
Embeddings, neural networks
and language models

James A. Duffy

Chapters 6, 7 and 9 of
Jurafsky & Martin, Speech and Language Processing

1 / 31



Outline

1. Embeddings: words as euclidean vectors

2. Neural networks

3. Language models and NNs

4. Recursive NNs

• Ultimate objectives?
• to mathematically encode the relationships between / meaning of words

=⇒ embeddings
• to train a language model, a model that is able to predict the next word

in a sentence, given the immediately preceding words =⇒ neural
language models
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Vector semantics and embeddings

• Meaning of / relationship between words has been conceptualised in
many ways (see Sec. 6.1)

• Vector semantics identifies the meaning of a word with its distribution
in language use:
• essentially, the relative frequency with which it occurs in proximity to

other words
• i.e. its co-occurrence with other words

• Embeddings represent the distribution of a word in terms of a vector in
Euclidean space
• ‘sparse’ embeddings (long vectors with many zeros): tf-idf or PPMI
• ‘dense’ embeddings (shorter vectors): word2vec

• Representation is exceedingly useful, because it renders the ‘meaning’ of
a word as a mathematical object

• Encodes words in a manner suitable for input into a language model,
neural network, etc.
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Vectors and documents

• Suppose we have a corpus of documents, and we want to quantify the
similarities / differences between them

• Ultimate objective could be document retrieval: you provide the system
with a document, and ask it to retrieve similar documents.

• Term-document matrix lists the frequencies with with which words
appear in each document
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a particular word (defined by the row) occurs in a particular document (defined by
the column). Thus fool appeared 58 times in Twelfth Night.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

The term-document matrix of Fig. 6.2 was first defined as part of the vector
space model of information retrieval (Salton, 1971). In this model, a document isvector space

model
represented as a count vector, a column in Fig. 6.3.

To review some basic linear algebra, a vector is, at heart, just a list or array ofvector

numbers. So As You Like It is represented as the list [1,114,36,20] (the first column
vector in Fig. 6.3) and Julius Caesar is represented as the list [7,62,1,2] (the third
column vector). A vector space is a collection of vectors, characterized by theirvector space

dimension. In the example in Fig. 6.3, the document vectors are of dimension 4,dimension

just so they fit on the page; in real term-document matrices, the vectors representing
each document would have dimensionality |V |, the vocabulary size.

The ordering of the numbers in a vector space indicates different meaningful di-
mensions on which documents vary. Thus the first dimension for both these vectors
corresponds to the number of times the word battle occurs, and we can compare
each dimension, noting for example that the vectors for As You Like It and Twelfth
Night have similar values (1 and 0, respectively) for the first dimension.

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

We can think of the vector for a document as a point in |V |-dimensional space;
thus the documents in Fig. 6.3 are points in 4-dimensional space. Since 4-dimensional
spaces are hard to visualize, Fig. 6.4 shows a visualization in two dimensions; we’ve
arbitrarily chosen the dimensions corresponding to the words battle and fool.

Term-document matrices were originally defined as a means of finding similar
documents for the task of document information retrieval. Two documents that are
similar will tend to have similar words, and if two documents have similar words
their column vectors will tend to be similar. The vectors for the comedies As You
Like It [1,114,36,20] and Twelfth Night [0,80,58,15] look a lot more like each other
(more fools and wit than battles) than they look like Julius Caesar [7,62,1,2] or
Henry V [13,89,4,3]. This is clear with the raw numbers; in the first dimension
(battle) the comedies have low numbers and the others have high numbers, and we
can see it visually in Fig. 6.4; we’ll see very shortly how to quantify this intuition
more formally.

A real term-document matrix, of course, wouldn’t just have 4 rows and columns,
let alone 2. More generally, the term-document matrix has |V | rows (one for each
word type in the vocabulary) and D columns (one for each document in the collec-

• Here the corpus is four works; the vocabulary V consists of four words
(|V | = 4)
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Vectors and documents
• Column vectors describe (‘embed’) the documents
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• How to measure similarity between two documents / vectors, v and w?
• ordinary euclidean distance ‖v − w‖ inappropriate, because dependent

on magnitudes of entries
• we should first normalise the vectors to have unit length, i.e. v/‖v‖,

etc., then use euclidean distance, or cosine similarity

cos θ =
v
T
w

‖v‖‖w‖
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Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words battle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

tion); as we’ll see, vocabulary sizes are generally in the tens of thousands, and the
number of documents can be enormous (think about all the pages on the web).

Information retrieval (IR) is the task of finding the document d from the Dinformation
retrieval

documents in some collection that best matches a query q. For IR we’ll therefore also
represent a query by a vector, also of length |V |, and we’ll need a way to compare
two vectors to find how similar they are. (Doing IR will also require efficient ways
to store and manipulate these vectors by making use of the convenient fact that these
vectors are sparse, i.e., mostly zeros).

Later in the chapter we’ll introduce some of the components of this vector com-
parison process: the tf-idf term weighting, and the cosine similarity metric.

6.3.2 Words as vectors: document dimensions

We’ve seen that documents can be represented as vectors in a vector space. But
vector semantics can also be used to represent the meaning of words. We do this
by associating each word with a word vector— a row vector rather than a columnrow vector

vector, hence with different dimensions, as shown in Fig. 6.5. The four dimensions
of the vector for fool, [36,58,1,4], correspond to the four Shakespeare plays. Word
counts in the same four dimensions are used to form the vectors for the other 3
words: wit, [20,15,2,3]; battle, [1,0,7,13]; and good [114,80,62,89].

