intelligent robots, assistants, and many other kinds of AI systems, but 

a trustworthy Oracle AI would still have enormous economic value 

 because we could ask it questions whose answers are important to 
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us, such as whether Alzheimer’s disease is caused by an infectious 

organism or whether it’s a good idea to ban autonomous weapons. 

Thus, the Oracle AI is certainly an interesting possibility.

Unfortunately, there are some serious difficulties. First, the Oracle 

AI system will be at least as assiduous in understanding the physics 

and origins of its  world—  the computing resources, their mode of op-

eration, and the mysterious entities that produced its information 

store and are now asking  questions—  as we are in understanding ours. 

Second, if the objective of the Oracle AI system is to provide accurate 

answers to questions in a reasonable amount of time, it will have an 

incentive to break out of its cage to acquire more computational re-

sources and to control the questioners so that they ask only simple 

questions. And, finally, we have yet to invent a firewall that is secure 

against ordinary humans, let alone superintelligent machines.

I think there might be solutions to some of these problems, partic-

ularly if we limit Oracle AI systems to be provably sound logical or 

Bayesian calculators. That is, we could insist that the algorithm can 

output only a conclusion that is warranted by the information pro-

vided, and we could check mathematically that the algorithm satisfies 

this condition. This still leaves the problem of controlling the process 

that decides which logical or Bayesian computations to do, in order to 

reach the strongest possible conclusion as quickly as possible. Because 

this process has an incentive to reason quickly, it has an incentive to 

acquire computational resources and of course to preserve its own 

existence.

In 2018, the Center for  Human-  Compatible AI at Berkeley ran a 

workshop at which we asked the question, “What would you do if you 

knew for certain that superintelligent AI would be achieved within a 

decade?” My answer was as follows: persuade the developers to hold 

off on building a  general-  purpose intelligent  agent—  one that can 

choose its own actions in the real  world—  and build an Oracle AI in-

stead. Meanwhile, we would work on solving the problem of making 

Oracle AI systems provably safe to the extent possible. The reason 
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this strategy might work is twofold: first, a superintelligent Oracle AI 

system would still be worth trillions of dollars, so the developers 

might be willing to accept this restriction; and second, controlling 

Oracle AI systems is almost certainly easier than controlling a  general- 

 purpose intelligent agent, so we’d have a better chance of solving the 

problem within the decade.

 . . . work in  human–  machine teams?

A common refrain in the corporate world is that AI is no threat to 

employment or to humanity because we’ll just have collaborative 

 human–  AI teams. For example, David Kenny’s letter to Congress, 

quoted earlier in this chapter, stated that “ high-  value artificial intelli-

gence systems are specifically designed to augment human intelli-

gence, not replace workers.” 23

While a cynic might suggest that this is merely a public relations 

ploy to sugarcoat the process of eliminating human employees from 

the corporations’ clients, I think it does move the ball forward a few 

inches. Collaborative  human–  AI teams are indeed a desirable goal. 

Clearly, a team will be unsuccessful if the objectives of the team mem-

bers are not aligned, so the emphasis on  human–  AI teams highlights 

the need to solve the core problem of value alignment. Of course, 

highlighting the problem is not the same as solving it.

 . . . merge with the machines?

 Human–  machine teaming, taken to its extreme, becomes a  human– 

 machine merger in which electronic hardware is attached directly to 

the brain and forms part of a single, extended, conscious entity. The 

futurist Ray Kurzweil describes the possibility as follows:24

We are going to directly merge with it, we are going to become 

the  AIs. . . . As you get to the late 2030s or 2040s, our thinking 
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will be predominately non-biological and the non-biological part 

will ultimately be so intelligent and have such vast capacity it’ll 

be able to model, simulate and understand fully the biological 

part.

Kurzweil views these developments in a positive light. Elon Musk, on 

the other hand, views the  human–  machine merger primarily as a de-

fensive strategy:25

If we achieve tight symbiosis, the AI wouldn’t be “other”—  it would 

be you and [it would have] a relationship to your cortex analogous 

to the relationship your cortex has with your limbic  system. . . . 

We’re going to have the choice of either being left behind and be-

ing effectively useless or like a  pet—  you know, like a house cat or 

 something—  or eventually figuring out some way to be symbiotic 

and merge with AI.

Musk’s Neuralink Corporation is working on a device dubbed 

“neural lace” after a technology described in Iain Banks’s Culture nov-

els. The aim is to create a robust, permanent connection between the 

human cortex and external computing systems and networks. There 

are two main technical obstacles: first, the difficulties of connecting 

an electronic device to brain tissue, supplying it with power, and con-

necting it to the outside world; and second, the fact that we under-

stand almost nothing about the neural implementation of higher levels 

of cognition in the brain, so we don’t know where to connect the de-

vice and what processing it should do.

I am not completely convinced that the obstacles in the preceding 

paragraph are insuperable. First, technologies such as neural dust are 

rapidly reducing the size and power requirements of electronic de-

vices that can be attached to neurons and provide sensing, stimula-

tion, and transcranial communication.26 (The technology as of 2018 

had reached a size of about one cubic millimeter, so neural grit might 
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be a more accurate term.) Second, the brain itself has remarkable 

powers of adaptation. It used to be thought, for example, that we 

would have to understand the code that the brain uses to control the 

arm muscles before we could connect a brain to a robot arm success-

fully, and that we would have to understand the way the cochlea ana-

lyzes sound before we could build a replacement for it. It turns out, 

instead, that the brain does most of the work for us. It quickly learns 

how to make the robot arm do what its owner wants, and how to map 

the output of a cochlear implant to intelligible sounds. It’s entirely 

possible that we may hit upon ways to provide the brain with addi-

tional memory, with communication channels to computers, and per-

haps even with communication channels to other  brains—  all without 

ever really understanding how any of it works.27

Regardless of the technological feasibility of these ideas, one has to 

ask whether this direction represents the best possible future for hu-

manity. If humans need brain surgery merely to survive the threat 

posed by their own technology, perhaps we’ve made a mistake some-

where along the line.

 . . . avoid putting in human goals?

A common line of reasoning has it that problematic AI behaviors 

arise from putting in specific kinds of objectives; if these are left out, 

everything will be fine. Thus, for example, Yann LeCun, a pioneer of 

deep learning and director of AI research at Facebook, often cites this 

idea when downplaying the risk from AI:28

There is no reason for AIs to have  self-  preservation instincts, jeal-

ousy,  etc. . . . AIs will not have these destructive “emotions” unless 

we build these emotions into them. I don’t see why we would want 

to do that.

In a similar vein, Steven Pinker provides a  gender-  based analysis:29
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AI dystopias project a parochial alpha-male psychology onto the 

concept of intelligence. They assume that superhumanly intelli-

gent robots would develop goals like deposing their masters or 

taking over the  world.  .  .  . It’s telling that many of our  techno- 

prophets don’t entertain the possibility that artificial intelligence 

will naturally develop along female lines: fully capable of solving 

problems, but with no desire to annihilate innocents or dominate 

the civilization.

As we have already seen in the discussion of instrumental goals, it 

doesn’t matter whether we build in “emotions” or “desires” such as  self- 

 preservation, resource acquisition, knowledge discovery, or, in the ex-

treme case, taking over the world. The machine is going to have those 

emotions anyway, as subgoals of any objective we do build  in—  and 

regardless of its gender. For a machine, death isn’t bad per se. Death 

is to be avoided, nonetheless, because it’s hard to fetch the coffee if 

you’re dead.

An even more extreme solution is to avoid putting objectives into 

the machine altogether. Voilà, problem solved. Alas, it’s not as simple 

as that. Without objectives, there is no intelligence: any action is as 

good as any other, and the machine may as well be a random number 

generator. Without objectives, there is also no reason for the machine 

to prefer a human paradise to a planet turned into a sea of paperclips 

(a scenario described at length by Nick Bostrom). Indeed, the latter 

outcome may be utopian for the iron-eating bacterium Thiobacillus 
ferrooxidans. Absent some notion that human preferences matter, who 

is to say the bacterium is wrong?

A common variant on the “avoid putting in objectives” idea is the 

notion that a sufficiently intelligent system will necessarily, as a con-

sequence of its intelligence, develop the “right” goals on its own. Of-

ten, proponents of this notion appeal to the theory that people of 

greater intelligence tend to have more altruistic and lofty  objectives— 

a view that may be related to the self-conception of the proponents.
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The idea that it is possible to perceive objectives in the world was 

discussed at length by the famous  eighteenth-  century philosopher 

David Hume in A Treatise of Human Nature.30 He called it the is- ought 
problem and concluded that it was simply a mistake to think that moral 

imperatives could be deduced from natural facts. To see why, consider, 

for example, the design of a chessboard and chess pieces. One cannot 

perceive in these the goal of checkmate, for the same chessboard and 

pieces can be used for suicide chess or indeed many other games still 

to be invented.

Nick Bostrom, in Superintelligence, presents the same underlying 

idea in a different form, which he calls the orthogonality thesis:

Intelligence and final goals are orthogonal: more or less any level of 

intelligence could in principle be combined with more or less any 

final goal.

Here, orthogonal means “at right angles” in the sense that the de-

gree of intelligence is one axis defining an intelligent system and its 

goals are another axis, and we can vary these independently. For ex-

ample, a  self-  driving car can be given any particular address as its 

destination; making the car a better driver doesn’t mean that it will 

start refusing to go to addresses that are divisible by seventeen. By the 

same token, it is easy to imagine that a  general-  purpose intelligent 

system could be given more or less any objective to  pursue—  including 

maximizing the number of paperclips or the number of known dig-

its of pi. This is just how reinforcement learning systems and other 

kinds of reward optimizers work: the algorithms are completely gen-

eral and accept any reward signal. For engineers and computer scien-

tists operating within the standard model, the orthogonality thesis is 

just a given.

The idea that intelligent systems could simply observe the world to 

acquire the goals that should be pursued suggests that a sufficiently 

intelligent system will naturally abandon its initial objective in favor 
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of the “right” objective. It’s hard to see why a rational agent would do 

this. Furthermore, it presupposes that there is a “right” objective out 

there in the world; it would have to be an objective on which  iron- 

 eating bacteria and humans and all other species agree, which is hard 

to imagine.

The most explicit critique of Bostrom’s orthogonality thesis comes 

from the noted roboticist Rodney Brooks, who asserts that it’s impossi-

ble for a program to be “smart enough that it would be able to invent 

ways to subvert human society to achieve goals set for it by humans, 

without understanding the ways in which it was causing problems for 

those same humans.” 31 Unfortunately, it’s not only possible for a pro-

gram to behave like this; it is, in fact, inevitable, given the way Brooks 

defines the issue. Brooks posits that the optimal plan to “achieve goals 

set for it by humans” is causing problems for humans. It follows that 

those problems reflect things of value to humans that were omitted 

from the goals set for it by humans. The optimal plan being carried out 

by the machine may well cause problems for humans, and the machine 

may well be aware of this. But, by definition, the machine will not rec-

ognize those problems as problematic. They are none of its concern.

Steven Pinker seems to agree with Bostrom’s orthogonality thesis, 

writing that “intelligence is the ability to deploy novel means to attain 

a goal; the goals are extraneous to the intelligence itself.” 32 On the 

other hand, he finds it inconceivable that “the AI would be so brilliant 

that it could figure out how to transmute elements and rewire brains, 

yet so imbecilic that it would wreak havoc based on elementary blun-

ders of misunderstanding.” 33 He continues, “The ability to choose an 

action that best satisfies conflicting goals is not an add- on that engi-

neers might forget to install and test; it is intelligence. So is the ability 

to interpret the intentions of a language user in context.” Of course, 

“satisf[ying] conflicting goals” is not the  problem—  that’s something 

that’s been built into the standard model from the early days of deci-

sion theory. The problem is that the conflicting goals of which the 

machine is aware do not constitute the entirety of human concerns; 
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moreover, within the standard model, there’s nothing to say that the 

machine has to care about goals it’s not told to care about.

There are, however, some useful clues in what Brooks and Pinker 

say. It does seem stupid to us for the machine to, say, change the color 

of the sky as a side effect of pursuing some other goal, while ignoring 

the obvious signs of human displeasure that result. It seems stupid to 

us because we are attuned to noticing human displeasure and (usu-

ally) we are motivated to avoid causing  it—  even if we were previously 

unaware that the humans in question cared about the color of the sky. 

That is, we humans (1) care about the preferences of other humans 

and (2) know that we don’t know what all those preferences are. In the 

next chapter, I argue that these characteristics, when built into a ma-

chine, may provide the beginnings of a solution to the King Midas 

problem.

This chapter has provided a glimpse into an ongoing debate in the 

broad intellectual community, a debate between those pointing to the 

risks of AI and those who are skeptical about the risks. It has been 

conducted in books, blogs, academic papers, panel discussions, inter-

views, tweets, and newspaper articles. Despite their valiant efforts, 

the “skeptics”—  those who argue that the risk from AI is  negligible— 

 have failed to explain why superintelligent AI systems will necessarily 

remain under human control; and they have not even tried to explain 

why superintelligent AI systems will never be developed.

Many skeptics will admit, if pressed, that there is a real problem, 

even if it’s not imminent. Scott Alexander, in his Slate Star Codex 

blog, summed it up brilliantly:34

The “skeptic” position seems to be that, although we should prob-

ably get a couple of bright people to start working on preliminary 
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aspects of the problem, we shouldn’t panic or start trying to ban 

AI research.

The “believers,” meanwhile, insist that although we shouldn’t 

panic or start trying to ban AI research, we should probably get a 

couple of bright people to start working on preliminary aspects of 

the problem.

Although I would be happy if the skeptics came up with an irre-

futable objection, perhaps in the form of a simple and foolproof (and 

 evil-  proof) solution to the control problem for AI, I think it’s quite 

likely that this isn’t going to happen, any more than we’re going to find 

a simple and foolproof solution for cybersecurity or a simple and fool-

proof way to generate nuclear energy with zero risk. Rather than con-

tinue the descent into tribal  name-  calling and repeated exhumation of 

discredited arguments, it seems better, as Alexander puts it, to start 

working on some preliminary aspects of the problem.

The debate has highlighted the conundrum we face: if we build 

machines to optimize objectives, the objectives we put into the ma-

chines have to match what we want, but we don’t know how to define 

human objectives completely and correctly. Fortunately, there is a 

middle way.
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7

AI: A DIFFERENT APPROACH

Once the skeptic’s arguments have been refuted and all the 

but but buts have been answered, the next question is usu-

ally, “OK, I admit there’s a problem, but there’s no solution, 

is there?” Yes, there is a solution.

Let’s remind ourselves of the task at hand: to design machines with 

a high degree of  intelligence—  so that they can help us with difficult 

 problems—  while ensuring that those machines never behave in ways 

that make us seriously unhappy.

The task is, fortunately, not the following: given a machine that 

possesses a high degree of intelligence, work out how to control it. If 

that were the task, we would be toast. A machine viewed as a black 

box, a fait accompli, might as well have arrived from outer space. And 

our chances of controlling a superintelligent entity from outer space 

are roughly zero. Similar arguments apply to methods of creating AI 

systems that guarantee we won’t understand how they work; these 

methods include whole-brain emulation 1—creating souped-up elec-

tronic copies of human  brains—  as well as methods based on simulated 

evolution of programs.2 I won’t say more about these proposals be-

cause they are so obviously a bad idea.

So, how has the field of AI approached the “design machines with 
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172 HUMAN COMPATIBLE

a high degree of intelligence” part of the task in the past? Like many 

other fields, AI has adopted the standard model: we build optimizing 

machines, we feed objectives into them, and off they go. That worked 

well when the machines were stupid and had a limited scope of action; 

if you put in the wrong objective, you had a good chance of being 

able to switch off the machine, fix the problem, and try again.

As machines designed according to the standard model become 

more intelligent, however, and as their scope of action becomes more 

global, the approach becomes untenable. Such machines will pur-

sue their objective, no matter how wrong it is; they will resist attempts 

to switch them off; and they will acquire any and all resources that 

contribute to achieving the objective. Indeed, the optimal behavior for 

the machine might include deceiving the humans into thinking they 

gave the machine a reasonable objective, in order to gain enough time 

to achieve the actual objective given to it. This wouldn’t be “deviant” 

or “malicious” behavior requiring consciousness and free will; it would 

just be part of an optimal plan to achieve the objective.

In Chapter 1, I introduced the idea of beneficial  machines—  that is, 

machines whose actions can be expected to achieve our objectives 

rather than their objectives. My goal in this chapter is to explain in 

simple terms how this can be done, despite the apparent drawback 

that the machines don’t know what our objectives are. The resulting 

approach should lead eventually to machines that present no threat to 

us, no matter how intelligent they are.

Principles for Beneficial Machines

I find it helpful to summarize the approach in the form of three3 prin-

ciples. When reading these principles, keep in mind that they are in-

tended primarily as a guide to AI researchers and developers in 

thinking about how to create beneficial AI systems; they are not 
 intended as explicit laws for AI systems to follow:4

9780525558613_Human_TX.indd 172 8/7/19 11:21 PM

Not
w tw

hines donnes don

should leadshould lea

tter howtter how

for
ns can can

jectives. Mectives. M

his can his can 

Dist
rib

uti
on
resis

d all resoull resou

e optimal be optimal b

umans into ans into

in order to n order to

to it. This wit. This 

consciousnensciousne

to achieve to achiev

d the idea d the idea

be ebe e



 A I :  A  D IFFERENT APPROACH 173

1. The machine’s only objective is to maximize the realization of 

human preferences.

2. The machine is initially uncertain about what those prefer-

ences are.

3. The ultimate source of information about human preferences is 

human behavior.

Before delving into more detailed explanations, it’s important to 

remember the broad scope of what I mean by preferences in these prin-

ciples. Here’s a reminder of what I wrote in Chapter 2: if you were 
somehow able to watch two movies, each describing in sufficient detail 
and breadth a future life you might lead, such that each constitutes a vir-
tual experience, you could say which you prefer, or express indifference. 
Thus, preferences here are  all-  encompassing; they cover everything 

you might care about, arbitrarily far into the future.5 And they are 

yours: the machine is not looking to identify or adopt one ideal set of 

preferences but to understand and satisfy (to the extent possible) the 

preferences of each person.

The f irst principle: Purely altruistic machines

The first principle, that the machine’s only objective is to maxi-

mize the realization of human preferences, is central to the notion of 

a beneficial machine. In particular, it will be beneficial to humans, 
rather than to, say, cockroaches. There’s no getting around this recipient-

specific notion of benefit.

The principle means that the machine is purely altruistic—that is, 

it attaches absolutely no intrinsic value to its own  well-  being or even 

its own existence. It might protect itself in order to continue doing 

useful things for humans, or because its owner would be unhappy 

about having to pay for repairs, or because the sight of a dirty or dam-

aged robot might be mildly distressing to passersby, but not because it 

wants to be alive. Putting in any preference for self-preservation sets 
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up an additional incentive within the robot that is not strictly aligned 

with human  well-  being.

The wording of the first principle brings up two questions of fun-

damental importance. Each merits an entire bookshelf to itself, and in 

fact many books have already been written on these questions.

The first question is whether humans really have preferences in a 

meaningful or stable sense. In truth, the notion of a “preference” is an 

idealization that fails to match reality in several ways. For example, 

we aren’t born with the preferences we have as adults, so they must 

change over time. For now, I will assume that the idealization is rea-

sonable. Later, I will examine what happens when we give up the 

idealization.

The second question is a staple of the social sciences: given that it is 

usually impossible to ensure that everyone gets their most preferred 

 outcome—  we can’t all be Emperor of the  Universe—  how should the 

machine trade off the preferences of multiple humans? Again, for the 

time  being—  and I promise to return to this question in the next 

 chapter—  it seems reasonable to adopt the simple approach of treating 

everyone equally. This is reminiscent of the roots of  eighteenth-  century 

utilitarianism in the phrase “the greatest happiness for the greatest 

numbers,” 6 and there are many caveats and elaborations required to 

make this work in practice. Perhaps the most important of these is the 

matter of the possibly vast number of people not yet born, and how 

their preferences are to be taken into account.

The issue of future humans brings up another, related question: 

How do we take into account the preferences of nonhuman entities? 

That is, should the first principle include the preferences of animals? 

(And possibly plants too?) This is a question worthy of debate, but the 

outcome seems unlikely to have a strong impact on the path forward 

for AI. For what it’s worth, human preferences can and do include 

terms for the  well-  being of animals, as well as for the aspects of hu-

man  well-  being that benefit directly from animals’ existence.7 To say 

that the machine should pay attention to the preferences of animals in 

9780525558613_Human_TX.indd 174 8/7/19 11:21 PM

Not
theh

rk in pracin prac

the possiblthe possib

rences arences 

for
s reminem

e phrase “t phrase “

e are me are m

Dist
rib

uti
on

aliza

en we givewe give

al sciences:ciences

ne gets thene gets the

f the he UUniveniv

of multiplef multiple

o return too return 

e to adopt e to adopt

scenscen



 A I :  A  D IFFERENT APPROACH 175

addition to this is to say that humans should build machines that care 

more about animals than humans do, which is a difficult position to 

sustain. A more tenable position is that our tendency to engage in 

myopic decision  making—  which works against our own  interests— 

 often leads to negative consequences for the environment and its 

 animal inhabitants. A machine that makes less myopic decisions 

would help humans adopt more environmentally sound policies. And 

if, in the future, we give substantially greater weight to the  well-  being 

of animals than we currently  do—  which probably means sacrificing 

some of our own intrinsic  well-  being—  then machines will adapt 

accordingly.

The second principle: Humble machines

The second principle, that the machine is initially uncertain 

about what human preferences are, is the key to creating beneficial 

machines.

A machine that assumes it knows the true objective perfectly will 

pursue it  single-  mindedly. It will never ask whether some course of 

action is OK, because it already knows it’s an optimal solution for the 

objective. It will ignore humans jumping up and down screaming, 

“Stop, you’re going to destroy the world!” because those are just words. 

Assuming perfect knowledge of the objective decouples the machine 

from the human: what the human does no longer matters, because the 

machine knows the goal and pursues it.

On the other hand, a machine that is uncertain about the true 

objective will exhibit a kind of humility: it will, for example, defer to 

humans and allow itself to be switched off. It reasons that the human 

will switch it off only if it’s doing something  wrong—  that is, doing 

something contrary to human preferences. By the first principle, it 

wants to avoid doing that, but, by the second principle, it knows that’s 

possible because it doesn’t know exactly what “wrong” is. So, if the 

human does switch the machine off, then the machine avoids doing 
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the wrong thing, and that’s what it wants. In other words, the machine 

has a positive incentive to allow itself to be switched off. It remains 

coupled to the human, who is a potential source of information that 

will allow it to avoid mistakes and do a better job.

Uncertainty has been a central concern in AI since the 1980s; in-

deed the phrase “modern AI” often refers to the revolution that took 

place when uncertainty was finally recognized as a ubiquitous issue in 

 real-  world decision making. Yet uncertainty in the objective of the AI 

system was simply ignored. In all the work on utility maximization, 

goal achievement, cost minimization, reward maximization, and loss 

minimization, it is assumed that the utility function, the goal, the cost 

function, the reward function, and the loss function are known per-

fectly. How could this be? How could the AI community (and the 

control theory, operations research, and statistics communities) have 

such a huge blind spot for so long, even while embracing uncertainty 

in all other aspects of decision making?  8

One could make some rather complicated technical excuses,9 but 

I suspect the truth is that, with some honorable exceptions,10 AI re-

searchers simply bought into the standard model that maps our notion 

of human intelligence onto machine intelligence: humans have objec-

tives and pursue them, so machines should have objectives and pursue 

them. They, or should I say we, never really examined this fundamen-

tal assumption. It is built into all existing approaches for constructing 

intelligent systems.

The third principle: Learning to predict human 
preferences

The third principle, that the ultimate source of information about 

human preferences is human behavior, serves two purposes.

The first purpose is to provide a definite grounding for the term 

human preferences. By assumption, human preferences aren’t in the 

machine and it cannot observe them directly, but there must still be 
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some definite connection between the machine and human prefer-

ences. The principle says that the connection is through the observa-

tion of human choices: we assume that choices are related in some 

(possibly very complicated) way to underlying preferences. To see why 

this connection is essential, consider the converse: if some human 

preference had no effect whatsoever on any actual or hypothetical choice 

the human might make, then it would probably be meaningless to say 

that the preference exists.

The second purpose is to enable the machine to become more use-

ful as it learns more about what we want. (After all, if it knew nothing 
about human preferences, it would be of no use to us.) The idea is 

simple enough: human choices reveal information about human pref-

erences. Applied to the choice between pineapple pizza and sausage 

pizza, this is straightforward. Applied to choices between future lives 

and choices made with the goal of influencing the robot’s behavior, 

things get more interesting. In the next chapter I explain how to for-

mulate and solve such problems. The real complications arise, how-

ever, because humans are not perfectly rational: imperfection comes 

between human preferences and human choices, and the machine 

must take into account those imperfections if it is to interpret human 

choices as evidence of human preferences.

Not what I mean

Before going into more detail, I want to head off some potential 

misunderstandings.

The first and most common misunderstanding is that I am propos-

ing to install in machines a single, idealized value system of my own 

design that guides the machine’s behavior. “Whose values are you go-

ing to put in?” “Who gets to decide what the values are?” Or even, 

“What gives Western,  well-  off, white male cisgender scientists such as 

Russell the right to determine how the machine encodes and develops 

human values?” 11
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I think this confusion comes partly from an unfortunate conflict 

between the commonsense meaning of value and the more technical 

sense in which it is used in economics, AI, and operations research. In 

ordinary usage, values are what one uses to help resolve moral dilem-

mas; as a technical term, on the other hand, value is roughly synony-

mous with utility, which measures the degree of desirability of anything 

from pizza to paradise. The meaning I want is the technical one: I just 

want to make sure the machines give me the right pizza and don’t ac-

cidentally destroy the human race. (Finding my keys would be an un-

expected bonus.) To avoid this confusion, the principles talk about 

human preferences rather than human values, since the former term 

seems to steer clear of judgmental preconceptions about morality.

“Putting in values” is, of course, exactly the mistake I am saying we 

should avoid, because getting the values (or preferences) exactly right 

is so difficult and getting them wrong is potentially catastrophic. I am 

proposing instead that machines learn to predict better, for each per-

son, which life that person would prefer, all the while being aware that 

the predictions are highly uncertain and incomplete. In principle, the 

machine can learn billions of different predictive preference models, 

one for each of the billions of people on Earth. This is really not too 

much to ask for the AI systems of the future, given that  present-  day 

Facebook systems are already maintaining more than two billion indi-

vidual profiles.

A related misunderstanding is that the goal is to equip machines 

with “ethics” or “moral values” that will enable them to resolve moral 

dilemmas. Often, people bring up the so- called trolley problems,12 

where one has to choose whether to kill one person in order to save 

others, because of their supposed relevance to  self-  driving cars. The 

whole point of moral dilemmas, however, is that they are dilemmas: 

there are good arguments on both sides. The survival of the human 

race is not a moral dilemma. Machines could solve most moral dilem-

mas the wrong way (whatever that is) and still have no catastrophic 

impact on humanity.13
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Another common supposition is that machines that follow the 

three principles will adopt all the sins of the evil humans they observe 

and learn from. Certainly, there are many of us whose choices leave 

something to be desired, but there is no reason to suppose that ma-

chines who study our motivations will make the same choices, any 

more than criminologists become criminals. Take, for example, the 

corrupt government official who demands bribes to approve building 

permits because his paltry salary won’t pay for his children to go to 

university. A machine observing this behavior will not learn to take 

bribes; it will learn that the official, like many other people, has a very 

strong desire for his children to be educated and successful. It will find 

ways to help him that don’t involve lowering the  well-  being of others. 

This is not to say that all cases of evil behavior are unproblematic for 

machines—for example, machines may need to treat differently those 

who actively prefer the suffering of others.

Reasons for Optimism

In a nutshell, I am suggesting that we need to steer AI in a radically 

new direction if we want to retain control over increasingly intelligent 

machines. We need to move away from one of the driving ideas of 

 twentieth-  century technology: machines that optimize a given objec-

tive. I am often asked why I think this is even remotely feasible, given 

the huge momentum behind the standard model in AI and related 

disciplines. In fact, I am quite optimistic that it can be done.

The first reason for optimism is that there are strong economic 

incentives to develop AI systems that defer to humans and gradually 

align themselves to user preferences and intentions. Such systems will 

be highly desirable: the range of behaviors they can exhibit is simply 

far greater than that of machines with fixed, known objectives. They 

will ask humans questions or ask for permission when appropriate; 

they will do “trial runs” to see if we like what they propose to do; they 
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will accept correction when they do something wrong. On the other 

hand, systems that fail to do this will have severe consequences. Up to 

now, the stupidity and limited scope of AI systems has protected us 

from these consequences, but that will change. Imagine, for example, 

some future domestic robot charged with looking after your children 

while you are working late. The children are hungry, but the refriger-

ator is empty. Then the robot notices the cat. Alas, the robot under-

stands the cat’s nutritional value but not its sentimental value. Within 

a few short hours, headlines about deranged robots and roasted cats 

are blanketing the world’s media and the entire  domestic-  robot indus-

try is out of business.

The possibility that one industry player could destroy the entire 

industry through careless design provides a strong economic motiva-

tion to form  safety-  oriented industry consortia and to enforce safety 

standards. Already, the Partnership on AI, which includes as members 

nearly all the world’s leading technology companies, has agreed to 

 cooperate to ensure that “AI research and technology is robust, reliable, 

trustworthy, and operates within secure constraints.” To my knowl-

edge, all the major players are publishing their  safety-  oriented research 

in the open literature. Thus, the economic incentive is in operation long 

before we reach  human-  level AI and will only strengthen over time. 

Moreover, the same cooperative dynamic may be starting at the inter-

national level—for example, the stated policy of the Chinese govern-

ment is to “cooperate to preemptively prevent the threat of AI.” 14

A second reason for optimism is that the raw data for learning 

about human  preferences—  namely, examples of human  behavior—  are 

so abundant. The data come not just in the form of direct observation 

via camera, keyboard, and touch screen by billions of machines shar-

ing data with one another about billions of humans (subject to privacy 

constraints, of course) but also in indirect form. The most obvious 

kind of indirect evidence is the vast human record of books, films, and 

television and radio broadcasts, which is almost entirely concerned 
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with people doing things (and other people being upset about it). Even 

the earliest and most tedious Sumerian and Egyptian records of cop-

per ingots being traded for sacks of barley give some insight into hu-

man preferences for different commodities.

There are, of course, difficulties involved in interpreting this raw 

material, which includes propaganda, fiction, the ravings of lunatics, 

and even the pronouncements of politicians and presidents, but there 

is certainly no reason for the machine to take it all at face value. Ma-

chines can and should interpret all communications from other intel-

ligent entities as moves in a game rather than as statements of fact; in 

some games, such as cooperative games with one human and one ma-

chine, the human has an incentive to be truthful, but in many other 

situations there are incentives to be dishonest. And of course, whether 

honest or dishonest, humans may be deluded in their own beliefs.

There is a second kind of indirect evidence that is staring us in the 

face: the way we have made the world.15 We made it that way  because— 

 very  roughly—  we like it that way. (Obviously, it’s not perfect!) Now, 

imagine you are an alien visiting Earth while all the humans are away 

on holiday. As you peer inside their houses, can you begin to grasp the 

basics of human preferences? Carpets are on floors because we like to 

walk on soft, warm surfaces and we don’t like loud footsteps; vases are 

on the middle of the table rather than the edge because we don’t want 

them to fall and break; and so  on—  everything that isn’t arranged by 

nature itself provides clues to the likes and dislikes of the strange bi-

pedal creatures who inhabit this planet.

Reasons for Caution

You may find the Partnership on AI’s promises of cooperation on AI 

safety less than reassuring if you have been following progress in  self- 

 driving cars. That field is ruthlessly competitive, for some very good 
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reasons: the first car manufacturer to release a fully autonomous vehi-

cle will gain a huge market advantage; that advantage will be  self- 

 reinforcing because the manufacturer will be able to collect more data 

more quickly to improve the system’s performance; and  ride-  hailing 

companies such as Uber would quickly go out of business if another 

company were to roll out fully autonomous taxis before Uber does. 

This has led to a  high-  stakes race in which caution and careful engi-

neering appear to be less important than snazzy demos, talent grabs, 

and premature rollouts.

Thus, life- or- death economic competition provides an impetus to 

cut corners on safety in the hope of winning the race. In a 2008 retro-

spective paper on the 1975 Asilomar conference that he co- organized— 

 the conference that led to a moratorium on genetic modification of 

 humans—  the biologist Paul Berg wrote,16

There is a lesson in Asilomar for all of science: the best way to re-

spond to concerns created by emerging knowledge or  early-  stage 

technologies is for scientists from publicly funded institutions 

to find common cause with the wider public about the best 

way to  regulate—  as early as possible. Once scientists from corpo-

rations begin to dominate the research enterprise, it will simply be 

too late.

Economic competition occurs not just between corporations but 

also between nations. A recent flurry of announcements of  multibillion- 

 dollar national investments in AI from the United States, China, France, 

Britain, and the EU certainly suggests that none of the major powers 

wants to be left behind. In 2017, Russian president Vladimir Putin 

said, “The one who becomes the leader in [AI] will be the ruler of the 

world.” 17 This analysis is essentially correct. Advanced AI would, as 

we saw in Chapter 3, lead to greatly increased productivity and rates 

of innovation in almost all areas. If not shared, it would allow its pos-

sessor to outcompete any rival nation or bloc.
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Nick Bostrom, in Superintelligence, warns against exactly this moti-

vation. National competition, just like corporate competition, would 

tend to focus more on advances in raw capabilities and less on the 

problem of control. Perhaps, however, Putin has read Bostrom; he 

went on to say, “It would be strongly undesirable if someone wins a 

monopolist position.” It would also be rather pointless, because 

 human-  level AI is not a  zero-  sum game and nothing is lost by sharing 

it. On the other hand, competing to be the first to achieve  human- 

 level AI, without first solving the control problem, is a  negative-  sum 

game. The payoff for everyone is minus infinity.

There’s only a limited amount that AI researchers can do to influ-

ence the evolution of global policy on AI. We can point to possible 

applications that would provide economic and social benefits; we can 

warn about possible misuses such as surveillance and weapons; and we 

can provide roadmaps for the likely path of future developments and 

their impacts. Perhaps the most important thing we can do is to design 

AI systems that are, to the extent possible, provably safe and benefi-

cial for humans. Only then will it make sense to attempt general reg-

ulation of AI.
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8

PROVABLY BENEFICIAL AI

If we are going to rebuild AI along new lines, the foundations must 

be solid. When the future of humanity is at stake, hope and good 

 intentions—  and educational initiatives and industry codes of con-

duct and legislation and economic incentives to do the right thing—

 are not enough. All of these are fallible, and they often fail. In such 

situations, we look to precise definitions and rigorous step- by- step 

mathematical proofs to provide incontrovertible guarantees.

That’s a good start, but we need more. We need to be sure, to the 

extent possible, that what is guaranteed is actually what we want and 

that the assumptions going into the proof are actually true. The proofs 

themselves belong in journal papers written for specialists, but I think 

it is useful nonetheless to understand what proofs are and what they 

can and cannot provide in the way of real safety. The “provably bene-

ficial” in the title of the chapter is an aspiration rather than a promise, 

but it is the right aspiration.
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Mathematical Guarantees

We will want, eventually, to prove theorems to the effect that a 

 particular way of designing AI systems ensures that they will be ben-

eficial to humans. A theorem is just a fancy name for an assertion, 

stated precisely enough so that its truth in any particular situation can 

be checked. Perhaps the most famous theorem is Fermat’s Last Theo-

rem, which was conjectured by the French mathematician Pierre 

de Fermat in 1637 and finally proved by Andrew Wiles in 1994 after 

357 years of effort (not all of it by Wiles).1 The theorem can be written 

in one line, but the proof is over one hundred pages of dense 

mathematics.

Proofs begin from axioms, which are assertions whose truth is 

simply assumed. Often, the axioms are just definitions, such as the 

definitions of integers, addition, and exponentiation needed for 

Fermat’s theorem. The proof proceeds from the axioms by logically 

incontrovertible steps, adding new assertions until the theorem itself 

is established as a consequence of one of the steps.

Here’s a fairly obvious theorem that follows almost immediately 

from the definitions of integers and addition: 1 + 2 = 2 + 1. Let’s call 

this Russell’s theorem. It’s not much of a discovery. On the other hand, 

Fermat’s Last Theorem feels like something completely  new—  a dis-

covery of something previously unknown. The difference, however, is 

just a matter of degree. The truth of both Russell’s and Fermat’s the-

orems is already contained in the axioms. Proofs merely make explicit 

what was already implicit. They can be long or short, but they add 

nothing new. The theorem is only as good as the assumptions that go 

into it.

That’s fine when it comes to mathematics, because mathematics is 

about abstract objects that we  define—  numbers, sets, and so on. The 

axioms are true because we say so. On the other hand, if you want to 

prove something about the real  world—  for example, that AI systems 
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designed like so won’t kill you on  purpose—  your axioms have to be 

true in the real world. If they aren’t true, you’ve proved something 

about an imaginary world.

Science and engineering have a long and honorable tradition of 

proving results about imaginary worlds. In structural engineering, for 

example, one might see a mathematical analysis that begins, “Let AB 

be a rigid  beam.  .  .  .” The word rigid here doesn’t mean “made of 

 something hard like steel”; it means “infinitely strong,” so that it doesn’t 

bend at all. Rigid beams do not exist, so this is an imaginary world. 

The trick is to know how far one can stray from the real world and still 

obtain useful results. For example, if the  rigid-  beam assumption al-

lows an engineer to calculate the forces in a structure that includes 

the beam, and those forces are small enough to bend a real steel 

beam by only a tiny amount, then the engineer can be reasonably con-

fident that the analysis will transfer from the imaginary world to the 

real world.

A good engineer develops a sense for when this transfer might fail— 

for example, if the beam is under compression, with huge forces push-

ing on it from each end, then even a tiny amount of bending might 

lead to greater lateral forces causing more bending, and so on, result-

ing in catastrophic failure. In that case, the analysis is redone with 

“Let AB be a flexible beam with stiffness  K. . . .” This is still an imag-

inary world, of course, because real beams do not have uniform stiff-

ness; instead, they have microscopic imperfections that can lead to 

cracks forming if the beam is subject to repeated bending. The process 

of removing unrealistic assumptions continues until the engineer is 

fairly confident that the remaining assumptions are true enough in the 

real world. After that, the engineered system can be tested in the real 

world; but the test results are just that. They do not prove that the 

same system will work in other circumstances or that other instances 

of the system will behave the same way as the original.

One of the classic examples of assumption failure in computer sci-

ence comes from cybersecurity. In that field, a huge amount of 
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mathematical analysis goes into showing that certain digital protocols 

are provably secure—for example, when you type a password into a 

Web application, you want to be sure that it is encrypted before trans-

mission so that someone eavesdropping on the network cannot read 

your password. Such digital systems are often provably secure but still 

vulnerable to attack in reality. The false assumption here is that this is 

a digital process. It isn’t. It operates in the real, physical world. By lis-

tening to the sound of your keyboard or measuring voltages on the 

electrical line that supplies power to your desktop computer, an at-

tacker can “hear” your password or observe the encryption/ decryption 

calculations that are occurring as it is processed. The cybersecurity 

community is now responding to these so- called  side-  channel attacks—

for example, by writing encryption code that produces the same volt-

age fluctuations regardless of what message is being encrypted.

