Embeddings, neural networks
and language models

James A. Duffy

Chapters 6, 7 and 9 of
Jurafsky & Martin, Speech and Language Processing

1/31

Outline

Embeddings: words as euclidean vectors
Neural networks

Language models and NNs

e

Recursive NNs

® Ultimate objectives?
® to mathematically encode the relationships between / meaning of words
—> embeddings
® to train a language model, a model that is able to predict the next word
in a sentence, given the immediately preceding words = neural
language models

2/31

Vector semantics and embeddings

® Meaning of / relationship between words has been conceptualised in
many ways (see Sec. 6.1)
® Vector semantics identifies the meaning of a word with its distribution
in language use:
® essentially, the relative frequency with which it occurs in proximity to
other words
® j.e. its co-occurrence with other words
® Embeddings represent the distribution of a word in terms of a vector in
Euclidean space
® ‘sparse’ embeddings (long vectors with many zeros): tf-idf or PPMI
® ‘dense’ embeddings (shorter vectors): word2vec
® Representation is exceedingly useful, because it renders the ‘meaning’ of
a word as a mathematical object

® Encodes words in a manner suitable for input into a language model,
neural network, etc.

3/31

Vectors and documents

® Suppose we have a corpus of documents, and we want to quantify the
similarities / differences between them

e Ultimate objective could be document retrieval: you provide the system
with a document, and ask it to retrieve similar documents.

® Term-document matrix lists the frequencies with with which words
appear in each document

As You Like It Twelfth Night Julius Caesar Henry V
battle 1 0 7 13
good 114 80 62 89
fool 36 58 1 4
wit 20 15 2 3

JRRIICY W] The term-document matrix for four words in four Shakespeare plays. Each cell
contains the number of times the (row) word occurs in the (column) document.

® Here the corpus is four works; the vocabulary V consists of four words
(VI =4)

4/31

Vectors and documents

® Column vectors describe (‘embed’) the documents

As You Like It Twelfth Night Julius Caesar Henry V

battle 0 7

good 14 80 62 89
fool 36 58 1 4
wit 0 15 2 3

I3l] The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each document is represented as a column vector of length four.

® How to measure similarity between two documents / vectors, v and w?

® ordinary euclidean distance ||v — w|| inappropriate, because dependent
on magnitudes of entries

® we should first normalise the vectors to have unit length, i.e. v/||v||,
etc., then use euclidean distance, or cosine similarity

Henry V /4,13]
o
s
VT w S0 Julius Caesar /1,7]
cosf = ——— 5 AsYouLike It /36,17 Twelfth Night /56,0
[[vilflw]
T T T T T T T T T T T 1
5 10 15 20 25 30 35 40 45 50 55 60
Jfool

GITX®] A spatial visualization of the document vectors for the four Shakespeare play
documents, showing just two of the dimensions, corresponding to the words barrle and fool.
The comedies have high values for the fool dimension and low values for the battle dimension.

5/31

Vectors and words

® Row vectors could be used to represent the meaning of words

As You Like It Twelfth Night Julius Caesar Henry V
battle (1 0 7 13)
good 11 30 62 39)
fool 36 58 1 4)
wit & 15 2 3)

The term-document matrix for four words in four Shakespeare plays. The red
boxes show that each word is represented as a row vector of length four.

® But gives a very coarse-grained measure of meaning (particularly if each
document is large!)

6/31

Vectors and words

® Better approach is to construct a term-term matrix
® choose the ‘context’: a fixed window length, e.g. +4 words
® for each word w in the vocabulary V, record how many times another
word v € V appears within w's context, across a corpus
® yields a |V/|-length vector of co-occurrences

aardvark ... computer data result pie sugar
cherry 0 2 8 9 442 25
strawberry 0 0 0 1 60 19
digital (o 1670 1683 85 5 4)
information 0 3325 3982 378 5 13

JRPIICENY Co-occurrence vectors for four words in the Wikipedia corpus, showing six of
the dimensions (hand-picked for pedagogical purposes). The vector for digital is outlined in
red. Note that a real vector would have vastly more dimensions and thus be much sparser.

Vectors are sparse: if V = 50,000, most words will never appear in the

neighbourhood of most others

7/31

Vectors and words

® As with documents, we can use cosine to gauge similarity between words

pie data computer f o
cherry 442 8 2 2 } ihew agial information
digital 5 1683 1670 i§ %0 100 \5\00) 72300 25{)707 30100)
information 5 3982 3325 Dimension 2: ‘computer”
A (rough) graphical demonstration of cosine similarity, showing vectors for

three words (cherry, digital, and information) in the two dimensional space defined by counts

® Raw frequencies overly skewed by high co-occurrences with words that
are uninformative about meaning, e.g. the, it, they, etc.