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.5 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each word is represented as a row vector of length four.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.
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Vectors and words

• Row vectors could be used to represent the meaning of words
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vector, hence with different dimensions, as shown in Fig. 6.5. The four dimensions
of the vector for fool, [36,58,1,4], correspond to the four Shakespeare plays. Word
counts in the same four dimensions are used to form the vectors for the other 3
words: wit, [20,15,2,3]; battle, [1,0,7,13]; and good [114,80,62,89].

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

Figure 6.5 The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each word is represented as a row vector of length four.

For documents, we saw that similar documents had similar vectors, because sim-
ilar documents tend to have similar words. This same principle applies to words:
similar words have similar vectors because they tend to occur in similar documents.
The term-document matrix thus lets us represent the meaning of a word by the doc-
uments it tends to occur in.

• But gives a very coarse-grained measure of meaning (particularly if each
document is large!)
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Vectors and words

• Better approach is to construct a term-term matrix
• choose the ‘context’: a fixed window length, e.g. ±4 words
• for each word w in the vocabulary V , record how many times another

word v ∈ V appears within w ’s context, across a corpus
• yields a |V |-length vector of co-occurrences

6.3 • WORDS AND VECTORS 9

6.3.3 Words as vectors: word dimensions
An alternative to using the term-document matrix to represent words as vectors of
document counts, is to use the term-term matrix, also called the word-word ma-
trix or the term-context matrix, in which the columns are labeled by words ratherword-word

matrix
than documents. This matrix is thus of dimensionality |V |×|V | and each cell records
the number of times the row (target) word and the column (context) word co-occur
in some context in some training corpus. The context could be the document, in
which case the cell represents the number of times the two words appear in the same
document. It is most common, however, to use smaller contexts, generally a win-
dow around the word, for example of 4 words to the left and 4 words to the right,
in which case the cell represents the number of times (in some training corpus) the
column word occurs in such a±4 word window around the row word. Here are four
examples of words in their windows:

is traditionally followed by cherry pie, a traditional dessert
often mixed, such as strawberry rhubarb pie. Apple pie

computer peripherals and personal digital assistants. These devices usually
a computer. This includes information available on the internet

If we then take every occurrence of each word (say strawberry) and count the
context words around it, we get a word-word co-occurrence matrix. Fig. 6.6 shows a
simplified subset of the word-word co-occurrence matrix for these four words com-
puted from the Wikipedia corpus (Davies, 2015).

aardvark ... computer data result pie sugar ...
cherry 0 ... 2 8 9 442 25 ...

strawberry 0 ... 0 0 1 60 19 ...
digital 0 ... 1670 1683 85 5 4 ...

information 0 ... 3325 3982 378 5 13 ...
Figure 6.6 Co-occurrence vectors for four words in the Wikipedia corpus, showing six of
the dimensions (hand-picked for pedagogical purposes). The vector for digital is outlined in
red. Note that a real vector would have vastly more dimensions and thus be much sparser.

Note in Fig. 6.6 that the two words cherry and strawberry are more similar to
each other (both pie and sugar tend to occur in their window) than they are to other
words like digital; conversely, digital and information are more similar to each other
than, say, to strawberry. Fig. 6.7 shows a spatial visualization.

1000 2000 3000 4000

1000

2000
digital

 [1683,1670]

co
m

pu
te

r

 data

information
 [3982,3325] 3000

4000

Figure 6.7 A spatial visualization of word vectors for digital and information, showing just
two of the dimensions, corresponding to the words data and computer.

Note that |V |, the dimensionality of the vector, is generally the size of the vo-
cabulary, often between 10,000 and 50,000 words (using the most frequent words

• Vectors are sparse: if V = 50, 000, most words will never appear in the
neighbourhood of most others
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Vectors and words

• As with documents, we can use cosine to gauge similarity between words
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cosine(v,w) =
v ·w
|v||w| =

N∑

i=1

viwi

√√√√
N∑

i=1

v2
i

√√√√
N∑

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector

dividing it by |a|. For unit vectors, the dot product is the same as the cosine.
The cosine value ranges from 1 for vectors pointing in the same direction, through

0 for orthogonal vectors, to -1 for vectors pointing in opposite directions. But since
raw frequency values are non-negative, the cosine for these vectors ranges from 0–1.

Let’s see how the cosine computes which of the words cherry or digital is closer
in meaning to information, just using raw counts from the following shortened table:

pie data computer
cherry 442 8 2
digital 5 1683 1670

information 5 3982 3325

cos(cherry, information) =
442∗5+8∗3982+2∗3325√

4422 +82 +22
√

52 +39822 +33252
= .018

cos(digital, information) =
5∗5+1683∗3982+1670∗3325√

52 +16832 +16702
√

52 +39822 +33252
= .996

The model decides that information is way closer to digital than it is to cherry, a
result that seems sensible. Fig. 6.8 shows a visualization.
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Figure 6.8 A (rough) graphical demonstration of cosine similarity, showing vectors for
three words (cherry, digital, and information) in the two dimensional space defined by counts
of the words computer and pie nearby. The figure doesn’t show the cosine, but it highlights the
angles; note that the angle between digital and information is smaller than the angle between
cherry and information. When two vectors are more similar, the cosine is larger but the angle
is smaller; the cosine has its maximum (1) when the angle between two vectors is smallest
(0◦); the cosine of all other angles is less than 1.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrices above represent each cell by frequencies, either of words
with documents (Fig. 6.5), or words with other words (Fig. 6.6). But raw frequency
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6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrices above represent each cell by frequencies, either of words
with documents (Fig. 6.5), or words with other words (Fig. 6.6). But raw frequency

• Raw frequencies overly skewed by high co-occurrences with words that
are uninformative about meaning, e.g. the, it, they, etc.