Let’s look at the kind of theorem we would like eventually to prove 

about machines that are beneficial to humans. One type might go 

something like this:

Suppose a machine has components A, B, C, connected to each 

other like so and to the environment like so, with internal learn-

ing algorithms lA, lB, lC that optimize internal feedback rewards rA, 

rB, rC defined like so, and [a few more  conditions]  .  .  . then, 

with very high probability, the machine’s behavior will be very 

close in value (for humans) to the best possible behavior realizable 

on any machine with the same computational and physical 

capabilities.

The main point here is that such a theorem should hold regardless of 
how smart the components become—that is, the vessel never springs a 

leak and the machine always remains beneficial to humans.

There are three other points worth making about this kind of the-

orem. First, we cannot try to prove that the machine produces optimal 

(or even  near-  optimal) behavior on our behalf, because that’s almost 
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certainly computationally impossible. For example, we might want 

the machine to play Go perfectly, but there is good reason to be-

lieve that cannot be done in any practical amount of time on any phys-

ically realizable machine. Optimal behavior in the real world is even 

less feasible. Hence, the theorem says “best possible” rather than 

“optimal.”

Second, we say “very high  probability . . . very close” because that’s 

typically the best that can be done with machines that learn. For ex-

ample, if the machine is learning to play roulette for us and the ball 

lands in zero forty times in a row, the machine might reasonably de-

cide the table was rigged and bet accordingly. But it could have hap-

pened by chance; so there is always a  small—  perhaps vanishingly 

 small—  chance of being misled by freak occurrences. Finally, we are a 

long way from being able to prove any such theorem for really intelli-

gent machines operating in the real world!

There are also analogs of the  side-  channel attack in AI. For exam-

ple, the theorem begins with “Suppose a machine has components A, 

B, C, connected to each other like  so. . . .” This is typical of all correct-

ness theorems in computer science: they begin with a description of 

the program being proved correct. In AI, we typically distinguish be-

tween the agent (the program doing the deciding) and the environment 
(on which the agent acts). Since we design the agent, it seems reason-

able to assume that it has the structure we give it. To be extra safe, we 

can prove that its learning processes can modify its program only in 

certain circumscribed ways that cannot cause problems. Is this 

enough? No. As with  side-  channel attacks, the assumption that the 

program operates within a digital system is incorrect. Even if a learn-

ing algorithm is constitutionally incapable of overwriting its own code 

by digital means, it may, nonetheless, learn to persuade humans to do 

“brain surgery” on  it—  to violate the agent/ environment distinction 

and change the code by physical means.2

Unlike the structural engineer reasoning about rigid beams, we 

have very little experience with the assumptions that will eventually 
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underlie theorems about provably beneficial AI. In this chapter, for 

example, we will typically be assuming a rational human. This is a bit 

like assuming a rigid beam, because there are no perfectly rational 

humans in reality. (It’s probably much worse, however, because hu-

mans are not even close to being rational.) The theorems we can prove 

seem to provide some insights, and the insights survive the introduc-

tion of a certain degree of randomness in human behavior, but it is as 

yet far from clear what happens when we consider some of the com-

plexities of real humans.

So, we are going to have to be very careful in examining our as-

sumptions. When a proof of safety succeeds, we need to make sure it’s 

not succeeding because we have made unrealistically strong assump-

tions or because the definition of safety is too weak. When a proof of 

safety fails, we need to resist the temptation to strengthen the as-

sumptions to make the proof go  through—  for example, by adding the 

assumption that the program’s code remains fixed. Instead, we need 

to tighten up the design of the AI  system—  for example, by ensuring 

that it has no incentive to modify critical parts of its own code.

There are some assumptions that I call OWMAWGH assumptions, 

standing for “otherwise we might as well go home.” That is, if these 

assumptions are false, the game is up and there is nothing to be done. 

For example, it is reasonable to assume that the universe operates ac-

cording to constant and somewhat discernible laws. If this is not the 

case, we will have no assurance that learning  processes—  even very 

sophisticated  ones—  will work at all. Another basic assumption is that 

humans care about what happens; if not, provably beneficial AI has no 

purpose because beneficial has no meaning. Here, caring means hav-

ing roughly coherent and more- or- less stable preferences about the 

future. In the next chapter, I examine the consequences of plasticity in 

human preferences, which presents a serious philosophical challenge 

to the very idea of provably beneficial AI.

For now, I focus on the simplest case: a world with one human and 

one robot. This case serves to introduce the basic ideas, but it’s also 
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useful in its own right: you can think of the human as standing in for all 

of humanity and the robot as standing in for all machines. Additional 

complications arise when considering multiple humans and machines.

Learning Preferences from Behavior

Economists elicit preferences from human subjects by offering them 

choices.3 This technique is widely used in product design, marketing, 

and interactive e- commerce systems. For example, by offering test 

subjects choices among cars with different paint colors, seating ar-

rangements, trunk sizes, battery capacities, cup holders, and so on, a 

car designer learns how much people care about various car features 

and how much they are willing to pay for them. Another important 

application is in the medical domain, where an oncologist considering 

a possible limb amputation might want to assess the patient’s prefer-

ences between mobility and life expectancy. And of course, pizza 

restaurants want to know how much more someone is willing to pay 

for sausage pizza than plain pizza.

Preference elicitation typically considers only single choices made 

between objects whose value is assumed to be immediately apparent 

to the subject. It’s not obvious how to extend it to preferences be-

tween future lives. For that, we (and machines) need to learn from 

observations of behavior over  time—  behavior that involves multiple 

choices and uncertain outcomes.

Early in 1997, I was involved in discussions with my colleagues 

Michael Dickinson and Bob Full about ways in which we might be 

able to apply ideas from machine learning to understand the locomo-

tive behavior of animals. Michael studied in exquisite detail the wing 

motions of fruit flies. Bob was especially fond of  creepy-  crawlies and 

had built a little treadmill for cockroaches to see how their gait 

changed with speed. We thought it might be possible to use reinforce-

ment learning to train a robotic or simulated insect to reproduce these 
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complex behaviors. The problem we faced was that we didn’t know 

what reward signal to use. What were the flies and cockroaches opti-

mizing? Without that information, we couldn’t apply reinforcement 

learning to train the virtual insect, so we were stuck.

One day, I was walking down the road that leads from our house 

in Berkeley to the local supermarket. The road has a downhill slope, 

and I noticed, as I am sure most people have, that the slope induced 

a slight change in the way I walked. Moreover, the uneven paving re-

sulting from decades of minor earthquakes induced additional gait 

changes, including raising my feet a little higher and planting them 

less stiffly because of the unpredictable ground level. As I pondered 

these mundane observations, I realized we had got it backwards. 

While reinforcement learning generates behavior from rewards, we 

actually wanted the opposite: to learn the rewards given the behavior. 

We already had the behavior, as produced by the flies and cockroaches; 

we wanted to know the specific reward signal being optimized by this 

behavior. In other words, we needed algorithms for inverse reinforce-

ment learning, or IRL.4 (I did not know at the time that a similar 

problem had been studied under the perhaps less wieldy name of 

structural estimation of Markov decision processes, a field pioneered by 

Nobel laureate Tom Sargent in the late 1970s.5) Such algorithms 

would not only be able to explain animal behavior but also to predict 

their behavior in new circumstances. For example, how would a cock-

roach run on a bumpy treadmill that sloped sideways?

The prospect of answering such fundamental questions was al-

most too exciting to bear, but even so it took some time to work out 

the first algorithms for IRL.6 Many different formulations and algo-

rithms for IRL have been proposed since then. There are formal guar-

antees that the algorithms work, in the sense that they can acquire 

enough information about an entity’s preferences to be able to behave 

just as successfully as the entity they are observing.7

Perhaps the easiest way to understand IRL is this: the observer 

starts with some vague estimate of the true reward function and then 
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refines this estimate, making it more precise, as more behavior is ob-

served. Or, in Bayesian language:8 start with a prior probability over 

possible reward functions and then update the probability distribution 

on reward functions as evidence arrives.C For example, suppose Robbie 

the robot is watching Harriet the human and wondering how much 

she prefers aisle seats to window seats. Initially, he is quite uncertain 

about this. Conceptually, Robbie’s reasoning might go like this: “If 

Harriet really cared about an aisle seat, she would have looked at the 

seat map to see if one was available rather than just accepting the win-

dow seat that the airline gave her, but she didn’t, even though she 

probably noticed it was a window seat and she probably wasn’t in a 

hurry; so now it’s considerably more likely that she either is roughly 

indifferent between window and aisle or even prefers a window seat.”

The most striking example of IRL in practice is the work of my 

colleague Pieter Abbeel on learning to do helicopter aerobatics.9 Ex-

pert human pilots can make model helicopters do amazing  things— 

 loops, spirals, pendulum swings, and so on. Trying to copy what the 

human does turns out not to work very well because conditions are not 

perfectly reproducible: repeating the same control sequences in differ-

ent circumstances can lead to disaster. Instead, the algorithm learns 

what the human pilot wants, in the form of trajectory constraints that 

it can achieve. This approach actually produces results that are even 

better than the human expert’s, because the human has slower reac-

tions and is constantly making small mistakes and correcting for them.

Assistance Games

IRL is already an important tool for building effective AI systems, but 

it makes some simplifying assumptions. The first is that the robot is 

going to adopt the reward function once it has learned it by observing 

the human, so that it can perform the same task. This is fine for driv-

ing or helicopter piloting, but it’s not fine for drinking coffee: a robot 
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observing my morning routine should learn that I (sometimes) want 

coffee, but should not learn to want coffee itself. Fixing this issue is 

 easy—  we simply ensure that the robot associates the preferences with 

the human, not with itself.

The second simplifying assumption in IRL is that the robot is ob-

serving a human who is solving a  single-  agent decision problem. For 

example, suppose the robot is in medical school, learning to be a sur-

geon by watching a human expert. IRL algorithms assume that the 

human performs the surgery in the usual optimal way, as if the robot 

were not there. But that’s not what would happen: the human surgeon 

is motivated to have the robot (like any other medical student) learn 

quickly and well, and so she will modify her behavior considerably. 

She might explain what she is doing as she goes along; she might point 

out mistakes to avoid, such as making the incision too deep or the 

stitches too tight; she might describe the contingency plans in case 

something goes wrong during surgery. None of these behaviors make 

sense when performing surgery in isolation, so IRL algorithms will not 

be able to interpret the preferences they imply. For this reason, we 

will need to generalize IRL from the  single-  agent setting to the  multi- 

 agent setting—that is, we will need to devise learning algorithms that 

work when the human and robot are part of the same environment 

and interacting with each other.

With a human and a robot in the same environment, we are in the 

realm of game  theory—  just as in the penalty  shoot-  out between Alice 

and Bob on page 28. We assume, in this first version of the theory, 

that the human has preferences and acts according to those prefer-

ences. The robot doesn’t know what preferences the human has, but it 

wants to satisfy them anyway. We’ll call any such situation an assis-
tance game, because the robot is, by definition, supposed to be helpful 

to the human.10

Assistance games instantiate the three principles from the preced-

ing chapter: the robot’s only objective is to satisfy human preferences, 

it doesn’t initially know what they are, and it can learn more by 
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observing human behavior. Perhaps the most interesting property of 

assistance games is that, by solving the game, the robot can work out 

for itself how to interpret the human’s behavior as providing informa-

tion about human preferences.

The paperclip game

The first example of an assistance game is the paperclip game. It’s 

a very simple game in which Harriet the human has an incentive to 

“signal” to Robbie the robot some information about her preferences. 

Robbie is able to interpret that signal because he can solve the game, 

and therefore he can understand what would have to be true about 

Harriet’s preferences in order for her to signal in that way.

The steps of the game are depicted in figure 12. It involves making 

paperclips and staples. Harriet’s preferences are expressed by a payoff 

function that depends on the number of paperclips and the number of 

staples produced, with a certain “exchange rate” between the two. For 

H

R RR

0 paperclips
2 staples

2 paperclips
0 staples 1 paperclip

1 staple

0 paperclips
90 staples

50 paperclips
50 staples

90 paperclips
0 staples

FIGURE 12: The paperclip game. Harriet the human can choose to make 2 
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example, she might value paperclips at 45¢ and staples at 55¢ each. 

(We’ll assume the two values always add up to $1.00; it’s only the 

ratio that matters.) So, if 10 paperclips and 20 staples are produced, 

Harriet’s payoff will be 10 × 45¢ + 20 × 55¢ = $15.50. Robbie the 

robot is initially completely uncertain about Harriet’s preferences: he 

has a uniform distribution for the value of a paperclip (that is, it’s 

equally likely to be any value from 0¢ to $1.00). Harriet goes first and 

can choose to make two paperclips, two staples, or one of each. Then 

Robbie can choose to make 90 paperclips, 90 staples, or 50 of each.11

Notice that if she were doing this by herself, Harriet would just 

make two staples, with a value of $1.10. But Robbie is watching, and he 

learns from her choice. What exactly does he learn? Well, that depends 

on how Harriet makes her choice. How does Harriet make her choice? 

That depends on how Robbie is going to interpret it. So, we seem to 

have a circular problem! That’s typical in  game-  theoretic problems, 

and that’s why Nash proposed the concept of equilibrium solutions.

To find an equilibrium solution, we need to identify strategies for 

Harriet and Robbie such that neither has an incentive to change their 

strategy, assuming the other remains fixed. A strategy for Harriet 

specifies how many paperclips and staples to make, given her prefer-

ences; a strategy for Robbie specifies how many paperclips and staples 

to make, given Harriet’s action.

It turns out there is only one equilibrium solution, and it looks 

like this:

• Harriet decides as follows based on her value for paperclips:

 • If the value is less than 44.6¢, make 0 paperclips and 2 staples.

• If the value is between 44.6¢ and 55.4¢, make 1 of each.

• If the value is more than 55.4¢, make 2 paperclips and 0 

staples.

• Robbie responds as follows:

• If Harriet makes 0 paperclips and 2 staples, make 90 staples.
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• If Harriet makes 1 of each, make 50 of each.

• If Harriet makes 2 paperclips and 0 staples, make 90 

paperclips.

(In case you are wondering exactly how the solution is obtained, the 

details are in the notes.12) With this strategy, Harriet is, in effect, teach-
ing Robbie about her preferences using a simple  code—  a language, if 

you  like—  that emerges from the equilibrium analysis. As in the exam-

ple of surgical teaching, a single-agent IRL algorithm wouldn’t under-

stand this code. Note also that Robbie never learns Harriet’s preferences 

exactly, but he learns enough to act optimally on her  behalf—  that is, he 

acts just as he would if he did know her preferences exactly. He is prov-

ably beneficial to Harriet under the assumptions stated and under the 

assumption that Harriet is playing the game correctly.

One can also construct problems where, like a good student, Rob-

bie will ask questions, and, like a good teacher, Harriet will show Rob-

bie the pitfalls to avoid. These behaviors occur not because we write 

scripts for Harriet and Robbie to follow, but because they are the op-

timal solution to the assistance game in which Harriet and Robbie are 

participants.

The  off-  switch game

An instrumental goal is one that is generally useful as a subgoal of 

almost any original goal. Self-preservation is one of these instrumental 

goals, because very few original goals are better achieved when dead. 

This leads to the  off-  switch problem: a machine that has a fixed objec-

tive will not allow itself to be switched off and has an incentive to 

disable its own off-switch.

The  off-  switch problem is really the core of the problem of control 

for intelligent systems. If we cannot switch a machine off because it 

won’t let us, we’re really in trouble. If we can, then we may be able to 

control it in other ways too.
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It turns out that uncertainty about the objective is essential for 

ensuring that we can switch the machine  off—  even when it’s more 

intelligent than us. We saw the informal argument in the previous 

chapter: by the first principle of beneficial machines, Robbie cares 

only about Harriet’s preferences, but, by the second principle, he’s 

unsure about what they are. He knows he doesn’t want to do the 

wrong thing, but he doesn’t know what that means. Harriet, on the 

other hand, does know (or so we assume, in this simple case). There-

fore, if she switches Robbie off it’s to avoid him doing something 

wrong, so he’s happy to be switched off.

To make this argument more precise, we need a formal model of 

the problem.13 I’ll make it as simple as possible, but no simpler (see 

figure 13).

FIGURE 

negative.

switch self off
wait

wait
act

act

go ahead
switch robot off
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Robbie, now working as Harriet’s personal assistant, has the first 

choice. He can act  now—  let’s say he can book Harriet into an expen-

sive hotel. He’s quite unsure how much Harriet will like the hotel and 

its  price—  let’s say he has a uniform probability for its net value to 

Harriet between −40 and + 60, with an average of + 10. He could also 

“switch himself off”—  less melodramatically, take himself out of the 

hotel booking process  altogether—  which we define to have value 0 to 

Harriet. If those were his two choices, he would go ahead and book the 

hotel, incurring a significant risk of making Harriet unhappy. (If the 

range were −60 to + 40, with an average of −10, he’d switch himself 

off.) We’ll give Robbie a third choice, however: explain his plan, wait, 

and let Harriet switch him off. Harriet can either switch him off or let 

him go ahead and book the hotel. What possible good could this do, 

you may ask, given that he could make both of those choices himself?

The point is that Harriet’s  choice—  to switch Robbie off or let him 

go  ahead—  provides Robbie with new information about Harriet’s 

preferences. If Harriet lets Robbie go ahead, it’s because the value to 

Harriet is positive. Now Robbie’s belief is uniform between 0 and 60, 

with an average of 30.

So, if we evaluate Robbie’s initial choices from his point of view:

• Acting now and booking the hotel has an expected value 

of + 10.

• Switching himself off has a value of 0.

• Waiting and letting Harriet switch him off (if she so desires) 

leads to two possible outcomes:

• There is a 40 percent chance (based on Robbie’s uncertainty 

about the hotel plan) that Harriet will hate it and will switch 

Robbie off, with value 0.

• There’s a 60 percent chance Harriet will like it and allow Rob-

bie to go ahead, with expected value + 30.

• Thus, waiting has expected value 40% × 0 + 60% × 30 = + 18, 

which is better than acting now at + 10.
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The upshot is that Robbie has a positive incentive to allow himself to be 
switched off. This incentive comes directly from Robbie’s uncertainty 

about Harriet’s preferences. Robbie is aware that there’s a chance 

(40 percent in this example) that he might be about to do something 

that will make Harriet unhappy, in which case being switched off 

would be preferable to going ahead. Were Robbie already certain about 

Harriet’s preferences, he would just go ahead and make the decision (or 

switch himself off). There would be absolutely nothing to be gained 

from consulting Harriet, because, according to Robbie’s definite be-

liefs, he can already predict exactly what she is going to decide.

In fact, it is possible to prove the same result in the general case: as 

long as Robbie is not completely certain that he’s about to do what 

Harriet herself would do, he will prefer to allow her to switch him 

off.14 Her decision provides Robbie with information, and information 

is always useful for improving Robbie’s decisions. Conversely, if Rob-

bie is certain about Harriet’s decision, her decision provides no new 

information, and so Robbie has no incentive to allow her to decide.

There are some obvious elaborations on the model that are worth 

exploring immediately. The first elaboration is to impose a cost for 

asking Harriet to make decisions or answer questions. (That is, we 

assume Robbie knows at least this much about Harriet’s preferences: 

her time is valuable.) In that case, Robbie is less inclined to bother 

Harriet if he is nearly certain about her preferences; the larger the 

cost, the more uncertain Robbie has to be before bothering Harriet. 

This is as it should be. And if Harriet is really grumpy about being 

interrupted, she shouldn’t be too surprised if Robbie occasionally does 

things she doesn’t like.

The second elaboration is to allow for some probability of human 

 error—  that is, Harriet might sometimes switch Robbie off even when 

his proposed action is reasonable, and she might sometimes let Robbie 

go ahead even when his proposed action is undesirable. We can put 

this probability of human error into the mathematical model of the 

assistance game and find the solution, as before. As one might expect, 
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the solution to the game shows that Robbie is less inclined to defer to 

an irrational Harriet who sometimes acts against her own best inter-

ests. The more randomly she behaves, the more uncertain Robbie has 

to be about her preferences before deferring to her. Again, this is as it 

should be—for example, if Robbie is an autonomous car and Harriet is 

his naughty  two-  year-  old passenger, Robbie should not allow himself 

to be switched off by Harriet in the middle of the freeway.

There are many more ways in which the model can be elaborated or 

embedded into complex decision problems.15 I am confident, however, 

that the core  idea—  the essential connection between helpful, deferen-

tial behavior and machine uncertainty about human  preferences—  will 

survive these elaborations and complications.

Learning preferences exactly in the long run

There is one important question that may have occurred to you in 

reading about the  off-  switch game. (Actually, you probably have loads 
of important questions, but I’m going to answer only this one.) What 

happens as Robbie acquires more and more information about Harri-

et’s preferences, becoming less and less uncertain? Does that mean 

he will eventually stop deferring to her altogether? This is a ticklish 

question, and there are two possible answers: yes and yes.

The first yes is benign: as a general matter, as long as Robbie’s ini-

tial beliefs about Harriet’s preferences ascribe some probability, how-

ever small, to the preferences that she actually has, then as Robbie 

becomes more and more certain, he will become more and more right. 

That is, he will eventually be certain that Harriet has the preferences 

that she does in fact have. For example, if Harriet values paperclips at 

12¢ and staples at 88¢, Robbie will eventually learn these values. In 

that case, Harriet doesn’t care whether Robbie defers to her, because 

she knows he will always do exactly what she would have done in his 

place. There will never be an occasion where Harriet wants to switch 

Robbie off.
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The second yes is less benign. If Robbie rules out, a priori, the true 

preferences that Harriet has, he will never learn those true preferences, 

but his beliefs may nonetheless converge to an incorrect assessment. In 

other words, over time, he becomes more and more certain about a false 

belief concerning Harriet’s preferences. Typically, that false belief will 

be whichever hypothesis is closest to Harriet’s true preferences, out of 

all the hypotheses that Robbie initially believes are possible. For exam-

ple, if Robbie is absolutely certain that Harriet’s value for paperclips lies 

between 25¢ and 75¢, and Harriet’s true value is 12¢, then Robbie will 

eventually become certain that she values paperclips at 25¢.16

As he approaches certainty about Harriet’s preferences, Robbie 

will resemble more and more the bad old AI systems with fixed objec-

tives: he won’t ask permission or give Harriet the option to turn him 

off, and he has the wrong objective. This is hardly dire if it’s just paper-

clips versus staples, but it might be quality of life versus length of life 

if Harriet is seriously ill, or population size versus resource consump-

tion if Robbie is supposedly acting on behalf of the human race.

We have a problem, then, if Robbie rules out in advance prefer-

ences that Harriet might in fact have: he may converge to a definite 

but incorrect belief about her preferences. The solution to this prob-

lem seems obvious: don’t do it! Always allocate some probability, 

however small, to preferences that are logically possible. For example, 

it’s logically possible that Harriet actively wants to get rid of staples 

and would pay you to take them away. (Perhaps as a child she stapled 

her finger to the table, and now she cannot stand the sight of them.) 

So, we should allow for negative exchange rates, which makes things a 

bit more complicated but still perfectly manageable.17

But what if Harriet values paperclips at 12¢ on weekdays and 80¢ 

on weekends? This new preference is not describable by any single 

number, and so Robbie has, in effect, ruled it out in advance. It’s just 

not in his set of possible hypotheses about Harriet’s preferences. More 

generally, there might be many, many things besides paperclips and 

staples that Harriet cares about. (Really!) Suppose, for example, that 
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Harriet is concerned about the climate, and suppose that Robbie’s ini-

tial belief allows for a whole laundry list of possible concerns including 

sea level, global temperatures, rainfall, hurricanes, ozone, invasive 

species, and deforestation. Then Robbie will observe Harriet’s behav-

ior and choices and gradually refine his theory of her preferences to 

understand the weight she gives to each item on the list. But, just as in 

the paperclip case, Robbie won’t learn about things that aren’t on the 

laundry list. Let’s say that Harriet is also concerned about the color of 

the  sky—  something I guarantee you will not find in typical lists of 

stated concerns of climate scientists. If Robbie can do a slightly better 

job of optimizing sea level, global temperatures, rainfall, and so forth 

by turning the sky orange, he will not hesitate to do it.

There is, once again, a solution to this problem: don’t do it! Never 

rule out in advance possible attributes of the world that could be part 

of Harriet’s preference structure. That sounds fine, but actually mak-

ing it work in practice is more difficult than dealing with a single num-

ber for Harriet’s preferences. Robbie’s initial uncertainty has to allow 

for an unbounded number of unknown attributes that might contrib-

ute to Harriet’s preferences. Then, when Harriet’s decisions are inex-

plicable in terms of the attributes Robbie knows about already, he can 

infer that one or more previously unknown attributes (for example, the 

color of the sky) may be playing a role, and he can try to work out what 

those attributes might be. In this way, Robbie avoids the problems 

caused by an overly restrictive prior belief. There are, as far as I know, 

no working examples of Robbies of this kind, but the general idea is 

encompassed within current thinking about machine learning.18

Prohibitions and the loophole principle

Uncertainty about human objectives may not be the only way to 

persuade a robot not to disable its  off-  switch while fetching the coffee. 

The distinguished logician Moshe Vardi has proposed a simpler solu-

tion based on a prohibition:19 instead of giving the robot the goal “fetch 
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the coffee,” give it the goal “fetch the coffee while not disabling your 
 off-  switch.” Unfortunately, a robot with such a goal will satisfy the let-

ter of the law while violating the spirit—for example by surrounding 

the  off-  switch with a  piranha-  infested moat or simply zapping anyone 

who comes near the switch. Writing such prohibitions in a foolproof 

way is like trying to write  loophole-  free tax  law—  something we have 

been trying and failing to do for thousands of years. A sufficiently in-

telligent entity with a strong incentive to avoid paying taxes is likely to 

find a way to do it. Let’s call this the loophole principle: if a sufficiently 

intelligent machine has an incentive to bring about some condition, 

then it is generally going to be impossible for mere humans to write 

prohibitions on its actions to prevent it from doing so or to prevent it 

from doing something effectively equivalent.

The best solution for preventing tax avoidance is to make sure that 

the entity in question wants to pay taxes. In the case of a potentially 

misbehaving AI system, the best solution is to make sure it wants to 

defer to humans.

The moral of the story so far is that we should avoid “putting a pur-

pose into the machine,” as Norbert Wiener put it. But suppose that 

the robot does receive a direct human order, such as “Fetch me a cup 

of coffee!” How should the robot understand this order?

Traditionally, it would become the robot’s goal. Any sequence of 

actions that satisfies the  goal—  that leads to the human having a cup of 

 coffee—  counts as a solution. Typically, the robot would also have a 

way of ranking solutions, perhaps based on the time taken, the dis-

tance traveled, and the cost and quality of the coffee.

This is a very  literal-  minded way of interpreting the instruction. It 

can lead to pathological behavior by the robot. For example, perhaps 

Harriet the human has stopped at a gas station in the middle of the 
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desert; she sends Robbie the robot to fetch coffee, but the gas station 

has none and Robbie trundles off at three miles per hour to the nearest 

town, two hundred miles away, returning ten days later with the des-

iccated remains of a cup of coffee. Meanwhile, Harriet, waiting pa-

tiently, has been well supplied with iced tea and  Coca-  Cola by the gas 

station owner.

Were Robbie human (or a  well-  designed robot) he would not inter-

pret Harriet’s command quite so literally. The command is not a goal 

to be achieved at all costs. It is a way of conveying some information 

about Harriet’s preferences with the intent of inducing some behavior 

on the part of Robbie. The question is, what information?

One proposal is that Harriet prefers coffee to no coffee, all other 
things being equal.20 This means that if Robbie has a way to get coffee 

without changing anything else about the world, then it’s a good idea 

to do it even if he has no clue about Harriet’s preferences concerning other 
aspects of the environment state. As we expect that machines will be 

perennially uncertain about human preferences, it’s nice to know they 

can still be useful despite this uncertainty. It seems likely that the 

study of planning and decision making with partial and uncertain 

preference information will become a central part of AI research and 

product development.

On the other hand, all other things being equal means that no other 

changes are allowed—for example, adding coffee while subtracting 

money may or may not be a good idea if Robbie knows nothing about 

Harriet’s relative preferences for coffee and money.

Fortunately, Harriet’s instruction probably means more than a 

simple preference for coffee, all other things being equal. The extra 

meaning comes not just from what she said but also from the fact that 

she said it, the particular situation in which she said it, and the fact 

that she didn’t say anything else. The branch of linguistics called prag-
matics studies exactly this extended notion of meaning. For example, 

it wouldn’t make sense for Harriet to say, “Fetch me a cup of coffee!” 

if Harriet believes there is no coffee available nearby or that it is 
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exorbitantly expensive. Therefore, when Harriet says, “Fetch me a cup 

of coffee!” Robbie infers not just that Harriet wants coffee but also 

that Harriet believes there is coffee available nearby at a price she is 

willing to pay. Thus, if Robbie finds coffee at a price that seems rea-

sonable (that is, a price that it would be reasonable for Harriet to ex-

pect to pay) he can go ahead and buy it. On the other hand, if Robbie 

finds that the nearest coffee is two hundred miles away or costs 

 twenty-  two dollars, it might be reasonable for him to report this fact 

rather than pursue his quest blindly.

This general style of analysis is often called Gricean, after H. Paul 

Grice, a Berkeley philosopher who proposed a set of maxims for infer-

ring the extended meaning of utterances like Harriet’s.21 In the case of 

preferences, the analysis can become quite complicated. For example, 

it’s quite possible that Harriet doesn’t specifically want coffee; she 

needs perking up, but is operating under the false belief that the gas 

station has coffee, so she asks for coffee. She might be equally happy 

with tea,  Coca-  Cola, or even some luridly packaged energy drink.

These are just a few of the considerations that arise when inter-

preting requests and commands. The variations on this theme are 

endless because of the complexity of Harriet’s preferences, the huge 

range of circumstances in which Harriet and Robbie might find them-

selves, and the different states of knowledge and belief that Harriet 

and Robbie might occupy in those circumstances. While precomputed 

scripts might allow Robbie to handle a few common cases, flexible and 

robust behavior can emerge only from interactions between Harriet 

and Robbie that are, in effect, solutions of the assistance game in 

which they are engaged.

In Chapter 2, I described the brain’s reward system, based on dopa-

mine, and its function in guiding behavior. The role of dopamine was 
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discovered in the late 1950s, but even before that, by 1954, it was 

known that direct electrical stimulation of the brain in rats could pro-

duce a  reward-  like response.22 The next step was to give the rat access 

to a lever, connected to a battery and a wire, that produced the elec-

trical stimulation in its own brain. The result was sobering: the rat 

pressed the lever over and over again, never stopping to eat or drink, 

until it collapsed.23 Humans fare no better,  self-  stimulating thousands 

of times and neglecting food and personal hygiene.24 (Fortunately, ex-

periments with humans are usually terminated after one day.) The 

tendency of animals to  short-  circuit normal behavior in favor of direct 

stimulation of their own reward system is called wireheading.
Could something similar happen to machines that are running 

 reinforcement learning algorithms, such as AlphaGo? Initially, one 

might think this is impossible, because the only way that AlphaGo 

can gain its + 1 reward for winning is actually to win the simulated Go 

games that it is playing. Unfortunately, this is true only because of an 

enforced and artificial separation between AlphaGo and its external 

environment and the fact that AlphaGo is not very intelligent. Let 

me explain these two points in more detail, because they are impor-

tant for understanding some of the ways that superintelligence can 

go wrong.

AlphaGo’s world consists only of the simulated Go board, com-

posed of 361 locations that can be empty or contain a black or white 

stone. Although AlphaGo runs on a computer, it knows nothing of 

this computer. In particular, it knows nothing of the small section of 

code that computes whether it has won or lost each game; nor, during 

the learning process, does it have any idea about its opponent, which 

is actually a version of itself. AlphaGo’s only actions are to place a 

stone on an empty location, and these actions affect only the Go board 

and nothing  else—  because there is nothing else in AlphaGo’s model 

of the world. This setup corresponds to the abstract mathematical 

model of reinforcement learning, in which the reward signal arrives 

from outside the universe. Nothing AlphaGo can do, as far as it knows, 
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has any effect on the code that generates the reward signal, so  Alpha Go 

cannot indulge in wireheading.

Life for AlphaGo during the training period must be quite frus-

trating: the better it gets, the better its opponent  gets—  because its 

opponent is a  near-  exact copy of itself. Its win percentage hovers 

around 50 percent, no matter how good it becomes. If it were more 

 intelligent—  if it had a design closer to what one might expect of a 

 human-  level AI  system—  it would be able to fix this problem. This 

AlphaGo++ would not assume that the world is just the Go board, 

because that hypothesis leaves a lot of things unexplained. For exam-

ple, it doesn’t explain what “physics” is supporting the operation of 

AlphaGo++’s own decisions or where the mysterious “opponent 

moves” are coming from. Just as we curious humans have gradually 

come to understand the workings of our cosmos, in a way that (to 

some extent) also explains the workings of our own minds, and just 

like the Oracle AI discussed in Chapter 6, AlphaGo++ will, by a pro-

cess of  experimentation, learn that there is more to the universe than 

the Go board. It will work out the laws of operation of the computer 

it runs on and of its own code, and it will realize that such a system 

cannot easily be explained without the existence of other entities in 

the universe. It will experiment with different patterns of stones 

on the board, wondering if those entities can interpret them. It will 

eventually communicate with those entities through a language of 

patterns and persuade them to reprogram its reward signal so that 

it always gets + 1. The inevitable conclusion is that a sufficiently capa-

ble AlphaGo++ that is designed as a  reward-  signal maximizer will 
wirehead.

The AI safety community has discussed wireheading as a possibil-

ity for several years.25 The concern is not just that a reinforcement 

learning system such as AlphaGo might learn to cheat instead of 

 mastering its intended task. The real issue arises when humans are 

the source of the reward signal. If we propose that an AI system 

can be trained to behave well through reinforcement learning, with 
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humans giving feedback signals that define the direction of improve-

ment, the inevitable result is that the AI system works out how to 

control the humans and forces them to give maximal positive rewards 

at all times.

You might think that this would just be a form of pointless  self- 

 delusion on the part of the AI system, and you’d be right. But it’s a 

logical consequence of the way reinforcement learning is defined. The 

process works fine when the reward signal comes from “outside the 

universe” and is generated by some process that can never be modified 

by the AI system; but it fails if the  reward-  generating process (that is, 

the human) and the AI system inhabit the same universe.

How can we avoid this kind of  self-  delusion? The problem comes 

from confusing two distinct things: reward signals and actual rewards. 

In the standard approach to reinforcement learning, these are one and 

the same. That seems to be a mistake. Instead, they should be treated 

separately, just as they are in assistance games: reward signals provide 

information about the accumulation of actual reward, which is the 

thing to be maximized. The learning system is accumulating brownie 

points in heaven, so to speak, while the reward signal is, at best, just 

providing a tally of those brownie points. In other words, the reward 

signal reports on (rather than constitutes) reward accumulation. With 

this model, it’s clear that taking over control of the  reward-  signal 

mechanism simply loses information. Producing fictitious reward sig-

nals makes it impossible for the algorithm to learn about whether its 

actions are actually accumulating brownie points in heaven, and so a 

rational learner designed to make this distinction has an incentive to 

avoid any kind of wireheading.

Recursive  Self-  Improvement

I. J. Good’s prediction of an intelligence explosion (see page 142) is 

one of the driving forces that have led to current concerns about the 
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potential risks of superintelligent AI. If humans can design a machine 

that is a bit more intelligent than humans,  then—  the argument  goes— 

 that machine will be a bit better than humans at designing machines. 

It will design a new machine that is still more intelligent, and the 

process will repeat itself until, in Good’s words, “the intelligence of 

man would be left far behind.”

Researchers in AI safety, particularly at the Machine Intelligence 

Research Institute in Berkeley, have studied the question of whether 

intelligence explosions can occur safely.26 Initially, this might seem 

 quixotic—  wouldn’t it just be “game over”?—  but there is, perhaps, 

hope. Suppose the first machine in the series, Robbie Mark I, starts 

with perfect knowledge of Harriet’s preferences. Knowing that his 

cognitive limitations lead to imperfections in his attempts to make 

Harriet happy, he builds Robbie Mark II. Intuitively, it seems that 

Robbie Mark I has an incentive to build his knowledge of Harriet’s 

preferences into Robbie Mark II, since that leads to a future where 

Harriet’s preferences are better  satisfied—  which is precisely Robbie 

Mark I’s purpose in life according to the first principle. By the same 

argument, if Robbie Mark I is uncertain about Harriet’s preferences, 

that uncertainty should be transferred to Robbie Mark II. So perhaps 

explosions are safe after all.

The fly in the ointment, from a mathematical viewpoint, is that 

Robbie Mark I will not find it easy to reason about how Robbie Mark II 

is going to behave, given that Robbie Mark II is, by assumption, a more 

advanced version. There will be questions about Robbie Mark II’s be-

havior that Robbie Mark I cannot answer.27 More serious still, we do 

not yet have a clear mathematical definition of what it means in reality 

for a machine to have a particular purpose, such as the purpose of 

satisfying Harriet’s preferences.

Let’s unpack this last concern a bit. Consider AlphaGo: What pur-

pose does it have? That’s easy, one might think: AlphaGo has the pur-

pose of winning at Go. Or does it? It’s certainly not the case that 

AlphaGo always makes moves that are guaranteed to win. (In fact, it 
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nearly always loses to AlphaZero.) It’s true that when it’s only a few 

moves from the end of the game, AlphaGo will pick the winning move 

if there is one. On the other hand, when no move is guaranteed to 

 win—  in other words, when AlphaGo sees that the opponent has a 

winning strategy no matter what AlphaGo  does—  then AlphaGo will 

pick moves more or less at random. It won’t try the trickiest move in 

the hope that the opponent will make a mistake, because it assumes 

that its opponent will play perfectly. It acts as if it has lost the will to 

win. In other cases, when the truly optimal move is too hard to calcu-

late, AlphaGo will sometimes make mistakes that lead to losing the 

game. In those instances, in what sense is it true that AlphaGo actu-

ally wants to win? Indeed, its behavior might be identical to that of a 

machine that just wants to give its opponent a really exciting game.

So, saying that AlphaGo “has the purpose of winning” is an over-

simplification. A better description would be that AlphaGo is the re-

sult of an imperfect training  process—  reinforcement learning with 

 self-  play—  for which winning was the reward. The training process is 

imperfect in the sense that it cannot produce a perfect Go player: 

AlphaGo learns an evaluation function for Go positions that is good 

but not perfect, and it combines that with a lookahead search that is 

good but not perfect.

The upshot of all this is that discussions beginning with “suppose 

that robot R has purpose P” are fine for gaining some intuition about 

how things might unfold, but they cannot lead to theorems about real 

machines. We need much more nuanced and precise definitions of 

purposes in machines before we can obtain guarantees of how they 

will behave over the long term. AI researchers are only just beginning 

to get a handle on how to analyze even the simplest kinds of real 

 decision-  making systems,28 let alone machines intelligent enough to 

design their own successors. We have work to do.

9780525558613_Human_TX.indd 210 8/7/19 11:21 PM

NoR Not
fecfe

ot of all thof all t

 has purphas pur

s mights might

for
luationatio

d it combineit combin

t

Dist
rib

uti
on

ad to

hat AlphaGt AlphaG

e identical tidentical t

t a really exeally ex

rpose of wipose of wi

would be thuld be th

cess—s—rreinfeinf

was the rewwas the re

it cannotit canno

funcfun



9

COMPLICATIONS: US

If the world contained one perfectly rational Harriet and one helpful 

and deferential Robbie, we’d be in good shape. Robbie would grad-

ually learn Harriet’s preferences as unobtrusively as possible and 

would become her perfect helper. We might hope to extrapolate from 

this promising beginning, perhaps viewing Harriet and Robbie’s rela-

tionship as a model for the relationship between the human race and 

its machines, each construed monolithically.

