Embeddings, neural networks and language models

James A. Duffy

Chapters 6, 7 and 9 of
Jurafsky \& Martin, Speech and Language Processing

Outline

1. Embeddings: words as euclidean vectors
2. Neural networks
3. Language models and NNs
4. Recursive NNs

- Ultimate objectives?
- to mathematically encode the relationships between / meaning of words \Longrightarrow embeddings
- to train a language model, a model that is able to predict the next word in a sentence, given the immediately preceding words \Longrightarrow neural language models

Vector semantics and embeddings

- Meaning of / relationship between words has been conceptualised in many ways (see Sec. 6.1)
- Vector semantics identifies the meaning of a word with its distribution in language use:
- essentially, the relative frequency with which it occurs in proximity to other words
- i.e. its co-occurrence with other words
- Embeddings represent the distribution of a word in terms of a vector in Euclidean space
- 'sparse' embeddings (long vectors with many zeros): tf-idf or PPMI
- 'dense' embeddings (shorter vectors): word2vec
- Representation is exceedingly useful, because it renders the 'meaning' of a word as a mathematical object
- Encodes words in a manner suitable for input into a language model, neural network, etc.

Vectors and documents

- Suppose we have a corpus of documents, and we want to quantify the similarities / differences between them
- Ultimate objective could be document retrieval: you provide the system with a document, and ask it to retrieve similar documents.
- Term-document matrix lists the frequencies with with which words appear in each document

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

Figure 6.2 The term-document matrix for four words in four Shakespeare plays. Each cell contains the number of times the (row) word occurs in the (column) document.

- Here the corpus is four works; the vocabulary V consists of four words $(|V|=4)$

Vectors and documents

- Column vectors describe ('embed') the documents

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle good fool wit	$\left[\begin{array}{c}1 \\ 14 \\ 36 \\ 20\end{array}\right.$	0 80 5	$\left.\begin{array}{c}7 \\ 58 \\ 15\end{array}\right)$	$\left(\begin{array}{c}73 \\ 62 \\ 1 \\ 2\end{array}\right.$

Figure 6.3 The term-document matrix for four words in four Shakespeare plays. The red boxes show that each document is represented as a column vector of length four.

- How to measure similarity between two documents / vectors, \boldsymbol{v} and \boldsymbol{w} ?
- ordinary euclidean distance $\|\boldsymbol{v}-\boldsymbol{w}\|$ inappropriate, because dependent on magnitudes of entries
- we should first normalise the vectors to have unit length, i.e. $\boldsymbol{v} /\|\boldsymbol{v}\|$, etc., then use euclidean distance, or cosine similarity

$$
\cos \theta=\frac{\boldsymbol{v}^{\top} \boldsymbol{w}}{\|\boldsymbol{v}\|\|\boldsymbol{w}\|}
$$

Figure 6.4 A spatial visualization of the document vectors for the four Shakespeare play documents, showing just two of the dimensions, corresponding to the words battle and fool. The comedies have high values for the fool dimension and low values for the battle dimension.

Vectors and words

- Row vectors could be used to represent the meaning of words

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle good fool wit	1	0	7	13

Figure 6.5 The term-document matrix for four words in four Shakespeare plays. The red boxes show that each word is represented as a row vector of length four.

- But gives a very coarse-grained measure of meaning (particularly if each document is large!)

Vectors and words

- Better approach is to construct a term-term matrix
- choose the 'context': a fixed window length, e.g. ± 4 words
- for each word w in the vocabulary V, record how many times another word $v \in V$ appears within w's context, across a corpus
- yields a $|V|$-length vector of co-occurrences

	aardvark	\ldots	computer	data	result	pie	sugar	\ldots
cherry	0	\ldots	2	8	9	442	25	\ldots
strawberry	0	\ldots	0	0	1	60	19	\ldots
digital	0	\ldots	1670	1683	85	5	4	\ldots
information	0	\ldots	3325	3982	378	5	13	\ldots

Figure 6.6 Co-occurrence vectors for four words in the Wikipedia corpus, showing six of the dimensions (hand-picked for pedagogical purposes). The vector for digital is outlined in red. Note that a real vector would have vastly more dimensions and thus be much sparser.