• Whereas words that occur very infrequently may be highly informative
about the meaning of neighbouring words

• Weighting schemes (td-idf) or the PPMI algorithm provide an
alternative way of producing (sparse) vectors, that are less affected by
these problems (Sec. 6.5–6.7)

8 / 31



Dense embeddings

• However, a better approach in practice appears to be to use dense
embedding vectors (of length around 300 rather than 30, 000)

• Appear better able e.g. to capture synonymy between words, which is
lost by a sparse vector that treats very similar words (e.g. car and
automobile) as entirely separate entries of the vocabulary

• Leading example is the word2vec algorithm, which is based on a
classification / prediction problem
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Word2vec

• Suppose we take the context of a word w to a ±2 word window, as e.g.

18 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

line with code and pretrained embeddings. Word2vec embeddings are static em-
beddings, meaning that the method learns one fixed embedding for each word in thestatic

embeddings
vocabulary. In Chapter 11 we’ll introduce methods for learning dynamic contextual
embeddings like the popular family of BERT representations, in which the vector
for each word is different in different contexts.

The intuition of word2vec is that instead of counting how often each word w oc-
curs near, say, apricot, we’ll instead train a classifier on a binary prediction task: “Is
word w likely to show up near apricot?” We don’t actually care about this prediction
task; instead we’ll take the learned classifier weights as the word embeddings.

The revolutionary intuition here is that we can just use running text as implicitly
supervised training data for such a classifier; a word c that occurs near the target
word apricot acts as gold ‘correct answer’ to the question “Is word c likely to show
up near apricot?” This method, often called self-supervision, avoids the need forself-supervision

any sort of hand-labeled supervision signal. This idea was first proposed in the task
of neural language modeling, when Bengio et al. (2003) and Collobert et al. (2011)
showed that a neural language model (a neural network that learned to predict the
next word from prior words) could just use the next word in running text as its
supervision signal, and could be used to learn an embedding representation for each
word as part of doing this prediction task.

We’ll see how to do neural networks in the next chapter, but word2vec is a
much simpler model than the neural network language model, in two ways. First,
word2vec simplifies the task (making it binary classification instead of word pre-
diction). Second, word2vec simplifies the architecture (training a logistic regression
classifier instead of a multi-layer neural network with hidden layers that demand
more sophisticated training algorithms). The intuition of skip-gram is:

1. Treat the target word and a neighboring context word as positive examples.
2. Randomly sample other words in the lexicon to get negative samples.
3. Use logistic regression to train a classifier to distinguish those two cases.
4. Use the learned weights as the embeddings.

6.8.1 The classifier
Let’s start by thinking about the classification task, and then turn to how to train.
Imagine a sentence like the following, with a target word apricot, and assume we’re
using a window of ±2 context words:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 w c3 c4

Our goal is to train a classifier such that, given a tuple (w,c) of a target word
w paired with a candidate context word c (for example (apricot, jam), or perhaps
(apricot, aardvark)) it will return the probability that c is a real context word (true
for jam, false for aardvark):

P(+|w,c) (6.24)

The probability that word c is not a real context word for w is just 1 minus
Eq. 6.24:

P(−|w,c) = 1−P(+|w,c) (6.25)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on embedding similarity: a word is likely to

• Given the word w , what is the probability P(+ | w , c) that some other
word c ∈ V appears in w ’s context?

• Let w and c denote (dense) Rd -valued embeddings for these words.
Then

P(+ | w , c) =
1

1 + exp(−cTw)
= σ(cTw)

so the probability is highest for words that are ‘similar’ in the sense that
c
T
w is large and positive

• Ultimately, the collection of w ’s and c ’s, stacked (columnwise) in the
matrices W and C , will provide our embeddings for the words in V

• The problem then is to estimate W and C , i.e. to ‘train the classifier’
on a corpus of text
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Word2vec
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Let’s start by thinking about the classification task, and then turn to how to train.
Imagine a sentence like the following, with a target word apricot, and assume we’re
using a window of ±2 context words:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 w c3 c4

Our goal is to train a classifier such that, given a tuple (w,c) of a target word
w paired with a candidate context word c (for example (apricot, jam), or perhaps
(apricot, aardvark)) it will return the probability that c is a real context word (true
for jam, false for aardvark):

P(+|w,c) (6.24)

The probability that word c is not a real context word for w is just 1 minus
Eq. 6.24:

P(−|w,c) = 1−P(+|w,c) (6.25)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on embedding similarity: a word is likely to

• Want to construct a quasi-likelihood / loss function to estimate the
model. What do we learn when observe the above?