® Whereas words that occur very infrequently may be highly informative
about the meaning of neighbouring words

® Weighting schemes (td-idf) or the PPMI algorithm provide an
alternative way of producing (sparse) vectors, that are less affected by
these problems (Sec. 6.5-6.7)

8/31

Dense embeddings

® However, a better approach in practice appears to be to use dense
embedding vectors (of length around 300 rather than 30, 000)

® Appear better able e.g. to capture synonymy between words, which is
lost by a sparse vector that treats very similar words (e.g. car and
automobile) as entirely separate entries of the vocabulary

® | eading example is the word2vec algorithm, which is based on a
classification / prediction problem

9/31

Word2vec

® Suppose we take the context of a word w to a +2 word window, as e.g.

. lemon, a [tablespoon of apricot jam, a] pinch ...
cl c2 W c3 c4

® Given the word w, what is the probability P(4 | w, ¢) that some other
word ¢ € V appears in w's context?

® et w and c denote (dense) R%valued embeddings for these words.
Then i

-
———=——— =0(C W
1+ exp(—c'w) ()

P(+ | w,c) =

so the probability is highest for words that are ‘similar’ in the sense that
c'wis large and positive

e Ultimately, the collection of w's and ¢'s, stacked (columnwise) in the
matrices W and C, will provide our embeddings for the words in V

® The problem then is to estimate W and C, i.e. to ‘train the classifier’
on a corpus of text

10/31

Word2vec

. lemon, a [tablespoon of apricot jam, a] pinch ...
cl c2 w c3 c4

® Want to construct a quasi-likelihood / loss function to estimate the
model. What do we learn when observe the above?

1. ¢1,...,¢. € V appear in the context of w; if we assume (heroically!)
that context words appear independently of each other

L L
P+ [w, ¢,) = HP(+ lw,q) = HU(C:'TW)
i=1 i=1

2. ce V\{cy,..., ¢} did not appear in the context for w; for a single
word ¢, this occurs with probability

P(— | w,c) =1—o(c w);

® Assuming independence, the log quasi-likelihood of observing w in the
context of (¢, ..., ¢,) would be

Z log o(c] w) + Z log[1 — o(c"w)]

ceV\{cy,...,c } 11/31

Word2vec

L
Z log (¢ w) + Z log[1 — o(c" w)]
i=1 ceV\{er,one}
® Problem: objective is overwhelmed by the second term
® So instead, replace the by a random selection of k ‘noise’ words, chosen
in proportion to some weighted frequency measure, e.g.

lemon, a [tablespoon of apricot jam, a] pinch
cl c2 W c3 c4
positive examples + negative examples -
w Cpos w Cneg w Creg
apricot tablespoon apricot aardvark apricot seven
apricot of apricot my apricot forever
apricot jam apricot where apricot dear
apricot a apricot coaxial apricot if
® Leads to, for c, ; drawn randomly from V\{c,..., ¢ }:

L kL
Z log a(c,-Tw) + Z log[1 — a(cI_’,-w)]
i=1 i=1

12/31

Word2vec

L kL
> loga(c]w)+ > log[l — a(cl;w)]
i=1 i=1

® We then sum this over all word w and context (cy,...,¢,) pairs, and
maximise with the aid of stochastic gradient ascent.

® VYields a collection of word w; and context c; parameter vectors /
embeddings of length d; for each word w; € V

® We may take w; or e.g. w; + c; to be the word2vec embedding
® [How should we choose d? Cross-validation / information criteria?]

® For some of the ‘nice’ semantic properties of these embeddings, see Sec.
6.10

13/31

Next step: language models

® Now we have a way to (usefully) represent words as vectors

® We can start to mathematically model the dependence between words
in sentences

® But this dependence may be very complicated . ..

14 /31

Neural networks: motivation

® The mapping from context to (the distribution of the next) word

fed
| have to make sure the cat gets { spayed

context ???

® is potentially highly nonlinear with unknown functional forms

® we have a potentially enormous large corpus of text from which to
estimate it

® but little a priori theoretical guidance as to what class a ‘good’ model
might come from

® A nonparametric estimation problem?

® we need a flexible class of models capable of approximating a wide range
of functions
® neural networks provide a nonlinear universal approximator

15/31

Computational units

e Simple NNs are composed of (layers of) units of the form

a= g(WTX) =8 (Z Wixi>
i=1

® x =(xq,...,X,) is a vector of n inputs (includes a constant input)
® 3 is the real-valued output
® g is monotone, typically either:

® sigmoid: o(z) =1/(1+e" %), maps to [0,1]

® tanh(z) = (" — e %)/(e” +e %), maps to [—1,1]

® ‘rectified linear’: ReLU(z) = max{z, 0}, maps to [0, 00).