Alas, the human race is not a single, rational entity. It is composed 

of nasty,  envy-  driven, irrational, inconsistent, unstable, computation-

ally limited, complex, evolving, heterogeneous entities. Loads and 

loads of them. These issues are the staple diet—perhaps even the rai-
sons d’ être—  of the social sciences. To AI we will need to add ideas 

from psychology, economics, political theory, and moral philosophy.1 

We need to melt, re- form, and hammer those ideas into a structure 

that will be strong enough to resist the enormous strain that increas-

ingly intelligent AI systems will place on it. Work on this task has 

barely started.
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Different Humans

I will start with what is probably the easiest of the issues: the fact that 

humans are heterogeneous. When first exposed to the idea that ma-

chines should learn to satisfy human preferences, people often object 

that different cultures, even different individuals, have widely differ-

ent value systems, so there cannot be one correct value system for the 

machine. But of course, that’s not a problem for the machine: we don’t 

want it to have one correct value system of its own; we just want it to 

predict the preferences of others.

The confusion about machines having difficulty with heteroge-

neous human preferences may come from the mistaken idea that the 

machine is adopting the preferences it  learns—  for example, the idea 

that a domestic robot in a vegetarian household is going to adopt veg-

etarian preferences. It won’t. It just needs to learn to predict what the 

dietary preferences of vegetarians are. By the first principle, it will 

then avoid cooking meat for that household. But the robot also learns 

about the dietary preferences of the rabid carnivores next door, and, 

with its owner’s permission, will happily cook meat for them if they 

borrow it for the weekend to help out with a dinner party. The robot 

doesn’t have a single set of preferences of its own, beyond the prefer-

ence for helping humans achieve their preferences.

In a sense, this is no different from a restaurant chef who learns to 

cook several different dishes to please the varied palates of her clients, 

or the multinational car company that makes  left-  hand-  drive cars for 

the US market and  right-  hand-  drive cars for the UK market.

In principle, a machine could learn eight billion preference mod-

els, one for each person on Earth. In practice, this isn’t as hopeless as 

it sounds. For one thing, it’s easy for machines to share what they learn 

with each other. For another, the preference structures of humans 

have a great deal in common, so the machine will usually not be learn-

ing each model from scratch.
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Imagine, for example, the domestic robots that may one day be 

purchased by the inhabitants of Berkeley, California. The robots come 

out of the box with a fairly broad prior belief, perhaps tailored for the 

US market but not for any particular city, political viewpoint, or so-

cioeconomic class. The robots begin to encounter members of the 

Berkeley Green Party, who turn out, compared to the average Ameri-

can, to have a much higher probability of being vegetarian, of using 

recycling and composting bins, of using public transportation when-

ever possible, and so on. Whenever a newly commissioned robot finds 

itself in a Green household, it can immediately adjust its expectations 

accordingly. It does not need to begin learning about these particular 

humans as if it had never seen a human, let alone a Green Party mem-

ber, before. This adjustment is not  irreversible—  there may be Green 

Party members in Berkeley who feast on endangered whale meat and 

drive  gas-  guzzling monster  trucks—  but it allows the robot to be more 

useful more quickly. The same argument applies to a vast range of 

other personal characteristics that are, to some degree, predictive of 

aspects of an individual’s preference structures.

Many Humans

The other obvious consequence of the existence of more than one 

human being is the need for machines to make  trade-  offs among the 

preferences of different people. The issue of  trade-  offs among humans 

has been the main focus of large parts of the social sciences for centu-

ries. It would be naïve for AI researchers to expect that they can sim-

ply alight on the correct solutions without understanding what is 

already known. The literature on the topic is, alas, vast and I cannot 

possibly do justice to it  here—  not just because there isn’t space but 

also because I haven’t read most of it. I should also point out that al-

most all the literature is concerned with decisions made by humans, 

whereas I am concerned here with decisions made by machines. This 
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makes all the difference in the world, because humans have individual 

rights that may conflict with any supposed obligation to act on behalf 

of others, whereas machines do not. For example, we do not expect or 

require typical humans to sacrifice their lives to save others, whereas 

we will certainly require robots to sacrifice their existence to save the 

lives of humans.

Several thousand years of work by philosophers, economists, legal 

scholars, and political scientists have produced constitutions, laws, 

economic systems, and social norms that serve to help (or hinder, de-

pending on who’s in charge) the process of reaching satisfactory solu-

tions to the problem of  trade-  offs. Moral philosophers in particular 

have been analyzing the notion of rightness of actions in terms of their 

effects, beneficial or otherwise, on other people. They have studied 

quantitative models of  trade-  offs since the eighteenth century under 

the heading of utilitarianism. This work is directly relevant to our 

present concerns, because it attempts to define a formula by which 

moral decisions can be made on behalf of many individuals.

The need to make  trade-  offs arises even if everyone has the same 

preference structure, because it’s usually impossible to maximally 

 satisfy everyone’s preferences. For example, if everyone wants to be 

 All-  Powerful Ruler of the Universe, most people are going to be 

 disappointed. On the other hand, heterogeneity does make some 

problems more difficult: if everyone is happy with the sky being blue, 

the robot that handles atmospheric matters can work on keeping it 

that way; but if many people are agitating for a color change, the robot 

will need to think about possible compromises such as an orange sky 

on the third Friday of each month.

The presence of more than one person in the world has another 

important consequence: it means that, for each person, there are other 

people to care about. This means that satisfying the preferences of an 

individual has implications for other people, depending on the indi-

vidual’s preferences about the  well-  being of others.
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Loyal AI

Let’s begin with a very simple proposal for how machines should 

deal with the presence of multiple humans: they should ignore it. That 

is, if Harriet owns Robbie, then Robbie should pay attention only to 

Harriet’s preferences. This loyal form of AI bypasses the issue of  trade- 

 offs, but it leads to problems:

ROBBIE: Your husband called to remind you about dinner tonight.

HARRIET: Wait! What? What dinner?

ROBBIE: For your twentieth anniversary, at seven.

HARRIET: I can’t! I’m meeting the  secretary-  general at seven thirty! 

How did this happen?

ROBBIE: I did warn you, but you overrode my  recommendation. . . . 

HARRIET: OK,  sorry—  but what am I going to do now? I can’t just tell 

the SG I’m too busy!

ROBBIE: Don’t worry. I arranged for her plane to be  delayed—  some 

kind of computer malfunction.

HARRIET: Really? You can do that?!

ROBBIE: The  secretary-  general sends her profound apologies and is 

happy to meet you for lunch tomorrow.

Here, Robbie has found an ingenious solution to Harriet’s problem, 

but his actions have had a negative impact on other people. If Harriet 

is a morally scrupulous and altruistic person, then Robbie, who aims 

to satisfy Harriet’s preferences, will never dream of carrying out such 

a dubious scheme. But what if Harriet doesn’t give a fig for the prefer-

ences of others? In that case, Robbie won’t mind delaying planes. And 

might he not spend his time pilfering money from online bank ac-

counts to swell indifferent Harriet’s coffers, or worse?

Obviously, the actions of loyal machines will need to be con-

strained by rules and prohibitions, just as the actions of humans are 
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constrained by laws and social norms. Some have proposed strict lia-

bility as a solution:2 Harriet (or Robbie’s manufacturer, depending on 

where you prefer to place the liability) is financially and legally re-

sponsible for any act carried out by Robbie, just as a dog’s owner is li-

able in most states if the dog bites a small child in a public park. This 

idea sounds promising because Robbie would then have an incentive 

to avoid doing anything that would land Harriet in trouble. Unfortu-

nately, strict liability doesn’t work: it simply ensures that Robbie will 

act undetectably when he delays planes and steals money on Harriet’s 

behalf. This is another example of the loophole principle in operation. 

If Robbie is loyal to an unscrupulous Harriet, attempts to contain his 

behavior with rules will probably fail.

Even if we can somehow prevent the outright crimes, a loyal Rob-

bie working for an indifferent Harriet will exhibit other unpleasant 

behaviors. If he is buying groceries at the supermarket, he will cut in 

line at the checkout whenever possible. If he is bringing the groceries 

home and a passerby suffers a heart attack, he will carry on regardless, 

lest Harriet’s ice cream melt. In summary, he will find innumerable 

ways to benefit Harriet at the expense of  others—  ways that are strictly 

legal but become intolerable when carried out on a large scale. Socie-

ties will find themselves passing hundreds of new laws every day to 

counteract all the loopholes that machines will find in existing laws. 

Humans tend not to take advantage of these loopholes, either because 

they have a general understanding of the underlying moral principles 

or because they lack the ingenuity required to find the loopholes in 

the first place.

A Harriet who is indifferent to the  well-  being of others is bad 

enough. A sadistic Harriet who actively prefers the suffering of others is 

far worse. A Robbie designed to satisfy the preferences of such a Harriet 

would be a serious problem, because he would look  for—  and  find— 

 ways to harm others for Harriet’s pleasure, either legally or  illegally but 

undetectably. He would of course need to report back to Harriet so she 

could derive enjoyment from the knowledge of his evil deeds.
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It seems difficult, then, to make the idea of a loyal AI work, unless 

the idea is extended to include consideration of the preferences of 

other humans, in addition to the preferences of the owner.

Utilitarian AI

The reason we have moral philosophy is that there is more than 

one person on Earth. The approach that is most relevant for under-

standing how AI systems should be designed is often called consequen-
tialism: the idea that choices should be judged according to expected 

consequences. The two other principal approaches are deontological 
ethics and virtue ethics, which are, very roughly, concerned with the 

moral character of actions and individuals, respectively, quite apart 

from the consequences of choices.3 Absent any evidence of  self- 

 awareness on the part of machines, I think it makes little sense to 

build machines that are virtuous or that choose actions in accordance 

with moral rules if the consequences are highly undesirable for hu-

manity. Put another way, we build machines to bring about conse-

quences, and we should prefer to build machines that bring about 

consequences that we prefer.

This is not to say that moral rules and virtues are irrelevant; it’s 

just that, for the utilitarian, they are justified in terms of consequences 

and the more practical achievement of those consequences. This point 

is made by John Stuart Mill in Utilitarianism: 

The proposition that happiness is the end and aim of morality 

doesn’t mean that no road ought to be laid down to that goal, or 

that people going to it shouldn’t be advised to take one direction 

rather than  another. . . . Nobody argues that the art of navigation 

is not based on astronomy because sailors can’t wait to calculate 

the Nautical Almanack. Because they are rational creatures, sail-

ors go to sea with the calculations already done; and all rational 

creatures go out on the sea of life with their minds made up on the 
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common questions of right and wrong, as well as on many of the 

much harder questions of wise and foolish.

This view is entirely consistent with the idea that a finite machine 

facing the immense complexity of the real world may produce better 

consequences by following moral rules and adopting a virtuous atti-

tude rather than trying to calculate the optimal course of action from 

scratch. In the same way, a chess program achieves checkmate more 

often using a catalog of standard opening move sequences, endgame 

algorithms, and an evaluation function, rather than trying to reason its 

way to checkmate with no “moral” guideposts. A consequentialist ap-

proach also gives some weight to the preferences of those who believe 

strongly in preserving a given deontological rule, because unhappiness 

that a rule has been broken is a real consequence. However, it is not a 

consequence of infinite weight.

Consequentialism is a difficult principle to argue  against— 

although many have tried!—because it’s incoherent to object to 

 consequentialism on the grounds that it would have undesirable con-

sequences. One cannot say, “But if you follow the consequentialist 

approach in  such-  and-  such case, then this really terrible thing will 

happen!” Any such failings would simply be evidence that the theory 

had been misapplied.

For example, suppose Harriet wants to climb Everest. One might 

worry that a consequentialist Robbie would simply pick her up and 

deposit her on top of Everest, since that is her desired consequence. In 

all probability Harriet would strenuously object to this plan, because 

it would deprive her of the challenge and therefore of the exultation 

that results from succeeding in a difficult task through one’s own 

efforts. Now, obviously, a properly designed consequentialist Robbie 

would understand that the consequences include all of Harriet’s expe-

riences, not just the end goal. He might want to be available in case of 

an accident and to make sure she was properly equipped and trained, 
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but he might also have to accept Harriet’s right to expose herself to an 

appreciable risk of death.

If we plan to build consequentialist machines, the next question is 

how to evaluate consequences that affect multiple people. One plau-

sible answer is to give equal weight to everyone’s  preferences—  in 

other words, to maximize the sum of everyone’s utilities. This answer 

is usually attributed to the  eighteenth-  century British philosopher 

Jeremy Bentham4 and his pupil John Stuart Mill,5 who developed the 

philosophical approach of utilitarianism. The underlying idea can be 

traced to the works of the ancient Greek philosopher Epicurus and 

appears explicitly in Mozi, a book of writings attributed to the Chi-

nese philosopher of the same name. Mozi was active at the end of 

the fifth century BCE and promoted the idea of jian ai, variously 

translated as “inclusive care” or “universal love,” as the defining char-

acteristic of moral actions.

Utilitarianism has something of a bad name, partly because of sim-

ple misunderstandings about what it advocates. (It certainly doesn’t 

help that the word utilitarian means “designed to be useful or 

 practical rather than attractive.”) Utilitarianism is often thought to be 

incompatible with individual rights, because a utilitarian would, sup-

posedly, think nothing of removing a living person’s organs without 

permission to save the lives of five others; of course, such a policy 

would render life intolerably insecure for everyone on Earth, so a util-

itarian wouldn’t even consider it. Utilitarianism is also incorrectly 

identified with a rather unattractive maximization of total wealth and 

is thought to give little weight to poetry or suffering. In fact, Ben-

tham’s version focused specifically on human happiness, while Mill 

confidently asserted the far greater value of intellectual pleasures over 

mere sensations. (“It is better to be a human being dissatisfied than a 

pig satisfied.”) The ideal utilitarianism of G. E. Moore went even fur-

ther: he advocated the maximization of mental states of intrinsic 

worth, epitomized by the aesthetic contemplation of beauty.
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I think there is no need for utilitarian philosophers to stipulate the 

ideal content of human utility or human preferences. (And even less 

reason for AI researchers to do so.) Humans can do that for them-

selves. The economist John Harsanyi propounded this view with his 

principle of preference autonomy:6

In deciding what is good and what is bad for a given individual, the 

ultimate criterion can only be his own wants and his own 

preferences.

Harsanyi’s preference utilitarianism is therefore roughly consistent 

with the first principle of beneficial AI, which says that a machine’s 

only purpose is the realization of human preferences. AI researchers 

should definitely not be in the business of deciding what human pref-

erences should be! Like Bentham, Harsanyi views such principles as a 

guide for public decisions; he does not expect individuals to be so self-

less. Nor does he expect individuals to be perfectly  rational—  for 

 example, they might have  short-  term desires that contradict their 

“deeper preferences.” Finally, he proposes to ignore the preferences of 

those who, like the sadistic Harriet mentioned earlier, actively wish to 

reduce the  well-  being of others.

Harsanyi also gives a kind of proof that optimal moral decisions 

should maximize the average utility across a population of humans.7 

He assumes fairly weak postulates similar to those that underlie util-

ity theory for individuals. (The primary additional postulate is that if 

everyone in a population is indifferent between two outcomes, then 

an agent acting on behalf of the population should be indifferent be-

tween those outcomes.) From these postulates, he proves what be-

came known as the social aggregation theorem: an agent acting on behalf 

of a population of individuals must maximize a weighted linear com-

bination of the utilities of the individuals. He further argues that an 

“impersonal” agent should use equal weights.

The theorem requires one crucial additional (and unstated) as-
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sumption: each individual has the same prior factual beliefs about the 

world and how it will evolve. Now, any parent knows that this isn’t 

even true for siblings, let alone individuals from different social back-

grounds and cultures. So, what happens when individuals differ in 

their beliefs? Something rather strange:8 the weight assigned to each 

individual’s utility has to change over time, in proportion to how well 

that individual’s prior beliefs accord with unfolding reality.

This rather  inegalitarian-  sounding formula is quite familiar to any 

parent. Let’s say that Robbie the robot has been tasked with looking 

after two children, Alice and Bob. Alice wants to go to the movies and 

is sure it’s going to rain today; Bob, on the other hand, wants to go to 

the beach and is sure it’s going to be sunny. Robbie could announce, 

“We’re going to the movies,” making Bob unhappy; or he could an-

nounce, “We’re going to the beach,” making Alice unhappy; or he 

could announce, “If it rains, we’re going to the movies, but if it’s sunny, 

we’ll go to the beach.” This last plan makes both Alice and Bob happy, 

because both believe in their own beliefs.

Challenges to utilitarianism

Utilitarianism is one proposal to emerge from humanity’s  long- 

 standing search for a moral guide; among many such proposals, it is 

the most clearly  specified—  and therefore the most susceptible to 

loopholes. Philosophers have been finding these loopholes for more 

than a hundred years. For example, G. E. Moore, objecting to Ben-

tham’s emphasis on maximizing pleasure, imagined a “world in which 

absolutely nothing except pleasure  existed—  no knowledge, no love, 

no enjoyment of beauty, no moral qualities.” 9 This finds its modern 

echo in Stuart Armstrong’s point that superintelligent machines 

tasked with maximizing pleasure might “entomb everyone in concrete 

coffins on heroin drips.” 10 Another example: in 1945, Karl Popper 

 proposed the laudable goal of minimizing human suffering,11 arguing 

that it was immoral to trade one person’s pain for another person’s 
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pleasure; R. N. Smart responded that this could best be achieved by 

rendering the human race extinct.12 Nowadays, the idea that a ma-

chine might end human suffering by ending our existence is a staple 

of debates over the existential risk from AI.13 A third example is G. E. 

Moore’s emphasis on the reality of the source of happiness, amending 

earlier definitions that seemed to have a loophole allowing maximiza-

tion of happiness through  self-  delusion. The modern analogs of this 

point include The Matrix (in which  present-  day reality turns out to be 

an illusion produced by a computer simulation) and recent work on 

the  self-  delusion problem in reinforcement learning.14

These examples, and more, convince me that the AI community 

should pay careful attention to the thrusts and counterthrusts of phil-

osophical and economic debates on utilitarianism because they are di-

rectly relevant to the task at hand. Two of the most important, from the 

point of view of designing AI systems that will benefit multiple individ-

uals, concern interpersonal comparisons of utilities and comparisons of 

utilities across different population sizes. Both of these debates have 

been raging for 150 years or more, which leads one to suspect their 

satisfactory resolution may not be entirely straightforward.

The debate on interpersonal comparisons of utilities matters be-

cause Robbie cannot maximize the sum of Alice’s and Bob’s utilities 

unless those utilities can be added; and they can be added only if they 

are measurable on the same scale. The  nineteenth-  century British lo-

gician and economist William Stanley Jevons (also the inventor of an 

early mechanical computer called the logical piano) argued in 1871 

that interpersonal comparisons are impossible:15

The susceptibility of one mind may, for what we know, be a thou-

sand times greater than that of another. But, provided that the 

susceptibility was different in a like ratio in all directions, we 

should never be able to discover the profoundest difference. Every 

mind is thus inscrutable to every other mind, and no common 

denominator of feeling is possible.
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The American economist Kenneth Arrow, founder of modern social 

choice theory and 1972 Nobel laureate, was equally adamant:

The viewpoint will be taken here that interpersonal comparison 

of utilities has no meaning and, in fact, there is no meaning rele-

vant to welfare comparisons in the measurability of individual 

utility.

The difficulty to which Jevons and Arrow are referring is that there is 

no obvious way to tell if Alice values pinpricks and lollipops at −1 and 

+ 1 or −1000 and + 1000 in terms of her subjective experience of hap-

piness. In either case, she will pay up to one lollipop to avoid one 

pinprick. Indeed, if Alice is a humanoid automaton, her external be-

havior might be the same even though there is no subjective experi-

ence of happiness whatsoever.

In 1974, the American philosopher Robert Nozick suggested that 

even if interpersonal comparisons of utility could be made, maximiz-

ing the sum of utilities would still be a bad idea because it would fall 

foul of the utility  monster—  a person whose experiences of pleasure 

and pain are many times more intense than those of ordinary people.16 

Such a person could assert that any additional unit of resources would 

yield a greater increment to the sum total of human happiness if given 

to him rather than to others; indeed, removing resources from others 

to benefit the utility monster would also be a good idea.

This might seem to be an obviously undesirable consequence, but 

consequentialism by itself cannot come to the rescue: the problem lies 

in how we measure the desirability of consequences. One possible re-

sponse is that the utility monster is merely  theoretical—  there are no 

such people. But this response probably won’t do: in a sense, all hu-

mans are utility monsters relative to, say, rats and bacteria, which is 

why we pay little attention to the preferences of rats and bacteria in 

setting public policy.

If the idea that different entities have different utility scales is 
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already built into our way of thinking, then it seems entirely possible 

that different people have different scales too.

Another response is to say “Tough luck!” and operate on the as-

sumption that everyone has the same scale, even if they don’t.17 One 

could also try to investigate the issue by scientific means unavailable 

to Jevons, such as measuring dopamine levels or the degree of electri-

cal excitation of neurons related to pleasure and pain, happiness and 

misery. If Alice’s and Bob’s chemical and neural responses to a lollipop 

are pretty much identical, as well as their behavioral responses (smil-

ing, making  lip-  smacking noises, and so on), it seems odd to insist 

that, nevertheless, their subjective degrees of enjoyment differ by a 

factor of a thousand or a million. Finally, one could use common cur-

rencies such as time (of which we all have, very roughly, the same 

amount)—for example, by comparing lollipops and pinpricks against, 

say, five minutes extra waiting time in the airport departure lounge.

I am far less pessimistic than Jevons and Arrow. I suspect that it is 

indeed meaningful to compare utilities across individuals, that scales 

may differ but typically not by very large factors, and that machines 

can begin with reasonably broad prior beliefs about human preference 

scales and learn more about the scales of individuals by observation 

over time, perhaps correlating natural observations with the findings 

of neuroscience research.

The second  debate—  about utility comparisons across populations 

of different  sizes—  matters when decisions have an impact on who will 

exist in the future. In the movie Avengers: Infinity War, for example, 

the character Thanos develops and implements the theory that if there 

were half as many people, everyone who remained would be more 

than twice as happy. This is the kind of naïve calculation that gives 

utilitarianism a bad name.18

The same  question—  minus the Infinity Stones and the gargantuan 

 budget—  was discussed in 1874 by the British philosopher Henry 

Sidgwick in his famous treatise, The Methods of Ethics.19 Sidgwick, in 

apparent agreement with Thanos, concluded that the right choice was 
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to adjust the population size until the maximum total happiness was 

reached. (Obviously, this does not mean increasing the population 

without limit, because at some point everyone would be starving to 

death and hence rather unhappy.) In 1984, the British philosopher 

Derek Parfit took up the issue again in his groundbreaking work 

 Reasons and Persons.20 Parfit argues that for any situation with a pop-

ulation of N very happy people, there is (according to utilitarian prin-

ciples) a preferable situation with 2N people who are ever so slightly 

less happy. This seems highly plausible. Unfortunately, it’s also a slip-

pery slope. By repeating the process, we reach the so- called Repug-

nant Conclusion (usually capitalized thus, perhaps to emphasize its 

Victorian roots): that the most desirable situation is one with a vast 

population, all of whom have a life barely worth living.

As you can imagine, such a conclusion is controversial. Parfit himself 

struggled for over thirty years to find a solution to his own conundrum, 

without success. I suspect we are missing some fundamental axioms, 

analogous to those for individually rational preferences, to handle 

choices between populations of different sizes and happiness levels.21

It is important that we solve this problem, because machines with 

sufficient foresight may be able to consider courses of action leading to 

different population sizes, just as the Chinese government did with its 

 one-  child policy in 1979. It’s quite likely, for example, that we will be 

asking AI systems for help in devising solutions for global climate 

 change—  and those solutions may well involve policies that tend to 

limit or even reduce population size.22 On the other hand, if we decide 

that larger populations really are better and if we give significant 

weight to the  well-  being of potentially vast human populations centu-

ries from now, then we will need to work much harder on finding ways 

to move beyond the confines of Earth. If the machines’ calculations 

lead to the Repugnant Conclusion or to its  opposite—  a tiny popula-

tion of optimally happy  people—  we may have reason to regret our 

lack of progress on the question.

Some philosophers have argued that we may need to make 
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decisions in a state of moral  uncertainty—  that is, uncertainty about the 

appropriate moral theory to employ in making decisions.23 One solu-

tion is to allocate some probability to each moral theory and make de-

cisions using an “expected moral value.” It’s not clear, however, that it 

makes sense to ascribe probabilities to moral theories in the same way 

one applies probabilities to tomorrow’s weather. (What’s the probabil-

ity that Thanos is exactly right?) And even if it does make sense, the 

potentially vast differences between the recommendations of compet-

ing moral theories mean that resolving the moral  uncertainty—  working 

out which moral theory avoids unacceptable  consequences—  has to 

happen before we make such momentous decisions or entrust them to 

machines.

Let’s be optimistic and suppose that Harriet eventually solves this 

and other problems arising from the existence of more than one person 

on Earth. Suitably altruistic and egalitarian algorithms are downloaded 

into robots all over the world. Cue the high fives and happy- sounding 

music. Then Harriet goes  home. . . . 

ROBBIE: Welcome home! Long day?

HARRIET: Yes, worked really hard, not even time for lunch.

ROBBIE: So you must be quite hungry!

HARRIET: Starving! Can you make me some dinner?

ROBBIE: There’s something I need to tell  you. . . . 

HARRIET: What? Don’t tell me the fridge is empty!

ROBBIE: No, there are humans in Somalia in more urgent need of help. 

I am leaving now. Please make your own dinner.

While Harriet might be quite proud of Robbie and of her own 

contributions towards making him such an upstanding and decent 

machine, she cannot help but wonder why she shelled out a small for-

tune to buy a robot whose first significant act is to disappear. In prac-

tice, of course, no one would buy such a robot, so no such robots would 

be built and there would be no benefit to humanity. Let’s call this the 
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Somalia problem. For the whole  utilitarian-  robot scheme to work, we 

have to find a solution to this problem. Robbie will need to have some 

amount of loyalty to Harriet in  particular—  perhaps an amount re-

lated to the amount Harriet paid for Robbie. Possibly, if society wants 

Robbie to help people besides Harriet, society will need to compen-

sate Harriet for its claim on Robbie’s services. It’s quite likely that ro-

bots will coordinate with one another so that they don’t all descend on 

Somalia at  once—  in which case, Robbie might not need to go after all. 

Or perhaps some completely new kinds of economic relationships will 

emerge to handle the (certainly unprecedented) presence of billions of 

purely altruistic agents in the world.

Human preferences go far beyond pleasure and pizza. They certainly 

extend to the  well-  being of others. Even Adam Smith, the father of 

economics who is often cited when a justification for selfishness is 

required, began his first book by emphasizing the crucial importance 

of concern for others:24

How selfish soever man may be supposed, there are evidently 

some principles in his nature, which interest him in the fortune of 

others, and render their happiness necessary to him, though he 

derives nothing from it except the pleasure of seeing it. Of this 

kind is pity or compassion, the emotion which we feel for the mis-

ery of others, when we either see it, or are made to conceive it in a 

very lively manner. That we often derive sorrow from the sorrow 

of others, is a matter of fact too obvious to require any instances to 

prove it.

In modern economic parlance, concern for others usually goes un-

der the heading of altruism.25 The theory of altruism is fairly well 
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developed and has significant implications for tax policy among other 

matters. Some economists, it must be said, treat altruism as another 

form of selfishness designed to provide the giver with a “warm glow.” 26 

This is certainly a possibility that robots need to be aware of as they 

interpret human behavior, but for now let’s give humans the benefit of 

the doubt and assume they do actually care.

The easiest way to think about altruism is to divide one’s prefer-

ences into two kinds: preferences for one’s own intrinsic  well-  being 

and preferences concerning the  well-  being of others. (There is consid-

erable dispute about whether these can be neatly separated, but I’ll 

put that dispute to one side.) Intrinsic  well-  being refers to qualities of 

one’s own life, such as shelter, warmth, sustenance, safety, and so on, 

that are desirable in themselves rather than by reference to qualities of 

the lives of others.

To make this notion more concrete, let’s suppose that the world 

contains two people, Alice and Bob. Alice’s overall utility is composed 

of her own intrinsic  well-  being plus some factor CAB times Bob’s in-

trinsic  well-  being. The caring factor CAB indicates how much Alice 

cares about Bob. Similarly, Bob’s overall utility is composed of his in-

trinsic  well-  being plus some caring factor CBA times Alice’s intrinsic 

 well-  being, where CBA indicates how much Bob cares about Alice.27 

Robbie is trying to help both Alice and Bob, which means (let’s say) 

maximizing the sum of their two utilities. Thus, Robbie needs to pay 

attention not just to the individual  well-  being of each but also to how 

much each cares about the  well-  being of the other.28

The signs of the caring factors CAB and CBA matter a lot. For exam-

ple, if CAB is positive, Alice is “nice”: she derives some happiness from 

Bob’s  well-  being. The more positive CAB is, the more Alice is willing 

to sacrifice some of her own  well-  being to help Bob. If CAB is zero, 

then Alice is completely selfish: if she can get away with it, she will 

divert any amount of resources away from Bob and towards herself, 

even if Bob is left destitute and starving. Faced with selfish Alice and 

nice Bob, a utilitarian Robbie will obviously protect Bob from Alice’s 
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worst depredations. It’s interesting that the final equilibrium will typ-

ically leave Bob with less intrinsic  well-  being than Alice, but he may 

have greater overall happiness because he cares about her  well-  being. 

You might feel that Robbie’s decisions are grossly unfair if they leave 

Bob with less  well-  being than Alice merely because he is nicer than 

she is: Wouldn’t he resent the outcome and be unhappy?  29 Well, he 

might, but that would be a different  model—  one that includes a term 

for resentment over differences in  well-  being. In our simple model 

Bob would be at peace with the outcome. Indeed, in the equilibrium 

situation, he would resist any attempt to transfer resources from Alice 

to himself, since that would reduce his overall happiness. If you think 

this is completely unrealistic, consider the case where Alice is Bob’s 

newborn daughter.

The really problematic case for Robbie to deal with is when CAB is 

negative: in that case, Alice is truly nasty. I’ll use the phrase negative 
altruism to refer to such preferences. As with the sadistic Harriet 

mentioned earlier, this is not about  garden-  variety greed and selfish-

ness, whereby Alice is content to reduce Bob’s share of the pie in order 

to enhance her own. Negative altruism means that Alice derives hap-

piness purely from the reduced  well-  being of others, even if her own 

intrinsic  well-  being is unchanged.

In his paper that introduced preference utilitarianism, Harsanyi 

attributes negative altruism to “sadism, envy, resentment, and malice” 

and argues that they should be ignored in calculating the sum total of 

human utility in a population:

No amount of goodwill to individual X can impose the moral ob-

ligation on me to help him in hurting a third person, individual Y.

This seems to be one area in which it is reasonable for the designers of 

intelligent machines to put a (cautious) thumb on the scales of justice, 

so to speak.

Unfortunately, negative altruism is far more common than one 
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might expect. It arises not so much from sadism and malice30 but from 

envy and resentment and their converse emotion, which I will call 

pride (for want of a better word). If Bob envies Alice, he derives un-

happiness from the difference between Alice’s  well-  being and his own; 

the greater the difference, the more unhappy he is. Conversely, if Al-

ice is proud of her superiority over Bob, she derives happiness not just 

from her own intrinsic  well-  being but also from the fact that it is 

higher than Bob’s. It is easy to show that, in a mathematical sense, 

pride and envy work in roughly the same way as sadism; they lead 

Alice and Bob to derive happiness purely from reducing each other’s 

 well-  being, because a reduction in Bob’s  well-  being increases Alice’s 

pride, while a reduction in Alice’s  well-  being reduces Bob’s envy.31

Jeffrey Sachs, the renowned development economist, once told me 

a story that illustrated the power of these kinds of preferences in peo-

ple’s thinking. He was in Bangladesh soon after a major flood had 

devastated one region of the country. He was speaking to a farmer 

who had lost his house, his fields, all his animals, and one of his chil-

dren. “I’m so  sorry—  you must be terribly sad,” Sachs ventured. “Not 

at all,” replied the farmer. “I’m pretty happy because my damned 

neighbor has lost his wife and all his children too!”

The economic analysis of pride and  envy—  particularly in the con-

text of social status and conspicuous  consumption—  came to the fore 

in the work of the American sociologist Thorstein Veblen, whose 1899 

book, The Theory of the Leisure Class, explained the toxic consequences 

of these attitudes.32 In 1977, the British economist Fred Hirsch pub-

lished The Social Limits to Growth,33 in which he introduced the idea 

of positional goods. A positional good is  anything—  it could be a car, a 

house, an Olympic medal, an education, an income, or an  accent— 

 that derives its perceived value not just from its intrinsic benefits but 

also from its relative properties, including the properties of scarcity 

and being superior to someone else’s. The pursuit of positional goods, 

driven by pride and envy, has the character of a  zero-  sum game, in the 
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sense that Alice cannot improve her relative position without worsen-

ing the relative position of Bob, and vice versa. (This doesn’t seem to 

prevent vast sums being squandered in this pursuit.) Positional goods 

seem to be ubiquitous in modern life, so machines will need to under-

stand their overall importance in the preferences of individuals. More-

over, social identity theorists propose that membership and standing 

within a group and the overall status of the group relative to other 

groups are essential constituents of human  self-  esteem.34 Thus, it is 

difficult to understand human behavior without understanding how 

individuals perceive themselves as members of  groups—  whether those 

groups are species, nations, ethnic groups, political parties, profes-

sions, families, or supporters of a particular football team.

As with sadism and malice, we might propose that Robbie should 

give little or no weight to pride and envy in his plans for helping Alice 

and Bob. There are some difficulties with this proposal, however. Be-

cause pride and envy counteract caring in Alice’s attitude to Bob’s 

 well-  being, it may not be easy to tease them apart. It may be that Alice 

cares a lot, but also suffers from envy; it is hard to distinguish this 

Alice from a different Alice who cares only a little bit but has no envy 

at all. Moreover, given the prevalence of pride and envy in human 

preferences, it’s essential to consider very carefully the ramifications 

of ignoring them. It might be that they are essential for  self-  esteem, 

especially in their positive  forms—  self-  respect and admiration for 

others.

Let me reemphasize a point made earlier: suitably designed ma-

chines will not behave like those they observe, even if those machines 

are learning about the preferences of sadistic demons. It’s possible, in 

fact, that if we humans find ourselves in the unfamiliar situation of 

dealing with purely altruistic entities on a daily basis, we may learn to 

be better people  ourselves—  more altruistic and less driven by pride 

and envy.
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The title of this section is not meant to refer to some particular subset 

of humans. It refers to all of us. We are all incredibly stupid compared 

to the unreachable standard set by perfect rationality, and we are all 

subject to the ebb and flow of the varied emotions that, to a large ex-

tent, govern our behavior.

Let’s begin with stupidity. A perfectly rational entity maximizes 

the expected satisfaction of its preferences over all possible future 

lives it could choose to lead. I cannot begin to write down a number 

that describes the complexity of this decision problem, but I find the 

following thought experiment helpful. First, note that the number of 

motor control choices that a human makes in a lifetime is about twenty 

trillion. (See Appendix A for the detailed calculations.) Next, let’s see 

how far brute force will get us with the aid of Seth Lloyd’s  ultimate- 

 physics laptop, which is one billion trillion trillion times faster than 

the world’s fastest computer. We’ll give it the task of enumerating all 

possible sequences of English words (perhaps as a warmup for Jorge 

Luis Borges’s Library of Babel), and we’ll let it run for a year. How long 

are the sequences that it can enumerate in that time? A thousand 

pages of text? A million pages? No. Eleven words. This tells you some-

thing about the difficulty of designing the best possible life of twenty 

trillion actions. In short, we are much further from being rational than 

a slug is from overtaking the starship Enterprise traveling at warp nine. 

We have absolutely no idea what a rationally chosen life would be like.

The implication of this is that humans will often act in ways that 

are contrary to their own preferences. For example, when Lee Sedol 

lost his Go match to AlphaGo, he played one or more moves that guar-
anteed he would lose, and AlphaGo could (in some cases at least) de-

tect that he had done this. It would be incorrect, however, for AlphaGo 

to infer that Lee Sedol has a preference for losing. Instead, it would be 

reasonable to infer that Lee Sedol has a preference for winning but has 
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some computational limitations that prevent him from choosing the 

right move in all cases. Thus, in order to understand Lee Sedol’s be-

havior and learn about his preferences, a robot following the third 

principle (“the ultimate source of information about human prefer-

ences is human behavior”) has to understand something about the 

cognitive processes that generate his behavior. It cannot assume he is 

rational.

This gives the AI, cognitive science, psychology, and neuroscience 

communities a very serious research problem: to understand enough 

about human cognition35 that we (or rather, our beneficial machines) 

can “ reverse-  engineer” human behavior to get at the deep underlying 

preferences, to the extent that they exist. Humans manage to do some 

of this, learning their values from others with a little bit of guidance 

from biology, so it seems possible. Humans have an advantage: they 

can use their own cognitive architecture to simulate that of other hu-

mans, without knowing what that architecture  is— “If I wanted X, I’d 

do just the same thing as Mum does, so Mum must want X.”

Machines do not have this advantage. They can simulate other ma-

chines easily, but not people. It’s unlikely that they will soon have ac-

cess to a complete model of human cognition, whether generic or 

tailored to specific individuals. Instead, it makes sense from a practi-

cal point of view to look at the major ways in which humans deviate 

from rationality and to study how to learn preferences from behavior 

that exhibits such deviations.

One obvious difference between humans and rational entities is 

that, at any given moment, we are not choosing among all possible 

first steps of all possible future lives. Not even close. Instead, we are 

typically embedded in a deeply nested hierarchy of “subroutines.” 

Generally speaking, we are pursuing  near-  term goals rather than max-

imizing preferences over future lives, and we can act only according to 

the constraints of the subroutine we’re in at present. Right now, for 

example, I’m typing this sentence: I can choose how to continue after 

the colon, but it never occurs to me to wonder if I should stop writing 
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the sentence and take an online rap course or burn down the house 

and claim the insurance or any other of a gazillion things I could do 

next. Many of these other things might actually be better than what 

I’m doing, but, given my hierarchy of commitments, it’s as if those 

other things didn’t exist.

Understanding human action, then, seems to require understand-

ing this subroutine hierarchy (which may be quite individual): which 

subroutine the person is executing at present, which  near-  term objec-

tives are being pursued within this subroutine, and how they relate to 

deeper,  long-  term preferences. More generally, learning about human 

preferences seems to require learning about the actual structure of 

human lives. What are all the things that we humans can be engaged 

in, either singly or jointly? What activities are characteristic of differ-

ent cultures and types of individuals? These are tremendously inter-

esting and demanding research questions. Obviously, they do not have 

a fixed answer because we humans are adding new activities and be-

havioral structures to our repertoires all the time. But even partial and 

provisional answers would be very useful for all kinds of intelligent 

systems designed to help humans in their daily lives.