1. c1, . . . , cL ∈ V appear in the context of w ; if we assume (heroically!)
that context words appear independently of each other

P(+ | w , c1, . . . , cL) =
L∏

i=1

P(+ | w , ci ) =
L∏

i=1

σ(cTi w)

2. c ∈ V \{c1, . . . , cL} did not appear in the context for w ; for a single
word c , this occurs with probability

P(− | w , c) = 1− σ(cTw);

• Assuming independence, the log quasi-likelihood of observing w in the
context of (c1, . . . , cL) would be

L∑

i=1

log σ(cTi w) +
∑

c∈V\{c1,...,cL}

log[1− σ(cTw)]
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Word2vec

L∑

i=1

log σ(cTi w) +
∑

c∈V\{c1,...,cL}

log[1− σ(cTw)]

• Problem: objective is overwhelmed by the second term
• So instead, replace the by a random selection of k ‘noise’ words, chosen

in proportion to some weighted frequency measure, e.g.
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line with code and pretrained embeddings. Word2vec embeddings are static em-
beddings, meaning that the method learns one fixed embedding for each word in thestatic

embeddings
vocabulary. In Chapter 11 we’ll introduce methods for learning dynamic contextual
embeddings like the popular family of BERT representations, in which the vector
for each word is different in different contexts.

The intuition of word2vec is that instead of counting how often each word w oc-
curs near, say, apricot, we’ll instead train a classifier on a binary prediction task: “Is
word w likely to show up near apricot?” We don’t actually care about this prediction
task; instead we’ll take the learned classifier weights as the word embeddings.

The revolutionary intuition here is that we can just use running text as implicitly
supervised training data for such a classifier; a word c that occurs near the target
word apricot acts as gold ‘correct answer’ to the question “Is word c likely to show
up near apricot?” This method, often called self-supervision, avoids the need forself-supervision

any sort of hand-labeled supervision signal. This idea was first proposed in the task
of neural language modeling, when Bengio et al. (2003) and Collobert et al. (2011)
showed that a neural language model (a neural network that learned to predict the
next word from prior words) could just use the next word in running text as its
supervision signal, and could be used to learn an embedding representation for each
word as part of doing this prediction task.

We’ll see how to do neural networks in the next chapter, but word2vec is a
much simpler model than the neural network language model, in two ways. First,
word2vec simplifies the task (making it binary classification instead of word pre-
diction). Second, word2vec simplifies the architecture (training a logistic regression
classifier instead of a multi-layer neural network with hidden layers that demand
more sophisticated training algorithms). The intuition of skip-gram is:

1. Treat the target word and a neighboring context word as positive examples.
2. Randomly sample other words in the lexicon to get negative samples.
3. Use logistic regression to train a classifier to distinguish those two cases.
4. Use the learned weights as the embeddings.

6.8.1 The classifier
Let’s start by thinking about the classification task, and then turn to how to train.
Imagine a sentence like the following, with a target word apricot, and assume we’re
using a window of ±2 context words:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 w c3 c4

Our goal is to train a classifier such that, given a tuple (w,c) of a target word
w paired with a candidate context word c (for example (apricot, jam), or perhaps
(apricot, aardvark)) it will return the probability that c is a real context word (true
for jam, false for aardvark):

P(+|w,c) (6.24)

The probability that word c is not a real context word for w is just 1 minus
Eq. 6.24:

P(−|w,c) = 1−P(+|w,c) (6.25)

How does the classifier compute the probability P? The intuition of the skip-
gram model is to base this probability on embedding similarity: a word is likely to
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Figure 6.13 The embeddings learned by the skipgram model. The algorithm stores two
embeddings for each word, the target embedding (sometimes called the input embedding)
and the context embedding (sometimes called the output embedding). The parameter θ that
the algorithm learns is thus a matrix of 2|V | vectors, each of dimension d, formed by concate-
nating two matrices, the target embeddings W and the context+noise embeddings C.

6.8.2 Learning skip-gram embeddings
The learning algorithm for skip-gram embeddings takes as input a corpus of text,
and a chosen vocabulary size N. It begins by assigning a random embedding vector
for each of the N vocabulary words, and then proceeds to iteratively shift the em-
bedding of each word w to be more like the embeddings of words that occur nearby
in texts, and less like the embeddings of words that don’t occur nearby. Let’s start
by considering a single piece of training data:

... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 w c3 c4

This example has a target word w (apricot), and 4 context words in the L = ±2
window, resulting in 4 positive training instances (on the left below):

positive examples +
w cpos

apricot tablespoon
apricot of
apricot jam
apricot a

negative examples -
w cneg w cneg
apricot aardvark apricot seven
apricot my apricot forever
apricot where apricot dear
apricot coaxial apricot if

For training a binary classifier we also need negative examples. In fact skip-
gram with negative sampling (SGNS) uses more negative examples than positive
examples (with the ratio between them set by a parameter k). So for each of these
(w,cpos) training instances we’ll create k negative samples, each consisting of the
target w plus a ‘noise word’ cneg. A noise word is a random word from the lexicon,
constrained not to be the target word w. The right above shows the setting where
k = 2, so we’ll have 2 negative examples in the negative training set − for each
positive example w,cpos.

The noise words are chosen according to their weighted unigram frequency
pα(w), where α is a weight. If we were sampling according to unweighted fre-
quency p(w), it would mean that with unigram probability p(“the”) we would choose
the word the as a noise word, with unigram probability p(“aardvark”) we would
choose aardvark, and so on. But in practice it is common to set α = .75, i.e. use the

• Leads to, for c∗,i drawn randomly from V \{c1, . . . , cL}:
L∑

i=1

log σ(cTi w) +
kL∑

i=1

log[1− σ(cT∗,iw)]
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Word2vec

L∑

i=1

log σ(cTi w) +
kL∑

i=1

log[1− σ(cT∗,iw)]

• We then sum this over all word w and context (c1, . . . , cL) pairs, and
maximise with the aid of stochastic gradient ascent.