16/31

Computational units

o(z)=1/(1+e7)

%5 ~6 -4 -2 0 2 @ 6 8

I KAl The sigmoid function takes a real value and maps it to the range (0,1). It is
nearly linear around 0 but outlier values get squashed toward 0 or 1.

tanh(z)

y=

1.0 10
05 5
S
g
0.0 20
F
=
-0.5 -5
105 =5 0 5 10 055 =5 0 5 10
(a) (b)

JATTIY K] The tanh and ReLU activation functions.

17/31

Feedforward neural networks

® One unit cannot approximate much on its own: [see their XOR
example]
® it is merely a transformed linear (affine) function
® the extent of the possible nonlinearity is extremely circumscribed
® We can do much better by ‘nesting’ multiple units within each other

® hierarchy of units: taking inputs from previous ‘layers’, providing output
to subsequent ‘layers’ of units

® basis for feedforward neural networks (NNs): multiple layers, but no
cycles

® Nonlinearity is important: multiple nested layers of linear units are
equivalent to a single linear function

18/31

Feedforward neural networks
® 2-layer example: one ‘hidden’ and one ‘output’ layer
® ng inputs given by x = (x,..., X,)
® n; units in the hidden layer, of the form

hy g(wix) wi
h = = = g(WX)? w = :
B, g(w] x) w,,

® produces a representation of the input
® output layer:
® takes linear combinations z = Uh of the outputs of the hidden layer
® produces a R™-valued output, where n, (and the transformation of z
used to get it) depends on the problem
® e.g. if we want to produce a probability distribution over the next word,
use

[softmax(z)]; = :Xpi
2 i exp(z)
for z=(z,...,24) € RY: the softmax function [the multinomial logit

pmf]

19/31

Feedforward neural networks

input layer hidden layer output layer

IR A simple 2-layer feedforward network, with one hidden layer, one output layer,
and one input layer (the input layer is usually not counted when enumerating layers).

hidden: h = g(Wx)
output: y = f(Uh)

20/31

Training [estimation]

® Data: suppose we observe pairs of the form (y, x)
® yis a K-vector of all zeros, except for one element equal to unity
® nonzero element indicates which of the K outcomes actually ‘happened’
® ‘self supervised’ learning, because the data automatically contains the
correct outcomes
® NN yields a (‘probabilistic’) prediction y = y(x) of y
® ‘Loss function': cross entropy loss, for a single observation

K
Lep(W, Uy, x) = — Zyk log 9 (x; W, U)
k=1
K
= —> 1{y = 1} log i (x; W, U)
k=1

® equals conditional probability assigned by the model to the actual
outcome

® just the negative of the (quasi-)loglikelihood, for a model in which y has
MNL distribution with probabilities given by y = y(x), conditional on x

21/31

Training [estimation]

K

Lep(W., Uiy, x) = _ZYk log i (x; W, U)
k=1

Want to minimise the loss / maximise the quasi-likelihood
Can we use (stochastic) gradient descent?
® 9.(x; W, U) is a potentially complicated nonlinear function of Wand U:
multiple units in multiple layers

® but all the constituent units involve only smooth transformations, so
derivatives always exist

Calculation of the gradient:

® can be broken down into manageable pieces via ‘backwards
differentiation’

® basically, compute gradient at each layer, and then combine as per the
chain rule

® Non-convex objective, so potentially highly sensitive to starting values

22/31

Language models and NNs

® | anguage models:

® aim to predict the next next word in a sentence, based on the preceding
words, the context

| have to make sure the cat gets 777

® mathematically, model the conditional distribution of the tth word w;
giVen Wi_1, Wi_2, ...

® N-gram language models: [Ch. 3]
® suppose this dependence is Markovian, for some window length N

P(We | We_1, We—p, ..) = p(We | Weet, oo, Wem i) = P(We | €4q)

® estimate p(w; | €;_1) ‘nonparametrically’ using observed relative
frequencies (or modifications thereof)
® Weaknesses of N-gram models:

® we may see very few occurrences of the exact (w;, c,_;) even in huge

datasets
® no way of exploiting similarities between meanings of words to learn
about p(w, | ¢,_1) from 'similar’ (w;, c;_;) [e.g. ... dog gets fed’

above]

23/31

Language models and NNs

® Neural language models:
® may make the same Markovian assumption as N-gram models
® but work with word embeddings, which encode approximate similarities
between word meanings
® embeddings encoded in a matrix E € R , Where d is the dimension
of the embedding, and |V/| the length of the vocabulary

dx|V|

® Structure otherwise that of a generic neural network

input: e=[Ex; ni1;--.; Ex; 1]
hidden: h=g(We)
output: y = softmax(Uh)

where x;; = 1 if observed word w, = the ith entry in the vocabulary V,
and 0 otherwise
® output = conditional probability distribution over w;, given
Wi1s- s Wi N1
® Parameters to be estimated: W, U (as before), and (possibly) also E

24/31

Language models and NNs

and sEH p(aardvark]...)
hank: ;': :
thanks e '
PN I S R\\\' —~p(dol...)
: B X
1 8 XY
: al fw, , p(fish...)
.: the
' ijil 8
: W E N U W p(zebral...)