- Vectors are sparse: if $V=50,000$, most words will never appear in the neighbourhood of most others

Vectors and words

- As with documents, we can use cosine to gauge similarity between words

	pie	data	computer
cherry	442	8	2
digital	5	1683	1670
information	5	3982	3325

- Raw frequencies overly skewed by high co-occurrences with words that are uninformative about meaning, e.g. the, it, they, etc.
- Whereas words that occur very infrequently may be highly informative about the meaning of neighbouring words
- Weighting schemes (td-idf) or the PPMI algorithm provide an alternative way of producing (sparse) vectors, that are less affected by these problems (Sec. 6.5-6.7)

Dense embeddings

- However, a better approach in practice appears to be to use dense embedding vectors (of length around 300 rather than 30,000)
- Appear better able e.g. to capture synonymy between words, which is lost by a sparse vector that treats very similar words (e.g. car and automobile) as entirely separate entries of the vocabulary
- Leading example is the word2vec algorithm, which is based on a classification / prediction problem

Word2vec

- Suppose we take the context of a word w to a ± 2 word window, as e.g.
... lemon,
a [tablespoon of apricot jam, c1 c2 w c3 a] pinch ...
c4
- Given the word w, what is the probability $\mathbb{P}(+\mid w, c)$ that some other word $c \in V$ appears in w's context?
- Let \boldsymbol{w} and \boldsymbol{c} denote (dense) \mathbb{R}^{d}-valued embeddings for these words. Then

$$
\mathbb{P}(+\mid w, c)=\frac{1}{1+\exp \left(-\boldsymbol{c}^{\top} \boldsymbol{w}\right)}=\sigma\left(\boldsymbol{c}^{\top} \boldsymbol{w}\right)
$$

so the probability is highest for words that are 'similar' in the sense that $\boldsymbol{c}^{\top} \boldsymbol{w}$ is large and positive

- Ultimately, the collection of \boldsymbol{w} 's and \boldsymbol{c} 's, stacked (columnwise) in the matrices \boldsymbol{W} and \boldsymbol{C}, will provide our embeddings for the words in V
- The problem then is to estimate \boldsymbol{W} and \boldsymbol{C}, i.e. to 'train the classifier' on a corpus of text

Word2vec

- Want to construct a quasi-likelihood / loss function to estimate the model. What do we learn when observe the above?

1. $c_{1}, \ldots, c_{L} \in V$ appear in the context of w; if we assume (heroically!) that context words appear independently of each other

$$
\mathbb{P}\left(+\mid w, c_{1}, \ldots, c_{L}\right)=\prod_{i=1}^{L} \mathbb{P}\left(+\mid w, c_{i}\right)=\prod_{i=1}^{L} \sigma\left(\boldsymbol{c}_{i}^{\top} \boldsymbol{w}\right)
$$

2. $c \in V \backslash\left\{c_{1}, \ldots, c_{L}\right\}$ did not appear in the context for w; for a single word c, this occurs with probability

$$
\mathbb{P}(-\mid w, c)=1-\sigma\left(\boldsymbol{c}^{\top} \boldsymbol{w}\right)
$$

- Assuming independence, the log quasi-likelihood of observing w in the context of $\left(c_{1}, \ldots, c_{L}\right)$ would be

$$
\sum_{i=1}^{L} \log \sigma\left(\boldsymbol{c}_{i}^{\top} \boldsymbol{w}\right)+\sum_{c \in V \backslash\left\{c_{1}, \ldots, c_{L}\right\}} \log \left[1-\sigma\left(\boldsymbol{c}^{\top} \boldsymbol{w}\right)\right]
$$

Word2vec

$$
\sum_{i=1}^{L} \log \sigma\left(\boldsymbol{c}_{i}^{\top} \boldsymbol{w}\right)+\sum_{c \in V \backslash\left\{c_{1}, \ldots, c_{L}\right\}} \log \left[1-\sigma\left(\boldsymbol{c}^{\top} \boldsymbol{w}\right)\right]
$$

- Problem: objective is overwhelmed by the second term
- So instead, replace the by a random selection of k 'noise' words, chosen in proportion to some weighted frequency measure, e.g.