• Yields a collection of word w i and context c i parameter vectors /
embeddings of length d ; for each word wi ∈ V

• We may take w i or e.g. w i + c i to be the word2vec embedding

• [How should we choose d? Cross-validation / information criteria?]

• For some of the ‘nice’ semantic properties of these embeddings, see Sec.
6.10
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Next step: language models

• Now we have a way to (usefully) represent words as vectors

• We can start to mathematically model the dependence between words
in sentences

• But this dependence may be very complicated . . .
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Neural networks: motivation

• The mapping from context to (the distribution of the next) word

I have to make sure the cat gets︸ ︷︷ ︸
context





fed

spayed

???

• is potentially highly nonlinear with unknown functional forms
• we have a potentially enormous large corpus of text from which to

estimate it
• but little a priori theoretical guidance as to what class a ‘good’ model

might come from

• A nonparametric estimation problem?
• we need a flexible class of models capable of approximating a wide range

of functions
• neural networks provide a nonlinear universal approximator
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Computational units

• Simple NNs are composed of (layers of) units of the form

a = g(wT
x) = g

(
n∑

i=1

wixi

)

• x = (x1, . . . , xn) is a vector of n inputs (includes a constant input)

• a is the real-valued output

• g is monotone, typically either:
• sigmoid: σ(z) = 1/(1 + e−z), maps to [0, 1]
• tanh(z) = (ez − e−z)/(ez + e−z), maps to [−1, 1]
• ‘rectified linear’: ReLU(z) = max{z , 0}, maps to [0,∞).
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Computational units

2 CHAPTER 7 • NEURAL NETWORKS AND NEURAL LANGUAGE MODELS

7.1 Units

The building block of a neural network is a single computational unit. A unit takes
a set of real valued numbers as input, performs some computation on them, and
produces an output.

At its heart, a neural unit is taking a weighted sum of its inputs, with one addi-
tional term in the sum called a bias term. Given a set of inputs x1...xn, a unit hasbias term

a set of corresponding weights w1...wn and a bias b, so the weighted sum z can be
represented as:

z = b+
∑

i

wixi (7.1)

Often it’s more convenient to express this weighted sum using vector notation; recall
from linear algebra that a vector is, at heart, just a list or array of numbers. Thusvector

we’ll talk about z in terms of a weight vector w, a scalar bias b, and an input vector
x, and we’ll replace the sum with the convenient dot product:

z = w ·x+b (7.2)

As defined in Eq. 7.2, z is just a real valued number.
Finally, instead of using z, a linear function of x, as the output, neural units

apply a non-linear function f to z. We will refer to the output of this function as
the activation value for the unit, a. Since we are just modeling a single unit, theactivation

activation for the node is in fact the final output of the network, which we’ll generally
call y. So the value y is defined as:

y = a = f (z)

We’ll discuss three popular non-linear functions f () below (the sigmoid, the tanh,
and the rectified linear unit or ReLU) but it’s pedagogically convenient to start with
the sigmoid function since we saw it in Chapter 5:sigmoid

y = σ(z) =
1

1+ e−z (7.3)

The sigmoid (shown in Fig. 7.1) has a number of advantages; it maps the output
into the range (0,1), which is useful in squashing outliers toward 0 or 1. And it’s
differentiable, which as we saw in Section ?? will be handy for learning.

Figure 7.1 The sigmoid function takes a real value and maps it to the range (0,1). It is
nearly linear around 0 but outlier values get squashed toward 0 or 1.

Substituting Eq. 7.2 into Eq. 7.3 gives us the output of a neural unit:

y = σ(w ·x+b) =
1

1+ exp(−(w ·x+b))
(7.4)
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(a) (b)

Figure 7.3 The tanh and ReLU activation functions.

result from it being very close to linear. In the sigmoid or tanh functions, very high
values of z result in values of y that are saturated, i.e., extremely close to 1, and havesaturated

derivatives very close to 0. Zero derivatives cause problems for learning, because as
we’ll see in Section 7.6, we’ll train networks by propagating an error signal back-
wards, multiplying gradients (partial derivatives) from each layer of the network;
gradients that are almost 0 cause the error signal to get smaller and smaller until it is
too small to be used for training, a problem called the vanishing gradient problem.vanishing

gradient
Rectifiers don’t have this problem, since the derivative of ReLU for high values of z
is 1 rather than very close to 0.

7.2 The XOR problem

Early in the history of neural networks it was realized that the power of neural net-
works, as with the real neurons that inspired them, comes from combining these
units into larger networks.

One of the most clever demonstrations of the need for multi-layer networks was
the proof by Minsky and Papert (1969) that a single neural unit cannot compute
some very simple functions of its input. Consider the task of computing elementary
logical functions of two inputs, like AND, OR, and XOR. As a reminder, here are
the truth tables for those functions:

AND OR XOR

x1 x2 y x1 x2 y x1 x2 y

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

This example was first shown for the perceptron, which is a very simple neuralperceptron

unit that has a binary output and does not have a non-linear activation function. The
output y of a perceptron is 0 or 1, and is computed as follows (using the same weight
w, input x, and bias b as in Eq. 7.2):

y =
{

0, if w ·x+b≤ 0
1, if w ·x+b > 0 (7.7)
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Feedforward neural networks

• One unit cannot approximate much on its own: [see their XOR
example]
• it is merely a transformed linear (affine) function
• the extent of the possible nonlinearity is extremely circumscribed