Another obvious property of human actions is that they are often 

driven by emotion. In some cases, this is a good  thing—  emotions such 

as love and gratitude are of course partially constitutive of our prefer-

ences, and actions guided by them can be rational even if not fully de-

liberated. In other cases, emotional responses lead to actions that even 

we stupid humans recognize as less than  rational—  after the fact, of 

course. For example, an angry and frustrated Harriet who slaps a re-

calcitrant  ten-  year-  old Alice may regret the action immediately. Rob-

bie, observing the action, should (typically, although not in all cases) 

attribute the action to anger and frustration and a lack of  self-  control 

rather than deliberate sadism for its own sake. For this to work, Rob-

bie has to have some understanding of human emotional states, in-

cluding their causes, how they evolve over time in response to external 

stimuli, and the effects they have on action. Neuroscientists are 
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beginning to get a handle on the mechanics of some emotional states 

and their connections to other cognitive processes,36 and there is some 

useful work on computational methods for detecting, predicting, and 

manipulating human emotional states,37 but there is much more to be 

learned. Again, machines are at a disadvantage when it comes to emo-

tions: they cannot generate an internal simulation of an experience to 

see what emotional state it would engender.

As well as affecting our actions, emotions reveal useful informa-

tion about our underlying preferences. For example, little Alice may 

be refusing to do her homework, and Harriet is angry and frustrated 

because she really wants Alice to do well in school and have a better 

chance in life than Harriet herself did. If Robbie is equipped to under-

stand  this—  even if he cannot experience it  himself—  he may learn a 

great deal from Harriet’s  less-  than-  rational actions. It ought to be pos-

sible, then, to create rudimentary models of human emotional states 

that suffice to avoid the most egregious errors in inferring human 

preferences from behavior.

Do Humans Really Have Preferences?

The entire premise of this book is that there are futures that we would 

like and futures we would prefer to avoid, such as  near-  term extinc-

tion or being turned into human battery farms à la The Matrix. In this 

sense, yes, of course humans have preferences. Once we get into the 

details of how humans would prefer their lives to play out, however, 

things become much murkier.

Uncertainty and error

One obvious property of humans, if you think about it, is that they 

don’t always know what they want. For example, the durian fruit 

 elicits different responses from different people: some find that “it 
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surpasses in flavour all other fruits of the world” 38 while others liken 

it to “sewage, stale vomit, skunk spray and used surgical swabs.” 39 I 

have deliberately refrained from trying durian prior to publication, so 

that I can maintain neutrality on this point: I simply don’t know which 

camp I will be in. The same might be said for many people considering 

future careers, future life partners, future  post-  retirement activities, 

and so on.

There are at least two kinds of preference uncertainty. The first is 

real, epistemic uncertainty, such as I experience about my durian pref-

erence.40 No amount of thought is going to resolve this uncertainty. 

There is an empirical fact of the matter, and I can find out more by 

trying some durian, by comparing my DNA with that of durian lovers 

and haters, and so on. The second arises from computational limita-

tions: looking at two Go positions, I am not sure which I prefer because 

the ramifications of each are beyond my ability to resolve completely.

Uncertainty also arises from the fact that the choices we are pre-

sented with are usually incompletely  specified—  sometimes so incom-

pletely that they barely qualify as choices at all. When Alice is about 

to graduate from high school, a career counselor might offer her a 

choice between “librarian” and “coal miner”; she may, quite reason-

ably, say, “I’m uncertain about which I prefer.” Here, the uncertainty 

comes from epistemic uncertainty about her own preferences for, 

say, coal dust versus book dust; from computational uncertainty as 

she struggles to work out how she might make the best of each career 

choice; and from ordinary uncertainty about the world, such as her 

doubts about the  long-  term viability of her local coal mine.

For these reasons, it’s a bad idea to identify human preferences 

with simple choices between incompletely described options that are 

intractable to evaluate and include elements of unknown desirability. 

Such choices provide indirect evidence of underlying preferences, but 

they are not constitutive of those preferences. That’s why I have 

couched the notion of preferences in terms of future lives—for exam-

ple by imagining that you could experience, in a compressed form, 
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two different movies of your future life and then express a preference 

between them (see page 26). The thought experiment is of course 

impossible to carry out in practice, but one can imagine that in many 

cases a clear preference would emerge long before all the details of 

each movie had been filled in and fully experienced. You may not 

know in advance which you will prefer, even given a plot summary; 

but there is an answer to the actual question, based on who you are 

now, just as there is an answer to the question of whether you will like 

durian when you try it.

The fact that you might be uncertain about your own preferences 

does not cause any particular problems for the  preference-  based ap-

proach to provably beneficial AI. Indeed, there are already some algo-

rithms that take into account both Robbie’s and Harriet’s uncertainty 

about Harriet’s preferences and allow for the possibility that Harriet 

may be learning about her preferences while Robbie is.41 Just as 

 Robbie’s uncertainty about Harriet’s preferences can be reduced by 

observing Harriet’s behavior, Harriet’s uncertainty about her own 

preferences can be reduced by observing her own reactions to experi-

ences. The two kinds of uncertainty need not be directly related; nor 

is Robbie necessarily more uncertain than Harriet about Harriet’s 

preferences. For example, Robbie might be able to detect that Harriet 

has a strong genetic predisposition to despise the flavor of durian. In 

that case, he would have very little uncertainty about her durian pref-

erence, even while she remains completely in the dark.

If Harriet can be uncertain about her preferences over future 

events, then, quite probably, she can also be wrong. For example, she 

might be convinced that she will not like durian (or, say, green eggs 

and ham) and so she avoids it at all costs, but it may turn  out—  if some-

one slips some into her fruit salad one  day—  that she finds it sublime 

after all. Thus, Robbie cannot assume that Harriet’s actions reflect 

accurate knowledge of her own preferences: some may be thor-

oughly grounded in experience, while others may be based primarily 

on supposition, prejudice, fear of the unknown, or weakly supported 
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generalizations.42 A suitably tactful Robbie could be very helpful to 

Harriet in alerting her to such situations.

Experience and memory

Some psychologists have called into question the very notion that 

there is one self whose preferences are sovereign in the way that 

Harsanyi’s principle of preference autonomy suggests. Most promi-

nent among these psychologists is my former Berkeley colleague Dan-

iel Kahneman. Kahneman, who won the 2002 Nobel Prize for his 

work in behavioral economics, is one of the most influential thinkers 

on the topic of human preferences. His recent book, Thinking, Fast 
and Slow,43 recounts in some detail a series of experiments that con-

vinced him that there are two  selves—  the experiencing self and the 

 remembering  self—  whose preferences are in conflict.

The experiencing self is the one being measured by the hedonime-
ter, which the  nineteenth-  century British economist Francis Edge-

worth imagined to be “an ideally perfect instrument, a psychophysical 

machine, continually registering the height of pleasure experienced by 

an individual, exactly according to the verdict of consciousness.” 44 Ac-

cording to hedonic utilitarianism, the overall value of any experience 

to an individual is simply the sum of the hedonic values of each instant 

during the experience. This notion applies equally well to eating an 

ice cream or living an entire life.

The remembering self, on the other hand, is the one who is “in 

charge” when there is any decision to be made. This self chooses new 

experiences based on memories of previous experiences and their de-

sirability. Kahneman’s experiments suggest that the remembering self 

has very different ideas from the experiencing self.

The simplest experiment to understand involves plunging a sub-

ject’s hand into cold water. There are two different regimes: in the first, 

the immersion is for 60 seconds in water at 14 degrees Celsius; in the 

second, the immersion is for 60 seconds in water at 14 degrees followed 
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by 30 seconds at 15 degrees. (These temperatures are similar to ocean 

temperatures in Northern  California—  cold enough that almost every-

one wears a wetsuit in the water.) All subjects report the experience as 

unpleasant. After experiencing both regimes (in either order, with a 

 7-  minute gap in between), the subject is asked to choose which one 

they would like to repeat. The great majority of subjects prefer to re-

peat the 60 + 30 rather than just the 60- second immersion.

Kahneman posits that, from the point of view of the experienc-

ing self, 60 + 30 has to be strictly worse than 60, because it includes 60 

and another unpleasant experience. Yet the remembering self chooses 

60 + 30. Why?

Kahneman’s explanation is that the remembering self looks back 

with rather weirdly tinted spectacles, paying attention mainly to the 

“peak” value (the highest or lowest hedonic value) and the “end” value 

(the hedonic value at the end of the experience). The durations of 

different parts of the experience are mostly neglected. The peak dis-

comfort levels for 60 and 60 + 30 are the same, but the end levels are 

different: in the 60 + 30 case, the water is one degree warmer. If the 

remembering self evaluates experiences by the peak and end values, 

rather than by summing up hedonic values over time, then 60 + 30 is 

better, and this is what is found. The  peak-  end model seems to explain 

many other equally weird findings in the literature on preferences.

Kahneman seems (perhaps appropriately) to be of two minds 

about his findings. He asserts that the remembering self “simply made 

a mistake” and chose the wrong experience because its memory is 

faulty and incomplete; he regards this as “bad news for believers in the 

rationality of choice.” On the other hand, he writes, “A theory of  well- 

 being that ignores what people want cannot be sustained.” Suppose, 

for example, that Harriet has tried Pepsi and Coke and now strongly 

prefers Pepsi; it would be absurd to force her to drink Coke based on 

adding up secret hedonimeter readings taken during each trial.

The fact is that no law requires our preferences between experi-

ences to be defined by the sum of hedonic values over instants of time. 
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It is true that standard mathematical models focus on maximizing a 

sum of rewards,45 but the original motivation for this was mathemati-

cal convenience. Justifications came later in the form of technical as-

sumptions under which it is rational to decide based on adding up 

rewards,46 but those technical assumptions need not hold in reality. 

Suppose, for example, that Harriet is choosing between two sequences 

of hedonic values: [10,10,10,10,10] and [0,0,40,0,0]. It’s entirely pos-

sible that she just prefers the second sequence; no mathematical law 

can force her to make choices based on the sum rather than, say, the 

maximum.

Kahneman acknowledges that the situation is complicated still fur-

ther by the crucial role of anticipation and memory in  well-  being. The 

memory of a single, delightful  experience—  one’s wedding day, the 

birth of a child, an afternoon spent picking blackberries and making 

 jam—  can carry one through years of drudgery and disappointment. 

Perhaps the remembering self is evaluating not just the experience 

 per se but its total effect on life’s future value through its effect on fu-

ture memories. And presumably it’s the remembering self and not the 

experiencing self that is the best judge of what will be remembered.

Time and change

It goes almost without saying that sensible people in the  twenty- 

 first century would not want to emulate the preferences of, say, Ro-

man society in the second century, replete with gladiatorial slaughter 

for public entertainment, an economy based on slavery, and brutal 

massacres of defeated peoples. (We need not dwell on the obvious 

parallels to these characteristics in modern society.) Standards of mo-

rality clearly evolve over time as our civilization  progresses—  or drifts, 

if you prefer. This suggests, in turn, that future generations might find 

utterly repulsive our current attitudes to, say, the  well-  being of ani-

mals. For this reason, it is important that machines charged with im-

plementing human preferences be able to respond to changes in those 
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preferences over time rather than fixing them in stone. The three 

principles from Chapter 7 accommodate such changes in a natural 

way, because they require machines to learn and implement the cur-

rent preferences of current  humans—  lots of them, all  different— 

 rather than a single idealized set of preferences or the preferences of 

machine designers who may be long dead.47 

The possibility of changes in the typical preferences of human 

populations over historical time naturally focuses attention on the 

question of how each individual’s preferences are formed and the plas-

ticity of adult preferences. Our preferences are certainly influenced 

by our biology: we usually avoid pain, hunger, and thirst, for example. 

Our biology has remained fairly constant, however, so the remaining 

preferences must arise from cultural and family influences. Quite 

possibly, children are constantly running some form of inverse re-

inforcement learning to identify the preferences of parents and peers 

in order to explain their behavior; children then adopt these prefer-

ences as their own. Even as adults, our preferences evolve through the 

influence of the media, government, friends, employers, and our own 

direct experiences. It may be the case, for example, that many sup-

porters of the Third Reich did not start out as genocidal sadists thirst-

ing for racial purity.

Preference change presents a challenge for theories of rationality at 

both the individual and societal level. For example, Harsanyi’s princi-

ple of preference autonomy seems to say that everyone is entitled to 

whatever preferences they have and no one else should touch them. 

Far from being untouchable, however, preferences are touched and 

modified all the time, by every experience a person has. Machines 

cannot help but modify human preferences, because machines modify 

human experiences.

It’s important, although sometimes difficult, to separate preference 

change from preference update, which occurs when an initially uncer-

tain Harriet learns more about her own preferences through experi-

ence. Preference update can fill in gaps in  self-  knowledge and perhaps 
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add definiteness to preferences that were previously weakly held and 

provisional. Preference change, on the other hand, is not a process that 

results from additional evidence about what one’s preferences actually 

are. In the extreme case, you can imagine it as resulting from drug 

administration or even brain  surgery—  it occurs from processes we 

may not understand or agree with.

Preference change is problematic for at least two reasons. The 

first reason is that it’s not clear which preferences should hold sway 

when making a decision: the preferences that Harriet has at the time 

of the decision or the preferences that she will have during and after 

the events that result from her decision. In bioethics, for example, this 

is a very real dilemma because people’s preferences about medical 

 interventions and end- of- life care do change, often dramatically, after 

they become seriously ill.48 Assuming these changes do not result 

from diminished intellectual capacity, whose preferences should be 

respected? 49

The second reason that preference change is problematic is that 

there seems to be no obvious rational basis for changing (as opposed to 

updating) one’s preferences. If Harriet prefers A to B, but could choose 

to undergo an experience that she knows will result in her preferring 

B to A, why would she ever do that? The outcome would be that she 

would then choose B, which she currently does not want.

The issue of preference change appears in dramatic form in the 

legend of Ulysses and the Sirens. The Sirens were mythical beings 

whose singing lured sailors to their doom on the rocks of certain is-

lands in the Mediterranean. Ulysses, wishing to hear the song, ordered 

his sailors to plug their ears with wax and to bind him to the mast; 

under no circumstances were they to obey his subsequent entreaties 

to release him. Obviously, he wanted the sailors to respect the pref-

erences he had initially, not the preferences he would have after the 

Sirens bewitch him. This legend became the title of a book by the 

Norwegian philosopher Jon Elster,50 dealing with weakness of will and 

other challenges to the theoretical idea of rationality.
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Why might an intelligent machine deliberately set out to modify 

the preferences of humans? The answer is quite simple: to make the 

preferences easier to satisfy. We saw this in Chapter 1 with the case of 

 social-  media  click-  through optimization. One response might be to 

say that machines must treat human preferences as sacrosanct: noth-

ing can be allowed to change the human’s preferences. Unfortunately, 

this is completely impossible. The very existence of a useful robot aide 

is likely to have an effect on human preferences.

One possible solution is for machines to learn about human meta- 
 preferences—that is, preferences about what kinds of preference change 

processes might be acceptable or unacceptable. Notice the use of 

“preference change processes” rather than “preference changes” here. 

That’s because wanting one’s preferences to change in a specific direc-

tion often amounts to having that preference already; what’s really 

wanted in such a case is the ability to be better at implementing the 

preference. For example, if Harriet says, “I want my preferences to 

change so that I don’t want cake as much as I do now,” then she already 

has a preference for a future with less cake consumption; what she 

really wants is to alter her cognitive architecture so that her behavior 

more closely reflects that preference.

By “preferences about what kinds of preference change processes 

might be acceptable or unacceptable,” I mean, for example, a view that 

one may end up with “better” preferences by traveling the world and 

experiencing a wide variety of cultures, or by participating in a vibrant 

intellectual community that thoroughly explores a wide range of 

moral traditions, or by setting aside some hermit time for introspec-

tion and hard thinking about life and its meaning. I’ll call these pro-

cesses preference-neutral, in the sense that one does not anticipate 

that the process will change one’s preferences in any particular direc-

tion, while recognizing that some may strongly disagree with that 

characterization. 
Of course, not all  preference-  neutral processes are desirable— 

for example, few people expect to develop “better” preferences by 
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whacking themselves on the head. Subjecting oneself to an acceptable 

process of preference change is analogous to running an experiment to 

find out something about how the world works: you never know in ad-

vance how the experiment will turn out, but you expect, nonetheless, 

to be better off in your new mental state.

The idea that there are acceptable routes to preference modifica-

tion seems related to the idea that there are acceptable methods of 

behavior modification whereby, for example, an employer engineers 

the choice situation so that people make “better” choices about saving 

for retirement. Often this can be done by manipulating the “ non- 

 rational” factors that influence choice, rather than by restricting 

choices or taxing “bad” choices. Nudge, a book by economist Richard 

Thaler and legal scholar Cass Sunstein, lays out a wide range of sup-

posedly acceptable methods and opportunities to “influence people’s 

behavior in order to make their lives longer, healthier, and better.”

It’s unclear whether behavior modification methods are really just 

modifying behavior. If, when the nudge is removed, the modified be-

havior  persists—  which is presumably the desired outcome of such 

 interventions—  then something has changed in the individual’s cogni-

tive architecture (the thing that turns underlying preferences into be-

havior) or in the individual’s underlying preferences. It’s quite likely to 

be a bit of both. What is clear, however, is that the nudge strategy is 

assuming that everyone shares a preference for “longer, healthier, and 

better” lives; each nudge is based on a particular definition of a “bet-

ter” life, which seems to go against the grain of preference autonomy. 

It might be better, instead, to design  preference-  neutral assistive pro-

cesses that help people bring their decisions and their cognitive archi-

tectures into better alignment with their underlying preferences. For 

example, it’s possible to design cognitive aides that highlight the 

 longer-  term consequences of decisions and teach people to recognize 

the seeds of those consequences in the present.51

That we need a better understanding of the processes whereby 

human preferences are formed and shaped seems obvious, not least 
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because such an understanding would help us design machines that 

avoid accidental and undesirable changes in human preferences of the 

kind wrought by  social-  media content selection algorithms. Armed 

with such an understanding, of course, we will be tempted to engi-

neer changes that would result in a “better” world.

Some might argue that we should provide much greater opportu-

nities for  preference-  neutral “improving” experiences such as travel, 

debate, and training in analytical and critical thinking. We might, for 

example, provide opportunities for every  high-  school student to live 

for a few months in at least two other cultures distinct from his or 

her own.

Almost certainly, however, we will want to go further—for exam-

ple, by instituting social and educational reforms that increase the co-

efficient of  altruism—  the weight that each individual places on the 

welfare of  others—  while decreasing the coefficients of sadism, pride, 

and envy. Would this be a good idea? Should we recruit our machines 

to help in the process? It’s certainly tempting. Indeed, Aristotle him-

self wrote, “The main concern of politics is to engender a certain char-

acter in the citizens and to make them good and disposed to perform 

noble actions.” Let’s just say that there are risks associated with inten-

tional preference engineering on a global scale. We should proceed 

with extreme caution.
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PROBLEM SOLVED?

If we succeed in creating provably beneficial AI systems, we would 

eliminate the risk that we might lose control over superintelligent 

machines. Humanity could proceed with their development and 

reap the almost unimaginable benefits that would flow from the 

 ability to wield far greater intelligence in advancing our civilization. 

We would be released from millennia of servitude as agricultural, 

industrial, and clerical robots and we would be free to make the 

best of life’s potential. From the vantage point of this golden age, we 

would look back on our lives in the present time much as Thomas 

Hobbes imagined life without government: solitary, poor, nasty, brut-

ish, and short.

Or perhaps not. Bondian villains may circumvent our safeguards 

and unleash uncontrollable superintelligences against which human-

ity has no defense. And if we survive that, we may find ourselves 

gradually enfeebled as we entrust more and more of our knowledge 

and skills to machines. The machines may advise us not to do this, 

understanding the  long-  term value of human autonomy, but we may 

overrule them.
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Beneficial Machines

The standard model underlying a good deal of  twentieth-  century 

technology relies on machinery that optimizes a fixed, exogenously 

supplied objective. As we have seen, this model is fundamentally 

flawed. It works only if the objective is guaranteed to be complete and 

correct, or if the machinery can easily be reset. Neither condition will 

hold as AI becomes increasingly powerful.

If the exogenously supplied objective can be wrong, then it makes 

no sense for the machine to act as if it is always correct. Hence my 

proposal for beneficial machines: machines whose actions can be ex-

pected to achieve our objectives. Because these objectives are in us, 

and not in them, the machines will need to learn more about what we 

really want from observations of the choices we make and how we 

make them. Machines designed in this way will defer to humans: they 

will ask permission; they will act cautiously when guidance is unclear; 

and they will allow themselves to be switched off.

While these initial results are for a simplified and idealized set-

ting, I believe they will survive the transition to more realistic set-

tings. Already, my colleagues have successfully applied the same 

approach to practical problems such as  self-  driving cars interacting 

with human drivers.1 For example,  self-  driving cars are notoriously 

bad at handling  four-  way stop signs when it’s not clear who has the 

right of way. By formulating this as an assistance game, however, the 

car comes up with a novel solution: it actually backs up a little bit to 

show that it’s definitely not planning to go first. The human under-

stands this signal and goes ahead, confident that there will be no col-

lision. Obviously, we human experts could have thought of this 

solution and programmed it into the vehicle, but that’s not what hap-

pened; this is a form of communication that the vehicle invented en-

tirely by itself.
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As we gain more experience in other settings, I expect that we will 

be surprised by the range and fluency of machine behaviors as they 

interact with humans. We are so used to the stupidity of machines 

that execute inflexible, preprogrammed behaviors or pursue definite 

but incorrect objectives that we may be shocked by how sensible they 

become. The technology of provably beneficial machines is the core of 

a new approach to AI and the basis for a new relationship between 

humans and machines.

It seems possible, also, to apply similar ideas to the redesign of 

other “machines” that ought to be serving humans, beginning with 

ordinary software systems. We are taught to build software by com-

posing subroutines, each of which has a  well-  defined specification that 

says what the output should be for any given  input—  just like the 

 square-  root button on a calculator. This specification is the direct an-

alog of the objective given to an AI system. The subroutine is not 

supposed to terminate and return control to the higher layers of the 

software system until it has produced an output that meets the speci-

fication. (This should remind you of the AI system that persists in its 

 single-  minded pursuit of its given objective.) A better approach would 

be to allow for uncertainty in the specification. For example, a subrou-

tine that carries out some fearsomely complicated mathematical com-

putation is typically given an error bound that defines the required 

precision for the answer and has to return a solution that is correct 

within that error bound. Sometimes, this may require weeks of com-

putation. Instead, it might be better to be less precise about the al-

lowed error, so that the subroutine could come back after twenty 

seconds and say, “I’ve found a solution that’s this good. Is that OK or 

do you want me to continue?” In some cases, the question may perco-

late all the way to the top level of the software system, so that the 

human user can provide further guidance to the system. The human’s 

answers would then help in refining the specifications at all levels.

The same kind of thinking can be applied to entities such as gov-

ernments and corporations. The obvious failings of government in-
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clude paying too much attention to the preferences (financial as well 

as political) of those in government and too little attention to the pref-

erences of the governed. Elections are supposed to communicate pref-

erences to the government, but they seem to have a remarkably small 

bandwidth (on the order of one byte of information every few years) 

for such a complex task. In far too many countries, government is sim-

ply a means for one group of people to impose its will on others. Cor-

porations go to greater lengths to learn the preferences of customers, 

whether through market research or direct feedback in the form of 

purchase decisions. On the other hand, the molding of human prefer-

ences through advertising, cultural influences, and even chemical ad-

diction is an accepted way of doing business.

Governance of AI

AI has the power to reshape the world, and the process of reshaping 

will have to be managed and guided in some way. If the sheer number 

of initiatives to develop effective governance of AI is any guide, then 

we are in excellent shape. Everyone and their uncle is setting up a 

Board or a Council or an International Panel. The World Economic 

Forum has identified nearly three hundred separate efforts to develop 

ethical principles for AI. My email inbox can be summarized as one 

long invitation to the Global World Summit Conference Forum on the 

Future of International Governance of the Social and Ethical Impacts 

of Emerging Artificial Intelligence Technologies.

This is all very different from what happened with nuclear tech-

nology. After World War II, the United States held all the nuclear 

cards. In 1953, US president Dwight Eisenhower proposed to the UN 

an international body to regulate nuclear technology. In 1957, the In-

ternational Atomic Energy Agency started work; it is the sole global 

overseer for the safe and beneficial development of nuclear energy.

In contrast, many hands hold AI cards. To be sure, the United 

M 9780525558613_Human_TX.indd 249 8/7/19 11:21 PM

Not
ncn

dentified ntified 

rinciples forinciples f

ation toation to

for
p effeceff

t shape. Evt shape. E

l or an or an 

Dist
rib

uti
on

of hu

d even cheeven che

the world, the world

d guided id guided 

tivetive



250 HUMAN COMPATIBLE

States, China, and the EU fund a lot of AI research, but almost all of 

it occurs outside secure national laboratories. AI researchers in univer-

sities are part of a broad, cooperative international community, glued 

together by shared interests, conferences, cooperative agreements, and 

professional societies such as AAAI (the Association for the Advance-

ment of Artificial Intelligence) and IEEE (the Institute of Electrical 

and Electronics Engineers, which includes tens of thousands of AI re-

searchers and practitioners). Probably the majority of investment in AI 

research and development is now occurring within corporations, large 

and small; the leading players as of 2019 are Google (including Deep-

Mind), Facebook, Amazon, Microsoft, and IBM in the United States 

and Tencent, Baidu, and, to some extent, Alibaba in  China—  all among 

the largest corporations in the world.2 All but Tencent and Alibaba are 

members of the Partnership on AI, an industry consortium that in-

cludes among its tenets a promise of cooperation on AI safety. Finally, 

although the vast majority of humans possess little in the way of AI 

expertise, there is at least a superficial willingness among other play-

ers to take the interests of humanity into account.

These, then, are the players who hold the majority of the cards. 

Their interests are not in perfect alignment but all share a desire to 

maintain control over AI systems as they become more powerful. 

(Other goals, such as avoiding mass unemployment, are shared by gov-

ernments and university researchers, but not necessarily by corpora-

tions that expect to profit in the short term from the widest possible 

deployment of AI.) To cement this shared interest and achieve coordi-

nated action, there are organizations with convening power, which 

means, roughly, that if the organization sets up a meeting, people ac-

cept the invitation to participate. In addition to the professional soci-

eties, which can bring AI researchers together, and the Partnership 

on AI, which combines corporations and nonprofit institutes, the ca-

nonical conveners are the UN (for governments and researchers) and 

the World Economic Forum (for governments and corporations). In 

addition, the G7 has proposed an International Panel on Artificial 
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Intelligence, hoping that it will grow into something like the UN’s 

Intergovernmental Panel on Climate Change.  Important-  sounding re-

ports are multiplying like rabbits.

With all this activity, is there any prospect of actual progress on 

governance occurring? Perhaps surprisingly, the answer is yes, at least 

around the edges. Many governments around the world are equipping 

themselves with advisory bodies to help with the process of develop-

ing regulations; perhaps the most prominent example is the EU’s 

 High-  Level Expert Group on Artificial Intelligence. Agreements, 

rules, and standards are beginning to emerge for issues such as user 

privacy, data exchange, and avoiding racial bias. Governments and 

corporations are working hard to sort out the rules for  self-  driving 

 cars—  rules that will inevitably have  cross-  border elements. There is a 

consensus that AI decisions must be explainable if AI systems are to 

be trusted, and that consensus is already partially implemented in the 

EU’s GDPR legislation. In California, a new law forbids AI systems to 

impersonate humans in certain circumstances. These last two  items— 

 explainability and  impersonation—  certainly have some bearing on 

issues of AI safety and control.

At present, there are no implementable recommendations that can 

be made to governments or other organizations considering the issue 

of maintaining control over AI systems. A regulation such as “AI sys-

tems must be safe and controllable” would carry no weight, because 

these terms do not yet have precise meanings and because there is no 

widely known engineering methodology for ensuring safety and con-

trollability. But let’s be optimistic and imagine that, a few years down 

the line, the validity of the “provably beneficial” approach to AI has 

been established through both mathematical analysis and practical re-

alization in the form of useful applications. We might, for example, 

have personal digital assistants that we can trust to use our credit 

cards, screen our calls and emails, and manage our finances because 

they have adapted to our individual preferences and know when it’s 

OK to go ahead and when it’s better to ask for guidance. Our 

M 9780525558613_Human_TX.indd 251 8/7/19 11:21 PM

Not
ernr

ng controg contro

st be safe ast be safe 

ms do nms do n

for
controont

re are no ime are no im

ments oments o

Dist
rib

uti
on

ues s

GovernmGovernm

e rules for  rules for 

order elemder elem

plainable ifplainable i

eady partialdy partia

rnia, a newia, a new

n circumstn circums

onation—onation—

ll



252 HUMAN COMPATIBLE

 self-  driving cars may have learned good manners for interacting with 

one another and with human drivers, and our domestic robots should 

be interacting smoothly with even the most recalcitrant toddler. With 

luck, no cats will have been roasted for dinner and no whale meat will 

have been served to members of the Green Party.

At that point, it might be feasible to specify software design tem-

plates to which various kinds of applications must conform in order to 

be sold or connected to the Internet, just as applications have to pass 

a number of software tests before they can be sold on Apple’s App 

Store or Google Play. Software vendors could propose additional tem-

plates, as long as they come with proofs that the templates satisfy the 

(by then  well-  defined) requirements of safety and controllability. 

There would be mechanisms for reporting problems and for updating 

software systems that produce undesirable behavior. It would make 

sense also to create professional codes of conduct around the idea of 

provably safe AI programs and to integrate the corresponding theo-

rems and methods into the curriculum for aspiring AI and machine 

learning practitioners.

To a seasoned observer of Silicon Valley, this may sound rather 

naïve. Regulation of any kind is strenuously opposed in the Valley. 

Whereas we are accustomed to the idea that pharmaceutical compa-

nies have to show safety and (beneficial) efficacy through clinical tri-

als before they can release a product to the general public, the software 

industry operates by a different set of rules—namely, the empty set. 

A “bunch of dudes chugging Red Bull” 3 at a software company can 

unleash a product or an upgrade that affects literally billions of people 

with no  third-  party oversight whatsoever.

Inevitably, however, the tech industry is going to have to acknowl-

edge that its products matter; and, if they matter, then it matters that 

the products not have harmful effects. This means that there will be 

rules governing the nature of interactions with humans, prohibiting 

designs that, say, consistently manipulate preferences or produce ad-

dictive behavior. I have no doubt that the transition from an unregu-
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lated to a regulated world will be a painful one. Let’s hope it doesn’t 

require a  Chernobyl-  sized disaster (or worse) to overcome the indus-

try’s resistance.

Misuse

Regulation might be painful for the software industry, but it would be 

intolerable for Dr. Evil, plotting world domination in his secret under-

ground bunker. There is no doubt that criminal elements, terrorists, 

and rogue nations would have an incentive to circumvent any con-

straints on the design of intelligent machines so that they could be 

used to control weapons or to devise and carry out criminal activities. 

The danger is not so much that the evil schemes would succeed; it is 

that they would fail by losing control over poorly designed intelligent 

 systems—  particularly ones imbued with evil objectives and granted 

access to weapons.

This is not a reason to avoid  regulation—  after all, we have laws 

against murder even though they are often circumvented. It does, 

however, create a very serious policing problem. Already, we are losing 

the battle against malware and cybercrime. (A recent report estimates 

over two billion victims and an annual cost of around $600 billion.4) 

Malware in the form of highly intelligent programs would be much 

harder to defeat.

Some, including Nick Bostrom, have proposed that we use our 

own, beneficial superintelligent AI systems to detect and destroy any 

malicious or otherwise misbehaving AI systems. Certainly, we should 

use the tools at our disposal, while minimizing the impact on personal 

freedom, but the image of humans huddling in bunkers, defenseless 

against the titanic forces unleashed by battling superintelligences, is 

hardly reassuring even if some of them are on our side. It would be far 

better to find ways to nip the malicious AI in the bud.

A good first step would be a successful, coordinated, international 
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campaign against cybercrime, including expansion of the Budapest 

Convention on Cybercrime. This would form an organizational tem-

plate for possible future efforts to prevent the emergence of uncon-

trolled AI programs. At the same time, it would engender a broad 

cultural understanding that creating such programs, either deliber-

ately or inadvertently, is in the long run a suicidal act comparable to 

creating pandemic organisms.

E. M. Forster’s most famous novels, including Howards End and A 
Passage to India, examined British society and its class system in the 

early part of the twentieth century. In 1909, he wrote one notable 

 science-  fiction story: “The Machine Stops.” The story is remarkable 

for its prescience, including depictions of (what we would now call) 

the Internet, videoconferencing, iPads, massive open online courses 

(MOOCs), widespread obesity, and avoidance of face- to- face con-

tact. The Machine of the title is an  all-  encompassing intelligent infra-

structure that meets all human needs. Humans become increasingly 

dependent on it, but they understand less and less about how it 

works. Engineering knowledge gives way to ritualized incantations 

that eventually fail to stem the gradual deterioration of the Machine’s 

workings. Kuno, the main character, sees what is unfolding but is 

power less to stop it:

Cannot you  see . . . that it is we that are dying, and that down here 

the only thing that really lives is the Machine? We created the 

Machine to do our will, but we cannot make it do our will now. It 

has robbed us of the sense of space and of the sense of touch, it has 

blurred every human relation, it has paralysed our bodies and our 

 wills. . . . We only exist as the blood corpuscles that course through 

its arteries, and if it could work without us, it would let us die. Oh, 
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I have no remedy—or, at least, only one—to tell men again and 

again that I have seen the hills of Wessex as Aelfrid saw them 

when he overthrew the Danes.

More than one hundred billion people have lived on Earth. They 

(we) have spent on the order of one trillion  person-  years learning and 

teaching, in order that our civilization may continue. Up to now, its 

only possibility for continuation has been through re- creation in the 

minds of new generations. (Paper is fine as a method of transmission, 

but paper does nothing until the knowledge recorded thereon reaches 

the next person’s mind.) That is now changing: increasingly, it is pos-

sible to place our knowledge into machines that, by themselves, can 

run our civilization for us.

Once the practical incentive to pass our civilization on to the next 

generation disappears, it will be very hard to reverse the process. One 

trillion years of cumulative learning would, in a real sense, be lost. We 

would become passengers in a cruise ship run by machines, on a cruise 

that goes on  forever—  exactly as envisaged in the film WALL- E.

A good consequentialist would say, “Obviously this is an undesir-

able consequence of the overuse of automation! Suitably designed 

machines would never do this!” True, but think what this means. Ma-

chines may well understand that human autonomy and competence 

are important aspects of how we prefer to conduct our lives. They 

may well insist that humans retain control and responsibility for their 

own well-being—in other words, machines will say no. But we myo-

pic, lazy humans may disagree. There is a tragedy of the commons at 

work here: for any individual human, it may seem pointless to engage 

in years of arduous learning to acquire knowledge and skills that ma-

chines already have; but if everyone thinks that way, the human race 

will, collectively, lose its autonomy.

The solution to this problem seems to be cultural, not techni-

cal. We will need a cultural movement to reshape our ideals and 

preferences towards autonomy, agency, and ability and away from 

M 9780525558613_Human_TX.indd 255 8/7/19 11:21 PM

Not
d nen

well undeell und

ortant aspecortant aspe

insist tinsist t

for
tialist list

of the oveof the ov

ver do tver do t

Dist
rib

uti
on
ther

creasingly,easingly

hat, by themat, by them

our civilizaour civiliza

y hard to revard to re

ing would, ig would, i

 cruise shipcruise sh

tly as envitly as envi

woulwoul



256 HUMAN COMPATIBLE

 self-  indulgence and  dependency—  if you like, a modern, cultural 

 version of ancient Sparta’s military ethos. This would mean human 

preference engineering on a global scale along with radical changes in 

how our society works. To avoid making a bad situation worse, we 

might need the help of superintelligent machines, both in shaping the 

solution and in the actual process of achieving a balance for each 

individual.

Any parent of a small child is familiar with this process. Once the 

child is beyond the helpless stage, parenting requires an  ever-  evolving 

balance between doing everything for the child and leaving the child 

entirely to his or her own devices. At a certain stage, the child comes 

to understand that the parent is perfectly capable of tying the child’s 

shoelaces but is choosing not to. Is that the future for the human 

 race—  to be treated like a child, forever, by far superior machines? I 

suspect not. For one thing, children cannot switch their parents off. 

(Thank goodness!) Nor will we be pets or zoo animals. There is really 

no analog in our present world to the relationship we will have with 

beneficial intelligent machines in the future. It remains to be seen 

how the endgame turns out.
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Appendix A

SEARCHING FOR SOLUTIONS

Choosing an action by looking ahead and considering the out-

comes of different possible action sequences is a fundamental 

capability for intelligent systems. It’s something your cell 

phone does whenever you ask it for directions. Figure 14 shows a typ-

ical example: getting from the current location, Pier 19, to the goal, 

Coit Tower. The algorithm needs to know what actions are available 

to it; typically, for map navigation, each action traverses a road seg-

ment connecting two adjacent intersections. In the example, from Pier 

19 there is just one action: turn right and drive along the Embarcadero 

to the next intersection. Then there is a choice: continue on or take a 

sharp left onto Battery Street. The algorithm systematically explores 

all these possibilities until it eventually finds a route. Typically we add 

a little bit of commonsense guidance, such as a preference for explor-

ing streets that head towards the goal rather than away from it. With 

this guidance and a few other tricks, the algorithm can find optimal 

solutions very quickly—usually in a few milliseconds, even for a cross-

 country trip.

Searching for routes on maps is a natural and familiar example, but 

it may be a bit misleading because the number of distinct locations is 

so small. In the United States, for example, there are only about ten 
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million intersections. That may seem like a large number, but it is tiny 

compared to the number of distinct states in the 15-puzzle. The 

15- puzzle is a toy with a four- by- four grid containing fifteen num-

bered tiles and a blank space. The goal is to move the tiles around to 

achieve a goal configuration, such as having all the tiles in numerical 

order. The 15-puzzle has about ten trillion states (a million times big-

ger than the United States!); the 24- puzzle has about eight trillion 

trillion states. This is an example of what mathematicians call combi-
natorial  complexity—  the rapid explosion in the number of combina-

tions as the number of “moving parts” of a problem increases. Returning 

to the map of the United States: if a trucking company wants to opti-

mize the movements of its one hundred trucks across the United 

States, the number of possible states to consider would be ten million 

to the power of one hundred (i.e., 10700).

FIGURE 

Coit 
Tower

Pier 19
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Giving up on rational decisions

Many games have this property of combinatorial complexity, includ-

ing chess, checkers, backgammon, and Go. Because the rules of Go are 

simple and elegant (figure 15), I’ll use it as a running example. The ob-

jective is clear enough: win the game by surrounding more territory 

than your opponent. The possible actions are clear too: put a stone in an 

empty location. Just as with navigation on a map, the obvious way to 

decide what to do is to imagine different futures that result from differ-

ent sequences of actions and choose the best one. You ask, “If I do this, 

what might my opponent do? And what do I do then?” This idea is illus-

trated in figure 16 for 3×3 Go. Even for 3×3 Go, I can show only a small 

part of the tree of possible futures, but I hope the idea is clear enough. 

Indeed, this way of making decisions seems to be just straightforward 

common sense.

FIGURE 
partway through Game 5 of 

-

Choe Myeong-hun (white). 

placing a single stone on any 

much territory as possible. 

-

group—
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The problem is that Go has more than 10170 possible positions for 

the full 19×19 board. Whereas finding a guaranteed shortest route on 

a map is relatively easy, finding a guaranteed win in Go is utterly in-

feasible. Even if the algorithm ponders for the next billion years, it can 

explore only a tiny fraction of the whole tree of possibilities. This 

leads to two questions. First, which part of the tree should the pro-

gram explore? And second, which move should the program make, 

given the partial tree that it has explored?