> ... lemon, a [tablespoon of apricot jam,
> a] pinch ...
> c1 c2 w c3 c4
positive examples +

w	$c_{\text {pos }}$
apricot	tablespoon
apricot of	
apricot	jam
apricot	a

negative examples -

w	$c_{\text {neg }}$	w	$c_{\text {neg }}$
apricot	aardvark	apricot seven	
apricot	my	apricot	forever
apricot	where	apricot dear	
apricot	coaxial	apricot if	

- Leads to, for $c_{*, i}$ drawn randomly from $V \backslash\left\{c_{1}, \ldots, c_{L}\right\}$:

$$
\sum_{i=1}^{L} \log \sigma\left(\boldsymbol{c}_{i}^{\top} \boldsymbol{w}\right)+\sum_{i=1}^{k L} \log \left[1-\sigma\left(\boldsymbol{c}_{*, i}^{\top} \boldsymbol{w}\right)\right]
$$

Word2vec

$$
\sum_{i=1}^{L} \log \sigma\left(\boldsymbol{c}_{i}^{\top} \boldsymbol{w}\right)+\sum_{i=1}^{k L} \log \left[1-\sigma\left(\boldsymbol{C}_{*, i}^{\top} \boldsymbol{w}\right)\right]
$$

- We then sum this over all word w and context $\left(c_{1}, \ldots, c_{L}\right)$ pairs, and maximise with the aid of stochastic gradient ascent.
- Yields a collection of word \boldsymbol{w}_{i} and context \boldsymbol{c}_{i} parameter vectors / embeddings of length d; for each word $w_{i} \in V$
- We may take \boldsymbol{w}_{i} or e.g. $\boldsymbol{w}_{i}+\boldsymbol{c}_{i}$ to be the word2vec embedding
- [How should we choose d ? Cross-validation / information criteria?]
- For some of the 'nice' semantic properties of these embeddings, see Sec. 6.10

Next step: language models

- Now we have a way to (usefully) represent words as vectors
- We can start to mathematically model the dependence between words in sentences
- But this dependence may be very complicated...

Neural networks: motivation

- The mapping from context to (the distribution of the next) word

- is potentially highly nonlinear with unknown functional forms
- we have a potentially enormous large corpus of text from which to estimate it
- but little a priori theoretical guidance as to what class a 'good' model might come from
- A nonparametric estimation problem?
- we need a flexible class of models capable of approximating a wide range of functions
- neural networks provide a nonlinear universal approximator

Computational units

- Simple NNs are composed of (layers of) units of the form

$$
a=g\left(\boldsymbol{w}^{\top} \boldsymbol{x}\right)=g\left(\sum_{i=1}^{n} w_{i} x_{i}\right)
$$

- $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ is a vector of n inputs (includes a constant input)
- a is the real-valued output
- g is monotone, typically either:
- sigmoid: $\sigma(z)=1 /\left(1+\mathrm{e}^{-z}\right)$, maps to $[0,1]$
- $\tanh (z)=\left(\mathrm{e}^{z}-\mathrm{e}^{-\mathrm{z}}\right) /\left(\mathrm{e}^{2}+\mathrm{e}^{-\mathrm{z}}\right)$, maps to $[-1,1]$
- 'rectified linear': $\operatorname{ReLU}(z)=\max \{z, 0\}$, maps to $[0, \infty)$.

Computational units

Figure 7.1 The sigmoid function takes a real value and maps it to the range (0,1). It is nearly linear around 0 but outlier values get squashed toward 0 or 1 .

Figure 7.3 The tanh and ReLU activation functions.

Feedforward neural networks

- One unit cannot approximate much on its own: [see their XOR example]
- it is merely a transformed linear (affine) function
- the extent of the possible nonlinearity is extremely circumscribed
- We can do much better by 'nesting' multiple units within each other
- hierarchy of units: taking inputs from previous 'layers', providing output to subsequent 'layers' of units
- basis for feedforward neural networks (NNs): multiple layers, but no cycles
- Nonlinearity is important: multiple nested layers of linear units are equivalent to a single linear function

Feedforward neural networks

- 2-layer example: one 'hidden' and one 'output' layer
- n_{0} inputs given by $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n_{0}}\right)$
- n_{1} units in the hidden layer, of the form

$$
\boldsymbol{h}=\left[\begin{array}{c}
h_{1} \\
\vdots \\
h_{n_{1}}
\end{array}\right]=\left[\begin{array}{c}
g\left(\boldsymbol{w}_{1}^{\top} \boldsymbol{x}\right) \\
\vdots \\
g\left(\boldsymbol{w}_{n_{1}}^{\top} \boldsymbol{x}\right)
\end{array}\right]=\boldsymbol{g}(\boldsymbol{W} \boldsymbol{x}), \quad \boldsymbol{W}=\left[\begin{array}{c}
\boldsymbol{w}_{1}^{\top} \\
\vdots \\
\boldsymbol{w}_{n_{1}}^{\top}
\end{array}\right]
$$