• We can do much better by ‘nesting’ multiple units within each other
• hierarchy of units: taking inputs from previous ‘layers’, providing output

to subsequent ‘layers’ of units
• basis for feedforward neural networks (NNs): multiple layers, but no

cycles

• Nonlinearity is important: multiple nested layers of linear units are
equivalent to a single linear function
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Feedforward neural networks
• 2-layer example: one ‘hidden’ and one ‘output’ layer

• n0 inputs given by x = (x1, . . . , xn0)

• n1 units in the hidden layer, of the form

h =



h1
...
hn1


 =



g(wT

1 x)
...

g(wT
n1
x)


 = g(Wx), W =



w

T
1

...

w
T
n1




• produces a representation of the input

• output layer:
• takes linear combinations z = Uh of the outputs of the hidden layer
• produces a Rn2 -valued output, where n2 (and the transformation of z

used to get it) depends on the problem
• e.g. if we want to produce a probability distribution over the next word,

use

[softmax(z)]i =
exp(zi )∑d
j=1 exp(zj)

for z = (z1, . . . , zd) ∈ Rd ; the softmax function [the multinomial logit
pmf]
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Feedforward neural networks
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h2
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Figure 7.8 A simple 2-layer feedforward network, with one hidden layer, one output layer,
and one input layer (the input layer is usually not counted when enumerating layers).

steps: multiplying the weight matrix by the input vector x, adding the bias vector b,
and applying the activation function g (such as the sigmoid, tanh, or ReLU activation
function defined above).

The output of the hidden layer, the vector h, is thus the following (for this exam-
ple we’ll use the sigmoid function σ as our activation function):

h = σ(Wx+b) (7.8)

Notice that we’re applying the σ function here to a vector, while in Eq. 7.3 it was
applied to a scalar. We’re thus allowing σ(·), and indeed any activation function
g(·), to apply to a vector element-wise, so g[z1,z2,z3] = [g(z1),g(z2),g(z3)].

Let’s introduce some constants to represent the dimensionalities of these vectors
and matrices. We’ll refer to the input layer as layer 0 of the network, and have n0
represent the number of inputs, so x is a vector of real numbers of dimension n0,
or more formally x ∈ Rn0 , a column vector of dimensionality [n0,1]. Let’s call the
hidden layer layer 1 and the output layer layer 2. The hidden layer has dimensional-
ity n1, so h ∈ Rn1 and also b ∈ Rn1 (since each hidden unit can take a different bias
value). And the weight matrix W has dimensionality W ∈ Rn1×n0 , i.e. [n1,n0].

Take a moment to convince yourself that the matrix multiplication in Eq. 7.8 will
compute the value of each h j as σ

(∑n0
i=1 W jixi +b j

)
.

As we saw in Section 7.2, the resulting value h (for hidden but also for hypoth-
esis) forms a representation of the input. The role of the output layer is to take
this new representation h and compute a final output. This output could be a real-
valued number, but in many cases the goal of the network is to make some sort of
classification decision, and so we will focus on the case of classification.

If we are doing a binary task like sentiment classification, we might have a sin-
gle output node, and its scalar value y is the probability of positive versus negative
sentiment. If we are doing multinomial classification, such as assigning a part-of-
speech tag, we might have one output node for each potential part-of-speech, whose
output value is the probability of that part-of-speech, and the values of all the output
nodes must sum to one. The output layer is thus a vector y that gives a probability
distribution across the output nodes.

Let’s see how this happens. Like the hidden layer, the output layer has a weight
matrix (let’s call it U), but some models don’t include a bias vector b in the output

hidden: h = g(Wx)

output: y = f (Uh)
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Training [estimation]
• Data: suppose we observe pairs of the form (y , x)

• y is a K -vector of all zeros, except for one element equal to unity
• nonzero element indicates which of the K outcomes actually ‘happened’
• ‘self supervised’ learning, because the data automatically contains the

correct outcomes

• NN yields a (‘probabilistic’) prediction ŷ = ŷ(x) of y

• ‘Loss function’: cross entropy loss; for a single observation

LCE(W ,U ; y , x) = −
K∑

k=1

yk log ŷk(x ;W ,U)

= −
K∑

k=1

1{yk = 1} log ŷk(x ;W ,U)

• equals conditional probability assigned by the model to the actual
outcome

• just the negative of the (quasi-)loglikelihood, for a model in which y has
MNL distribution with probabilities given by ŷ = ŷ(x), conditional on x
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Training [estimation]

LCE(W ,U ; y , x) = −
K∑

k=1

yk log ŷk(x ;W ,U)

• Want to minimise the loss / maximise the quasi-likelihood

• Can we use (stochastic) gradient descent?
• ŷk(x ;W ,U) is a potentially complicated nonlinear function of W and U :

multiple units in multiple layers
• but all the constituent units involve only smooth transformations, so

derivatives always exist

• Calculation of the gradient:
• can be broken down into manageable pieces via ‘backwards

differentiation’
• basically, compute gradient at each layer, and then combine as per the

chain rule

• Non-convex objective, so potentially highly sensitive to starting values
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Language models and NNs
• Language models:

• aim to predict the next next word in a sentence, based on the preceding
words, the context

I have to make sure the cat gets ???

• mathematically, model the conditional distribution of the tth word wt

given wt−1,wt−2, . . .