To answer the second question first: the basic idea used by almost 

all lookahead programs is to assign an estimated value to the “leaves” of 

+3+5

Black to move

White to move

Black to move

FIGURE ×
root

-

-
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the  tree—  those states furthest in the  future—  and then “work back” to 

find out how good the choices are at the root.1 For example, looking at 

the two positions at the bottom of figure 16, one might guess a value 

of + 5 (from Black’s viewpoint) for the position on the left and + 3 for 

the position on the right, because White’s stone in the corner is much 

more vulnerable than the one on the side. If these values are right, 

then Black can expect that White will play on the side, leading to the 

 right-  hand position; hence, it seems reasonable to assign a value of + 3 

to Black’s initial move in the center. With slight variations, this is the 

scheme used by Arthur Samuel’s  checker-  playing program to beat its 

creator in 1955,2 by Deep Blue to beat the then world chess champion, 

Garry Kasparov, in 1997, and by AlphaGo to beat former world Go 

champion Lee Sedol in 2016. For Deep Blue, humans wrote the piece 

of the program that evaluates positions at the leaves of the tree, based 

largely on their knowledge of chess. For Samuel’s program and for 

AlphaGo, the programs learned it from thousands or millions of prac-

tice games.

The first  question—  which part of the tree should the program 

explore?—  is an example of one of the most important questions in AI: 

What computations should an agent do? For  game-  playing programs, it 

is vitally important because they have only a small, fixed allocation of 

time, and using it on pointless computations is a sure way to lose. For 

humans and other agents operating in the real world, it is even more 

important because the real world is so much more complex: unless 

chosen well, no amount of computation is going to make the smallest 

dent in the problem of deciding what to do. If you are driving and a 

moose walks into the middle of the road, it’s no use thinking about 

whether to trade euros for pounds or whether Black should make its 

first move in the center of the Go board.

The ability of humans to manage their computational activity so 

that reasonable decisions get made reasonably quickly is at least as re-

markable as their ability to perceive and to reason correctly. And it 

seems to be something we acquire naturally and effortlessly: when my 
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father taught me to play chess, he taught me the rules, but he did not 

also teach me  such-  and-  such clever algorithm for choosing which 

parts of the game tree to explore and which parts to ignore.

How does this happen? On what basis can we direct our thoughts? 

The answer is that a computation has value to the extent that it can 

improve your decision quality. The process of choosing computations 

is called metareasoning, which means reasoning about reasoning. Just 

as actions can be chosen rationally, on the basis of expected value, so 

can computations. This is called rational metareasoning.3 The basic 

idea is very simple:

Do the computations that will give the highest expected improve-

ment in decision quality, and stop when the cost (in terms of time) 

exceeds the expected improvement.

That’s it. No fancy algorithm needed! This simple principle generates 

effective computational behavior in a wide range of problems, includ-

ing chess and Go. It seems likely that our brains implement something 

similar, which explains why we don’t need to learn new,  game-  specific 

algorithms for thinking with each new game we learn to play.

Exploring a tree of possibilities that stretches forward into the fu-

ture from the current state is not the only way to reach decisions, of 

course. Often, it makes more sense to work backwards from the goal. 

For example, the presence of the moose in the road suggests the goal 

of avoid hitting the moose, which in turn suggests three possible ac-

tions: swerve left, swerve right, or slam on the brakes. It does not 

suggest the action of trading euros for pounds or putting a black stone 

in the center. Thus, goals have a wonderful focusing effect on one’s 

thinking. No current  game-  playing programs take advantage of this 

idea; in fact, they typically consider all possible legal actions. This is 

one of the (many) reasons why I am not worried about AlphaZero 

taking over the world.
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Looking further ahead

Let’s suppose you have decided to make a specific move on the Go 

board. Great! Now you have to actually do it. In the real world, this 

involves reaching into the bowl of unplayed stones to pick up a stone, 

moving your hand above the intended location, and placing the stone 

neatly on the spot, either quietly or emphatically according to Go 

etiquette.

Each of these stages, in turn, consists of a complex dance of per-

ception and motor control commands involving the muscles and nerves 

of the hand, arm, shoulder, and eyes. And while reaching for a stone, 

you’re making sure the rest of your body doesn’t topple over thanks to 

the shift in your center of gravity. The fact that you may not be con-

sciously aware of selecting these actions does not mean that they  aren’t 

being selected by your brain. For example, there may be many stones 

in the bowl, but your “hand”—  really, your brain processing sensory 

 information—  still has to choose one of them to pick up.

Almost everything we do is like this. While driving, we might 

choose to change lanes to the left; but this action involves looking in the 

mirror and over your shoulder, perhaps adjusting speed, and moving 

the steering wheel while monitoring progress until the maneuver is 

complete. In conversation, a routine response such as “OK, let me 

check my calendar and get back to you” involves articulating fourteen 

syllables, each of which requires hundreds of precisely coordinated 

motor control commands to the muscles of the tongue, lips, jaw, 

throat, and breathing apparatus. For your native language, this process 

is automatic; it closely resembles the idea of running a subroutine in a 

computer program (see page 34). The fact that complex action se-

quences can become routine and automatic, thereby functioning as 

single actions in still more complex processes, is absolutely fundamen-

tal to human cognition. Saying words in a less familiar  language— 

 perhaps asking directions to Szczebrzeszyn in  Poland—  is a useful 
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reminder that there was a time in your life when reading and speak-

ing words were difficult tasks requiring mental effort and lots of 

practice.

So, the real problem that your brain faces is not choosing a move 

on the Go board but sending motor control commands to your mus-

cles. If we shift our attention from the level of Go moves to the level 

of motor control commands, the problem looks very different. Very 

roughly, your brain can send out commands about every one hundred 

milliseconds. We have about six hundred muscles, so that’s a theoret-

ical maximum of about six thousand actuations per second, twenty 

million per hour, two hundred billion per year, twenty trillion per 

lifetime. Use them wisely!

Now, suppose we tried to apply an  AlphaZero-  like algorithm to 

solve the decision problem at this level. In Go, AlphaZero looks ahead 

perhaps fifty steps. But fifty steps of motor control commands get you 

only a few seconds into the future! Not enough for the twenty million 

motor control commands in an  hour-  long game of Go, and certainly 

not enough for the trillion (1,000,000,000,000) steps involved in do-

ing a PhD. So, even though AlphaZero looks further ahead in Go than 

any human can, that ability doesn’t seem to help in the real world. It’s 

the wrong kind of lookahead.

I’m not saying, of course, that doing a PhD actually requires plan-

ning out a trillion muscle actuations in advance. Only quite abstract 

plans are made  initially—  perhaps choosing Berkeley or some other 

place, choosing a PhD supervisor or research topic, applying for fund-

ing, getting a student visa, traveling to the chosen city, doing some 

research, and so on. To make your choices, you do just enough think-

ing, about just the right things, so that the decision becomes clear. If 

the feasibility of some abstract step such as getting the visa is unclear, 

you do some more thinking and perhaps information gathering, which 

means making the plan more concrete in certain aspects: maybe 

choosing a visa type for which you are eligible, collecting the neces-

sary documents, and submitting the application. Figure 17 shows the 
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 APPENDIX A :  SEARCHING FOR SOLUTIONS 265

abstract plan and the refinement of the GetVisa step into a  three-  step 

subplan. When the time comes to begin carrying out the plan, its ini-

tial steps have to be refined all the way down to the primitive level so 

that your body can execute them.

AlphaGo simply cannot do this kind of thinking: the only actions 

it ever considers are primitive actions occurring in a sequence from 

the initial state. It has no notion of abstract plan. Trying to apply Al-

phaGo in the real world is like trying to write a novel by wondering 

whether the first letter should be A, B, C, and so on.

In 1962, Herbert Simon emphasized the importance of hierarchi-

cal organization in a famous paper, “The Architecture of Complex-

ity.” 4 AI researchers since the early 1970s have developed a variety of 

methods that construct and refine hierarchically organized plans.5 

Some of the resulting systems are able to construct plans with tens of 

millions of steps—for example, to organize manufacturing activities 

in a large factory.

We now have a pretty good theoretical understanding of the mean-

ing of abstract  actions—  that is, of how to define the effects they have 

on the world.6 Consider, for example, the abstract action GoToBerke-

ley in figure 17. It can be implemented in many different ways, each of 

which produces different effects on the world: you could sail there, 

stow away on a ship, fly to Canada and walk across the border, hire a 

ChooseAdvisor GetFunding

ChooseVisaType GetDocuments SubmitApplication

GetVisa GoToBerkeley DoResearch WriteThesis

FIGURE 
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266 HUMAN COMPATIBLE

private jet, and so on. But you need not consider any of these choices 

for now. As long as you are sure there is a way to do it that doesn’t 

consume so much time and money or incur so much risk as to imperil 

the rest of the plan, you can just put the abstract step GoToBerkeley 

into the plan and rest assured that the plan will work. In this way, we 

can build  high-  level plans that will eventually turn into billions or 

trillions of primitive steps without ever worrying about what those 

steps are until it’s time to actually do them.

Of course, none of this is possible without the hierarchy. Without 

 high-  level actions such as getting a visa and writing a thesis, we cannot 

make an abstract plan to get a PhD; without  still-  higher-  level actions 

such as getting a PhD and starting a company, we cannot plan to get a 

PhD and then start a company. In the real world, we would be lost 

without a vast library of actions at dozens of levels of abstraction. (In 

the game of Go, there is no obvious hierarchy of actions, so most of us 

are lost.) At present, however, all existing methods for hierarchical 

planning rely on a  human-  generated hierarchy of abstract and con-

crete actions; we do not yet understand how such hierarchies can be 

learned from experience.
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Appendix B

KNOWLEDGE AND LOGIC

L ogic is the study of reasoning with definite knowledge. It is fully 

general with regard to subject matter—that is, the knowledge 

can be about anything at all. Logic is therefore an indispensable 

part of our understanding of general purpose intelligence.

Logic’s main requirement is a formal language with precise mean-

ings for the sentences in the language, so that there is an unambiguous 

process for determining whether a sentence is true or false in a given 

situation. That’s it. Once we have that, we can write sound reasoning 

algorithms that produce new sentences from sentences that are al-

ready known. Those new sentences are guaranteed to follow from the 

sentences that the system already knows, meaning that the new sen-

tences are necessarily true in any situation where the original sentences 

are true. This allows a machine to answer questions, prove mathemat-

ical theorems, or construct plans that are guaranteed to succeed.

 High-  school algebra provides a good example (albeit one that may 

evoke painful memories). The formal language includes sentences 

such as 4x + 1 = 2y − 5. This sentence is true in the situation where 

x = 5 and y = 13, and false when x = 5 and y = 6. From this sentence 

one can derive another sentence such as y = 2x + 3, and whenever the 

first sentence is true, the second is guaranteed to be true too.
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268 HUMAN COMPATIBLE

The core idea of logic, developed independently in ancient India, 

China, and Greece, is that the same notions of precise meaning and 

sound reasoning can be applied to sentences about anything at all, not 

just numbers. The canonical example starts with “Socrates is a man” 

and “All men are mortal” and derives “Socrates is mortal.” 1 This deri-

vation is strictly formal in the sense that it does not rely on any further 

information about who Socrates is or what man and mortal mean. 

The fact that logical reasoning is strictly formal means that it is possi-

ble to write algorithms that do it.

Propositional logic

For our purposes in understanding the capabilities and prospects 

for AI, there are two important kinds of logic that really matter: prop-

ositional logic and  first-  order logic. The difference between the two is 

fundamental to understanding the current situation in AI and how it 

is likely to evolve.

Let’s start with propositional logic, which is the simpler of the 

two. Sentences are made of just two kinds of things: symbols that 

stand for propositions that can be true or false, and logical connectives 
such as and, or, not, and  if . . . then. (We’ll see an example shortly.) 

These logical connectives are sometimes called Boolean, after George 

Boole, a  nineteenth-  century logician who reinvigorated his field with 

new mathematical ideas. They are just the same as the logic gates used 

in computer chips.

Practical algorithms for reasoning in propositional logic have been 

known since the early 1960s.2,3 Although the general reasoning task 

may require exponential time in the worst case,4 modern proposi-

tional reasoning algorithms handle problems with millions of proposi-

tion symbols and tens of millions of sentences. They are a core tool for 

constructing guaranteed logistical plans, verifying chip designs before 

they are manufactured, and checking the correctness of software ap-

plications and security protocols before they are deployed. The amaz-
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 APPENDIX B :  KNOWLEDGE AND LOGIC  269

ing thing is that a single  algorithm—  a reasoning algorithm for 

propositional  logic—  solves all these tasks once they have been formu-

lated as reasoning tasks. Clearly, this is a step towards the goal of 

generality in intelligent systems.

Unfortunately, it’s not a very big step because the language of prop-

ositional logic is not very expressive. Let’s see what this means in prac-

tice when we try to express the basic rule for legal moves in Go: “The 

player whose turn it is to move can play a stone on any unoccupied in-

tersection.” 5 The first step is to decide what the proposition symbols 

are going to be for talking about Go moves and Go board positions. The 

fundamental proposition that matters is whether a stone of a particular 

color is on a particular location at a particular time. So, we’ll need sym-

bols such as White_ Stone_ On_ 5_ 5_ At_ Move_ 38 and Black_ Stone_ 
On_ 5_ 5_ At_ Move_ 38. (Remember that, as with man, mortal, and 

 Socrates, the reasoning algorithm doesn’t need to know what the sym-

bols mean.) Then the logical condition for White to be able to play at 

the 5,5 intersection at move 38 would be

(not White_ Stone_ On_ 5_ 5_ At_ Move_ 38) and  

(not Black_ Stone_ On_ 5_ 5_ At_ Move_ 38)

In other words: there’s no white stone and there’s no black stone. That 

seems simple enough. Unfortunately, in propositional logic it would 

have to be written out separately for each location and for each move in 

the game. Because there are 361 locations and around 300 moves per 

game, this means over 100,000 copies of the rule! For the rules concern-

ing captures and repetitions, which involve multiple stones and loca-

tions, the situation is even worse, and we quickly fill up millions of pages.

The real world is, obviously, much bigger than the Go board: there 

are far more than 361 locations and 300 time steps, and there are 

many kinds of things besides stones; so, the prospect of using a prop-

ositional language for knowledge of the real world is utterly hopeless.

It’s not just the ridiculous size of the rulebook that’s a problem: it’s 
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270 HUMAN COMPATIBLE

also the ridiculous amount of experience a learning system would need 

to acquire the rules from examples. While a human needs just one or 

two examples to get the basic ideas of placing a stone, capturing stones, 

and so on, an intelligent system based on propositional logic has to be 

shown examples of moving and capturing separately for each location 

and time step. The system cannot generalize from a few examples, as 

a human does, because it has no way to express the general rule. This 

limitation applies not just to systems based on propositional logic but 

also to any system with comparable expressive power. That includes 

Bayesian networks, which are probabilistic cousins of propositional 

logic, and neural networks, which are the basis for the “deep learning” 

approach to AI.

 First-  order logic

So, the next question is, can we devise a more expressive logical 

language? We’d like one in which it is possible to tell the rules of Go 

to the  knowledge-  based system in the following way:

for all locations on the board, and for all time steps, here are the 

 rules . . . 

 First-  order logic, introduced by the German mathematician Gottlob 

Frege in 1879, allows one to write the rules this way.6 The key difference 

between propositional and  first-  order logic is this: whereas proposi-

tional logic assumes the world is made of propositions that are true or 

false,  first-  order logic assumes the world is made of objects that can be 

related to each other in various ways. For example, there could be loca-

tions that are adjacent to each other, times that follow each other con-

secutively, stones that are on locations at particular times, and moves 

that are legal at particular times.  First-  order logic allows one to assert 

that some property is true for all objects in the world; so, one can write
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 APPENDIX B :  KNOWLEDGE AND LOGIC  271

 for all time steps t, and for all locations l, and for all colors c,

 if it is c’s turn to move at time t and l is unoccupied at time t,

 then it is legal for c to play a stone at location l at time t.

With some extra caveats and some additional sentences that define 

the board locations, the two colors, and what unoccupied means, we 

have the beginnings of the complete rules of Go. The rules take up 

about as much space in  first-  order logic as they do in English.

The development of logic programming in the late 1970s provided 

elegant and efficient technology for logical reasoning embodied in a 

programming language called Prolog. Computer scientists worked out 

how to make logical reasoning in Prolog run at millions of reasoning 

steps per second, making many applications of logic practical. In 1982, 

the Japanese government announced a huge investment in  Prolog- 

 based AI called the Fifth Generation project,7 and the United States 

and UK responded with similar efforts.8,9

Unfortunately, the Fifth Generation project and others like it ran 

out of steam in the late 1980s and early 1990s, partly because of the 

inability of logic to handle uncertain information. They epitomized 

what soon became a pejorative term: Good  Old-  Fashioned AI, or 

GOFAI.10 It became fashionable to dismiss logic as irrelevant to AI; 

indeed, many AI researchers working now in the area of deep learning 

don’t know anything about logic. This fashion seems likely to fade: if 

you accept that the world has objects in it that are related to each 

other in various ways, then  first-  order logic is going to be relevant, 

because it provides the basic mathematics of objects and relations. 

This view is shared by Demis Hassabis, CEO of Google DeepMind:11

You can think about deep learning as it currently is today as the 

equivalent in the brain to our sensory cortices: our visual cortex or 

auditory cortex. But, of course, true intelligence is a lot more than 

just that, you have to recombine it into  higher-  level thinking and 
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272 HUMAN COMPATIBLE

symbolic reasoning, a lot of the things  classical AI tried to deal 

with in the 80s.

. . . We would like [these systems] to build up to this  symbolic 

level of  reasoning—  maths, language, and logic. So that’s a big part 

of our work.

Thus, one of the most important lessons from the first thirty years 

of AI research is that a program that knows things, in any useful sense, 

will need a capacity for representation and reasoning that is at least 

comparable to that offered by  first-  order logic. As yet, we do not know 

the exact form this will take: it may be incorporated into probabilistic 

reasoning systems, into deep learning systems, or into some still- to- 

be- invented hybrid design.
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Appendix C

UNCERTAINTY AND 
PROBABILITY

Whereas logic provides a general basis for reasoning with 

definite knowledge, probability theory encompasses rea-

soning with uncertain information (of which definite 

knowledge is a special case). Uncertainty is the normal epistemic situ-

ation of an agent in the real world. Although the basic ideas of proba-

bility were developed in the seventeenth century, only recently has it 

become possible to represent and reason with large probability models 

in a formal way.

The basics of probability

Probability theory shares with logic the idea that there are possible 

worlds. One usually starts out by defining what they are—for exam-

ple, if I am rolling one ordinary six-sided die, there are six worlds 

(sometimes called outcomes): 1, 2, 3, 4, 5, 6. Exactly one of them will 

be the case, but a priori I don’t know which. Probability theory as-

sumes that it is possible to attach a probability to each world; for my 

die roll, I’ll attach 1/6 to each world. (These probabilities happen to be 
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274 HUMAN COMPATIBLE

equal, but it need not be that way; the only requirement is that the 

probabilities have to add up to 1.) Now I can ask a question such as 

“What’s the probability I’ll roll an even number?” To find this, I sim-

ply add up the probabilities for the three worlds where the number is 

even: 1/6 + 1/6 + 1/6 = ½.

It’s also straightforward to take new evidence into account. Sup-

pose an oracle tells me that the roll is a prime number (that is, 2, 3, or 

5). This rules out the worlds 1, 4, and 6. I simply take the probabilities 

associated with the remaining possible worlds and scale them up so 

the total remains 1. Now the probabilities of 2, 3, and 5 are each 1/3, 

and the probability that my roll is an even number is now just 1/3, since 

2 is the only remaining even roll. This process of updating probabili-

ties as new evidence arrives is an example of Bayesian updating.

So, this probability stuff seems quite simple! Even a computer can 

add up numbers, so what’s the problem? The problem comes when 

there are more than a few worlds. For example, if I roll the die one 

hundred times, there are 6100 outcomes. It’s infeasible to begin the pro-

cess of probabilistic reasoning by attaching a number to each of these 

outcomes individually. A clue for dealing with this complexity comes 

from the fact that the die rolls are independent if the die is known to be 

fair—that is, the outcome of any single roll does not affect the proba-

bilities for the outcomes of any other roll. Thus, independence is help-

ful in structuring the probabilities for complex sets of events.

Suppose I am playing Monopoly with my son George. My piece is 

on Just Visiting, and George owns the yellow set whose properties are 

sixteen, seventeen, and nineteen squares away from Just Visiting. 

Should he buy houses for the yellow set now, so that I have to pay him 

some exorbitant rent if I land on those squares, or should he wait until 

the next turn? That depends on the probability of landing on the yel-

low set in my current turn.

Here are the rules for rolling the dice in Monopoly: two dice are 

rolled and the piece is moved according to the total shown; if doubles 
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are rolled, the player rolls again and moves again; if the second roll is 

doubles, the player rolls a third time and moves again (but if the third 

roll is doubles, the player goes to jail instead). So, for example, I might 

roll 4- 4 followed by 5- 4, totaling 17; or 2- 2, then 2- 2, then 6- 2, total-

ing 16. As before, I simply add up the probabilities of all worlds where 

I land on the yellow set. Unfortunately, there are a lot of worlds. As 

many as six dice could be rolled altogether, so the number of worlds 

runs into the thousands. Furthermore, the rolls are no longer indepen-

dent, because the second roll won’t exist unless the first roll is dou-

bles. On the other hand, if we fix the values of the first pair of dice, 

then the values of the second pair of dice are independent. Is there a 

way to capture this kind of dependency?

Bayesian networks

In the early 1980s, Judea Pearl proposed a formal language called 

Bayesian networks (often abbreviated to Bayes nets) that makes it pos-

sible, in many  real-  world situations, to represent the probabilities of a 

very large number of outcomes in a very concise form.1

Figure 18 shows a Bayesian network that describes the rolling of 

dice in Monopoly. The only probabilities that have to be supplied are 

the 1/6 probabilities of the values 1, 2, 3, 4, 5, 6 for the individual die 

rolls (D1, D2, etc.)—  that is,  thirty-  six numbers instead of thousands. 

Explaining the exact meaning of the network requires a little bit of 

mathematics,2 but the basic idea is that the arrows denote dependency 

relationships—for example, the value of Doubles12 depends on the val-

ues of D1 and D2. Similarly, the values of D3 and D4 (the next roll of 

the two dice) depend on Doubles12 because if Doubles12 has value false, 
then D3 and D4 have value 0 (that is, there is no next roll).

Just as with propositional logic, there are algorithms that can an-

swer any question for any Bayesian network with any evidence. For 

example, we can ask for the probability of LandsOnYellowSet, which 
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276 HUMAN COMPATIBLE

turns out to be about 3.88 percent. (This means that George can wait 

before buying houses for the yellow set.) Slightly more ambitiously, we 

can ask for the probability of LandsOnYellowSet given that the second 

roll is a double- 3. The algorithm works out for itself that, in that case, 

the first roll must have been a double and concludes that the answer is 

about 36.1 percent. This is an example of Bayesian updating: when 

the new evidence (that the second roll is a double- 3) is added, the 

probability of LandsOnYellowSet changes from 3.88 percent to 36.1 

FIGURE 

particular set of squares (such as the yellow set) starting from some other 
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percent. Similarly, the probability that I roll three times (Doubles34 

is true) is 2.78 percent, while the probability that I roll three times 

given that I land on the yellow set is 20.44 percent.

Bayesian networks provide a way to build  knowledge-  based sys-

tems that avoids the failures that plagued the  rule-  based expert sys-

tems of the 1980s. (Indeed, had the AI community been less resistant 

to probability in the early 1980s, it might have avoided the AI winter 

that followed the  rule-  based expert system bubble.) Thousands of ap-

plications have been fielded, in areas ranging from medical diagnosis 

to terrorism prevention.3

Bayesian networks provide machinery for representing the neces-

sary probabilities and performing the calculations to implement 

Bayesian updating for many complex tasks. Like propositional logic, 

however, they are quite limited in their ability to represent general 

knowledge. In many applications, the Bayesian network representa-

tion becomes very large and repetitive—for example, just as the rules 

of Go have to be repeated for every square in propositional logic, the 

 probability-  based rules of Monopoly have to be repeated for every 

player, for every location a player might be on, and for every move in 

the game. Such huge networks are virtually impossible to create by 

hand; instead, one would have to resort to code written in a traditional 

language such as C++ to generate and piece together multiple Bayes 

net fragments. While this is practical as an engineering solution for a 

specific problem, it is an obstacle to generality because the C++ code 

has to be written anew by a human expert for each application.

 First-  order probabilistic languages

It turns out, fortunately, that we can combine the expressiveness 

of  first-  order logic with the ability of Bayesian networks to capture 

probabilistic information concisely. This combination gives us the best 

of both worlds: probabilistic  knowledge-  based systems are able to 
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handle a much wider range of  real-  world situations than either logical 

methods or Bayesian networks. For example, we can easily capture 

probabilistic knowledge about genetic inheritance:

 for all persons c, f, and m,

if f is the father of c and m is the mother of c

and both f and m have blood type AB,

then c has blood type AB with probability 0.5.

The combination of  first-  order logic and probability actually gives 

us much more than just a way to express uncertain information about 

lots of objects. The reason is that when we add uncertainty to worlds 

containing objects, we get two new kinds of uncertainty: not just un-

certainty about which facts are true or false but also uncertainty about 

what objects exist and uncertainty about which objects are which. 

These kinds of uncertainty are completely pervasive. The world does 

not come with a list of characters, like a Victorian play; instead, you 

gradually learn about the existence of objects from observation.

Sometimes the knowledge of new objects can be fairly definite, as 

when you open your hotel window and see the basilica of  Sacré-  Cœur 

for the first time; or it can be quite indefinite, as when you feel a gen-

tle rumble that might be an earthquake or a passing subway train. And 

while the identity of  Sacré-  Cœur is quite unambiguous, the identity 

of subway trains is not: you might ride the same physical train hun-

dreds of times without ever realizing it’s the same one. Sometimes we 

don’t need to resolve the uncertainty: I don’t usually name all the to-

matoes in a bag of cherry tomatoes and keep track of how well each 

one is doing, unless perhaps I am recording the progress of a tomato 

putrefaction experiment. For a class full of graduate students, on the 

other hand, I try my best to keep track of their identities. (Once, there 

were two research assistants in my group who had the same first and 

last names and were of very similar appearance and worked on closely 

related topics; at least, I am fairly sure there were two.) The problem 
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is that we directly perceive not the identity of objects but (aspects of) 

their appearance; objects do not usually have little license plates that 

uniquely identify them. Identity is something our minds sometimes 

attach to objects for our own purposes.

The combination of probability theory with an expressive formal 

language is a fairly new subfield of AI, often called probabilistic pro-
gramming.4 Several dozen probabilistic programming languages, or 

PPLs, have been developed, many of them deriving their expressive 

power from ordinary programming languages rather than  first-  order 

logic. All PPL systems have the capacity to represent and reason with 

complex, uncertain knowledge. Applications include Microsoft’s 

TrueSkill system, which rates millions of video game players every day; 

models for aspects of human cognition that were previously  inexplicable 

by any mechanistic hypothesis, such as the ability to learn new visual 

categories of objects from single examples;5 and the global seismic 

monitoring for the Comprehensive  Nuclear-  Test-  Ban Treaty (CTBT), 

which is responsible for detecting clandestine nuclear explosions.6

The CTBT monitoring system collects  real-  time ground move-

ment data from a global network of over 150 seismometers and aims 

to identify all the seismic events occurring on Earth above a certain 

magnitude and to flag the suspicious ones. Clearly there is plenty of 

existence uncertainty in this problem, because we don’t know in ad-

vance the events that will occur; moreover, the vast majority of signals 

in the data are just noise. There is also lots of identity uncertainty: a 

blip of seismic energy detected at station A in Antarctica may or may 

not come from the same event as another blip detected at station B in 

Brazil. Listening to the Earth is like listening to thousands of simulta-

neous conversations that have been scrambled by transmission delays 

and echoes and drowned out by crashing waves.

How do we solve this problem using probabilistic programming? 

One might think we need some very clever algorithms to sort out all 

the possibilities. In fact, by following the methodology of  knowledge- 

based systems, we don’t have to devise any new algorithms at all. We 
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280 HUMAN COMPATIBLE

simply use a PPL to express what we know of geophysics: how often 

events tend to occur in areas of natural seismicity, how fast seismic 

waves travel through the Earth and how quickly they decay, how sen-

sitive the detectors are, and how much noise there is. Then we add the 

data and run a probabilistic reasoning algorithm. The resulting moni-

toring system, called NET-VISA, has been operating as part of the 

treaty verification regime since 2018. Figure 19 shows  NET-  VISA’s 

detection of a 2013 nuclear test in North Korea.

Keeping track of the world

One of the most important roles for probabilistic reasoning is in 

keeping track of parts of the world that are not directly observable. In 

FIGURE 
out by the government of North Korea. The tunnel entrance (black cross at 

CTBTO LEB location is the consensus estimate from expert geophysicists. 
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most video and board games, this is unnecessary because all the relevant 

information is observable, but in the real world this is seldom the case.

An example is given by one of the first serious accidents involving 

a  self-  driving car. It occurred on South McClintock Drive at East Don 

Carlos Avenue in Tempe, Arizona, on March 24, 2017.7 As shown in 

figure 20, a self-driving Volvo (V), going south on McClintock, is ap-

proaching an intersection where the traffic light is just turning yellow. 

The Volvo’s lane is clear, so it proceeds at the same speed through the 

intersection. Then a currently invisible  vehicle—  the Honda (H) in 

figure 20—appears from behind the queue of stopped traffic and a 

collision ensues.

To infer the possible presence of the invisible Honda, the Volvo 

could gather clues as it approaches the intersection. In particular, the 

traffic in the other two lanes is stopped even though the light is green; 

the cars at the front of the queue are not inching forward into the in-

tersection and have their brake lights on. This is not conclusive evi-

dence of an invisible left turner but it doesn’t need to be; even a small 

FIGURE 

-
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282 HUMAN COMPATIBLE

probability is enough to suggest slowing down and entering the inter-

section more cautiously.

The moral of this story is that intelligent agents operating in par-

tially observable environments have to keep track of what they can’t 

 see—  to the extent  possible—  based on clues from what they can see.

Here’s another example closer to home: Where are your keys? 

 Unless you happen to be driving while reading this  book—  not 

 recommended—  you probably cannot see them right now. On the 

other hand, you probably know where they are: in your pocket, in 

your bag, on the bedside table, in the pocket of your coat which is 

hanging up, or maybe on the hook in the kitchen. You know this be-

cause you put them there and they haven’t moved since. This is a 

simple example of using knowledge and reasoning to keep track of the 

state of the world.

Without this capability, we would be  lost—  often quite literally. For 

example, as I write this, I am looking at the white wall of a nondescript 

hotel room. Where am I? If I had to rely on my current perceptual in-

put, I would indeed be lost. In fact, I know that I am in Zürich, because 

I arrived in Zürich yesterday and I haven’t left. Like humans, robots 

need to know where they are so that they can navigate successfully 

through rooms, buildings, streets, forests, and deserts.

In AI we use the term belief state to refer to an agent’s current 

knowledge of the state of the  world—  however incomplete and uncer-

tain it may be. Generally, the belief  state—  rather than the current 

perceptual  input—  is the proper basis for making decisions about what 

to do. Keeping the belief state up to date is a core activity for any in-

telligent agent. For some parts of the belief state, this happens auto-

matically—for example, I just seem to know that I’m in Zürich, 

without having to think about it. For other parts, it happens on de-

mand, so to speak. For example, when I wake up in a new city with 

severe jet lag, halfway through a long trip, I may have to make a con-

scious effort to reconstruct where I am, what I am supposed to be 
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doing, and  why—  a bit like a laptop rebooting itself, I suppose. Keeping 

track doesn’t mean always knowing exactly the state of everything in 

the world. Obviously this is  impossible—  for example, I have no idea 

who is occupying the other rooms in my nondescript hotel in Zürich, 

let alone the present locations and activities of most of the eight billion 

people on Earth. I haven’t the faintest idea what’s happening in the 

rest of the universe beyond the solar system. My uncertainty about the 

current state of affairs is both massive and inevitable.

The basic method for keeping track of an uncertain world is Bayes-
ian updating. Algorithms for doing this usually have two steps: a pre-

diction step, where the agent predicts the current state of the world 

given its most recent action, and then an update step, where it receives 

new perceptual input and updates its beliefs accordingly. To illustrate 

how this works, consider the problem a robot faces in figuring out 

where it is. Figure 21(a) illustrates a typical case: The robot is in the 

middle of a room, with some uncertainty about its exact location, and 

wants to go through the door. It commands its wheels to move 1.5 

meters towards the door; unfortunately, its wheels are old and wobbly, 

so the robot’s prediction about where it ends up is quite uncertain, as 

shown in figure 21(b). If it tried to keep moving now, it might well 

crash. Fortunately, it has a sonar device to measure the distance to the 

doorposts. As figure 21(c) shows, the measurements suggest the robot 

is about 70 centimeters from the left doorpost and 85 centimeters 

from the right. Finally, the robot updates its belief state by combining 

the prediction in (b) with the measurements in (c) to obtain the new 

belief state in figure 21(d).

The algorithm for keeping track of the belief state can be applied 

to handle not just uncertainty about location but also uncertainty 

about the map itself. This results in a technique called SLAM (simul-

taneous localization and mapping). SLAM is a core component of 

many AI applications, ranging from augmented reality systems to 

self-driving cars and planetary rovers.
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FIGURE 
-
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Appendix D

LEARNING FROM EXPERIENCE

L earning means improving performance based on experience. For 

a visual perception system, that might mean learning to recog-

nize more categories of objects based on seeing examples of those 

categories; for a knowledge-based system, simply acquiring more 

knowledge is a form of learning, because it means the system can an-

swer more questions; for a lookahead  decision-  making system such as 

AlphaGo, learning could mean improving its ability to evaluate posi-

tions or improving its ability to explore useful parts of the tree of 

possibilities.

Learning from examples

The most common form of machine learning is called supervised 

learning. A supervised learning algorithm is given a collection of train-

ing examples, each labeled with the correct output, and must produce 

a hypothesis as to what the correct rule is. Typically, a supervised 

learning system seeks to optimize the agreement between the hypoth-

esis and the training examples. Often there is also a penalty for hy-

potheses that are more complicated than  necessary—  as recommended 

by Ockham’s razor.
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286 HUMAN COMPATIBLE

Let’s illustrate this for the problem of learning the legal moves 

in Go. (If you already know the rules of Go, then at least this will 

be easy to follow; if not, then you’ll be better able to sympathize 

with the learning program.) Suppose the algorithm starts with the 

hypothesis

 for all time steps t, and for all locations l,

it is legal to play a stone at location l at time t.

It is Black’s turn to move in the position shown in figure 22. The algo-

rithm tries A: that’s fine. B and C too. Then it tries D, on top of an 

existing white piece: that’s illegal. (In chess or backgammon, it would 

be  fine—  that’s how pieces are captured.) The move at E, on top of a 

black piece, is also illegal. (Illegal in chess too, but legal in backgam-

mon.) Now, from these five training examples, the algorithm might 

propose the following hypothesis:

 for all time steps t, and for all locations l,

if l is unoccupied at time t,

then it is legal to play a stone at location l at time t.

Then it tries F and finds to its surprise that F is illegal. After a few false 

starts, it settles on the following:

C

F

B

G

D

E

A

FIGURE 

game.
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 for all time steps t, and for all locations l,

if l is unoccupied at time t and 

l is not surrounded by opponent stones,

then it is legal to play a stone at location l at time t.

(This is sometimes called the no suicide rule.) Finally, it tries G, 

which in this case turns out to be legal. After scratching its head for a 

while and perhaps trying a few more experiments, it settles on the 

hypothesis that G is OK, even though it is surrounded, because it 

captures the white stone at D and therefore becomes un- surrounded 

immediately.

As you can see from the gradual progression of rules, learning takes 

place by a sequence of modifications to the hypothesis so as to fit the 

observed examples. This is something a learning algorithm can do eas-

ily. Machine learning researchers have designed all sorts of ingenious 

algorithms for finding good hypotheses quickly. Here the algorithm is 

searching in the space of logical expressions representing Go rules, but 

the hypotheses could also be algebraic expressions representing phys-

ical laws, probabilistic Bayesian networks representing diseases and 

symptoms, or even computer programs representing the complicated 

behavior of some other machine.

A second important point is that even good hypotheses can be wrong: 

in fact, the hypothesis given above is wrong, even after fixing it to 

ensure that G is legal. It needs to include the ko or no- repetition rule—

for example, if White had just captured a black stone at G by playing 

at D, Black may not recapture by playing at G, since that produces the 

same position again. Notice that this rule is a radical departure from 

what the program has learned so far, because it means that legality 

cannot be determined from the current position; instead, one also has 

to remember previous positions.

The Scottish philosopher David Hume pointed out in 1748 that 

inductive  reasoning—that is, reasoning from particular observations to 
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general  principles—  can never be guaranteed.1 In the modern theory of 

statistical learning, we ask not for guarantees of perfect correctness 

but only for a guarantee that the hypothesis found is probably approx-
imately correct.2 A learning algorithm can be “unlucky” and see an un-

representative  sample—  for example, it might never try a move like G, 

thinking it to be illegal. It can also fail to predict some weird edge 

cases, such as the ones covered by some of the more complicated and 

rarely invoked forms of the no- repetition rule.3 But, as long as the 

universe exhibits some degree of regularity, it’s very unlikely that the 

algorithm could produce a seriously bad hypothesis, because such a 

hypothesis would very probably have been “found out” by one of the 

experiments.

Deep  learning—  the technology causing all the hullabaloo about 

AI in the  media—  is primarily a form of supervised learning. It rep-

resents one of the most significant advances in AI in recent decades, so 

it’s worth understanding how it works. Moreover, some researchers 

believe it will lead to  human-  level AI systems within a few years, so 

it’s a good idea to assess whether that’s likely to be true.

It’s easiest to understand deep learning in the context of a particu-

lar task, such as learning to distinguish giraffes and llamas. Given 

some labeled photographs of each, the learning algorithm has to form 

a hypothesis that allows it to classify unlabeled images. An image is, 

from the computer’s point of view, nothing but a large table of num-

bers, with each number corresponding to one of three RGB values for 

one pixel of the image. So, instead of a Go hypothesis that takes a 

board position and a move as input and decides whether the move is 

legal, we need a  giraffe–  llama hypothesis that takes a table of numbers 

as input and predicts a category (giraffe or llama).

Now the question is, what sort of hypothesis? Over the last  fifty- 

 odd years of computer vision research, many approaches have been 

tried. The current favorite is a deep convolutional network. Let me un-

pack this: It’s called a network because it represents a complex mathe-

matical expression composed in a regular way from many smaller 
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subexpressions, and the compositional structure has the form of a net-

work. (Such networks are often called neural networks because their 

designers draw inspiration from the networks of neurons in the brain.) 

It’s called convolutional because that’s a fancy mathematical way to say 

that the network structure repeats itself in a fixed pattern across the 

whole input image. And it’s called deep because such networks typi-

cally have many layers, and also because it sounds impressive and 

slightly spooky.