- produces a representation of the input
- output layer:
- takes linear combinations $\boldsymbol{z}=\boldsymbol{U} \boldsymbol{h}$ of the outputs of the hidden layer
- produces a $\mathbb{R}^{n_{2}}$-valued output, where n_{2} (and the transformation of \boldsymbol{z} used to get it) depends on the problem
- e.g. if we want to produce a probability distribution over the next word, use

$$
[\operatorname{softmax}(z)]_{i}=\frac{\exp \left(z_{i}\right)}{\sum_{j=1}^{d} \exp \left(z_{j}\right)}
$$

for $\boldsymbol{z}=\left(z_{1}, \ldots, z_{d}\right) \in \mathbb{R}^{d}$; the softmax function [the multinomial logit pmf]

Feedforward neural networks

Figure 7.8 A simple 2-layer feedforward network, with one hidden layer, one output layer, and one input layer (the input layer is usually not counted when enumerating layers).

$$
\begin{array}{ll}
\text { hidden: } & \boldsymbol{h}=\boldsymbol{g}(\boldsymbol{W} \boldsymbol{x}) \\
\text { output: } & \boldsymbol{y}=\boldsymbol{f}(\boldsymbol{U} \boldsymbol{h})
\end{array}
$$

Training [estimation]

- Data: suppose we observe pairs of the form $(\boldsymbol{y}, \boldsymbol{x})$
- \boldsymbol{y} is a K-vector of all zeros, except for one element equal to unity
- nonzero element indicates which of the K outcomes actually 'happened'
- 'self supervised' learning, because the data automatically contains the correct outcomes
- NN yields a ('probabilistic') prediction $\hat{\boldsymbol{y}}=\hat{\boldsymbol{y}}(\boldsymbol{x})$ of \boldsymbol{y}
- 'Loss function': cross entropy loss; for a single observation

$$
\begin{aligned}
L_{\mathrm{CE}}(\boldsymbol{W}, \boldsymbol{U} ; \boldsymbol{y}, \boldsymbol{x}) & =-\sum_{k=1}^{K} y_{k} \log \hat{y}_{k}(\boldsymbol{x} ; \boldsymbol{W}, \boldsymbol{U}) \\
& =-\sum_{k=1}^{K} 1\left\{y_{k}=1\right\} \log \hat{y}_{k}(\boldsymbol{x} ; \boldsymbol{W}, \boldsymbol{U})
\end{aligned}
$$

- equals conditional probability assigned by the model to the actual outcome
- just the negative of the (quasi-)loglikelihood, for a model in which y has MNL distribution with probabilities given by $\hat{\boldsymbol{y}}=\hat{\boldsymbol{y}}(\boldsymbol{x})$, conditional on \boldsymbol{x}

Training [estimation]

$$
L_{\mathrm{CE}}(\boldsymbol{W}, \boldsymbol{U} ; \boldsymbol{y}, \boldsymbol{x})=-\sum_{k=1}^{k} y_{k} \log \hat{y}_{k}(\boldsymbol{x} ; \boldsymbol{W}, \boldsymbol{U})
$$

- Want to minimise the loss / maximise the quasi-likelihood
- Can we use (stochastic) gradient descent?
- $\hat{y}_{k}(\boldsymbol{x} ; \boldsymbol{W}, \boldsymbol{U})$ is a potentially complicated nonlinear function of \boldsymbol{W} and \boldsymbol{U} : multiple units in multiple layers
- but all the constituent units involve only smooth transformations, so derivatives always exist
- Calculation of the gradient:
- can be broken down into manageable pieces via 'backwards differentiation'
- basically, compute gradient at each layer, and then combine as per the chain rule
- Non-convex objective, so potentially highly sensitive to starting values

Language models and NNs

- Language models:
- aim to predict the next next word in a sentence, based on the preceding words, the context

I have to make sure the cat gets ???