• N-gram language models: [Ch. 3]
• suppose this dependence is Markovian, for some window length N

p(wt | wt−1,wt−2, . . .) = p(wt | wt−1, . . . ,wt−N+1) = p(wt | c t−1)

• estimate p(wt | c t−1) ‘nonparametrically’ using observed relative
frequencies (or modifications thereof)

• Weaknesses of N-gram models:
• we may see very few occurrences of the exact (wt , c t−1) even in huge

datasets
• no way of exploiting similarities between meanings of words to learn

about p(wt | c t−1) from ‘similar’ (w ′t , c
′
t−1) [e.g. ‘. . . dog gets fed’

above]

23 / 31



Language models and NNs

• Neural language models:
• may make the same Markovian assumption as N-gram models
• but work with word embeddings, which encode approximate similarities

between word meanings
• embeddings encoded in a matrix E ∈ Rd×|V |, where d is the dimension

of the embedding, and |V | the length of the vocabulary

• Structure otherwise that of a generic neural network

input: e = [Ex t−N+1; . . . ;Ex t−1]

hidden: h = g(We)

output: y = softmax(Uh)

where xit = 1 if observed word wt = the ith entry in the vocabulary V ,
and 0 otherwise
• output = conditional probability distribution over wt , given

wt−1, . . . ,wt−N+1

• Parameters to be estimated: W , U (as before), and (possibly) also E
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Language models and NNs
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useful when the task the network is designed for (like sentiment classification, trans-
lation, or parsing) places strong constraints on what makes a good representation for
words.

Let’s see how to train the entire model including E, i.e. to set all the parameters
θ = E,W,U,b. We’ll do this via gradient descent (Fig. ??), using error backpropa-
gation on the computation graph to compute the gradient. Training thus not only sets
the weights W and U of the network, but also as we’re predicting upcoming words,
we’re learning the embeddings E for each word that best predict upcoming words.
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Figure 7.18 Learning all the way back to embeddings. Again, the embedding matrix E is
shared among the 3 context words.

Fig. 7.18 shows the set up for a window size of N=3 context words. The input x
consists of 3 one-hot vectors, fully connected to the embedding layer via 3 instanti-
ations of the embedding matrix E. We don’t want to learn separate weight matrices
for mapping each of the 3 previous words to the projection layer. We want one single
embedding dictionary E that’s shared among these three. That’s because over time,
many different words will appear as wt−2 or wt−1, and we’d like to just represent
each word with one vector, whichever context position it appears in. Recall that the
embedding weight matrix E has a column for each word, each a column vector of d
dimensions, and hence has dimensionality d×|V |.

Generally training proceeds by taking as input a very long text, concatenating all
the sentences, starting with random weights, and then iteratively moving through the
text predicting each word wt . At each word wt , we use the cross-entropy (negative
log likelihood) loss. Recall that the general form for this (repeated from Eq. 7.27 is:

LCE(ŷ,y) = − log ŷi, (where i is the correct class) (7.44)

For language modeling, the classes are the words in the vocabulary, so ŷi here means
the probability that the model assigns to the correct next word wt :

LCE =− log p(wt |wt−1, ...,wt−n+1) (7.45)
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Recursive NNs: background

• How can we improve on the preceding?

• Feedforward neural language models impose finite dependence of wt on
the context c t−1 = (wt−1, . . . ,wt−N+1)
• only the previous N words matter, e.g. if N = 3

I have to make sure the cat gets ???

anything prior to ‘the’ is entirely forgotten
• a consequence of the Markov assumption, recall

p(wt | wt−1,wt−2, . . .) = p(wt | wt−1, . . . ,wt−N+1) = p(wt | c t−1)

• but this isn’t how any language works!

• How can we build a model with potentially longer-lived dependence?
We need to relax the Markov assumption!
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Aside: linear state-space models
• The linear counterpart of a feedforward NN is an AR(N) model

wt = θ1wt−1 + θ2wt−2 + · · ·+ θNwt−N+1 + ut

= θwt−1 + ut

taking N = 1 for simplicity; here ut is (say) i.i.d.
• given wt−1, the conditional distribution of wt does not depend on wt−s

for any s ≥ 2
• Compare with the state-space model

wt+1 = βht + ut+1

ht = φht−1 + wt

{wt} is the observed process, ht the unobserved state
• if h0 = 0, can be ‘unrolled’ back to period t = 0 as

wt+1 = βht + ut+1 = β

t−1∑
i=0

φiwt−i + ut+1

• now the conditional distribution of wt depends on every past wt−i

(which decreases if |φ| < 1)
• Recursive NN: extend this idea to neural network models, by

introducing (a vector of) latent hidden autoregressive states
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Recursive NNs
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ht-1
Figure 9.2 Simple recurrent neural network illustrated as a feedforward network.

values for the hidden layer, we proceed with the usual computation to generate the
output vector.

ht = g(Uht−1 +Wxt) (9.1)

yt = f (Vht) (9.2)

It’s worthwhile here to be careful about specifying the dimensions of the input, hid-
den and output layers, as well as the weight matrices to make sure these calculations
are correct. Let’s refer to the input, hidden and output layer dimensions as din, dh,
and dout respectively. Given this, our three parameter matrices are: W ∈ Rdh×din ,
U ∈ Rdh×dh , and V ∈ Rdout×dh .