A simplified example (simplified because real networks may have 

hundreds of layers and millions of nodes) is shown in figure 23. The 

network is really a picture of a complex, adjustable mathematical ex-

pression. Each node in the network corresponds to a simple adjustable 

expression, as illustrated in the figure. Adjustments are made by chang-

ing the weights on each input, as indicated by the “volume controls.” The 

FIGURE 

the image is to be a llama or a giraffe. Notice how the pattern of local connec-

the total incoming signal goes through a gating function that allows large signals 
through but suppresses small ones.

llama

giraffe
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290 HUMAN COMPATIBLE

weighted sum of the inputs is then passed through a gating function 

before reaching the output side of the node; typically, the gating func-

tion suppresses small values and allows larger ones through.

Learning takes place in the network simply by adjusting all the 

volume control knobs to reduce the prediction error on the labeled 

examples. It’s as simple as that: no magic, no especially ingenious algo-

rithms. Working out which way to turn the knobs to decrease the er-

ror is a straightforward application of calculus to compute how 

changing each weight would change the error at the output layer. This 

leads to a simple formula for propagating the error backwards from 

the output layer to the input layer, tweaking knobs along the way.

Miraculously, the process works. For the task of recognizing ob-

jects in photographs, deep learning algorithms have demonstrated re-

markable performance. The first inkling of this came in the 2012 

ImageNet competition, which provides training data consisting of 1.2 

million labeled images in one thousand categories, and then requires 

the algorithm to label one hundred thousand new images.4 Geoff Hin-

ton, a British computational psychologist who was at the forefront of 

the first neural network revolution in the 1980s, had been experi-

menting with a very large deep convolutional network: 650,000 nodes 

and 60 million parameters. He and his group at the University of To-

ronto achieved an ImageNet error rate of 15 percent, a dramatic im-

provement on the previous best of 26 percent.5 By 2015, dozens of 

teams were using deep learning methods and the error rate was down 

to 5 percent, comparable to that of a human who had spent weeks 

learning to recognize the thousand categories in the test.6 By 2017, the 

machine error rate was 2 percent.

Over roughly the same period, there have been comparable im-

provements in speech recognition and machine translation based on 

similar methods. Taken together, these are three of the most import-

ant application areas for AI. Deep learning has also played an import-

ant role in applications of reinforcement learning—for example, in 
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learning the evaluation function that AlphaGo uses to estimate the 

desirability of possible future positions, and in learning controllers for 

complex robotic behaviors.

As yet, we have very little understanding as to why deep learning 

works as well as it does. Possibly the best explanation is that deep net-

works are deep: because they have many layers, each layer can learn a 

fairly simple transformation from its inputs to its outputs, while many 

such simple transformations add up to the complex transformation re-

quired to go from a photograph to a category label. In addition, deep 

networks for vision have built- in structure that enforces translation 

invariance and scale  invariance—  meaning that a dog is a dog no matter 

where it appears in the image and no matter how big it appears in the 

image.

Another important property of deep networks is that they often 

seem to discover internal representations that capture elementary fea-

tures of images, such as eyes, stripes, and simple shapes. None of these 

features are built in. We know they are there because we can experi-

ment with the trained network and see what kinds of data cause the 

internal nodes (typically those close to the output layer) to light up. In 

fact, it is possible to run the learning algorithm a different way so that 

it adjusts the image itself to produce a stronger response at chosen 

internal nodes. Repeating this process many times produces what are 

now known as deep dreaming or inceptionism images, such as the one in 

figure 24.7 Inceptionism has become an art form in itself, producing 

images unlike any human art.

For all their remarkable achievements, deep learning systems as we 

currently understand them are far from providing a basis for generally 

intelligent systems. Their principal weakness is that they are circuits; 
they are cousins of propositional logic and Bayesian networks, which, 

for all their wonderful properties, also lack the ability to express com-

plex forms of knowledge in a concise way. This means that deep 

 networks operating in “native mode” require vast amounts of circuitry 
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292 HUMAN COMPATIBLE

to represent fairly simple kinds of general knowledge. That, in turn, 

implies vast numbers of weights to learn and hence a need for unreason-

able numbers of  examples—  more than the universe could ever supply.

Some argue that the brain is also made of circuits, with neurons as 

the circuit elements; therefore, circuits can support  human-  level in-

telligence. This is true, but only in the same sense that brains are made 

of atoms: atoms can indeed support  human-  level intelligence, but that 

doesn’t mean that just collecting together lots of atoms will produce 

intelligence. The atoms have to be arranged in certain ways. By the 

same token, the circuits have to be arranged in certain ways. Comput-

ers are also made of circuits, both in their memories and in their 

 processing units; but those circuits have to be arranged in certain 

ways, and layers of software have to be added, before the computer 

can support the operation of  high-  level programming languages and 

logical reasoning systems. At present, however, there is no sign that 

deep learning systems can develop such capabilities by  themselves— 

 nor does it make scientific sense to require them to do so.

FIGURE 
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 APPENDIX D:  LEARNING FROM EXPERIENCE 293

There are further reasons to think that deep learning may reach a 

plateau well short of general intelligence, but it’s not my purpose here 

to diagnose all the problems: others, both inside8 and outside9 the 

deep learning community, have noted many of them. The point is that 

simply creating larger and deeper networks and larger data sets and 

bigger machines is not enough to create  human-  level AI. We have al-

ready seen (in Appendix B) DeepMind CEO Demis Hassabis’s view 

that “ higher-  level thinking and symbolic reasoning” are essential for 

AI. Another prominent deep learning expert, François Chollet, put it 

this way:10 “Many more applications are completely out of reach for 

current deep learning  techniques—  even given vast amounts of  human- 

 annotated  data.  .  .  . We need to move away from straightforward 

input- to- output mappings, and on to reasoning and abstraction.”

Learning from thinking

Whenever you find yourself having to think about something, it’s 

because you don’t already know the answer. When someone asks for 

the number of your  brand-  new cell phone, you probably don’t know it. 

You think to yourself, “OK, I don’t know it; so how do I find it?” Not 

being a slave to the cell phone, you don’t know how to find it. You 

think to yourself, “How do I figure out how to find it?” You have a 

generic answer to this: “Probably they put it somewhere that’s easy for 

users to find.” (Of course, you could be wrong about this.) Obvious 

places would be at the top of the home screen (not there), inside the 

Phone app, or in Settings for that app. You try Settings>Phone, and 

there it is.

The next time you are asked for your number, you either know it 

or you know exactly how to get it. You remember the procedure, not 

just for this phone on this occasion but for all similar phones on all 
occasions—that is, you store and reuse a generalized solution to the 

problem. The generalization is justified because you understand that 
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294 HUMAN COMPATIBLE

the specifics of this particular phone and this particular occasion are 

irrelevant. You would be shocked if the method worked only on Tues-

days for phone numbers ending in 17.

Go offers a beautiful example of the same kind of learning. In 

 figure 25(a), we see a common situation where Black threatens to cap-

ture White’s stone by surrounding it. White attempts to escape by 

adding stones connected to the original one, but Black continues to 

cut off the routes of escape. This pattern of moves forms a ladder of 

stones diagonally across the board, until it runs into the edge; then 

White has nowhere to go. If you are White, you probably won’t make 

the same mistake again: you realize that the ladder pattern always 
results in eventual capture, for any initial location and any direction, 

at any stage of the game, whether you are playing White or Black. The 

only exception occurs when the ladder runs into some additional 

stones belonging to the escapee. The generality of the ladder pattern 

follows straightforwardly from the rules of Go.

The case of the missing phone number and the case of the Go lad-

der illustrate the possibility of learning effective, general rules from a 

single  example—  a far cry from the millions of examples needed for 

deep learning. In AI, this kind of learning is called  explanation-  based 

. . .

1

5

2

46

3

7

(a) (b) (c) (d) (e)

FIGURE 25: The concept of a ladder in Go. (a) Black threatens to capture 
-
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 APPENDIX D:  LEARNING FROM EXPERIENCE 295

learning: on seeing the example, the agent can explain to itself why it 

came out that way and can extract the general principle by seeing 

what factors were essential for the explanation.

Strictly speaking, the process does not, by itself, add new knowl-

edge—for example, White could have simply derived the existence 

and outcome of the general ladder pattern from the rules of Go, with-

out ever seeing an example.11 Chances are, however, that White wouldn’t 

ever discover the ladder concept without seeing an example of it; so, 

we can understand  explanation-  based learning as a powerful method 

for saving the results of computation in a generalized way, so as to 

avoid having to recapitulate the same reasoning process (or making 

the same mistake with an imperfect reasoning process) in the future.

Research in cognitive science has stressed the importance of this 

type of learning in human cognition. Under the name of chunking, it 

forms a central pillar of Allen Newell’s highly influential theory of 

cognition.12 (Newell was one of the attendees of the 1956 Dartmouth 

workshop and co- winner of the 1975 Turing Award with Herb Si-

mon.) It explains how humans become more fluent at cognitive tasks 

with practice, as various subtasks that originally required thinking be-

come automatic. Without it, human conversations would be limited to 

 one-  or  two-  word responses and mathematicians would still be count-

ing on their fingers.
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Notes

CHAPTER 1

 1. The first edition of my textbook on AI, co- authored with Peter Norvig, currently di-
rector of research at Google: Stuart Russell and Peter Norvig, Artificial Intelligence: A 
Modern Approach, 1st ed. (Prentice Hall, 1995).

 2. Robinson developed the resolution algorithm, which can, given enough time, prove any 
logical consequence of a set of  first-  order logical assertions. Unlike previous algo-
rithms, it did not require conversion to propositional logic. J. Alan Robinson, “A 
 machine-  oriented logic based on the resolution principle,” Journal of the ACM 12 
(1965):  23–  41.

 3. Arthur Samuel, an American pioneer of the computer era, did his early work at IBM. 
The paper describing his work on checkers was the first to use the term machine learn-
ing, although Alan Turing had already talked about “a machine that can learn from ex-
perience” as early as 1947. Arthur Samuel, “Some studies in machine learning using the 
game of checkers,” IBM Journal of Research and Development 3 (1959):  210–  29.

 4. The “Lighthill Report,” as it became known, led to the termination of research funding 
for AI except at the universities of Edinburgh and Sussex: Michael James Lighthill, 
“Artificial intelligence: A general survey,” in Artificial Intelligence: A Paper Symposium 
(Science Research Council of Great Britain, 1973).

 5. The CDC 6600 filled an entire room and cost the equivalent of $20 million. For its era 
it was incredibly powerful, albeit a million times less powerful than an iPhone.

 6. Following Deep Blue’s victory over Kasparov, at least one commentator predicted 
that it would take one hundred years before the same thing happened in Go: George 
Johnson, “To test a powerful computer, play an ancient game,” The New York Times, 
July 29, 1997.

 7. For a highly readable history of the development of nuclear technology, see Richard 
Rhodes, The Making of the Atomic Bomb (Simon & Schuster, 1987).

 8. A simple supervised learning algorithm may not have this effect, unless it is wrapped 
within an A/ B testing framework (as is common in online marketing settings). Bandit 
algorithms and reinforcement learning algorithms will have this effect if they operate 
with an explicit representation of user state or an implicit representation in terms of 
the history of interactions with the user.

 9. Some have argued that  profit-  maximizing corporations are already out- of- control ar-
tificial entities. See, for example, Charles Stross, “Dude, you broke the future!” (key-
note, 34th Chaos Communications Congress, 2017). See also Ted Chiang, “Silicon 
Valley is turning into its own worst fear,” Buzzfeed, December 18, 2017. The idea is 
explored further by Daniel Hillis, “The first machine intelligences,” in Possible Minds: 
 Twenty-  Five Ways of Looking at AI, ed. John Brockman (Penguin Press, 2019).
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300 NOTES

 10. For its time, Wiener’s paper was a rare exception to the prevailing view that all tech-
nological progress was a good thing: Norbert Wiener, “Some moral and technical con-
sequences of automation,” Science 131 (1960):  1355–  58.

CHAPTER 2

 1. Santiago Ramón y Cajal proposed synaptic changes as the site of learning in 1894, but 
it was not until the late 1960s that this hypothesis was confirmed experimentally. See 
Timothy Bliss and Terje Lomo, “ Long-  lasting potentiation of synaptic transmission in 
the dentate area of the anaesthetized rabbit following stimulation of the perforant 
path,” Journal of Physiology 232 (1973):  331–  56.

 2. For a brief introduction, see James Gorman, “Learning how little we know about the 
brain,” The New York Times, November 10, 2014. See also Tom Siegfried, “There’s a 
long way to go in understanding the brain,” ScienceNews, July 25, 2017. A special 2017 
issue of the journal Neuron (vol. 94, pp.  933–  1040) provides a good overview of many 
different approaches to understanding the brain.

 3. The presence or absence of  consciousness—  actual subjective  experience—  certainly 
makes a difference in our moral consideration for machines. If ever we gain enough 
understanding to design conscious machines or to detect that we have done so, we 
would face many important moral issues for which we are largely unprepared.

 4. The following paper was among the first to make a clear connection between re-
inforcement learning algorithms and neurophysiological recordings: Wolfram Schultz, 
Peter Dayan, and P. Read Montague, “A neural substrate of prediction and reward,” 
Science 275 (1997):  1593–  99.

 5. Studies of intracranial stimulation were carried out with the hope of finding cures for 
various mental illnesses. See, for example, Robert Heath, “Electrical  self-  stimulation 
of the brain in man,” American Journal of Psychiatry 120 (1963):  571–  77.

 6. An example of a species that may be facing  self-  extinction via addiction: Bryson Voi-
rin, “Biology and conservation of the pygmy sloth, Bradypus pygmaeus,” Journal of 
Mammalogy 96 (2015):  703–  7.

 7. The Baldwin effect in evolution is usually attributed to the following paper: James 
Baldwin, “A new factor in evolution,” American Naturalist 30 (1896):  441–  51.

 8. The core idea of the Baldwin effect also appears in the following work: Conwy Lloyd 
Morgan, Habit and Instinct (Edward Arnold, 1896).

 9. A modern analysis and computer implementation demonstrating the Baldwin effect: 
Geoffrey Hinton and Steven Nowlan, “How learning can guide evolution,” Complex 
Systems 1 (1987):  495–  502.

 10. Further elucidation of the Baldwin effect by a computer model that includes the evo-
lution of the internal  reward-  signaling circuitry: David Ackley and Michael Littman, 
“Interactions between learning and evolution,” in Artificial Life II, ed. Christopher 
Langton et al. ( Addison-  Wesley, 1991).

 11. Here I am pointing to the roots of our  present-  day concept of intelligence, rather than 
describing the ancient Greek concept of nous, which had a variety of related meanings.

 12. The quotation is taken from Aristotle, Nicomachean Ethics, Book III, 3, 1112b.
 13. Cardano, one of the first European mathematicians to consider negative numbers, 

developed an early mathematical treatment of probability in games. He died in 1576, 
 eighty-  seven years before his work appeared in print: Gerolamo Cardano, Liber de ludo 
aleae (Lyons, 1663).

 14. Arnauld’s work, initially published anonymously, is often called The  Port-  Royal Logic: 
Antoine Arnauld, La logique, ou l’art de penser (Chez Charles Savreux, 1662). See also 
Blaise Pascal, Pensées (Chez Guillaume Desprez, 1670).

 15. The concept of utility: Daniel Bernoulli, “Specimen theoriae novae de mensura sortis,” 
Proceedings of the St. Petersburg Imperial Academy of Sciences 5 (1738):  175–  92. Bernoul-
li’s idea of utility arises from considering a merchant, Sempronius, choosing whether to 
transport a valuable cargo in one ship or to split it between two, assuming that each ship 
has a 50 percent probability of sinking on the journey. The expected monetary value of 
the two solutions is the same, but Sempronius clearly prefers the  two-  ship solution.
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 NOTES  301

 16. By most accounts, von Neumann did not himself invent this architecture but his 
name was on an early draft of an influential report describing the EDVAC  stored- 
 program computer. 

 17. The work of von Neumann and Morgenstern is in many ways the foundation of mod-
ern economic theory: John von Neumann and Oskar Morgenstern, Theory of Games 
and Economic Behavior (Princeton University Press, 1944).

 18. The proposal that utility is a sum of discounted rewards was put forward as a mathe-
matically convenient hypothesis by Paul Samuelson, “A note on measurement of util-
ity,” Review of Economic Studies 4 (1937):  155–  61. If s0,  s1, . . . is a sequence of states, 
then its utility in this model is U(s0,  s1, . . .) = ∑t

tR(st), where is a discount factor and 
R is a reward function describing the desirability of a state. Naïve application of this 
model seldom agrees with the judgment of real individuals about the desirability of 
present and future rewards. For a thorough analysis, see Shane Frederick, George Loe-
wenstein, and Ted O’Donoghue, “Time discounting and time preference: A critical 
review,” Journal of Economic Literature 40 (2002):  351–  401.

 19. Maurice Allais, a French economist, proposed a decision scenario in which humans 
appear consistently to violate the von  Neumann–  Morgenstern axioms: Maurice Allais, 
“Le comportement de l’homme rationnel devant le risque: Critique des postulats et 
axiomes de l’école américaine,” Econometrica 21 (1953):  503–  46.

 20. For an introduction to  non-  quantitative decision analysis, see Michael Wellman, “Fun-
damental concepts of qualitative probabilistic networks,” Artificial Intelligence 44 
(1990):  257–  303.

 21. I will discuss the evidence for human irrationality further in Chapter 9. The standard 
references include the following: Allais, “Le comportement”; Daniel Ellsberg, Risk, 
Ambiguity, and Decision (PhD thesis, Harvard University, 1962); Amos Tversky and 
Daniel Kahneman, “Judgment under uncertainty: Heuristics and biases,” Science 185 
(1974):  1124–  31.

 22. It should be clear that this is a thought experiment that cannot be realized in practice. 
Choices about different futures are never presented in full detail, and humans never 
have the luxury of minutely examining and savoring those futures before choosing. 
Instead, one is given only brief summaries, such as “librarian” or “coal miner.” In mak-
ing such a choice, one is really being asked to compare two probability distributions 
over complete futures, one beginning with the choice “librarian” and the other “coal 
miner,” with each distribution assuming optimal actions on one’s own part within 
each future. Needless to say, this is not easy.

 23. The first mention of a randomized strategy for games appears in Pierre Rémond de 
Montmort, Essay d’analyse sur les jeux de hazard, 2nd ed. (Chez Jacques Quillau, 
1713). The book identifies a certain Monsieur de Waldegrave as the source of an opti-
mal randomized solution for the card game Le Her. Details of Waldegrave’s identity 
are revealed by David Bellhouse, “The problem of Waldegrave,” Electronic Journal for 
History of Probability and Statistics 3 (2007).

 24. The problem is fully defined by specifying the probability that Alice scores in each of 
four cases: when she shoots to Bob’s right and he dives right or left, and when she shoots 
to his left and he dives right or left. In this case, these probabilities are 25 percent, 70 
percent, 65 percent, and 10 percent respectively. Now suppose that Alice’s strategy is to 
shoot to Bob’s right with probability p and his left with probability 1 − p, while Bob dives 
to his right with probability q and left with probability 1 − q. The payoff to Alice is  
UA = 0.25pq + 0.70 p(1 − q) + 0.65 (1 − p)q + 0.10(1 − p) (1 − q), while Bob’s payoff is 
UB = −UA. At equilibrium, ∂UA/∂p = 0 and ∂UB/∂q = 0, giving p = 0.55 and q = 0.60.

 25. The original  game-  theoretic problem was introduced by Merrill Flood and Melvin 
Dresher at the RAND Corporation; Tucker saw the payoff matrix on a visit to their 
offices and proposed a “story” to go along with it.

 26. Game theorists typically say that Alice and Bob could cooperate with each other (re-
fuse to talk) or defect and rat on their accomplice. I find this language confusing, be-
cause “cooperate with each other” is not a choice that each agent can make separately, 
and because in common parlance one often talks about cooperating with the police, 
receiving a lighter sentence in return for cooperating, and so on.
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302 NOTES

 27. For an interesting  trust-  based solution to the prisoner’s dilemma and other games, see 
Joshua Letchford, Vincent Conitzer, and Kamal Jain, “An ‘ethical’  game-  theoretic 
solution concept for  two-  player  perfect-  information games,” in Proceedings of the 4th 
International Workshop on Web and Internet Economics, ed. Christos Papadimitriou and 
Shuzhong Zhang (Springer, 2008). 

 28. Origin of the tragedy of the commons: William Forster Lloyd, Two Lectures on the 
Checks to Population (Oxford University, 1833).

 29. Modern revival of the topic in the context of global ecology: Garrett Hardin, “The 
tragedy of the commons,” Science 162 (1968):  1243–  48.

 30. It’s quite possible that even if we had tried to build intelligent machines from chemical 
reactions or biological cells, those assemblages would have turned out to be implemen-
tations of Turing machines in nontraditional materials. Whether an object is a  general- 
 purpose computer has nothing to do with what it’s made of.

 31. Turing’s breakthrough paper defined what is now known as the Turing machine, the 
basis for modern computer science. The Entscheidungsproblem, or decision problem, in 
the title is the problem of deciding entailment in  first-  order logic: Alan Turing, “On 
computable numbers, with an application to the Entscheidungsproblem,” Proceedings of 
the London Mathematical Society, 2nd ser., 42 (1936):  230–  65.

 32. A good survey of research on negative capacitance by one of its inventors: Sayeef Sala-
huddin, “Review of negative capacitance transistors,” in International Symposium on 
VLSI Technology, Systems and Application (IEEE Press, 2016).

 33. For a much better explanation of quantum computation, see Scott Aaronson, Quan-
tum Computing since Democritus (Cambridge University Press, 2013).

 34. The paper that established a clear  complexity-  theoretic distinction between classical 
and quantum computation: Ethan Bernstein and Umesh Vazirani, “Quantum com-
plexity theory,” SIAM Journal on Computing 26 (1997):  1411–  73.

 35. The following article by a renowned physicist provides a good introduction to the 
current state of understanding and technology: John Preskill, “Quantum computing in 
the NISQ era and beyond,” arXiv:1801.00862 (2018).

 36. On the maximum computational ability of a  one-  kilogram object: Seth Lloyd, “Ulti-
mate physical limits to computation,” Nature 406 (2000):  1047–  54.

 37. For an example of the suggestion that humans may be the pinnacle of physically 
achievable intelligence, see Kevin Kelly, “The myth of a superhuman AI,” Wired, April 
25, 2017: “We tend to believe that the limit is way beyond us, way ‘above’ us, as we are 
‘above’ an  ant. . . . What evidence do we have that the limit is not us?”

 38. In case you are wondering about a simple trick to solve the halting problem: the obvi-
ous method of just running the program to see if it finishes doesn’t work, because that 
method doesn’t necessarily finish. You might wait a million years and still not know if 
the program is really stuck in an infinite loop or just taking its time.

 39. The proof that the halting problem is undecidable is an elegant piece of trickery. The 
question: Is there a LoopChecker(P,X) program that, for any program P and any input 
X, decides correctly, in finite time, whether P applied to input X will halt and produce 
a result or keep chugging away forever? Suppose that LoopChecker exists. Now write 
a program Q that calls LoopChecker as a subroutine, with Q itself and X as inputs, and 
then does the opposite of what LoopChecker(Q,X) predicts. So, if LoopChecker says 
that Q halts, Q doesn’t halt, and vice versa. Thus, the assumption that LoopChecker 
exists leads to a contradiction, so LoopChecker cannot exist.

 40. I say “appear” because, as yet, the claim that the class of NP- complete problems re-
quires superpolynomial time (usually referred to as P ≠ NP) is still an unproven con-
jecture. After almost fifty years of research, however, nearly all mathematicians and 
computer scientists are convinced the claim is true.

 41. Lovelace’s writings on computation appear mainly in her notes attached to her trans-
lation of an Italian engineer’s commentary on Babbage’s engine: L. F. Menabrea, 
“Sketch of the Analytical Engine invented by Charles Babbage,” trans. Ada, Countess 
of Lovelace, in Scientific Memoirs, vol. III, ed. R. Taylor (R. and J. E. Taylor, 1843). 
Menabrea’s original article, written in French and based on lectures given by Babbage 
in 1840, appears in Bibliothèque Universelle de Genève 82 (1842).
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 NOTES  303

 42. One of the seminal early papers on the possibility of artificial intelligence: Alan Tur-
ing, “Computing machinery and intelligence,” Mind 59 (1950):  433–  60.

 43. The Shakey project at SRI is summarized in a retrospective by one of its leaders: Nils 
Nilsson, “Shakey the robot,” technical note 323 (SRI International, 1984). A  twenty- 
 four-  minute film, SHAKEY: Experimentation in Robot Learning and Planning, was 
made in 1969 and garnered national attention.

 44. The book that marked the beginning of modern,  probability-  based AI: Judea Pearl, 
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan 
Kaufmann, 1988).

 45. Technically, chess is not fully observable. A program does need to remember a small 
amount of information to determine the legality of castling and en passant moves and 
to define draws by repetition or by the  fifty-  move rule.

 46. For a complete exposition, see Chapter 2 of Stuart Russell and Peter Norvig, Artificial 
Intelligence: A Modern Approach, 3rd ed. (Pearson, 2010).

 47. The size of the state space for StarCraft is discussed by Santiago Ontañon et al., “A 
survey of  real-  time strategy game AI research and competition in StarCraft,” IEEE 
Transactions on Computational Intelligence and AI in Games 5 (2013):  293–  311. Vast 
numbers of moves are possible because a player can move all units simultaneously. The 
numbers go down as restrictions are imposed on how many units or groups of units can 
be moved at once.

 48. On  human–  machine competition in StarCraft: Tom Simonite, “DeepMind beats pros 
at StarCraft in another triumph for bots,” Wired, January 25, 2019.

 49. AlphaZero is described by David Silver et al., “Mastering chess and shogi by  self-  play 
with a general reinforcement learning algorithm,” arXiv:1712.01815 (2017).

 50. Optimal paths in graphs are found using the A* algorithm and its many descendants: 
Peter Hart, Nils Nilsson, and Bertram Raphael, “A formal basis for the heuristic deter-
mination of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics 
SSC- 4 (1968):  100–  107.

 51. The paper that introduced the Advice Taker program and  logic-  based knowledge sys-
tems: John McCarthy, “Programs with common sense,” in Proceedings of the Symposium 
on Mechanisation of Thought Processes (Her Majesty’s Stationery Office, 1958).

 52. To get some sense of the significance of  knowledge-  based systems, consider database 
systems. A database contains concrete, individual facts, such as the location of my keys 
and the identities of your Facebook friends. Database systems cannot store general 
rules, such as the rules of chess or the legal definition of British citizenship. They 
can count how many people called Alice have friends called Bob, but they cannot 
 determine whether a particular Alice meets the conditions for British citizenship 
or whether a particular sequence of moves on a chessboard will lead to checkmate. 
Database systems cannot combine two pieces of knowledge to produce a third: they 
support memory but not reasoning. (It is true that many modern database systems 
provide a way to add rules and a way to use those rules to derive new facts; to the 
 extent that they do, they are really  knowledge-  based systems.) Despite being highly 
constricted versions of  knowledge-  based systems, database systems underlie most of 
 present-  day commercial activity and generate hundreds of billions of dollars in value 
every year.

 53. The original paper describing the completeness theorem for  first-  order logic: Kurt 
Gödel, “Die Vollständigkeit der Axiome des logischen Funktionenkalküls,” Monat-
shefte für Mathematik 37 (1930):  349–  60.

 54. The reasoning algorithm for  first-  order logic does have a gap: if there is no  answer— 
 that is, if the available knowledge is insufficient to give an answer either  way—  then 
the algorithm may never finish. This is unavoidable: it is mathematically impossible for 
a correct algorithm always to terminate with “don’t know,” for essentially the same 
reason that no algorithm can solve the halting problem (page 37).

 55. The first algorithm for  theorem-  proving in  first-  order logic worked by reducing  first- 
 order sentences to (very large numbers of) propositional sentences: Martin Davis and 
Hilary Putnam, “A computing procedure for quantification theory,” Journal of the 
ACM 7 (1960):  201–  15. Robinson’s resolution algorithm operated directly on  first-  order 
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logical sentences, using “unification” to match complex expressions containing logical 
variables: J. Alan Robinson, “A  machine-  oriented logic based on the resolution princi-
ple,” Journal of the ACM 12 (1965):  23–  41.

 56. One might wonder how Shakey the logical robot ever reached any definite conclusions 
about what to do. The answer is simple: Shakey’s knowledge base contained false as-
sertions. For example, Shakey believed that by executing “push object A through door 
D into room B,” object A would end up in room B. This belief was false because Shakey 
could get stuck in the doorway or miss the doorway altogether or someone might 
sneakily remove object A from Shakey’s grasp. Shakey’s plan execution module could 
detect plan failure and replan accordingly, so Shakey was not, strictly speaking, a 
purely logical system.

 57. An early commentary on the role of probability in human thinking:  Pierre-  Simon La-
place, Essai philosophique sur les probabilités (Mme. Ve. Courcier, 1814).

 58. Bayesian logic described in a fairly nontechnical way: Stuart Russell, “Unifying logic 
and probability,” Communications of the ACM 58 (2015):  88–  97. The paper draws 
heavily on the PhD thesis research of my former student Brian Milch.

 59. The original source for Bayes’ theorem: Thomas Bayes and Richard Price, “An essay 
towards solving a problem in the doctrine of chances,” Philosophical Transactions of the 
Royal Society of London 53 (1763):  370–  418.

 60. Technically, Samuel’s program did not treat winning and losing as absolute rewards; by 
fixing the value of material to be positive; however, the program generally tended to 
work towards winning.

 61. The application of reinforcement learning to produce a  world-  class backgammon pro-
gram: Gerald Tesauro, “Temporal difference learning and TD- Gammon,” Communica-
tions of the ACM 38 (1995):  58–  68.

 62. The DQN system that learns to play a wide variety of video games using deep RL: 
Volodymyr Mnih et al., “ Human-  level control through deep reinforcement learning,” 
Nature 518 (2015):  529–  33.

 63. Bill Gates’s remarks on Dota 2 AI: Catherine Clifford, “Bill Gates says gamer bots 
from Elon  Musk-  backed nonprofit are ‘huge milestone’ in A.I.,” CNBC, June 28,  
2018.

 64. An account of OpenAI Five’s victory over the human world champions at Dota 2: 
Kelsey Piper, “AI triumphs against the world’s top pro team in strategy game Dota 2,” 
Vox, April 13, 2019.

 65. A compendium of cases in the literature where misspecification of reward functions 
led to unexpected behavior: Victoria Krakovna, “Specification gaming examples in 
AI,” Deep Safety (blog), April 2, 2018.

 66. A case where an evolutionary fitness function defined in terms of maximum velocity 
led to very unexpected results: Karl Sims, “Evolving virtual creatures,” in Proceed-
ings of the 21st Annual Conference on Computer Graphics and Interactive Techniques 
(ACM, 1994).

 67. For a fascinating exposition of the possibilities of reflex agents, see Valentino Braiten-
berg, Vehicles: Experiments in Synthetic Psychology (MIT Press, 1984).

 68. News article on a fatal accident involving a vehicle in autonomous mode that hit a 
pedestrian: Devin Coldewey, “Uber in fatal crash detected pedestrian but had emer-
gency braking disabled,” TechCrunch, May 24, 2018.

 69. On steering control algorithms, see, for example, Jarrod Snider, “Automatic steering 
methods for autonomous automobile path tracking,” technical report CMU- RI- TR- 
09- 08, Robotics Institute, Carnegie Mellon University, 2009.

 70. Norfolk and Norwich terriers are two categories in the ImageNet database. They are 
notoriously hard to tell apart and were viewed as a single breed until 1964.

 71. A very unfortunate incident with image labeling: Daniel Howley, “Google Photos mis-
labels 2 black Americans as gorillas,” Yahoo Tech, June 29, 2015.

 72. Follow- up article on Google and gorillas: Tom Simonite, “When it comes to gorillas, 
Google Photos remains blind,” Wired, January 11, 2018.
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 1. The basic plan for  game-  playing algorithms was laid out by Claude Shannon, “Pro-
gramming a computer for playing chess,” Philosophical Magazine, 7th ser., 41 (1950): 
 256–  75.

 2. See figure 5.12 of Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern 
Approach, 1st ed. (Prentice Hall, 1995). Note that the rating of chess players and chess 
programs is not an exact science. Kasparov’s  highest-  ever Elo rating was 2851, achieved 
in 1999, but current chess engines such as Stockfish are rated at 3300 or more.

 3. The earliest reported autonomous vehicle on a public road: Ernst Dickmanns and Al-
fred Zapp, “Autonomous high speed road vehicle guidance by computer vision,” IFAC 
Proceedings Volumes 20 (1987):  221–  26.

 4. The safety record for Google (subsequently Waymo) vehicles: “Waymo safety report: 
On the road to fully  self-  driving,” 2018.

 5. So far there have been at least two driver fatalities and one pedestrian fatality. Some 
references follow, along with brief quotes describing what happened. Danny Yadron 
and Dan Tynan, “Tesla driver dies in first fatal crash while using autopilot mode,” 
Guardian, June 30, 2016: “The autopilot sensors on the Model S failed to distinguish 
a white  tractor-  trailer crossing the highway against a bright sky.” Megan Rose Dickey, 
“Tesla Model X sped up in Autopilot mode seconds before fatal crash, according to 
NTSB,” TechCrunch, June 7, 2018: “At 3 seconds prior to the crash and up to the 
time of impact with the crash attenuator, the Tesla’s speed increased from 62 to 70.8 
mph, with no precrash braking or evasive steering movement detected.” Devin 
 Coldewey, “Uber in fatal crash detected pedestrian but had emergency braking dis-
abled,” TechCrunch, May 24, 2018: “Emergency braking maneuvers are not enabled 
while the vehicle is under computer control, to reduce the potential for erratic vehicle 
behavior.”

 6. The Society of Automotive Engineers (SAE) defines six levels of automation, where 
Level 0 is none at all and Level 5 is full automation: “The  full-  time performance by an 
automatic driving system of all aspects of the dynamic driving task under all roadway 
and environmental conditions that can be managed by a human driver.” 

 7. Forecast of economic effects of automation on transportation costs: Adele Peters, “It 
could be 10 times cheaper to take electric  robo-  taxis than to own a car by 2030,” Fast 
Company, May 30, 2017.

 8. The impact of accidents on the prospects for regulatory action on autonomous vehi-
cles: Richard Waters, “ Self-  driving car death poses dilemma for regulators,” Financial 
Times, March 20, 2018.

 9. The impact of accidents on public perception of autonomous vehicles: Cox Automo-
tive, “Autonomous vehicle awareness rising, acceptance declining, according to Cox 
Automotive mobility study,” August 16, 2018.

 10. The original chatbot: Joseph Weizenbaum, “ ELIZA—  a computer program for the 
study of natural language communication between man and machine,” Communica-
tions of the ACM 9 (1966):  36–  45.

 11. See physiome.org for current activities in physiological modeling. Work in the 1960s 
assembled models with thousands of differential equations: Arthur Guyton, Thomas 
Coleman, and Harris Granger, “Circulation: Overall regulation,” Annual Review of 
Physiology 34 (1972):  13–  44.

 12. Some of the earliest work on tutoring systems was done by Pat Suppes and colleagues 
at Stanford: Patrick Suppes and Mona Morningstar, “ Computer-  assisted instruction,” 
Science 166 (1969):  343–  50.

 13. Michael Yudelson, Kenneth Koedinger, and Geoffrey Gordon, “Individualized Bayes-
ian knowledge tracing models,” in Artificial Intelligence in Education: 16th International 
Conference, ed. H. Chad Lane et al. (Springer, 2013).

 14. For an example of machine learning on encrypted data, see, for example, Reza 
Shokri and Vitaly Shmatikov, “ Privacy-  preserving deep learning,” in Proceedings of the 
22nd ACM SIGSAC Conference on Computer and Communications Security (ACM, 
2015).
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 15. A retrospective on the first smart home, based on a lecture by its inventor, James 
Sutherland: James E. Tomayko, “Electronic Computer for Home Operation (ECHO): 
The first home computer,” IEEE Annals of the History of Computing 16 (1994):  59–  61.

 16. Summary of a  smart-  home project based on machine learning and automated deci-
sions: Diane Cook et al., “MavHome: An  agent-  based smart home,” in Proceedings of the 
1st IEEE International Conference on Pervasive Computing and Communications (IEEE, 
2003).

 17. For the beginnings of an analysis of user experiences in smart homes, see Scott Da-
vidoff et al., “Principles of smart home control,” in Ubicomp 2006: Ubiquitous Comput-
ing, ed. Paul Dourish and Adrian Friday (Springer, 2006).

 18. Commercial announcement of AI- based smart homes: “The Wolff Company unveils 
revolutionary smart home technology at new Annadel Apartments in Santa Rosa, Cal-
ifornia,” Business Insider, March 12, 2018.

 19. Article on robot chefs as commercial products: Eustacia Huen, “The world’s first 
home robotic chef can cook over 100 meals,” Forbes, October 31, 2016.

 20. Report from my Berkeley colleagues on deep RL for robotic motor control: Sergey 
Levine et al., “End- to- end training of deep visuomotor policies,” Journal of Machine 
Learning Research 17 (2016):  1–  40.

 21. On the possibilities for automating the work of hundreds of thousands of warehouse 
workers: Tom Simonite, “Grasping robots compete to rule Amazon’s warehouses,” 
Wired, July 26, 2017.

 22. I’m assuming a generous one  laptop-  CPU minute per page, or about 1011 operations. A 
 third-  generation tensor processing unit from Google runs at about 1017 operations per 
second, meaning that it can read a million pages per second, or about five hours for 
eighty million  two-  hundred-  page books.

 23. A 2003 study on the global volume of information production by all channels: Peter 
Lyman and Hal Varian, “How much information?” sims.berkeley.edu/ research/ projects 
/  how-  much-  info-  2003.

 24. For details on the use of speech recognition by intelligence agencies, see Dan Froom-
kin, “How the NSA converts spoken words into searchable text,” The Intercept, May 
5, 2015.

 25. Analysis of visual imagery from satellites is an enormous task: Mike Kim, “Mapping 
poverty from space with the World Bank,” Medium.com, January 4, 2017. Kim esti-
mates eight million people working 24/ 7, which converts to more than thirty million 
people working forty hours per week. I suspect this is an overestimate in practice, 
because the vast majority of the images would exhibit negligible change over the 
course of one day. On the other hand, the US intelligence community employs tens of 
thousands of people sitting in vast rooms staring at satellite images just to keep track 
of what’s happening in small regions of interest; so one million people is probably 
about right for the whole world.

 26. There is substantial progress towards a global observatory based on  real-  time satellite 
image data: David Jensen and Jillian Campbell, “Digital earth: Building, financing and 
governing a digital ecosystem for planetary data,” white paper for the UN  Science- 
 Policy-  Business Forum on the Environment, 2018.

 27. Luke Muehlhauser has written extensively on AI predictions, and I am indebted to him 
for tracking down original sources for the quotations that follow. See Luke Muehl-
hauser, “What should we learn from past AI forecasts?” Open Philanthropy Project 
report, 2016.

 28. A forecast of the arrival of  human-  level AI within twenty years: Herbert Simon, The 
New Science of Management Decision (Harper & Row, 1960).

 29. A forecast of the arrival of  human-  level AI within a generation: Marvin Minsky, Com-
putation: Finite and Infinite Machines (Prentice Hall, 1967).

 30. John McCarthy’s forecast of the arrival of  human-  level AI within “five to 500 years”: 
Ian Shenker, “Brainy robots in our future, experts think,” Detroit Free Press, September 
30, 1977.