- mathematically, model the conditional distribution of the t th word w_{t} given w_{t-1}, w_{t-2}, \ldots
- N-gram language models: [Ch. 3]
- suppose this dependence is Markovian, for some window length N

$$
p\left(w_{t} \mid w_{t-1}, w_{t-2}, \ldots\right)=p\left(w_{t} \mid w_{t-1}, \ldots, w_{t-N+1}\right)=p\left(w_{t} \mid \boldsymbol{c}_{t-1}\right)
$$

- estimate $p\left(w_{t} \mid \boldsymbol{c}_{t-1}\right)$ 'nonparametrically' using observed relative frequencies (or modifications thereof)
- Weaknesses of N-gram models:
- we may see very few occurrences of the exact $\left(w_{t}, \boldsymbol{c}_{t-1}\right)$ even in huge datasets
- no way of exploiting similarities between meanings of words to learn about $p\left(w_{t} \mid \boldsymbol{c}_{t-1}\right)$ from 'similar' $\left(w_{t}^{\prime}, \boldsymbol{c}_{t-1}^{\prime}\right)$ [e.g. '. . . dog gets fed' above]

Language models and NNs

- Neural language models:
- may make the same Markovian assumption as N-gram models
- but work with word embeddings, which encode approximate similarities between word meanings
- embeddings encoded in a matrix $E \in \mathbb{R}^{d \times|V|}$, where d is the dimension of the embedding, and $|V|$ the length of the vocabulary
- Structure otherwise that of a generic neural network

$$
\begin{aligned}
\text { input: } & \boldsymbol{e}=\left[\boldsymbol{E} \boldsymbol{x}_{t-N+1} ; \ldots ; \boldsymbol{E}_{t-1}\right] \\
\text { hidden: } & \boldsymbol{h}=\boldsymbol{g}(\boldsymbol{W} \boldsymbol{e}) \\
\text { output: } & \boldsymbol{y}=\operatorname{softmax}(\boldsymbol{U} \boldsymbol{h})
\end{aligned}
$$

where $x_{i t}=1$ if observed word $w_{t}=$ the i th entry in the vocabulary V, and 0 otherwise

- output $=$ conditional probability distribution over w_{t}, given

$$
w_{t-1}, \ldots, w_{t-N+1}
$$

- Parameters to be estimated: $\boldsymbol{W}, \boldsymbol{U}$ (as before), and (possibly) also \boldsymbol{E}

Language models and NNs

Figure 7.18 Learning all the way back to embeddings. Again, the embedding matrix \mathbf{E} is shared among the 3 context words.

Recursive NNs: background

- How can we improve on the preceding?
- Feedforward neural language models impose finite dependence of w_{t} on the context $\boldsymbol{C}_{t-1}=\left(w_{t-1}, \ldots, w_{t-N+1}\right)$
- only the previous N words matter, e.g. if $N=3$

I have to make sure the cat gets ???
anything prior to 'the' is entirely forgotten

- a consequence of the Markov assumption, recall

$$
p\left(w_{t} \mid w_{t-1}, w_{t-2}, \ldots\right)=p\left(w_{t} \mid w_{t-1}, \ldots, w_{t-N+1}\right)=p\left(w_{t} \mid \boldsymbol{c}_{t-1}\right)
$$

- but this isn't how any language works!
- How can we build a model with potentially longer-lived dependence? We need to relax the Markov assumption!

Aside: linear state-space models

- The linear counterpart of a feedforward $N N$ is an $\operatorname{AR}(N)$ model

$$
\begin{aligned}
w_{t} & =\theta_{1} w_{t-1}+\theta_{2} w_{t-2}+\cdots+\theta_{N} w_{t-N+1}+u_{t} \\
& =\theta w_{t-1}+u_{t}
\end{aligned}
$$

taking $N=1$ for simplicity; here u_{t} is (say) i.i.d.

- given w_{t-1}, the conditional distribution of w_{t} does not depend on w_{t-s} for any $s \geq 2$
- Compare with the state-space model

$$
\begin{aligned}
w_{t+1} & =\beta h_{t}+u_{t+1} \\
h_{t} & =\phi h_{t-1}+w_{t}
\end{aligned}
$$

$\left\{w_{t}\right\}$ is the observed process, h_{t} the unobserved state

- if $h_{0}=0$, can be 'unrolled' back to period $t=0$ as

$$
w_{t+1}=\beta h_{t}+u_{t+1}=\beta \sum_{i=0}^{t-1} \phi^{i} w_{t-i}+u_{t+1}
$$

- now the conditional distribution of w_{t} depends on every past w_{t-i} (which decreases if $|\phi|<1$)
- Recursive NN: extend this idea to neural network models, by introducing (a vector of) latent hidden autoregressive states

Recursive NNs

Figure 9.2 Simple recurrent neural network illustrated as a feedforward network.