In the commonly encountered case of soft classification, computing yt consists
of a softmax computation that provides a probability distribution over the possible
output classes.

yt = softmax(Vht) (9.3)

The fact that the computation at time t requires the value of the hidden layer from
time t−1 mandates an incremental inference algorithm that proceeds from the start
of the sequence to the end as illustrated in Fig. 9.3. The sequential nature of simple
recurrent networks can also be seen by unrolling the network in time as is shown in
Fig. 9.4. In this figure, the various layers of units are copied for each time step to
illustrate that they will have differing values over time. However, the various weight
matrices are shared across time.

function FORWARDRNN(x, network) returns output sequence y

h0←0
for i←1 to LENGTH(x) do

hi←g(Uhi−1 + Wxi)
yi← f (Vhi)

return y

Figure 9.3 Forward inference in a simple recurrent network. The matrices U, V and W are
shared across time, while new values for h and y are calculated with each time step.

• Basic structure:

hidden: ht = g(Uht−1 + Wx t)

output: y t+1 = f (Vht)

• if U = 0, this reduces to a feedforward NN
• e.g. f = softmax

• May have multiple layers, e.g. we may build ‘stacked RNNs’
• Can be ‘unrolled’ in the same way as a linear state-space model

28 / 31



Recursive NNs: unrolling

4 CHAPTER 9 • RNNS AND LSTMS
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Figure 9.4 A simple recurrent neural network shown unrolled in time. Network layers are recalculated for
each time step, while the weights U, V and W are shared across all time steps.

9.1.2 Training
As with feedforward networks, we’ll use a training set, a loss function, and back-
propagation to obtain the gradients needed to adjust the weights in these recurrent
networks. As shown in Fig. 9.2, we now have 3 sets of weights to update: W, the
weights from the input layer to the hidden layer, U, the weights from the previous
hidden layer to the current hidden layer, and finally V, the weights from the hidden
layer to the output layer.

Fig. 9.4 highlights two considerations that we didn’t have to worry about with
backpropagation in feedforward networks. First, to compute the loss function for
the output at time t we need the hidden layer from time t− 1. Second, the hidden
layer at time t influences both the output at time t and the hidden layer at time t +1
(and hence the output and loss at t +1). It follows from this that to assess the error
accruing to ht , we’ll need to know its influence on both the current output as well as
the ones that follow.

Tailoring the backpropagation algorithm to this situation leads to a two-pass al-
gorithm for training the weights in RNNs. In the first pass, we perform forward
inference, computing ht , yt , accumulating the loss at each step in time, saving the
value of the hidden layer at each step for use at the next time step. In the second
phase, we process the sequence in reverse, computing the required gradients as we
go, computing and saving the error term for use in the hidden layer for each step
backward in time. This general approach is commonly referred to as backpropaga-
tion through time (Werbos 1974, Rumelhart et al. 1986, Werbos 1990).

backpropaga-
tion through

time Fortunately, with modern computational frameworks and adequate computing
resources, there is no need for a specialized approach to training RNNs. As illus-
trated in Fig. 9.4, explicitly unrolling a recurrent network into a feedforward com-
putational graph eliminates any explicit recurrences, allowing the network weights
to be trained directly. In such an approach, we provide a template that specifies the
basic structure of the network, including all the necessary parameters for the input,
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Language models and RNNs
• As with a feedforward neural LM, inputs are vector embeddings of words

input: et = Ex t

hidden: ht = g(Uht−1 + Wet)

output: y t+1 = softmax(Vht)

• or e = [Ex t−N+1; . . . ;Ex t−1], etc.; each x t selects a column from E
• by construction, ht depends on all previous inputs x t , x t−1, . . .

• ‘Forward inference’ / prediction is straightforward: requires some
initialisation for h0, e.g. h0 = 0

• Training / estimation proceeds as for a feedforward NN, using
cross-entropy loss

LCE(W ,U ,V ) = −
K∑

k=1

yk log ŷk(x ;W ,U ,V )

• ‘Weight tying’:
• V is a |V | × dh matrix that ‘scores’ the relative conditional probability of

the next word, given its context
• rows provide embeddings for each word in the vocabulary
• performs the same role as E (= dim of ET); we may force V = E

T to
reduce number of model parameters
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Generative AI
• Usage as ‘generative AI’: use the model to recursively predict, until the

end of a sentence is reached

1. Initialise by setting x0 to the symbol <s> (or some more
task-appropriate context) for the beginning of a sentence; e0 the
corresponding embedding

2. At the tth step, take x t+1 to indicate the element of the vocabulary for
which the corresponding element of y t+1 = softmax(Vht) is highest

3. The next input, et+1 = Ex t+1 is the embedding corresponding to x t+1
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Figure 9.9 Autoregressive generation with an RNN-based neural language model.

9.4 Stacked and Bidirectional RNN architectures

Recurrent networks are quite flexible. By combining the feedforward nature of un-
rolled computational graphs with vectors as common inputs and outputs, complex
networks can be treated as modules that can be combined in creative ways. This
section introduces two of the more common network architectures used in language
processing with RNNs.

9.4.1 Stacked RNNs
In our examples thus far, the inputs to our RNNs have consisted of sequences of
word or character embeddings (vectors) and the outputs have been vectors useful for
predicting words, tags or sequence labels. However, nothing prevents us from using
the entire sequence of outputs from one RNN as an input sequence to another one.
Stacked RNNs consist of multiple networks where the output of one layer serves asStacked RNNs

the input to a subsequent layer, as shown in Fig. 9.10.

y1 y2 y3 yn

x1 x2 x3 xn

RNN 1

RNN 2

 RNN 3

Figure 9.10 Stacked recurrent networks. The output of a lower level serves as the input to
higher levels with the output of the last network serving as the final output.

• Continue until the end of sentence marker </s> is output.
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