 31. For a summary of surveys of AI researchers on their estimates for the arrival of  human- 
 level AI, see aiimpacts.org. An extended discussion of survey results on  human-  level 
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AI is given by Katja Grace et al., “When will AI exceed human performance? Evidence 
from AI experts,” arXiv:1705.08807v3 (2018).

 32. For a chart mapping raw computer power against brain power, see Ray Kurzweil, “The 
law of accelerating returns,” Kurzweilai.net, March 7, 2001.

 33. The Allen Institute’s Project Aristo: allenai.org/ aristo.
 34. For an analysis of the knowledge required to perform well on  fourth-  grade tests of 

comprehension and common sense, see Peter Clark et al., “Automatic construction of 
 inference-  supporting knowledge bases,” in Proceedings of the Workshop on Automated 
Knowledge Base Construction (2014), akbc.ws/ 2014.

 35. The NELL project on machine reading is described by Tom Mitchell et al., “ Never- 
 ending learning,” Communications of the ACM 61 (2018):  103–  15.

 36. The idea of bootstrapping inferences from text is due to Sergey Brin, “Extracting pat-
terns and relations from the World Wide Web,” in The World Wide Web and Databases, 
ed. Paolo Atzeni, Alberto Mendelzon, and Giansalvatore Mecca (Springer, 1998).

 37. For a visualization of the  black-  hole collision detected by LIGO, see LIGO Lab 
Caltech, “Warped space and time around colliding black holes,” February 11, 2016, 
youtube.com/ watch? v= 1agm33iEAuo.

 38. The first publication describing observation of gravitational waves: Ben Abbott et al., 
“Observation of gravitational waves from a binary black hole merger,” Physical Review 
Letters 116 (2016): 061102.

 39. On babies as scientists: Alison Gopnik, Andrew Meltzoff, and Patricia Kuhl, The Sci-
entist in the Crib: Minds, Brains, and How Children Learn (William Morrow, 1999).

 40. A summary of several projects on automated scientific analysis of experimental data 
to discover laws: Patrick Langley et al., Scientific Discovery: Computational Explorations 
of the Creative Processes (MIT Press, 1987).

 41. Some early work on machine learning guided by prior knowledge: Stuart Russell, The 
Use of Knowledge in Analogy and Induction (Pitman, 1989).

 42. Goodman’s philosophical analysis of induction remains a source of inspiration: Nelson 
Goodman, Fact, Fiction, and Forecast (University of London Press, 1954).

 43. A veteran AI researcher complains about mysticism in the philosophy of science: 
 Herbert Simon, “Explaining the ineffable: AI on the topics of intuition, insight and 
inspiration,” in Proceedings of the 14th International Conference on Artificial Intelligence, 
ed. Chris Mellish (Morgan Kaufmann, 1995).

 44. A survey of inductive logic programming by two originators of the field: Stephen Mug-
gleton and Luc de Raedt, “Inductive logic programming: Theory and methods,” Journal 
of Logic Programming  19–  20 (1994):  629–  79.

 45. For an early mention of the importance of encapsulating complex operations as new 
primitive actions, see Alfred North Whitehead, An Introduction to Mathematics 
(Henry Holt, 1911).

 46. Work demonstrating that a simulated robot can learn entirely by itself to stand up: 
John Schulman et al., “ High-  dimensional continuous control using generalized advan-
tage estimation,” arXiv:1506.02438 (2015). A video demonstration is available at 
 youtube.com/ watch? v= SHLuf2ZBQSw.

 47. A description of a reinforcement learning system that learns to play a  capture-  the-  flag 
video game: Max Jaderberg et al., “ Human-  level performance in  first-  person multi-
player games with  population-  based deep reinforcement learning,” arXiv:1807.01281 
(2018).

 48. A view of AI progress over the next few years: Peter Stone et al., “Artificial intelligence 
and life in 2030,” One Hundred Year Study on Artificial Intelligence, report of the 2015 
Study Panel, 2016.

 49. The  media-  fueled argument between Elon Musk and Mark Zuckerberg: Peter Holley, 
“Billionaire burn: Musk says Zuckerberg’s understanding of AI threat ‘is limited,’ ” The 
Washington Post, July 25, 2017.

 50. On the value of search engines to individual users: Erik Brynjolfsson, Felix Eggers, and 
Avinash Gannamaneni, “Using massive online choice experiments to measure changes 
in  well-  being,” working paper no. 24514, National Bureau of Economic Research, 
2018.
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 51. Penicillin was discovered several times and its curative powers were described in med-
ical publications, but no one seems to have noticed. See en.wikipedia.org/ wiki/ His 
tory_ of_ penicillin.

 52. For a discussion of some of the more esoteric risks from omniscient, clairvoyant AI 
systems, see David Auerbach, “The most terrifying thought experiment of all time,” 
Slate, July 17, 2014.

 53. An analysis of some potential pitfalls in thinking about advanced AI: Kevin Kelly, 
“The myth of a superhuman AI,” Wired, April 25, 2017.

 54. Machines may share some aspects of cognitive structure with humans, particularly 
those aspects dealing with perception and manipulation of the physical world and 
the conceptual structures involved in natural language understanding. Their delibera-
tive processes are likely to be quite different because of the enormous disparities in 
hardware.

 55. According to 2016 survey data, the  eighty-  eighth percentile corresponds to $100,000 
per year: American Community Survey, US Census Bureau, www.census.gov/  pro 
grams-  surveys/ acs. For the same year, global per capita GDP was $10,133: National 
Accounts Main Aggregates Database, UN Statistics Division,  unstats.un.org/ unsd 
/ snaama.

 56. If the GDP growth phases in over ten years or twenty years, it’s worth $9,400 trillion 
or $6,800 trillion,  respectively—  still nothing to sneeze at. On an interesting historical 
note, I. J. Good, who popularized the notion of an intelligence explosion (page 142), 
estimated the value of  human-  level AI to be at least “one megaKeynes,” referring to the 
fabled economist John Maynard Keynes. The value of Keynes’s contributions was esti-
mated in 1963 as £100 billion, so a megaKeynes comes out to around $2,200,000 
trillion in 2016 dollars. Good pinned the value of AI primarily on its potential to en-
sure that the human race survives indefinitely. Later, he came to wonder whether he 
should have added a minus sign.

 57. The EU announced plans for $24 billion in research and development spending for the 
period  2019–  20. See European Commission, “Artificial intelligence: Commission out-
lines a European approach to boost investment and set ethical guidelines,” press re-
lease, April 25, 2018. China’s  long-  term investment plan for AI, announced in 2017, 
envisages a core AI  industry generating $150 billion annually by 2030. See, for exam-
ple, Paul Mozur, “Beijing wants A.I. to be made in China by 2030,” The New York 
Times, July 20, 2017.

 58. See, for example, Rio Tinto’s Mine of the Future program at riotinto.com/ aus tralia 
/ pilbara/ mine- of- the-  future-  9603.aspx.

 59. A retrospective analysis of economic growth: Jan Luiten van Zanden et al., eds., How 
Was Life? Global  Well-  Being since 1820 (OECD Publishing, 2014).

 60. The desire for relative advantage over others, rather than an absolute quality of life, is 
a positional good; see Chapter 9.

CHAPTER 4

 1. Wikipedia’s article on the Stasi has several useful references on its workforce and its 
overall impact on East German life.

 2. For details on Stasi files, see Cullen Murphy, God’s Jury: The Inquisition and the Making 
of the Modern World (Houghton Mifflin Harcourt, 2012).

 3. For a thorough analysis of AI surveillance systems, see Jay Stanley, The Dawn of Robot 
Surveillance (American Civil Liberties Union, 2019).

 4. Recent books on surveillance and control include Shoshana Zuboff, The Age of Surveil-
lance Capitalism: The Fight for a Human Future at the New Frontier of Power (PublicAf-
fairs, 2019) and Roger McNamee, Zucked: Waking Up to the Facebook Catastrophe 
(Penguin Press, 2019).

 5. News article on a blackmail bot: Avivah Litan, “Meet  Delilah—  the first insider threat 
Trojan,” Gartner Blog Network, July 14, 2016.

 6. For a  low-  tech version of human susceptibility to misinformation, in which an unsus-
pecting individual becomes convinced that the world is being destroyed by meteor 
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strikes, see Derren Brown: Apocalypse, “Part One,” directed by Simon Dinsell, 2012, 
youtube.com/ watch? v= o_ CUrMJOxqs.

 7. An economic analysis of reputation systems and their corruption is given by Steven 
Tadelis, “Reputation and feedback systems in online platform markets,” Annual Re-
view of Economics 8 (2016):  321–  40.

 8. Goodhart’s law: “Any observed statistical regularity will tend to collapse once pres-
sure is placed upon it for control purposes.” For example, there may once have been a 
correlation between faculty quality and faculty salary, so the US News & World Report 
college rankings measure faculty quality by faculty salaries. This has contributed to a 
salary arms race that benefits faculty members but not the students who pay for those 
salaries. The arms race changes faculty salaries in a way that does not depend on fac-
ulty quality, so the correlation tends to disappear.

 9. An article describing German efforts to police public discourse: Bernhard Rohleder, 
“Germany set out to delete hate speech online. Instead, it made things worse,” World-
Post, February 20, 2018.

 10. On the “infopocalypse”: Aviv Ovadya, “What’s worse than fake news? The distortion 
of reality itself,” WorldPost, February 22, 2018.

 11. On the corruption of online hotel reviews: Dina Mayzlin, Yaniv Dover, and Judith 
Chevalier, “Promotional reviews: An empirical investigation of online review manipu-
lation,” American Economic Review 104 (2014):  2421–  55.

 12. Statement of Germany at the Meeting of the Group of Governmental Experts, Con-
vention on Certain Conventional Weapons, Geneva, April 10, 2018.

 13. The Slaughterbots movie, funded by the Future of Life Institute, appeared in Novem-
ber 2017 and is available at youtube.com/ watch? v= 9CO6M2HsoIA. 

 14. For a report on one of the bigger faux pas in military public relations, see Dan Lam-
othe, “Pentagon agency wants drones to hunt in packs, like wolves,” The Washington 
Post, January 23, 2015.

 15. Announcement of a  large-  scale drone swarm experiment: US Department of Defense, 
“Department of Defense announces successful  micro-  drone demonstration,” news re-
lease no. NR- 008- 17, January 9, 2017.

 16. Examples of research centers studying the impact of technology on employment are 
the Work and Intelligent Tools and Systems group at Berkeley, the Future of Work and 
Workers project at the Center for Advanced Study in the Behavioral Sciences at Stan-
ford, and the Future of Work Initiative at Carnegie Mellon University.

 17. A pessimistic take on future technological unemployment: Martin Ford, Rise of the Ro-
bots: Technology and the Threat of a Jobless Future (Basic Books, 2015).

 18. Calum Chace, The Economic Singularity: Artificial Intelligence and the Death of Capital-
ism (Three Cs, 2016).

 19. For an excellent collection of essays, see Ajay Agrawal, Joshua Gans, and Avi Goldfarb, 
eds., The Economics of Artificial Intelligence: An Agenda (National Bureau of Economic 
Research, 2019).

 20. The mathematical analysis behind this “inverted-U” employment curve is given by 
James Bessen, “Artificial intelligence and jobs: The role of demand” in The Economics 
of Artificial Intelligence, ed. Agrawal, Gans, and Goldfarb.

 21. For a discussion of economic dislocation arising from automation, see Eduardo Porter, 
“Tech is splitting the US work force in two,” The New York Times, February 4, 2019. 
The article cites the following report for this conclusion: David Autor and Anna Salo-
mons, “Is automation  labor-  displacing? Productivity growth, employment, and the 
labor share,” Brookings Papers on Economic Activity (2018).

 22. For data on the growth of banking in the twentieth century, see Thomas Philippon, 
“The evolution of the US financial industry from 1860 to 2007: Theory and evidence,” 
working paper, 2008.

 23. The bible for jobs data and the growth and decline of occupations: US Bureau of 
 Labor Statistics, Occupational Outlook Handbook:  2018–  2019 Edition (Bernan Press, 
2018).

 24. A report on trucking automation: Lora Kolodny, “Amazon is hauling cargo in  self- 
 driving trucks developed by Embark,” CNBC, January 30, 2019.
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 25. The progress of automation in legal analytics, describing the results of a contest: Jason 
Tashea, “AI software is more accurate, faster than attorneys when assessing NDAs,” 
ABA Journal, February 26, 2018.

 26. A commentary by a distinguished economist, with a title explicitly evoking Keynes’s 
1930 article: Lawrence Summers, “Economic possibilities for our children,” NBER 
Reporter (2013).

 27. The analogy between data science employment and a small lifeboat for a giant cruise 
ship comes from a discussion with Yong Ying- I, head of Singapore’s Public Service 
Division. She conceded that it was correct on the global scale, but noted that “Singa-
pore is small enough to fit in the lifeboat.”

 28. Support for UBI from a conservative viewpoint: Sam Bowman, “The ideal welfare 
system is a basic income,” Adam Smith Institute, November 25, 2013.

 29. Support for UBI from a progressive viewpoint: Jonathan Bartley, “The Greens endorse 
a universal basic income. Others need to follow,” The Guardian, June 2, 2017.

 30. Chace, in The Economic Singularity, calls the “paradise” version of UBI the Star Trek 
economy, noting that in the more recent series of Star Trek episodes, money has been 
abolished because technology has created essentially unlimited material goods and 
energy. He also points to the massive changes in economic and social organization that 
will be needed to make such a system successful.

 31. The economist Richard Baldwin also predicts a future of personal services in his book 
The Globotics Upheaval: Globalization, Robotics, and the Future of Work (Oxford Uni-
versity Press, 2019).

 32. The book that is viewed as having exposed the failure of “ whole-  word” literacy educa-
tion and launched decades of struggle between the two main schools of thought on 
reading: Rudolf Flesch, Why Johnny Can’t Read: And What You Can Do about It 
(Harper & Bros., 1955).

 33. On educational methods that enable the recipient to adapt to the rapid rate of techno-
logical and economic change in the next few decades: Joseph Aoun,  Robot-  Proof: Higher 
Education in the Age of Artificial Intelligence (MIT Press, 2017).

 34. A radio lecture in which Turing predicted that humans would be overtaken by ma-
chines: Alan Turing, “Can digital machines think?,” May 15, 1951, radio broadcast, 
BBC Third Programme. Typescript available at turingarchive.org.

 35. News article describing the “naturalization” of Sophia as a citizen of Saudi Arabia: 
Dave Gershgorn, “Inside the mechanical brain of the world’s first robot citizen,” 
Quartz, November 12, 2017.

 36. On Yann LeCun’s view of Sophia: Shona Ghosh, “Facebook’s AI boss described Sophia 
the robot as ‘complete  b— —  t’ and ‘Wizard- of- Oz AI,’ ” Business Insider, January 
6, 2018.

 37. An EU proposal on legal rights for robots: Committee on Legal Affairs of the Euro-
pean Parliament, “Report with recommendations to the Commission on Civil Law 
Rules on Robotics (2015/ 2103(INL)),” 2017.

 38. The GDPR provision on a “right to an explanation” is not, in fact, new: it is very similar 
to Article 15(1) of the 1995 Data Protection Directive, which it supersedes.

 39. Here are three recent papers providing insightful mathematical analyses of fairness: 
Moritz Hardt, Eric Price, and Nati Srebro, “Equality of opportunity in supervised 
learning,” in Advances in Neural Information Processing Systems 29, ed. Daniel Lee et al. 
(2016); Matt Kusner et al., “Counterfactual fairness,” in Advances in Neural Informa-
tion Processing Systems 30, ed. Isabelle Guyon et al. (2017); Jon Kleinberg, Sendhil 
Mullainathan, and Manish Raghavan, “Inherent  trade-  offs in the fair determination of 
risk scores,” in 8th Innovations in Theoretical Computer Science Conference, ed. Christos 
Papadimitriou (Dagstuhl Publishing, 2017).

 40. News article describing the consequences of software failure for air traffic control: 
Simon Calder, “Thousands stranded by flight cancellations after systems failure at 
Europe’s  air-  traffic coordinator,” The Independent, April 3, 2018.
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CHAPTER 5

 1. Lovelace wrote, “The Analytical Engine has no pretensions whatever to originate any-
thing. It can do whatever we know how to order it to perform. It can follow analysis; 
but it has no power of anticipating any analytical relations or truths.” This was one of 
the arguments against AI that was refuted by Alan Turing, “Computing machinery 
and intelligence,” Mind 59 (1950):  433–  60.

 2. The earliest known article on existential risk from AI was by Richard Thornton, “The 
age of machinery,” Primitive Expounder IV (1847): 281.

 3. “The Book of the Machines” was based on an earlier article by Samuel Butler, “Darwin 
among the machines,” The Press (Christchurch, New Zealand), June 13, 1863.

 4. Another lecture in which Turing predicted the subjugation of humankind: Alan 
 Turing, “Intelligent machinery, a heretical theory” (lecture given to the 51 Society, 
Manchester, 1951). Typescript available at turingarchive.org.

 5. Wiener’s prescient discussion of technological control over humanity and a plea to 
 retain human autonomy: Norbert Wiener, The Human Use of Human Beings (Riverside 
Press, 1950).

 6. The  front-  cover blurb from Wiener’s 1950 book is remarkably similar to the motto of 
the Future of Life Institute, an organization dedicated to studying the existential risks 
that humanity faces: “Technology is giving life the potential to flourish like never 
 before . . . or to  self-  destruct.”

 7. An updating of Wiener’s views arising from his increased appreciation of the possibility 
of intelligent machines: Norbert Wiener, God and Golem, Inc.: A Comment on Certain 
Points Where Cybernetics Impinges on Religion (MIT Press, 1964).

 8. Asimov’s Three Laws of Robotics first appeared in Isaac Asimov, “Runaround,” As-
tounding Science Fiction, March 1942. The laws are as follows: 

  1.  A robot may not injure a human being or, through inaction, allow a human being to 
come to harm. 

  2.  A robot must obey the orders given it by human beings except where such orders 
would conflict with the First Law. 

  3.  A robot must protect its own existence as long as such protection does not conflict 
with the First or Second Laws. 

It is important to understand that Asimov proposed these laws as a way to generate 
interesting story plots, not as a serious guide for future roboticists. Several of his sto-
ries, including “Runaround,” illustrate the problematic consequences of taking the 
laws literally. From the standpoint of modern AI, the laws fail to acknowledge any el-
ement of probability and risk: the legality of robot actions that expose a human to 
some probability of  harm—  however  infinitesimal—  is therefore unclear.

 9. The notion of instrumental goals is due to Stephen Omohundro, “The nature of  self- 
 improving artificial intelligence” (unpublished manuscript, 2008). See also Stephen 
Omohundro, “The basic AI drives,” in Artificial General Intelligence 2008: Proceed-
ings of the First AGI Conference, ed. Pei Wang, Ben Goertzel, and Stan Franklin (IOS 
Press, 2008).

 10. The objective of Johnny Depp’s character, Will Caster, seems to be to solve the prob-
lem of physical reincarnation so that he can be reunited with his wife, Evelyn. This just 
goes to show that the nature of the overarching objective doesn’t  matter—  the instru-
mental goals are all the same.

 11. The original source for the idea of an intelligence explosion: I. J. Good, “Speculations 
concerning the first ultraintelligent machine,” in Advances in Computers, vol. 6, ed. 
Franz Alt and Morris Rubinoff (Academic Press, 1965).

 12. An example of the impact of the intelligence explosion idea: Luke Muehlhauser, in 
Facing the Intelligence Explosion (intelligenceexplosion.com), writes, “Good’s paragraph 
ran over me like a train.”
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 13. Diminishing returns can be illustrated as follows: suppose that a 16 percent improve-
ment in intelligence creates a machine capable of making an 8 percent improvement, 
which in turn creates a 4 percent improvement, and so on. This process reaches a limit 
at about 36 percent above the original level. For more discussion on these issues, see 
Eliezer Yudkowsky, “Intelligence explosion microeconomics,” technical report 2013- 1, 
Machine Intelligence Research Institute, 2013.

 14. For a view of AI in which humans become irrelevant, see Hans Moravec, Mind Chil-
dren: The Future of Robot and Human Intelligence (Harvard University Press, 1988). See 
also Hans Moravec, Robot: Mere Machine to Transcendent Mind (Oxford University 
Press, 2000).

CHAPTER 6

 1. A serious publication provides a serious review of Bostrom’s Superintelligence: Paths, 
Dangers, Strategies: “Clever cogs,” Economist, August 9, 2014.

 2. A discussion of myths and misunderstandings concerning the risks of AI: Scott Alex-
ander, “AI researchers on AI risk,” Slate Star Codex (blog), May 22, 2015.

 3. The classic work on multiple dimensions of intelligence: Howard Gardner, Frames of 
Mind: The Theory of Multiple Intelligences (Basic Books, 1983).

 4. On the implications of multiple dimensions of intelligence for the possibility of super-
human AI: Kevin Kelly, “The myth of a superhuman AI,” Wired, April 25, 2017.

 5. Evidence that chimpanzees have better  short-  term memory than humans: Sana Inoue 
and Tetsuro Matsuzawa, “Working memory of numerals in chimpanzees,” Current Bi-
ology 17 (2007),  R1004–  5.

 6. An important early work questioning the prospects for  rule-  based AI systems: Hubert 
Dreyfus, What Computers Can’t Do (MIT Press, 1972).

 7. The first in a series of books seeking physical explanations for consciousness and rais-
ing doubts about the ability of AI systems to achieve real intelligence: Roger Penrose, 
The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics (Ox-
ford University Press, 1989).

 8. A revival of the critique of AI based on the incompleteness theorem: Luciano Floridi, 
“Should we be afraid of AI?” Aeon, May 9, 2016.

 9. A revival of the critique of AI based on the Chinese room argument: John Searle, 
“What your computer can’t know,” The New York Review of Books, October 9, 2014.

 10. A report from distinguished AI researchers claiming that superhuman AI is probably 
impossible: Peter Stone et al., “Artificial intelligence and life in 2030,” One Hundred 
Year Study on Artificial Intelligence, report of the 2015 Study Panel, 2016.

 11. News article based on Andrew Ng’s dismissal of risks from AI: Chris Williams, “AI 
guru Ng: Fearing a rise of killer robots is like worrying about overpopulation on Mars,” 
Register, March 19, 2015.

 12. An example of the “experts know best” argument: Oren Etzioni, “It’s time to intelli-
gently discuss artificial intelligence,” Backchannel, December 9, 2014.

 13. News article claiming that real AI researchers dismiss talk of risks: Erik Sofge, “Bill 
Gates fears AI, but AI researchers know better,” Popular Science, January 30, 2015.

 14. Another claim that real AI researchers dismiss AI risks: David Kenny, “IBM’s open 
letter to Congress on artificial intelligence,” June 27, 2017, ibm.com/ blogs/ policy 
/  kenny-  artificial-  intelligence-  letter.

 15. Report from the workshop that proposed voluntary restrictions on genetic engineering: 
Paul Berg et al., “Summary statement of the Asilomar Conference on Recombinant 
DNA Molecules,” Proceedings of the National Academy of Sciences 72 (1975): 
 1981–  84.

 16. Policy statement arising from the invention of  CRISPR-  Cas9 for gene editing: Orga-
nizing Committee for the International Summit on Human Gene Editing, “On human 
gene editing: International Summit statement,” December 3, 2015.

 17. The latest policy statement from leading biologists: Eric Lander et al., “Adopt a mora-
torium on heritable genome editing,” Nature 567 (2019):  165–  68.
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 18. Etzioni’s comment that one cannot mention risks if one does not also mention benefits 
appears alongside his analysis of survey data from AI researchers: Oren Etzioni, “No, 
the experts don’t think superintelligent AI is a threat to humanity,” MIT Technology 
Review, September 20, 2016. In his analysis he argues that anyone who expects super-
human AI to take more than  twenty-  five  years—  which includes this author as well as 
Nick  Bostrom—  is not concerned about the risks of AI.

 19. A news article with quotations from the  Musk–  Zuckerberg “debate”: Alanna Petroff, 
“Elon Musk says Mark Zuckerberg’s understanding of AI is ‘limited,’ ” CNN Money, 
July 25, 2017.

 20. In 2015 the Information Technology and Innovation Foundation organized a debate 
titled “Are super intelligent computers really a threat to humanity?” Robert Atkinson, 
director of the foundation, suggests that mentioning risks is likely to result in reduced 
funding for AI. Video available at itif.org/ events/ 2015/ 06/ 30/  are-  super-  intelligent 
-  computers-  really-  threat-  humanity; the relevant discussion begins at 41:30.

 21. A claim that our culture of safety will solve the AI control problem without ever 
 mentioning it: Steven Pinker, “Tech prophecy and the underappreciated causal power 
of ideas,” in Possible Minds: Twenty-Five Ways of Looking at AI, ed. John Brockman 
(Penguin Press, 2019).

 22. For an interesting analysis of Oracle AI, see Stuart Armstrong, Anders Sandberg, and 
Nick Bostrom, “Thinking inside the box: Controlling and using an Oracle AI,” Minds 
and Machines 22 (2012):  299–  324.

 23. Views on why AI is not going to take away jobs: Kenny, “IBM’s open letter.”
 24. An example of Kurzweil’s positive views of merging human brains with AI: Ray 

 Kurzweil, interview by Bob Pisani, June 5, 2015, Exponential Finance Summit, New 
York, NY.

 25. Article quoting Elon Musk on neural lace: Tim Urban, “Neuralink and the brain’s 
magical future,” Wait But Why, April 20, 2017.

 26. For the most recent developments in Berkeley’s neural dust project, see David Piech et 
al., “StimDust: A 1.7 mm3, implantable wireless precision neural stimulator with ul-
trasonic power and communication,” arXiv: 1807.07590 (2018).

 27. Susan Schneider, in Artificial You: AI and the Future of Your Mind (Princeton Univer-
sity Press, 2019), points out the risks of ignorance in proposed technologies such as 
uploading and neural prostheses: that, absent any real understanding of whether elec-
tronic devices can be conscious and given the continuing philosophical confusion over 
persistent personal identity, we may inadvertently end our own conscious existences 
or inflict suffering on conscious machines without realizing that they are conscious.

 28. An interview with Yann LeCun on AI risks: Guia Marie Del Prado, “Here’s what Face-
book’s artificial intelligence expert thinks about the future,” Business Insider, Septem-
ber 23, 2015.

 29. A diagnosis of AI control problems arising from an excess of testosterone: Steven 
Pinker, “Thinking does not imply subjugating,” in What to Think About Machines That 
Think, ed. John Brockman (Harper Perennial, 2015).

 30. A seminal work on many philosophical topics, including the question of whether 
moral obligations may be perceived in the natural world: David Hume, A Treatise of 
Human Nature (John Noon, 1738).

 31. An argument that a sufficiently intelligent machine cannot help but pursue human 
objectives: Rodney Brooks, “The seven deadly sins of AI predictions,” MIT Technology 
Review, October 6, 2017.

 32. Pinker, “Thinking does not imply subjugating.”
 33. For an optimistic view arguing that AI safety problems will necessarily be resolved in 

our favor: Steven Pinker, “Tech prophecy.”
 34. On the unsuspected alignment between “skeptics” and “believers” in AI risk: Alexan-

der, “AI researchers on AI risk.”
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 1. For a guide to detailed brain modeling, now slightly outdated, see Anders Sandberg 
and Nick Bostrom, “Whole brain emulation: A roadmap,” technical report 2008- 3, 
 Future of Humanity Institute, Oxford University, 2008.

 2. For an introduction to genetic programming from a leading exponent, see John Koza, 
Genetic Programming: On the Programming of Computers by Means of Natural Selection 
(MIT Press, 1992).

 3. The parallel to Asimov’s Three Laws of Robotics is entirely coincidental.
 4. The same point is made by Eliezer Yudkowsky, “Coherent extrapolated volition,” tech-

nical report, Singularity Institute, 2004. Yudkowsky argues that directly building in 
“Four Great Moral Principles That Are All We Need to Program into AIs” is a sure 
road to ruin for humanity. His notion of the “coherent extrapolated volition of human-
kind” has the same general flavor as the first principle; the idea is that a superintelli-
gent AI system could work out what humans, collectively, really want.

 5. You can certainly have preferences over whether a machine is helping you achieve your 
preferences or you are achieving them through your own efforts. For example, sup-
pose you prefer outcome A to outcome B, all other things being equal. You are unable 
to achieve outcome A unaided, and yet you still prefer B to getting A with the ma-
chine’s help. In that case the machine should decide not to help  you—  unless perhaps 
it can do so in a way that is completely undetectable by you. You may, of course, have 
preferences about undetectable help as well as detectable help.

 6. The phrase “the greatest good of the greatest number” originates in the work of Francis 
Hutcheson, An Inquiry into the Original of Our Ideas of Beauty and Virtue, In Two Treatises 
(D. Midwinter et al., 1725). Some have ascribed the formulation to an earlier comment 
by Wilhelm Leibniz; see Joachim Hruschka, “The greatest happiness principle and other 
early German anticipations of utilitarian theory,” Utilitas 3 (1991):  165–  77.

 7. One might propose that the machine should include terms for animals as well as hu-
mans in its own objective function. If these terms have weights that correspond to how 
much people care about animals, then the end result will be the same as if the machine 
cares about animals only through caring about humans who care about animals. Giv-
ing each living animal equal weight in the machine’s objective function would cer-
tainly be catastrophic—for example, we are outnumbered fifty thousand to one by 
Antarctic krill and a billion trillion to one by bacteria.

 8. The moral philosopher Toby Ord made the same point to me in his comments on an 
early draft of this book: “Interestingly, the same is true in the study of moral philoso-
phy. Uncertainty about moral value of outcomes was almost completely neglected in 
moral philosophy until very recently. Despite the fact that it is our uncertainty of 
moral matters that leads people to ask others for moral advice and, indeed, to do re-
search on moral philosophy at all!”

 9. One excuse for not paying attention to uncertainty about preferences is that it is for-
mally equivalent to ordinary uncertainty, in the following sense: being uncertain 
about what I like is the same as being certain that I like likable things while being 
uncertain about what things are likable. This is just a trick that appears to move the 
uncertainty into the world, by making “likability by me” a property of objects rather 
than a property of me. In game theory, this trick has been thoroughly institutionalized 
since the 1960s, following a series of papers by my late colleague and Nobel laureate 
John Harsanyi: “Games with incomplete information played by ‘Bayesian’ players, 
Parts  I–  III,” Management Science 14 (1967, 1968):  159–  82,  320–  34,  486–  502. In deci-
sion theory, the standard reference is the following: Richard Cyert and Morris de 
Groot, “Adaptive utility,” in Expected Utility Hypotheses and the Allais Paradox, ed. 
Maurice Allais and Ole Hagen (D. Reidel, 1979).

 10. AI researchers working in the area of preference elicitation are an obvious exception. 
See, for example, Craig Boutilier, “On the foundations of expected expected utility,” in 
Proceedings of the 18th International Joint Conference on Artificial Intelligence (Morgan 
Kaufmann, 2003). Also Alan Fern et al., “A  decision-  theoretic model of assistance,” 
Journal of Artificial Intelligence Research 50 (2014):  71–  104.
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 11. A critique of beneficial AI based on a misinterpretation of a journalist’s brief interview 
with the author in a magazine article: Adam Elkus, “How to be good: Why you can’t 
teach human values to artificial intelligence,” Slate, April 20, 2016.

 12. The origin of trolley problems: Frank Sharp, “A study of the influence of custom on the 
moral judgment,” Bulletin of the University of Wisconsin 236 (1908).

 13. The “ anti-  natalist” movement believes it is morally wrong for humans to reproduce 
because to live is to suffer and because humans’ impact on the Earth is profoundly 
negative. If you consider the existence of humanity to be a moral dilemma, then I 
suppose I do want machines to resolve this moral dilemma the right way.

 14. Statement on China’s AI policy by Fu Ying, vice chair of the Foreign Affairs Commit-
tee of the National People’s Congress. In a letter to the 2018 World AI Conference in 
Shanghai, Chinese president Xi Jinping wrote, “Deepened international cooperation 
is required to cope with new issues in fields including law, security, employment, eth-
ics and governance.” I am indebted to Brian Tse for bringing these statements to my 
attention.

 15. A very interesting paper on the  non-  naturalistic  non-  fallacy, showing how preferences 
can be inferred from the state of the world as arranged by humans: Rohin Shah et al., 
“The implicit preference information in an initial state,” in Proceedings of the 7th Inter-
national Conference on Learning Representations (2019), iclr.cc/ Conferences/ 2019 
/ Schedule.

 16. Retrospective on Asilomar: Paul Berg, “Asilomar 1975: DNA modification secured,” 
Nature 455 (2008):  290–  91.

 17. News article reporting Putin’s speech on AI: “Putin: Leader in artificial intelligence 
will rule world,” Associated Press, September 4, 2017.

CHAPTER 8

 1. Fermat’s Last Theorem asserts that the equation an = bn + cn has no solutions with a, b, 
and c being whole numbers and n being a whole number larger than 2. In the margin 
of his copy of Diophantus’s Arithmetica, Fermat wrote, “I have a truly marvellous proof 
of this proposition which this margin is too narrow to contain.” True or not, this guar-
anteed that mathematicians pursued a proof with vigor in the subsequent centuries. 
We can easily check particular  cases—  for example, is 73 equal to 63 + 53? (Almost, 
because 73 is 343 and 63 + 53 is 341, but “almost” doesn’t count.) There are, of course, 
infinitely many cases to check, and that’s why we need mathematicians and not just 
computer programmers.

 2. A paper from the Machine Intelligence Research Institute poses many related issues: 
Scott Garrabrant and Abram Demski, “Embedded agency,” AI Alignment Forum, No-
vember 15, 2018.

 3. The classic work on multiattribute utility theory: Ralph Keeney and Howard Raiffa, 
Decisions with Multiple Objectives: Preferences and Value Tradeoffs (Wiley, 1976).

 4. Paper introducing the idea of inverse RL: Stuart Russell, “Learning agents for uncer-
tain environments,” in Proceedings of the 11th Annual Conference on Computational 
Learning Theory (ACM, 1998).

 5. The original paper on structural estimation of Markov decision processes: Thomas 
Sargent, “Estimation of dynamic labor demand schedules under rational expectations,” 
Journal of Political Economy 86 (1978):  1009–  44.

 6. The first algorithms for IRL: Andrew Ng and Stuart Russell, “Algorithms for inverse 
reinforcement learning,” in Proceedings of the 17th International Conference on Machine 
Learning, ed. Pat Langley (Morgan Kaufmann, 2000).

 7. Better algorithms for inverse RL: Pieter Abbeel and Andrew Ng, “Apprenticeship learn-
ing via inverse reinforcement learning,” in Proceedings of the 21st International Conference 
on Machine Learning, ed. Russ Greiner and Dale Schuurmans (ACM Press, 2004).

 8. Understanding inverse RL as Bayesian updating: Deepak Ramachandran and Eyal 
Amir, “Bayesian inverse reinforcement learning,” in Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence, ed. Manuela Veloso (AAAI Press, 
2007).
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 9. How to teach helicopters to fly and do aerobatic maneuvers: Adam Coates, Pieter 
Abbeel, and Andrew Ng, “Apprenticeship learning for helicopter control,” Communi-
cations of the ACM 52 (2009):  97–  105.

 10. The original name proposed for an assistance game was a cooperative inverse reinforce-
ment learning game, or CIRL game. See Dylan  Hadfield-  Menell et al., “Cooperative 
inverse reinforcement learning,” in Advances in Neural Information Processing Systems 
29, ed. Daniel Lee et al. (2016).

 11. These numbers are chosen just to make the game interesting.
 12. The equilibrium solution to the game can be found by a process called iterated best re-

sponse: pick any strategy for Harriet; pick the best strategy for Robbie, given Harriet’s 
strategy; pick the best strategy for Harriet, given Robbie’s strategy; and so on. If this 
process reaches a fixed point, where neither strategy changes, then we have found a 
solution. The process unfolds as follows:

  1.  Start with the greedy strategy for Harriet: make 2 paperclips if she prefers paper-
clips; make 1 of each if she is indifferent; make 2 staples if she prefers staples.

  2.  There are three possibilities Robbie has to consider, given this strategy for Harriet:
   a.  If Robbie sees Harriet make 2 paperclips, he infers that she prefers paperclips, so 

he now believes the value of a paperclip is uniformly distributed between 50¢ and 
$1.00, with an average of 75¢. In that case, his best plan is to make 90 paperclips 
with an expected value of $67.50 for Harriet.

   b.  If Robbie sees Harriet make 1 of each, he infers that she values paperclips and 
staples at 50¢, so the best choice is to make 50 of each.

   c.  If Robbie sees Harriet make 2 staples, then by the same argument as in 2(a), he 
should make 90 staples.

  3.  Given this strategy for Robbie, Harriet’s best strategy is now somewhat different 
from the greedy strategy in step 1: if Robbie is going to respond to her making 1 of 
each by making 50 of each, then she is better off making 1 of each not just if she is 
exactly indifferent but if she is anywhere close to indifferent. In fact, the optimal 
policy is now to make 1 of each if she values paperclips anywhere between about 
44.6¢ and 55.4¢.

  4.  Given this new strategy for Harriet, Robbie’s strategy remains unchanged. For ex-
ample, if she chooses 1 of each, he infers that the value of a paperclip is uniformly 
distributed between 44.6¢ and 55.4¢, with an average of 50¢, so the best choice is 
to make 50 of each. Because Robbie’s strategy is the same as in step 2, Harriet’s best 
response will be the same as in step 3, and we have found the equilibrium.

 13. For a more complete analysis of the  off-  switch game, see Dylan  Hadfield-  Menell et al., 
“The  off-  switch game,” in Proceedings of the 26th International Joint Conference on Arti-
ficial Intelligence, ed. Carles Sierra (IJCAI, 2017).

 14. The proof of the general result is quite simple if you don’t mind integral signs. Let P(u) 
be Robbie’s prior probability density over Harriet’s utility for the proposed action a. 
Then the value of going ahead with a is 

  (We will see shortly why the integral is split up in this way.) On the other hand, the 
value of action d, deferring to Harriet, is composed of two parts: if u > 0, then Harriet 
lets Robbie go ahead, so the value is u, but if u < 0, then Harriet switches Robbie off, 
so the value is 0: 

  Comparing the expressions for EU(a) and EU(d), we see immediately that EU(d) ≥ 
EU(a) because the expression for EU(d) has the  negative-  utility region zeroed out. 
The two choices have equal value only when the negative region has zero probability—
that is, when Robbie is already certain that Harriet likes the proposed action. The 
theorem is a direct analog of the  well-  known theorem concerning the  non-  negative 
expected value of information. 

EU a( ) P(u) u du P(u) u du P(u) u du0
0= ⋅ =∫ ⋅ + ⋅∫∫−∞

∞ ∞

−∞

EU d( ) P(u) 0 du P(u) u du0
0= ⋅ + ⋅∫∫

∞

−∞
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 15. Perhaps the next elaboration in line, for the one  human–  one robot case, is to consider 
a Harriet who does not yet know her own preferences regarding some aspect of the 
world, or whose preferences have not yet been formed.

 16. To see how exactly Robbie converges to an incorrect belief, consider a model in which 
Harriet is slightly irrational, making errors with a probability that diminishes expo-
nentially as the size of error increases. Robbie offers Harriet 4 paperclips in return for 
1 staple; she refuses. According to Robbie’s beliefs, this is irrational: even at 25¢ per 
paperclip and 75¢ per staple, she should accept 4 for 1. Therefore, she must have made 
a  mistake—  but this mistake is much more likely if her true value is 25¢ than if it is, say, 
30¢, because the error costs her a lot more if her value for paperclips is 30¢. Now 
Robbie’s probability distribution has 25¢ as the most likely value because it represents 
the smallest error on Harriet’s part, with exponentially lower probabilities for values 
higher than 25¢. If he keeps trying the same experiment, the probability distribution 
becomes more and more concentrated close to 25¢. In the limit, Robbie becomes cer-
tain that Harriet’s value for paperclips is 25¢.