- Basic structure:

$$
\begin{aligned}
& \text { hidden: } & \boldsymbol{h}_{t} & =\boldsymbol{g}\left(\boldsymbol{U} \boldsymbol{h}_{t-1}+\boldsymbol{W} \boldsymbol{x}_{t}\right) \\
& \text { output: } & \boldsymbol{y}_{t+1} & =\boldsymbol{f}\left(\boldsymbol{V} \boldsymbol{h}_{t}\right)
\end{aligned}
$$

- if $\boldsymbol{U}=0$, this reduces to a feedforward NN
- e.g. $\boldsymbol{f}=$ softmax
- May have multiple layers, e.g. we may build 'stacked RNNs'
- Can be 'unrolled' in the same way as a linear state-space model

Recursive NNs: unrolling

Figure 9.4 A simple recurrent neural network shown unrolled in time. Network layers are recalculated for each time step, while the weights \mathbf{U}, \mathbf{V} and \mathbf{W} are shared across all time steps.

Language models and RNNs

- As with a feedforward neural LM, inputs are vector embeddings of words

$$
\begin{aligned}
\text { input: } & & \boldsymbol{e}_{t} & =\boldsymbol{E} \boldsymbol{x}_{t} \\
& \text { hidden: } & \boldsymbol{h}_{t} & =\boldsymbol{g}\left(\boldsymbol{U} \boldsymbol{h}_{t-1}+\boldsymbol{W} \boldsymbol{e}_{t}\right) \\
& \text { output: } & \boldsymbol{y}_{t+1} & =\operatorname{softmax}\left(\boldsymbol{V} \boldsymbol{h}_{t}\right)
\end{aligned}
$$

- or $\boldsymbol{e}=\left[\boldsymbol{E} \boldsymbol{x}_{t-N+1} ; \ldots ; \boldsymbol{E}_{\boldsymbol{x}_{t-1}}\right]$, etc.; each \boldsymbol{x}_{t} selects a column from \boldsymbol{E}
- by construction, \boldsymbol{h}_{t} depends on all previous inputs $\boldsymbol{x}_{t}, \boldsymbol{x}_{t-1}, \ldots$
- 'Forward inference' / prediction is straightforward: requires some initialisation for \boldsymbol{h}_{0}, e.g. $\boldsymbol{h}_{0}=0$
- Training / estimation proceeds as for a feedforward NN, using cross-entropy loss

$$
L_{\mathrm{CE}}(\boldsymbol{W}, \boldsymbol{U}, \boldsymbol{V})=-\sum_{k=1}^{K} y_{k} \log \hat{y}_{k}(\boldsymbol{x} ; \boldsymbol{W}, \boldsymbol{U}, \boldsymbol{V})
$$

- 'Weight tying':
- \boldsymbol{V} is a $|V| \times d_{h}$ matrix that 'scores' the relative conditional probability of the next word, given its context
- rows provide embeddings for each word in the vocabulary
- performs the same role as \boldsymbol{E} ($=\operatorname{dim}$ of \boldsymbol{E}^{\top}); we may force $\boldsymbol{V}=\boldsymbol{E}^{\top}$ to reduce number of model parameters

Generative AI

- Usage as 'generative AI': use the model to recursively predict, until the end of a sentence is reached

1. Initialise by setting x_{0} to the symbol $<s>$ (or some more task-appropriate context) for the beginning of a sentence; \boldsymbol{e}_{0} the corresponding embedding
2. At the t th step, take \boldsymbol{x}_{t+1} to indicate the element of the vocabulary for which the corresponding element of $\boldsymbol{y}_{t+1}=\operatorname{softmax}\left(\boldsymbol{V} \boldsymbol{h}_{t}\right)$ is highest
3. The next input, $\boldsymbol{e}_{t+1}=\boldsymbol{E} \boldsymbol{x}_{t+1}$ is the embedding corresponding to \boldsymbol{x}_{t+1}

- Continue until the end of sentence marker $\langle/$ s \rangle is output.