X dxv| 3dx1 dyx3d dpx1 [ViIxdy, y

[VIx3 [V|x1
input layer embedding hidden output layer
one-hot layer layer softmax

vectors

JOTIYHBE] Learning all the way back to embeddings. Again, the embedding matrix E is
shared among the 3 context words.

25 /31

Recursive NNs: background

® How can we improve on the preceding?

® Feedforward neural language models impose finite dependence of w;, on
the context ¢, 1 = (W;_1,..., W;_pny1)

® only the previous N words matter, e.g. if N =3
| have to make sure the cat gets 7?7

anything prior to ‘the’ is entirely forgotten
® a consequence of the Markov assumption, recall

p(we | W, We_zs) = p(We | We1, oo, Weng1) = p(We | €:-1)

® but this isn’'t how any language works!

® How can we build a model with potentially longer-lived dependence?
We need to relax the Markov assumption!

26 /31

Aside: linear state-space models
® The linear counterpart of a feedforward NN is an AR(N) model

we = 01w,y + 0w _p+ -+ Oywe_ny1 U
=0w, 1+ u;
taking N = 1 for simplicity; here u, is (say) i.i.d.
® given w;_1, the conditional distribution of w, does not depend on w;,_
for any s > 2
® Compare with the state-space model

Wepr = Bhe + up g
hy = ohy 1 +w;
{w,} is the observed process, h, the unobserved state
® if hg =0, can be ‘unrolled’ back to period t =0 as

t—1
Weir = Bhe + tppn = B Z ' Wi + Urpa
i=0
® now the conditional distribution of w, depends on every past w,_;
(which decreases if |¢| < 1)
® Recursive NN: extend this idea to neural network models, by

introducing (a vector of) latent hidden autoregressive states
27/31

Recursive NNs

C hy 4) C Xt)

IR P®] Simple recurrent neural network illustrated as a feedforward network.

® Basic structure:

hidden: h,=g(Uh,_, + Wx,)
output: y,.; =f(Vh,)

® if U =0, this reduces to a feedforward NN

® e.g. f = softmax

® May have multiple layers, e.g. we may build ‘stacked RNNs'
® Can be ‘unrolled’ in the same way as a linear state-space model

28/31

Recursive NNs: unrolling

>
>

A simple recurrent neural network shown unrolled in time. Network layers are recalculated for
each time step, while the weights U, V and W are shared across all time steps.

29/31

Language models and RNNs

® As with a feedforward neural LM, inputs are vector embeddings of words
input: e, =Ex,
hidden: h,=g(Uh,_; + We,)
output: y,, ; = softmax(Vh,)

® or e = [Exi_py1;---; Ex._1], etc.; each x, selects a column from E
® by construction, h, depends on all previous inputs x,, x;_1,...
® ‘Forward inference' / prediction is straightforward: requires some
initialisation for hgy, e.g. hg =0
® Training / estimation proceeds as for a feedforward NN, using
cross-entropy loss

K

Log(W, U, V) = ="y log i (x; W, U, V)
k=1
® ‘Weight tying’:
® Vs a |V| X d, matrix that ‘scores’ the relative conditional probability of
the next word, given its context
® rows provide embeddings for each word in the vocabulary
® performs the same role as E (= dim of ET); we may force V = E" to

reduce number of model parameters
30/31

Generative Al

® Usage as ‘generative Al': use the model to recursively predict, until the
end of a sentence is reached

1. Initialise by setting x, to the symbol <s> (or some more
task-appropriate context) for the beginning of a sentence; e, the
corresponding embedding

2. At the tth step, take x, ; to indicate the element of the vocabulary for
which the corresponding element of y,.; = softmax(V h,) is highest

3. The next input, e,,; = Ex;,; is the embedding corresponding to x;,;

Sampled Word SO

Softmax

(o
1

Embedding

Input Word <s> So g and

5

[IIEE] Autoregressive generation with an RNN-based neural language model.

® Continue until the end of sentence marker </s> is output.

31/31