 17. Robbie could, for example, have a normal (Gaussian) distribution for his prior belief 
about the exchange rate, which stretches from −∞ to +∞.

 18. For an example of the kind of mathematical analysis that may be needed, see Avrim 
Blum, Lisa Hellerstein, and Nick Littlestone, “Learning in the presence of finitely or 
infinitely many irrelevant attributes,” Journal of Computer and System Sciences 50 
(1995):  32–  40. Also Lori Dalton, “Optimal Bayesian feature selection,” in Proceedings 
of the 2013 IEEE Global Conference on Signal and Information Processing, ed. Charles 
Bouman, Robert Nowak, and Anna Scaglione (IEEE, 2013).

 19. Here I am rephrasing slightly a question by Moshe Vardi at the Asilomar Conference 
on Beneficial AI, 2017.

 20. Michael Wellman and Jon Doyle, “Preferential semantics for goals,” in Proceedings of 
the 9th National Conference on Artificial Intelligence (AAAI Press, 1991). This paper 
draws on a much earlier proposal by Georg von Wright, “The logic of preference recon-
sidered,” Theory and Decision 3 (1972):  140–  67.

 21. My late Berkeley colleague has the distinction of becoming an adjective. See Paul 
Grice, Studies in the Way of Words (Harvard University Press, 1989).

 22. The original paper on direct stimulation of pleasure centers in the brain: James Olds 
and Peter Milner, “Positive reinforcement produced by electrical stimulation of septal 
area and other regions of rat brain,” Journal of Comparative and Physiological Psychology 
47 (1954):  419–  27.

 23. Letting rats push the button: James Olds, “ Self-  stimulation of the brain; its use to 
study local effects of hunger, sex, and drugs,” Science 127 (1958):  315–  24.

 24. Letting humans push the button: Robert Heath, “Electrical  self-  stimulation of the 
brain in man,” American Journal of Psychiatry 120 (1963):  571–  77.

 25. A first mathematical treatment of wireheading, showing how it occurs in reinforce-
ment learning agents: Mark Ring and Laurent Orseau, “Delusion, survival, and intelli-
gent agents,” in Artificial General Intelligence: 4th International Conference, ed. Jürgen 
Schmidhuber, Kristinn Thórisson, and Moshe Looks (Springer, 2011). One possible 
solution to the wireheading problem: Tom Everitt and Marcus Hutter, “Avoiding wire-
heading with value reinforcement learning,” arXiv:1605.03143 (2016).

 26. How it might be possible for an intelligence explosion to occur safely: Benja Fallen-
stein and Nate Soares, “Vingean reflection: Reliable reasoning for  self-  improving 
agents,” technical report 2015- 2, Machine Intelligence Research Institute, 2015.

 27. The difficulty agents face in reasoning about themselves and their successors: Benja 
Fallenstein and Nate Soares, “Problems of  self-  reference in  self-  improving  space-  time 
embedded intelligence,” in Artificial General Intelligence: 7th International Conference, 
ed. Ben Goertzel, Laurent Orseau, and Javier Snaider (Springer, 2014).

 28. Showing why an agent might pursue an objective different from its true objective if its 
computational abilities are limited: Jonathan Sorg, Satinder Singh, and Richard Lewis, 
“Internal rewards mitigate agent boundedness,” in Proceedings of the 27th International 
Conference on Machine Learning, ed. Johannes Fürnkranz and Thorsten Joachims (2010), 
  icml.cc/ Conferences/ 2010/ papers/ icml2010proceedings.zip.
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318 NOTES

 1. Some have argued that biology and neuroscience are also directly relevant. See, for 
example, Gopal Sarma, Adam Safron, and Nick Hay, “Integrative biological simula-
tion, neuropsychology, and AI safety,” arxiv.org/ abs/ 1811.03493 (2018).

 2. On the possibility of making computers liable for damages: Paulius Čerka, Jurgita 
Grigienė, and Gintarė Sirbikytė, “Liability for damages caused by artificial intelli-
gence,” Computer Law and Security Review 31 (2015):  376–  89.

 3. For an excellent  machine-  oriented introduction to standard ethical theories and their 
implications for designing AI systems, see Wendell Wallach and Colin Allen, Moral 
Machines: Teaching Robots Right from Wrong (Oxford University Press, 2008).

 4. The sourcebook for utilitarian thought: Jeremy Bentham, An Introduction to the Prin-
ciples of Morals and Legislation (T. Payne & Son, 1789).

 5. Mill’s elaboration of his tutor Bentham’s ideas was extraordinarily influential on lib-
eral thought: John Stuart Mill, Utilitarianism (Parker, Son & Bourn, 1863).

 6. The paper introducing preference utilitarianism and preference autonomy: John 
Harsanyi, “Morality and the theory of rational behavior,” Social Research 44 (1977): 
 623–  56.

 7. An argument for social aggregation via weighted sums of utilities when deciding on 
behalf of multiple individuals: John Harsanyi, “Cardinal welfare, individualistic eth-
ics, and interpersonal comparisons of utility,” Journal of Political Economy 63 (1955): 
 309–  21.

 8. A generalization of Harsanyi’s social aggregation theorem to the case of unequal prior 
beliefs: Andrew Critch, Nishant Desai, and Stuart Russell, “Negotiable reinforce-
ment learning for Pareto optimal sequential  decision-  making,” in Advances in Neural 
Information Processing Systems 31, ed. Samy Bengio et al. (2018).

 9. The sourcebook for ideal utilitarianism: G. E. Moore, Ethics (Williams & Nor-
gate, 1912).

 10. News article citing Stuart Armstrong’s colorful example of misguided utility maximi-
zation: Chris Matyszczyk, “Professor warns robots could keep us in coffins on heroin 
drips,” CNET, June 29, 2015.

 11. Popper’s theory of negative utilitarianism (so named later by Smart): Karl Popper, The 
Open Society and Its Enemies (Routledge, 1945).

 12. A refutation of negative utilitarianism: R. Ninian Smart, “Negative utilitarianism,” 
Mind 67 (1958):  542–  43.

 13. For a typical argument for risks arising from “end human suffering” commands, see 
“Why do we think AI will destroy us?,” Reddit, reddit.com/ r/ Futurology/ com ments 
/ 38fp6o/ why_ do_ we_ think_ ai_ will_ destroy_ us.

 14. A good source for  self-  deluding incentives in AI: Ring and Orseau, “ Delusion, survival, 
and intelligent agents.”

 15. On the impossibility of interpersonal comparisons of utility: W. Stanley Jevons, The 
Theory of Political Economy (Macmillan, 1871).

 16. The utility monster makes its appearance in Robert Nozick, Anarchy, State, and Uto-
pia (Basic Books, 1974).

 17. For example, we can fix immediate death to have a utility of 0 and a maximally happy 
life to have a utility of 1. See John Isbell, “Absolute games,” in Contributions to the 
Theory of Games, vol. 4, ed. Albert Tucker and R. Duncan Luce (Princeton University 
Press, 1959).

 18. The oversimplified nature of Thanos’s  population-  halving policy is discussed by Tim 
Harford, “Thanos shows us how not to be an economist,” Financial Times, April 20, 
2019. Even before the film debuted, defenders of Thanos began to congregate on the 
subreddit r/ thanosdidnothingwrong/. In keeping with the subreddit’s motto, 350,000 
of the 700,000 members were later purged.

 19. On utilities for populations of different sizes: Henry Sidgwick, The Methods of Ethics 
(Macmillan, 1874).

 20. The Repugnant Conclusion and other knotty problems of utilitarian thinking: Derek 
Parfit, Reasons and Persons (Oxford University Press, 1984).
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 21. For a concise summary of axiomatic approaches to population ethics, see Peter Eckers-
ley, “Impossibility and uncertainty theorems in AI value alignment,” in Proceedings of the 
AAAI Workshop on Artificial Intelligence Safety, ed. Huáscar Espinoza et al. (2019).

 22. Calculating the  long-  term carrying capacity of the Earth: Daniel O’Neill et al., “A 
good life for all within planetary boundaries,” Nature Sustainability 1 (2018):  88–  95.

 23. For an application of moral uncertainty to population ethics, see Hilary Greaves and 
Toby Ord, “Moral uncertainty about population axiology,” Journal of Ethics and Social 
Philosophy 12 (2017):  135–  67. A more comprehensive analysis is provided by Will 
MacAskill, Krister Bykvist, and Toby Ord, Moral Uncertainty (Oxford University 
Press, forthcoming).

 24. Quotation showing that Smith was not so obsessed with selfishness as is commonly 
imagined: Adam Smith, The Theory of Moral Sentiments (Andrew Millar; Alexander 
Kincaid and J. Bell, 1759).

 25. For an introduction to the economics of altruism, see  Serge-  Christophe Kolm and Jean 
Ythier, eds., Handbook of the Economics of Giving, Altruism and Reciprocity, 2 vols. 
( North-  Holland, 2006).

 26. On charity as selfish: James Andreoni, “Impure altruism and donations to public 
goods: A theory of  warm-  glow giving,” Economic Journal 100 (1990):  464–  77.

 27. For those who like equations: let Alice’s intrinsic  well-  being be measured by wA and 
Bob’s by wB. Then the utilities for Alice and Bob are defined as follows: 

UA = wA + CAB wB
UB = wB + CBA wA.

Some authors suggest that Alice cares about Bob’s overall utility UB rather than just 
his intrinsic  well-  being wB, but this leads to a kind of circularity in that Alice’s utility 
depends on Bob’s utility which depends on Alice’s utility; sometimes stable solutions 
can be found but the underlying model can be questioned. See, for example, Hajime 
Hori, “Nonpaternalistic altruism and functional interdependence of social prefer-
ences,” Social Choice and Welfare 32 (2009):  59–  77.

 28. Models in which each individual’s utility is a linear combination of everyone’s  well- 
 being are just one possibility. Much more general models are  possible—  for example, 
models in which some individuals prefer to avoid severe inequalities in the distribu-
tion of  well-  being, even at the expense of reducing the total, while other individuals 
would really prefer that no one have preferences about inequality at all. Thus, the 
overall approach I am proposing accommodates multiple moral theories held by indi-
viduals; at the same time, it doesn’t insist that any one of those moral theories is cor-
rect or should have much sway over outcomes for those who hold a different theory. I 
am indebted to Toby Ord for pointing out this feature of the approach.

 29. Arguments of this type have been made against policies designed to ensure equality of 
outcome, notably by the American legal philosopher Ronald Dworkin. See, for example, 
Ronald Dworkin, “What is equality? Part 1: Equality of welfare,” Philosophy and Public 
Affairs 10 (1981):  185–  246. I am indebted to Iason Gabriel for this reference.

 30. Malice in the form of  revenge-  based punishment for transgressions is certainly a com-
mon tendency. Although it plays a social role in keeping members of a community in 
line, it can be replaced by an equally effective policy driven by deterrence and 
 prevention—  that is, weighing the intrinsic harm done when punishing the transgres-
sor against the benefits to the larger society.

 31. Let EAB and PAB be Alice’s coefficients of envy and pride respectively, and assume that 
they apply to the difference in  well-  being. Then a (somewhat oversimplified) formula 
for Alice’s utility could be the following:

UA = wA + CAB wB –  EAB (wB –  wA) + PAB (wA –  wB)
     = (1 + EAB + PAB) wA + (CAB –  EAB –  PAB) wB.

Thus, if Alice has positive pride and envy coefficients, they act on Bob’s welfare ex-
actly like sadism and malice coefficients: Alice is happier if Bob’s welfare is lowered, 
all other things being equal. In reality, pride and envy typically apply not to differ-
ences in  well-  being but to differences in visible aspects thereof, such as status and 
possessions. Bob’s hard toil in acquiring his possessions (which lowers his overall 
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320 NOTES

 well-  being) may not be visible to Alice. This can lead to the  self-  defeating behaviors 
that go under the heading of “keeping up with the Joneses.”

 32. On the sociology of conspicuous consumption: Thorstein Veblen, The Theory of the 
Leisure Class: An Economic Study of Institutions (Macmillan, 1899).

 33. Fred Hirsch, The Social Limits to Growth (Routledge & Kegan Paul, 1977).
 34. I am indebted to Ziyad Marar for pointing me to social identity theory and its impor-

tance in understanding human motivation and behavior. See, for example, Dominic 
Abrams and Michael Hogg, eds., Social Identity Theory: Constructive and Critical Ad-
vances (Springer, 1990). For a much briefer summary of the main ideas, see Ziyad 
Marar, “Social identity,” in This Idea Is Brilliant: Lost, Overlooked, and Underappreci-
ated Scientific Concepts Everyone Should Know, ed. John Brockman (Harper Perennial, 
2018).

 35. Here, I am not suggesting that we necessarily need a detailed understanding of the 
neural implementation of cognition; what is needed is a model at the “software” level 
of how preferences, both explicit and implicit, generate behavior. Such a model would 
need to incorporate what is known about the reward system.

 36. Ralph Adolphs and David Anderson, The Neuroscience of Emotion: A New Synthesis 
(Princeton University Press, 2018).

 37. See, for example, Rosalind Picard, Affective Computing, 2nd ed. (MIT Press, 1998).
 38. Waxing lyrical on the delights of the durian: Alfred Russel Wallace, The Malay Archi-

pelago: The Land of the  Orang-  Utan, and the Bird of Paradise (Macmillan, 1869).
 39. A less rosy view of the durian: Alan Davidson, The Oxford Companion to Food (Oxford 

University Press, 1999). Buildings have been evacuated and planes turned around in 
 mid-  flight because of the durian’s overpowering odor.

 40. I discovered after writing this chapter that the durian was used for exactly the same 
philosophical purpose by Laurie Paul, Transformative Experience (Oxford University 
Press, 2014). Paul suggests that uncertainty about one’s own preferences presents fatal 
problems for decision theory, a view contradicted by Richard Pettigrew, “Transforma-
tive experience and decision theory,” Philosophy and Phenomenological Research 91 
(2015): 766–  74. Neither author refers to the early work of Harsanyi, “Games with in-
complete information, Parts  I–  III,” or Cyert and de Groot, “Adaptive utility.”

 41. An initial paper on helping humans who don’t know their own preferences and are 
learning about them: Lawrence Chan et al., “The assistive  multi-  armed bandit,” in 
Proceedings of the 14th ACM/ IEEE International Conference on  Human–  Robot Interac-
tion (HRI), ed. David Sirkin et al. (IEEE, 2019).

 42. Eliezer Yudkowsky, in Coherent Extrapolated Volition (Singularity Institute, 2004), 
lumps all these aspects, as well as plain inconsistency, under the heading of muddle—  a 
term that has not, unfortunately, caught on.

 43. On the two selves who evaluate experiences: Daniel Kahneman, Thinking, Fast and 
Slow (Farrar, Straus & Giroux, 2011).

 44. Edgeworth’s hedonimeter, an imaginary device for measuring happiness moment to 
moment: Francis Edgeworth, Mathematical Psychics: An Essay on the Application of 
Mathematics to the Moral Sciences (Kegan Paul, 1881).

 45. A standard text on sequential decisions under uncertainty: Martin Puterman, Markov 
Decision Processes: Discrete Stochastic Dynamic Programming (Wiley, 1994).

 46. On axiomatic assumptions that justify additive representations of utility over time: 
Tjalling Koopmans, “Representation of preference orderings over time,” in Decision 
and Organization, ed. C. Bartlett McGuire, Roy Radner, and Kenneth Arrow ( North- 
 Holland, 1972).

 47. The 2019 humans (who might, in 2099, be long dead or might just be the earlier selves 
of 2099 humans) might wish to build the machines in a way that respects the 2019 
preferences of the 2019 humans rather than pandering to the undoubtedly shallow and 
 ill-  considered preferences of humans in 2099. This would be like drawing up a consti-
tution that disallows any amendments. If the 2099 humans, after suitable delibera-
tion, decide they wish to override the preferences built in by the 2019 humans, it 
seems reasonable that they should be able to do so. After all, it is they and their de-
scendants who have to live with the consequences.
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 48. I am indebted to Wendell Wallach for this observation.
 49. An early paper dealing with changes in preferences over time: John Harsanyi, “Welfare 

economics of variable tastes,” Review of Economic Studies 21 (1953):  204–  13. A more 
recent (and somewhat technical) survey is provided by Franz Dietrich and Christian 
List, “Where do preferences come from?,” International Journal of Game Theory 42 
(2013):  613–  37. See also Laurie Paul, Transformative Experience (Oxford University 
Press, 2014), and Richard Pettigrew, “Choosing for Changing Selves,” philpapers.org 
/ archive/ PETCFC.pdf.

 50. For a rational analysis of irrationality, see Jon Elster, Ulysses and the Sirens: Studies in 
Rationality and Irrationality (Cambridge University Press, 1979).

 51. For promising ideas on cognitive prostheses for humans, see Falk Lieder, “Beyond 
bounded rationality:  Reverse-  engineering and enhancing human intelligence” (PhD 
thesis, University of California, Berkeley, 2018).

 1. On the application of assistance games to driving: Dorsa Sadigh et al., “Planning for 
cars that coordinate with people,” Autonomous Robots 42 (2018):  1405–  26.

 2. Apple is, curiously, absent from this list. It does have an AI research group and is 
ramping up rapidly. Its traditional culture of secrecy means that its impact in the mar-
ketplace of ideas is quite limited so far.

 3. Max Tegmark, interview, Do You Trust This Computer?, directed by Chris Paine, writ-
ten by Mark Monroe (2018).

 4. On estimating the impact of cybercrime: “Cybercrime cost $600 billion and targets 
banks first,” Security Magazine, February 21, 2018.

APPENDIX A

 1. The basic plan for chess programs of the next sixty years: Claude Shannon, “Program-
ming a computer for playing chess,” Philosophical Magazine, 7th ser., 41 (1950):  256– 
 75. Shannon’s proposal drew on a  centuries-  long tradition of evaluating chess positions 
by adding up piece values; see, for example, Pietro Carrera, Il gioco degli scacchi 
(Giovanni de Rossi, 1617).

 2. A report describing Samuel’s heroic research on an early reinforcement learning algo-
rithm for checkers: Arthur Samuel, “Some studies in machine learning using the game 
of checkers,” IBM Journal of Research and Development 3 (1959):  210–  29.

 3. The concept of rational metareasoning and its application to search and game playing 
emerged from the thesis research of my student Eric Wefald, who died tragically in a 
car accident before he could write up his work; the following appeared posthumously: 
Stuart Russell and Eric Wefald, Do the Right Thing: Studies in Limited Rationality (MIT 
Press, 1991). See also Eric Horvitz, “Rational metareasoning and compilation for opti-
mizing decisions under bounded resources,” in Computational Intelligence, II: Proceed-
ings of the International Symposium, ed. Francesco Gardin and Giancarlo Mauri 
( North-  Holland, 1990); and Stuart Russell and Eric Wefald, “On optimal  game-  tree 
search using rational  meta-  reasoning,” in Proceedings of the 11th International Joint 
 Conference on Artificial Intelligence, ed. Natesa Sridharan (Morgan Kaufmann, 1989).

 4. Perhaps the first paper showing how hierarchical organization reduces the combinato-
rial complexity of planning: Herbert Simon, “The architecture of complexity,” Pro-
ceedings of the American Philosophical Society 106 (1962):  467–  82.

 5. The canonical reference for hierarchical planning is Earl Sacerdoti, “Planning in a 
 hierarchy of abstraction spaces,” Artificial Intelligence 5 (1974):  115–  35. See also Aus-
tin Tate, “Generating project networks,” in Proceedings of the 5th International Joint 
Conference on Artificial Intelligence, ed. Raj Reddy (Morgan Kaufmann, 1977).

 6. A formal definition of what  high-  level actions do: Bhaskara Marthi, Stuart Russell, 
and Jason Wolfe, “Angelic semantics for  high-  level actions,” in Proceedings of the 17th 
International Conference on Automated Planning and Scheduling, ed. Mark Boddy, Maria 
Fox, and Sylvie Thiébaux (AAAI Press, 2007).
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APPENDIX B

 1. This example is unlikely to be from Aristotle, but may have originated with Sextus 
Empiricus, who lived probably in the second or third century CE.

 2. The first algorithm for  theorem-  proving in  first-  order logic worked by reducing  first- 
 order sentences to (very large numbers of) propositional sentences: Martin Davis and 
Hilary Putnam, “A computing procedure for quantification theory,” Journal of the 
ACM 7 (1960):  201–  15.

 3. An improved algorithm for propositional inference: Martin Davis, George Logemann, 
and Donald Loveland, “A machine program for  theorem-  proving,” Communications of 
the ACM 5 (1962):  394–  97.

 4. The satisfiability  problem—  deciding whether a collection of sentences is true in some 
 world—  is NP- complete. The reasoning  problem—  deciding whether a sentence fol-
lows from the known  sentences—  is co- NP- complete, a class that is thought to be 
harder than NP- complete problems.

 5. There are two exceptions to this rule: no repetition (a stone may not be played that 
returns the board to a situation that existed previously) and no suicide (a stone may 
not be placed such that it would immediately be  captured—  for example, if it is already 
surrounded).

 6. The work that introduced  first-  order logic as we understand it today (Begriffsschrift 
means “concept writing”): Gottlob Frege, Begriffsschrift, eine der arithmetischen nachge-
bildete Formelsprache des reinen Denkens (Halle, 1879). Frege’s notation for  first-  order 
logic was so bizarre and unwieldy that it was soon replaced by the notation introduced 
by Giuseppe Peano, which remains in common use today.

 7. A summary of Japan’s bid for supremacy through  knowledge-  based systems: Edward 
Feigenbaum and Pamela McCorduck, The Fifth Generation: Artificial Intelligence and 
Japan’s Computer Challenge to the World ( Addison-  Wesley, 1983).

 8. The US efforts included the Strategic Computing Initiative and the formation of the 
Microelectronics and Computer Technology Corporation (MCC). See Alex Roland 
and Philip Shiman, Strategic Computing: DARPA and the Quest for Machine Intelligence, 
 1983–  1993 (MIT Press, 2002).

 9. A history of Britain’s response to the re- emergence of AI in the 1980s: Brian Oakley 
and Kenneth Owen, Alvey: Britain’s Strategic Computing Initiative (MIT Press, 1990).

 10. The origin of the term GOFAI: John Haugeland, Artificial Intelligence: The Very Idea 
(MIT Press, 1985).

 11. Interview with Demis Hassabis on the future of AI and deep learning: Nick Heath, 
“Google DeepMind founder Demis Hassabis: Three truths about AI,” TechRepublic, 
September 24, 2018.

APPENDIX C

 1. Pearl’s work was recognized by the Turing Award in 2011.
 2. Bayes nets in more detail: Every node in the network is annotated with the probability 

of each possible value, given each possible combination of values for the node’s parents 
(that is, those nodes that point to it). For example, the probability that Doubles12 has 
value true is 1.0 when D1 and D2 have the same value, and 0.0 otherwise. A possible 
world is an assignment of values to all the nodes. The probability of such a world is the 
product of the appropriate probabilities from each of the nodes.

 3. A compendium of applications of Bayes nets: Olivier Pourret, Patrick Naïm, and Bruce 
Marcot, eds., Bayesian Networks: A Practical Guide to Applications (Wiley, 2008).

 4. The basic paper on probabilistic programming: Daphne Koller, David McAllester, and 
Avi Pfeffer, “Effective Bayesian inference for stochastic programs,” in Proceedings of the 
14th National Conference on Artificial Intelligence (AAAI Press, 1997). For many addi-
tional references, see  probabilistic-  programming.org.

 5. Using probabilistic programs to model human concept learning: Brenden Lake, Ruslan 
Salakhutdinov, and Joshua Tenenbaum, “ Human-  level concept learning through prob-
abilistic program induction,” Science 350 (2015):  1332–  38.
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 6. For a detailed description of the seismic monitoring application and associated probabil-
ity model, see Nimar Arora, Stuart Russell, and Erik Sudderth, “ NET-  VISA: Network 
processing vertically integrated seismic analysis,” Bulletin of the Seismological Society of 
America 103 (2013):  709–  29.

 7. News article describing one of the first serious  self-  driving car crashes: Ryan Ran-
dazzo, “Who was at fault in  self-  driving Uber crash? Accounts in Tempe police report 
disagree,” Republic (azcentral.com), March 29, 2017.

APPENDIX D

 1. The foundational discussion of inductive learning: David Hume, Philosophical Essays 
Concerning Human Understanding (A. Millar, 1748).

 2. Leslie Valiant, “A theory of the learnable,” Communications of the ACM 27 (1984): 
 1134–  42. See also Vladimir Vapnik, Statistical Learning Theory (Wiley, 1998). Val-
iant’s approach concentrated on computational complexity, Vapnik’s on statistical 
analysis of the learning capacity of various classes of hypotheses, but both shared a 
common theoretical core connecting data and predictive accuracy.

 3. For example, to learn the difference between the “situational superko” and “natural 
situational superko” rules, the learning algorithm would have to try repeating a board 
position that it had created previously by a pass rather than by playing a stone. The 
results would be different in different countries.

 4. For a description of the ImageNet competition, see Olga Russakovsky et al., “Ima-
geNet large scale visual recognition challenge,” International Journal of Computer 
 Vision 115 (2015):  211–  52.

 5. The first demonstration of deep networks for vision: Alex Krizhevsky, Ilya Sutskever, 
and Geoffrey Hinton, “ImageNet classification with deep convolutional neural net-
works,” in Advances in Neural Information Processing Systems 25, ed. Fernando Pereira 
et al. (2012).

 6. The difficulty of distinguishing over one hundred breeds of dogs: Andrej Karpathy, 
“What I learned from competing against a ConvNet on ImageNet,” Andrej Karpathy 
Blog, September 2, 2014.

 7. Blog post on inceptionism research at Google: Alexander Mordvintsev, Christopher 
Olah, and Mike Tyka, “Inceptionism: Going deeper into neural networks,” Google AI 
Blog, June 17, 2015. The idea seems to have originated with J. P. Lewis, “Creation by 
refinement: A creativity paradigm for gradient descent learning networks,” in Proceed-
ings of the IEEE International Conference on Neural Networks (IEEE, 1988).

 8. News article on Geoff Hinton having second thoughts about deep networks: Steve 
LeVine, “Artificial intelligence pioneer says we need to start over,” Axios, September 
15, 2017.

 9. A catalog of shortcomings of deep learning: Gary Marcus, “Deep learning: A critical 
appraisal,” arXiv:1801.00631 (2018).

 10. A popular textbook on deep learning, with a frank assessment of its weaknesses: 
François Chollet, Deep Learning with Python (Manning Publications, 2017).

 11. An explanation of  explanation-  based learning: Thomas Dietterich, “Learning at the 
knowledge level,” Machine Learning 1 (1986):  287–  315.

 12. A superficially quite different explanation of  explanation-  based learning: John Laird, 
Paul Rosenbloom, and Allen Newell, “Chunking in Soar: The anatomy of a general 
learning mechanism,” Machine Learning 1 (1986):  11–  46.
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Page 7 — Figure 2: (b) © The Sun / News Licensing; (c) Courtesy of 
Smithsonian Institution Archives. 

Page 52 — Figure 4: © SRI International. creativecommons.org/licenses 
/by/3.0/legalcode.

Page 72 — Figure 5: (left) © Berkeley AI Research Lab; (right) © Boston 
Dynamics. 

Page 88 — Figure 6: © The Saul Steinberg Foundation / Artists Rights 
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Page 111 — Figure 7: (left) © Noam Eshel, Defense Update; (right) © 
Future of Life Institute / Stuart Russell. 
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Page 127 — Figure 11: Elysium © 2013 MRC II Distribution Company 
L.P. All Rights Reserved. Courtesy of Columbia Pictures. 

Page 258 — Figure 14: © OpenStreetMap contributors.  
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Page 284 — Figure 20: (right) Courtesy of the Tempe Police 

Department. 
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personal assistants, 67–68
action potentials, 15
actions, discovering, 87–90
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Ada, Countess of Lovelace.  

See Lovelace, Ada
adaptive organisms, 18–19
agent. See intelligent agent
agent program, 48
“AI Researchers on AI Risk” 
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Alciné, Jacky, 60
Alexander, Scott, 146, 153, 169–70
algorithms, 33–34

Bayesian networks and, 275–77
Bayesian updating, 283, 284
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completeness theorem and, 51–52
computer hardware and, 34–35
content selection, 8–9, 105
deep learning, 58–59, 288–93
dynamic programming, 54–55
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and, 38–39
halting problem and, 37–38
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260–61
propositional logic and, 268–70
reinforcement learning, 55–57, 105
subroutines within, 34
supervised learning, 58–59, 285–93

Alibaba, 250
AlphaGo, 6, 46–48, 49–50, 55, 91, 92, 

206–7, 209–10, 261, 265, 285
AlphaZero, 47, 48
altruism, 24, 227–29
altruistic AI, 173–75
Amazon, 106, 119, 250
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ants, 25
Aoun, Joseph, 123
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artificial intelligence (AI), 1–12
agent (See intelligent agent)
agent programs, 48–59
beneficial, principles for (See 

beneficial AI)
benefits to humans of, 98–102
as biggest event in human history, 1–4
conceptual breakthroughs required 

for (See conceptual breakthroughs 
required for superintelligent AI)

decision making on global scale, 
capability for, 75–76

deep learning and, 6
domestic robots and, 73–74
general-purpose, 46–48, 100, 136
global scale, capability to sense and 

make decisions on, 74–76
goals and, 41–42, 48–53, 136–42, 

165–69
governance of, 249–53
health advances and, 101
history of, 4–6, 40–42
human preferences and (See human 

preferences)
imagining what superintelligent 

machines could do, 93–96
intelligence, defining, 39–61
intelligent personal assistants and, 

67–71
limits of superintelligence, 96–98
living standard increases and, 98–100
logic and, 39–40
media and public perception of 

advances in, 62–64
misuses of (See misuses of AI)
mobile phones and, 64–65
multiplier effect of, 99
objectives and, 11–12, 43, 48–61, 

136–42, 165–69
overly intelligent AI, 132–44
pace of scientific progress in creating, 

6–9
predicting arrival of superintelligent 

AI, 76–78
reading capabilities and, 74–75
risk posed by (See risk posed by AI)
scale and, 94–96

scaling up sensory inputs and capacity 
for action, 94–95

self-driving cars and, 65–67,  
181–82, 247

sensing on global scale, capability  
to, 75

smart homes and, 71–72
softbots and, 64
speech recognition capabilities and, 

74–75
standard model of, 9–11, 13,  

48–61, 247
Turing test and, 40–41
tutoring by, 100–101
virtual reality authoring by, 101
World Wide Web and, 64

“Artificial Intelligence and Life in 2030” 
(One Hundred Year Study on 
Artificial Intelligence), 149, 150

Asimov, Isaac, 141
assistance games, 192–203

learning preferences exactly in long 
run, 200–202

off-switch game, 196–200
paperclip game, 194–96
prohibitions and, 202–3
uncertainty about human objectives, 

200–202
Association for the Advancement of 

Artificial Intelligence (AAAI), 250
assumption failure, 186–87
Atkinson, Robert, 158
Atlas humanoid robot, 73
autonomous weapons systems (LAWS), 

110–13
autonomy loss problem, 255–56
Autor, David, 116
Avengers: Infinity War (film), 224
“avoid putting in human goals” 

argument, 165–69
axiomatic basis for utility theory, 23–24
axioms, 185
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Baldwin effect, 18–20
Banks, Iain, 164
bank tellers, 117–18
Bayes, Thomas, 54
Bayesian logic, 54
Bayesian networks, 54, 275–77
Bayesian rationality, 54
Bayesian updating, 283, 284
Bayes theorem, 54
behavior, learning preferences from, 

190–92
behavior modification, 104–7
belief state, 282–83
beneficial AI, 171–210, 247–49

caution regarding development of, 
reasons for, 179

data available for learning about 
human preferences, 180–81

economic incentives for, 179–80
evil behavior and, 179
learning to predict human 

preferences, 176–77
moral dilemmas and, 178
objective of AI is to maximize 

realization of human preferences, 
173–75

principles for, 172–79
proofs for (See proofs for beneficial AI)
uncertainty as to what human 

preferences are, 175–76
values, defining, 177–78

Bentham, Jeremy, 24, 219
Berg, Paul, 182
Berkeley Robot for the Elimination of 

Tedious Tasks (BRETT), 73
Bernoulli, Daniel, 22–23
“Bill Gates Fears AI, but AI Researchers 

Know Better” (Popular Science), 152
blackmail, 104–5
blinking reflex, 57
blockchain, 161
board games, 45
Boole, George, 268
Boolean (propositional) logic,  

51, 268–70
bootstrapping process, 81–82
Boston Dynamics, 73

Bostrom, Nick, 102, 144, 145, 150, 166, 
167, 183, 253

brains, 16, 17–18
reward system and, 17–18
Summit machine, compared, 34

BRETT (Berkeley Robot for the 
Elimination of Tedious Tasks), 73

Brin, Sergey, 81
Brooks, Rodney, 168
Brynjolfsson, Erik, 117
Budapest Convention on Cybercrime, 

253–54
Butler, Samuel, 133–34, 159

“can’t we just . . .” responses to risks 
posed by AI, 160–69

“. . . avoid putting in human goals,” 
165–69

“. . . merge with machines,”  
163–65

“. . . put it in a box,” 161–63
“. . . switch it off,” 160–61
“. . . work in human-machine  

teams,” 163
Cardano, Gerolamo, 21
caring professions, 122
Chace, Calum, 113
changes in human preferences over time, 

240–45
Changing Places (Lodge), 121
checkers program, 55, 261
chess programs, 62–63
Chollet, François, 293
chunking, 295
circuits, 291–92
CNN, 108
CODE (Collaborative Operations in 

Denied Environments), 112
combinatorial complexity, 258
common operational picture, 69
compensation effects, 114–17
completeness theorem (Gödel’s),  

51–52
complexity of problems, 38–39
Comprehensive Nuclear-Test-Ban 

Treaty (CTBT) seismic monitoring, 
279–80
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computer programming, 119
computers, 32–61

algorithms and (See algorithms)
complexity of problems and, 38–39
halting problem and, 37–38
hardware, 34–35
intelligent (See artificial intelligence)
limits of computation, 36–39
software limitations, 37
special-purpose devices, building, 

35–36
universality and, 32

computer science, 33
“Computing Machinery and 

Intelligence” (Turing), 40–41, 149
conceptual breakthroughs required for 

superintelligent AI, 78–93
actions, discovering, 87–90
cumulative learning of concepts and 

theories, 82–87
language/common sense problem, 

79–82
mental activity, managing, 90–92

consciousness, 16–17
consequentialism, 217–19
content selection algorithms, 8–9, 105
content shortcomings, of intelligent 

personal assistants, 67–68
control theory, 10, 44–45, 54, 176
convolutional neural networks, 47
cost function to evaluate solutions, and 

goals, 48
Credibility Coalition, 109
CRISPR-Cas9, 156
cumulative learning of concepts and 

theories, 82–87
cybersecurity, 186–87

Daily Telegraph, 77
decision making on global scale, 75–76
decoherence, 36
Deep Blue, 62, 261
deep convolutional network, 288–90
deep dreaming images, 291
deepfakes, 105–6
deep learning, 6, 58–59, 86–87,  

288–93

DeepMind, 90
AlphaGo, 6, 46–48, 49–50, 55, 91, 

92, 206–7, 209–10, 261, 265, 285
AlphaZero, 47, 48
DQN system, 55–56

deflection arguments, 154–59
“research can’t be controlled” 

arguments, 154–56
silence regarding risks of AI, 158–59
tribalism, 150, 159–60
whataboutery, 156–57

Delilah (blackmail bot), 105
denial of risk posed by AI, 146–54

“it’s complicated” argument, 147–48
“it’s impossible” argument, 149–50
“it’s too soon to worry about it” 

argument, 150–52
Luddism accusation and, 153–54
“we’re the experts” argument,  

152–54
deontological ethics, 217
dexterity problem, robots, 73–74
Dickinson, Michael, 190
Dickmanns, Ernst, 65
DigitalGlobe, 75
domestic robots, 73–74
dopamine, 17, 205–6
Dota 2, 56
DQN system, 55–56
Dune (Herbert), 135
dynamic programming algorithms, 

54–55

E. coli, 14–15
eBay, 106
ECHO (first smart home), 71
“Economic Possibilities for Our 

Grandchildren” (Keynes), 113–14, 
120–21

The Economic Singularity: Artificial 
Intelligence and the Death of 
Capitalism (Chace), 113

Economist, The, 145
Edgeworth, Francis, 238
Eisenhower, Dwight, 249
electrical action potentials, 15
Eliza (first chatbot), 67
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Elmo (shogi program), 47
Elster, Jon, 242
Elysium (film), 127
emergency braking, 57
enfeeblement of humans problem, 

254–55
envy, 229–31
Epicurus, 219
equilibrium solutions, 30–31, 195–96
Erewhon (Butler), 133–34, 159
Etzioni, Oren, 152, 157
eugenics movement, 155–56
expected value rule, 22–23
experience, learning from, 285–95
experiencing self, and preferences, 

238–40
explanation-based learning, 294–95

Facebook, 108, 250
Fact, Fiction and Forecast (Goodman), 85
fact-checking, 108–9, 110
factcheck.org, 108
fear of death (as an instrumental goal), 

140–42
feature engineering, 84–85
Fermat, Pierre de, 185
Fermat’s Last Theorem, 185
Ferranti Mark I, 34
Fifth Generation project, 271
firewalling AI systems, 161–63
first-order logic, 51, 270–72

probabilistic languages and, 277–80
propositional logic distinguished, 270

Ford, Martin, 113
Forster, E. M., 254–55
Fox News, 108
Frege, Gottlob, 270
Full, Bob, 190

G7, 250–51
Galileo Galilei, 85–86
gambling, 21–23
game theory, 28–32. See also assistance 

games
Gates, Bill, 56, 153
GDPR (General Data Protection 

Regulation), 127–29

Geminoid DK (robot), 125
General Data Protection Regulation 

(GDPR), 127–29
general-purpose artificial intelligence, 

46–48, 100, 136
geometric objects, 33
Glamour, 129
Global Learning XPRIZE  

competition, 70
Go, 6, 46–47, 49–50, 51, 55, 56

combinatorial complexity and, 259–61
propositional logic and, 269
supervised learning algorithm and, 

286–87
thinking, learning from, 293–95

goals, 41–42, 48–53, 136–42, 165–69
God and Golem (Wiener), 137–38
Gödel, Kurt, 51, 52
Goethe, Johann Wolfgang von, 137
Good, I. J., 142–43, 153, 208–9
Goodhart’s law, 77
Goodman, Nelson, 85
Good Old-Fashioned AI (GOFAI), 271
Google, 108, 112–13

DeepMind (See DeepMind)
Home, 64–65
misclassifying people as gorillas in 

Google Photo, 60
tensor processing units (TPUs), 35

gorilla problem, 132–36
governance of AI, 249–53
governmental reward and punishment 

systems, 106–7
Great Decoupling, 117
greed (as an instrumental goal), 140–42
Grice, H. Paul, 205
Gricean analysis, 205

halting problem, 37–38
hand construction problem, robots, 73
Hardin, Garrett, 31
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